Efficient Serverless Support for Multi-Instance GPUs Through Pipelining

Xinning Hui
North Carolina State University
xhui@ncsu.edu

Yuanchao Xu
University of California, Santa Cruz
yxu3l4@ucsc.edu

Xipeng Shen
North Carolina State University
xshen5 @ncsu.edu

Abstract

Recent advancements in serverless computing have garnered
interest in deploying machine learning (ML) inference tasks
due to the ease of autoscaling and pay-as-you-go billing. De-
spite the trend of integrating GPUs in serverless platforms,
existing solutions face significant GPU underutilization. This
paper presents FluidFaaS, a solution that enables flexible
Multi-Instance GPU (MIG) management for serverless ML.
Through a novel programming system support, FluidFaaS
enables fine-grained resource assignment to the components
within a serverless function, based on which, it equips the
invokers with runtime support that constructs pipelines on
MIGs on the fly for a serverless function. Evaluations demon-
strate that FluidFaaS outperforms the state-of-the-art solution,
ESG, by 25%-75% in throughput while achieving up to 90%
higher SLO hit rates in various workloads.

1 Introduction

Recent years have witnessed a rapidly growing interest in
machine learning (ML) inferences on serverless platforms,
thanks to the ease of programming and maintenance, au-
toscaling, and pay-as-you-go billing of serverless comput-
ing [9, 10, 12, 15, 17, 18, 25, 36-39]. There have been
some recent research efforts toward efficient and low-cost
GPU support for ML inference on serverless platforms.
Some studies have leveraged NVIDIA Multi-Process Service
(MPS) [3] to facilitate GPU sharing across different function
instances [12, 18,31, 38,40]. However, context sharing in
MPS is subject to lack of isolation, and hence, performance
interference and security concerns. To overcome these lim-
itations, recent studies [21,25] and container orchestration
systems (e.g., Kubernetes) [4] prefer Multi-Instance GPU
(MIG) technology [5], which partitions a single GPU into
multiple isolated MIG slices. Each MIG slice executes a
function, allowing concurrent sharing of a GPU with strong
isolation and no performance interference.

Although existing studies have developed GPU-aware so-
lutions, including dynamic batching [8, 38], GPU-aware

scheduling [21], and shared GPU contexts [37], they treat
GPUs merely as another type of resource and apply CPU-
centric serverless designs, leading to GPU under-utilization.
For instance, ESG [21], a state-of-the-art work on serverless
MIGs, demands 167% more than the required resource on
average. First, ESG overlooks the unique challenges posed
by the static partitioning of GPU into MIGs. If instance A
occupies a MIG slice, and the remaining MIG slices on this
GPU remain idle unless another instance requiring the same
MIG slices. However, CPU-centric design in ESG does not
explore how to utilize the remaining MIG slides effectively.

To address resource idle due to static MIG partitions, we
propose a pipeline-based instance construction. Rather than
treating an entire serverless function as a single unit for re-
source configuration, we introduce FluidFaaS function, a new
form of serverless function that allows the runtime to auto-
matically split a serverless function into stages. These stages
are assigned to available fragmented MIG slices, creating a
pipeline that utilizes these slices to serve requests, thereby
improving overall GPU utilization.

Designing an efficient system to support this idea in-
volves substantial challenges in serverless architectures. The
serverless programming model, in conjunction with resource
scheduling, lacks mechanisms for dynamically constructing
functions based on available isolated resources. Existing
serverless models require users to develop applications as
static functions, which are then encapsulated within contain-
ers. These systems allocate resources to deploy instances
from these predefined containers, disallowing the dynamic
construction of pipeline functions and containers. Efficient
use of the possibly multiple instances of a serverless func-
tion introduces additional scheduling challenges. Instances
may share resources temporarily or utilize different resources
and pipeline partitions to construct the pipeline. These in-
stances exhibit varied latency and throughput. How to effec-
tively schedule requests and auto-scale to optimize resource
utilization while meeting SLOs presents a complex, multi-
dimensional scheduling dilemma.

We design FluidFaaS, a flexible serverless platform for ML

Possible Fluid Functions
Stage1 1 Stage2 | Stage3
1

FFS programming !
support ! :
Interfaces O<:g/\:}o<:: ! § =
Original - . The
Stage 1 | Stage2| Stage 3 selected
function Ar ! ! o
! .
Available |Profile O<:g:‘ T i | | function
!]

resources (results

FFS Invoker
[_FFS runtime support |

P’

Stage 1 | Stage 2 || Stage 3
MIG 1 MIG 2 MIG 3

Figure 1: Overview of FluidFaaS.

inference on MIGs. FluidFaaS enables the new capability of
a serverless programming model by providing programming
and runtime support that enables the dynamic construction of
pipelines and containers, effectively utilizing idle MIG slices.

Overall, this work makes the following major contributions:

* It identifies resource idleness as the key factor in GPU
MIG underutilization.

* It designs FluidFaas, a flexible serverless platform for
ML inference on MIGs by introducing pipelining-based
programming support to improve GPU utilization.

* It empirically confirms the effectiveness of FluidFaas,
outperforming the state-of-the-art work ESG by 25%-
75% in system throughput while achieving up to 90%
higher SLO hit rates in various workloads.

2 Design of FluidFaaS

This section introduces the design of FluidFaaS on how to
improve the GPU resource utilization under the resource frag-
mentation and exclusive keep-alive state caused by MIG.

The serverless functions we target in this work are those
composed of multiple Deep Neural Network (DNN) models
that form a Directed Acyclic Graph (DAG). Such serverless
applications are the main targets in serverless ML [13,22,26,
27,31,41,44].

2.1 Overview

We introduce FluidFaaS (FFS) to effectively support pipeline-
based instance construction. FFS comprises two primary
components: programming support and the FluidFaaS run-
time system.

We propose a new form of serverless function called Flu-
idFaaS function. As depicted in Figure 1, the FluidFaaS
programming support enables the automatic configuration of
a pipelined DAG, based on available resources and profiling
results. The selected FluidFaaS (FFS) function has several

stages, allowing the runtime to allocate MIG slices to dif-
ferent stages efficiently. The FFS runtime and Invoker use
one instance to manage different stages on different MIG
slices and the data transfer between them. Details about the
programming support are presented in Section 2.2.

2.2 Automatic Pipeline Instance Construction

When scaling up requires launching a new instance, the con-
struction of that instance should be flexible and adaptive based
on available resources. For example, depending on resource
availability, the function might be divided into a two-stage or
three-stage pipeline, or configured as a non-pipeline process.
However, the rigid, hard-coded nature of serverless functions
typically limits dynamic pipeline construction. To address
this limitation, we provide programming support that ensures
MIG instance usage is both transparent to users and adaptable
at runtime. Transparency here refers to an interface that ab-
stracts the complexities of MIG management away from the
serverless function developer. It is essential for both ease of
use and performance due to the unpredictable availability of
GPU resources.

2.2.1 Programming Support

In existing serverless function platforms, a serverless func-
tion is regarded as a monolithic unit to invokers. The key
to enable flexible MIG-based GPU resource mapping and
utilization is to make each component in a serverless function
a unit manageable at runtime on invokers. The management
includes decisions on what size of the MIG slice and which
specific slide is assigned to each component. The design shall
also ensure the executions of the serverless function indeed
execute each of its components on the MIG slice as specified
by the invoker.

Our solution is FluidFaa$S function. This new form of
serverless function extends the current serverless function
with a module named FluidFaaS. A serverless function writ-
ten with FluidFaaS (FFS) APIs will be equipped with a DAG,
called FFS DAG, which represents the components in the
function as nodes and dataflows among them as edges. Please
note that this DAG differs from task DAGs in existing server-
less computing: The former captures the computation flows
within a serverless function, while the latter is about relations
among serverless functions. After DAG construction, each
node in the FFS DAG will carry a performance profile of the
size of the required memory and the running speeds of the
component on each size of MIG.

When an FFS function is being launched by an invoker,
based on the FFS DAG, the invoker will first find out the
appropriate assignment of MIG slices to the components in
the DAG, writes the assignment into the configuration layer
of the FFS function, and then launches the FFS function.

The FFES function is structured such that its execution will

be done through a FluidFaaS class (a core element in the
FluidFaaS module), which ensures that the execution will put
each component onto the MIG slice as specified in the con-
figuration layer, construct efficient communication channels
among them, and execute the FluidFaaS function efficiently.

Programming Interface. Figure 2 gives an example showing
how the programming interface of FluidFaaS can be used in
writing a serverless function. FFaaS module contains two
most important classes. (i) The first one is FluidFaaS.Module,
which is a thin wrapper of the DNN model class, nn.Module,
in PyTorch'. The definitions of DNN models in a PyTorch
program do not need to be modified except that the superclass
is changed from nn.Module to FluidFaaS.Module. Each of
the five DNN models in the example is made into a subclass
of FluidFaaS.Module. One of the main extensions of Flu-
idFaaS.Module over nn.Module is that it includes a method
"reg", which registers the model in the FFS DAG along with
the types and shapes of the model’s inputs and outputs (see
the DAG definition function "defDAG"). (ii) The second im-
portant component in FluidFaaS module is the FFaasS class,
which offers most of the functions that are essential for the
serverless function to execute each of its components based
on the MIG mapping specified by the invoker, such as build
DAG, import the MIG assignments and the structure of the
pipeline determined by the invoker. FFaasS also includes func-
tions to profile each component. The initialization of a FFaaS
object has two modes. In the "BUILDDAG" mode, it calls
"defDAG" to build the DAG, while in the "RUN" mode, from
the configuration layer, it imports the DAG, along with the
MIG configs and stage configs that the invoker has put onto
the configuration layer.

Runtime Support of FFaaS$. Listing | shows the implementa-
tion of FluidFaaS.run() to explain how a FluidFaaS function
gets executed. As this is "RUN" mode, the __init__() func-
tion already retrieves the DAG and the MIG assignments and
pipeline configurations. The run() function creates a separate
process for each MIG, establishes shared memory for data
transfer, and sets up queues to trigger the execution of sub-
sequent stages. The module _run_inference() represents the
execution process for each stage. In this function, the input
tensor is retrieved from shared memory, model inference is
performed, and the resulting output tensor is written back to
shared memory for use in the next stage. This interface is
designed for simplicity, requiring only the DAG registration.
The function _terminate_processes() monitors changes in in-
stance states and adjusts the states of MIGs (Section 2.2.2).
It also responds to termination signals from the serverless
platform by stopping the processes on the MIG slices.
Unlike the default serverless function, where each func-
tion is hosted by a process that starts execution upon re-
ceiving a trigger event, FluidFaaS conducts the execution

'We use PyTorch as a representation; FluidFaa$ is extensible to other ML
frameworks.

import FluidFaa$ as FFS

class model1(FFS.Module):
... # define DNN model1 as defining a Torch DNN model

.. #definition of other DNN models

class MyFFaaS (FFS.FFaaS):
def _init__(self, event, context):
super().__init__(self, event, context, mode)

... #other initialization operations as needed

def defDAG(self, x,y): # define self.dag
x1=model1.reg(self, x)
x2 =model2.reg(self, x)
x3 = model3.reg(self, x1,x2)
x4 = model4.reg(self, x3)
x5 =model5.reg(self, x4, y)

entry point of a Serverless Function in normal execution
def MyHandler_run (event, context):
fluidFaa$S = MyFFaa$ (event, context, RUN)
fluidFaaS.run()

entry point of a Serverless Function for DAG construction and profiling
def MyHandler_buildDAG (event, context, BUILDDAG):

fluidFaa$S = MyFFaa$ (event, context, BUILDDAG)

profiles = MyFFaaS.profile()

Figure 2: Illustration of the programming of a FFaa$S function.

running on a dedicated MIG instance with a separate pro-
cess. These pipeline components communicate through
the shared memory of the host system. The predecessor
process writes its output tensor to the shared memory, as
shown in the module _write_data_to_shared_memory(), and
the successor process reads this output tensor using module
_get_data_from_shared_memory() as its input tensor, facilitat-
ing efficient data flow between pipeline stages. This approach
streamlines execution.

The use of shared memory on the host for communications
helps keep the communication overhead low. We further
discuss the data communication overhead associated with this
design in Section 4.3, where we analyze its impact on overall
system performance and efficiency.
class FFaaS:

def __init__ (self, event, context, mode):
if (mode == 'RUN’):
self.dag = self.importDAG ()

self.migs = self.importMIGs ()
self.stages = self.importStages ()

elif (mode == ’'BUILDDAG'):

def _load_models (self, DAG):

def _run_inference (self, stage, queue, next_queue,

shared_data, next_shared_data):
device = torch.device ("cuda")
while True:
input = self._get_data_from_shared_memory (

shared_data) .to (device)
if input not empty:

Run all components in stage based on
the DAG

output = stage.run (input)

self. _write_data_to_shared_memory (
next_shared_data, output)

eviction = False # Placeholder for
actual eviction condition

f eviction:
model.cpu ()
del model
next_queue.put ()
def _get_data_from_shared_memory (self, shared_data):

def _write_data_to_shared_memory (self, shared_data,
data) :

def _initialize_shared_memory_and_queues (self):

def _start_processes (self):

feach mig in the self.migs
os.environ["CUDA_VISIBLE_DEVICES"] = mig
torch.cuda.init ()
p = mp.Process(

target=self._run_inference,
args=(self.stages[i], self.queues[i]
self.queues[i+1l], self.shared_data[i], self.
shared_data[i+1])
)
self.processes.append (p)
p.start ()
def _terminate_processes (self):

def profile(self):

def run(self):
self._initialize_shared_memory_and_queues ()
self._load_models ()
self._start_processes ()
self._terminate_processes ()

Cleanup shared memory

Listing 1: Implementation of the core runtime support FFaaS

2.2.2 Runtime Support in Invoker

The programming interface introduced by the FluidFaaS mod-
ule makes each component in a serverless function a unit in
the FFS DAG. Based on it, the runtime support in the invoker
figures out the appropriate MIG resource assignment to each
of the components and outlines the appropriate pipeline for
the serverless function.

Leaving these functionalities to the runtime of invokers
is an important design decision of FluidFaaS. It is essential
for FluidFaaS to work efficiently despite the dynamic nature
of serverless environments. Workloads and system condi-
tions can change dramatically and unpredictably; predefined
pipelines for a specific application cannot suit the needs. An
unbalanced pipeline can lead to inefficient resource utilization,
causing bottlenecks and increased latency as certain stages
may become overburdened while others remain underutilized.
This solution takes into account both pipeline balance and
current resource availability to ensure high performance.

This runtime support is implemented on each invoker,
where it functions as a local scheduler. As the workflow
depicted in Figure 1 (a), the invoker is responsible for con-
structing the pipeline and allocating MIG slices based on cur-
rent resource availability and application knowledge which is
the profile information. This decentralized approach allows
the scheduler to efficiently build pipelines and allocate re-
sources, adapting to the invoker’s current conditions to ensure
both efficiency and responsiveness to fluctuating workloads.

Notably, this runtime system can be integrated into existing
serverless architectures without requiring any modifications
to the central controller, making it practical and easy to im-
plement.

A key to building a pipeline is balance, which is crucial for
performance. To accomplish this, the DAG is divided into sev-
eral self-contained and balanced groups. Several studies have
explored methods for partitioning DAG [21,26]. Our method
is based on the dominator-based method from ESG [21] but
extends it with selection with a coefficient of variation (CV).
It evaluates all possible partitions of the DAG by calculat-
ing the coefficient of variation (CV) [7] to measure pipeline
balance. For simplicity, consider a sequential DAG with five
models: [1, 2, 3, 4, 5]. There are 24 possible consecutive
partitions, each representing a different pipeline configura-
tion. For instance, one configuration could be [[1], [2, 3], [4,
511, which forms three distinct stages. The CV is determined
by dividing the standard deviation of the execution times of
these stages by their mean, as shown in Equation 1, where
t, denotes the execution time of stage n. If a stage involves
multiple MIGs running in parallel, we use the maximum
execution time among them as the stage’s execution time.

CV =std(t1,ta,...,1,) /mean(ty , ta, ..., 1,) e))

After calculating and sorting the CVs for all possible
pipeline configurations, which is done once and offline for
each application (thus avoiding any runtime overhead), the
next step is to assign a pipeline to the available MIGs within
the invoker. We rank pipelines based on their CVs: lower CVs
represent better balanced configurations. The pipelines are
then evaluated in order with the profiles, against the available
MIG resources. If a given pipeline can be supported by the
available resources, the invoker records the pipeline configura-
tion and corresponding MIGs on the configuration layer of the
serverless function and then proceeds to launch the instance
with that configuration. If the resources are insufficient, it
moves to the next pipeline in the ranked list. This process
continues until a suitable pipeline is found and deployed. By
following this approach, we ensure that the most balanced
pipeline is selected based on the available MIGs, leading to
optimized performance and efficiency.

3 Evaluation Methodology

Baseline. The baseline we use for comparison is the state-
of-the-art serverless ML solution supprts MIG, ESG [21].
ESG assigns functions to specific MIGs based on the resource
configuration provided by the Controller. The Controller
chooses the resource-efficient configuration that can meet the
SLO but with the minimum resource usage.

SLO Latency Requirement. SLO latency is an important
requirement on a serverless workload. It defines the accept-
able latency for the platform to give a response to a request.

Table 1: Experimental hardware configuration

CPU device 4 * AMD EPYC 7763 64-Core Processors
CPU Mhz 2445.404
CPU memory 1440GB
GPU device 8 * NVIDIA A100 80GB
GPU memory 80GB

Let ¢ be the time needed by the application to complete its
entire workflow when it runs alone with a unit CPU and the
minimum MIG instances, as shown in Table 3. We use SLO
scale when describing the SLO latency of a workload. It is
defined as the ratio between the SLO latency and . By default,
we set the SLO to be 3x (SLO scale=3), which refers to the
case where the acceptable maximal latency is three times of .

Table 2: Applications

Applications Composition

Super resolution [24] ->Segmentation [2, 11]

Image classification (App 1) ~>Classification [6, 19]

Deblur [1] ->Super resolution

Depth recognition (App 2) ->Depth recognization [30]

Background elimination Super resolution ->Deblur
(App 3) ->Background removal [29]

Expanded image Deblur ->Super resolution ->Background removal
classification (App 4) ->Segmentation ->Classification

We use the following metrics to examine the performance.
SLO Hit Rate. SLO hit rate is defined as the fraction of re-
quests whose latencies (from the request arrives at the server-
less platform and the time when the result is produced) are
below the required SLO latency.

GPU time and MIG time GPU time refers to the total time
the entire GPU is active, even if only one slice is being used.
In contrast, MIG time specifically measures the active time
of the individual MIG slice.

Evaluation environment. The runtime of FluidFaaS is im-
plemented in the invoker node. The invoker node we use
contains eight A100_PCIE_80GB GPUs. Table | reports
the node configuration. The MIG partition for each GPU
is 1g.10gb, 2g.20gb, and 4g.40gb by default. We test other
partitions in the sensitive study in Section 4.4.

Table 3: Application variants and MIG slices to run

s . MIG torun MIG to run
Application | Varfants ", ne) (FluidFaaS)
small >1g.10gb >1g.10gb
Image .
classiﬁc%\tion medium >2g.20gb >1g.10gb
large >3g.40gb >2g.20gb
small >1g.10gb >1g.10gb
recDogl::‘ion medium >2g20¢b > lg.10gb
large >3g.40gb >2g.20gb
small >1g.10gb >1g.10gb
]z;fll:i%::,t‘il:: medium >2g.20gb >1g.10gb
large >3g.40gb >2g.20gb
Expanded small > 2g.20gb >1g.10gb
image medium >4g.40gb >1g.10gb
classification large NULL NULL

Applications and Workloads. For head-to-head comparison,
we use the four applications used in ESG [21], with each
composed of multiple DNN inferences, as shown in Table 2.

Each application is available in three variants—small,
medium, and large—determined by memory requirements
and batch size. These variants require different sizes of MIG
slices to avoid running into out-of-memory errors, as shown
in Table 3. Thanks to the pipeline construction of FluidFaaS,
the minimum MIG slice needed to run each variant is smaller
compared to the Baseline. Notably, the 4g.40gb configura-
tion cannot support the large variant of the expanded image
classification application in the Baseline, so this variant is ex-
cluded from our study. We evaluate three different workloads,
light, medium, and heavy, where each application is in small,
medium, and large size respectively.

Traces. Following the prior work [21], we use the real-world
traces from Azure Functions [34] to set the invocation fre-
quencies and intervals of the serverless applications.

4 Evaluation Results

This section evaluates (i) the end-to-end performance of Flu-
idFaas, compared with the state-of-the-art ESG method; (ii)
its throughput and resource utilization improvement; (iii) the
sensitive study for FluidFaaS with different MIG partitions.

4.1 End-to-End Performance

Table 4 shows the normalized GPU time and MIG time, SLO
hit rates, P95 tail latency, and average queuing time across
various workloads. The table shows that FluidFaaS improves
the SLO hit rate by 90% in medium workloads and 61% in
heavy workloads across all applications while achieving a
similar SLO hit rate as ESG in light workloads. Additionally,
FluidFaaS achieves these improvements with lower GPU time,
saving 5.5% in medium workloads and 6.5% in heavy work-
loads. The MIG time remains comparable, with a maximum
difference of 3.9%.

Figure 3 illustrates system throughput across different
workloads. FluidFaaS achieves a 75% higher throughput
in heavy workloads and a 25% increase in medium workloads
while maintaining similar throughput in light workloads. This
higher throughput allows FluidFaaS to significantly reduce
queuing time, as shown in Table 4, with up to 83.3% reduc-
tion for expanded image classification in heavy workloads
compared to ESG. For other applications, it achieves at least a
50% reduction. This decrease in queuing time directly affects
the P95 tail latency, also shown in Table 4. Specifically, Flu-
idFaaS improves the P95 tail latency by up to 81% in heavy
workloads and 70% in medium workloads while maintaining
similar latency in light workloads.

4.2 Detailed Analysis

As described in Sec.3, each GPU is divided into 4g.40gb,
2g.20gb, and 1g.10gb slices. In a light workload, all slices
can host functions, resulting in similar performance between

Table 4: End-to-end Performance

Workload | Method ?;;m SLO hit rate (%) P95 tail latency (ms) Queuing Time (ms)
GPU MIG App1 [App2 [App3 [App4 | Appl [App2 [App3 [App4 | Appl [App2 [App3 | App4
Lieht ESG 1 1 9 96 95 96 503 71 840 652 588 548 669 647
'8 FluidFaaS_| | 102 | 96 96 95 96 508 471 843 680 595 560 669 670
Medi ESG 1 1 58 70 67 96 971 2693 5724 780 3348 1295 2123 627
CAUM TFluidFaas | 0.946 | 1.008 | 94 96 95 96 1067 571 1713 782 723 497 622 605
H ESG 1 1 52 36 52 60 11375 33941 17707 15539 | 4047 10471 7276 6279
ey FluidFaaS | 0.935 | 1.039 | 70 43 54 94 7479 13866 15506 2983 | 2524 3888 4295 1049
Light workload Medium workload Heavy workload
‘g 301 = Eifdraas [\A [\N\ ‘g_ 201 — :ISu?dFaaS ‘g_ 15 Il — ::A?dFaaS
£ L £ £10 ym v
2 A 310 /\\JVWV\’V“\/J ‘/\/\/\ S /\P/‘MMV'”\M\AN”\N"'A
210 " 2 [2 "
Fool /\ LS P o e [NV M = Z o
0 20 40 60 80 100 0 20 40 60 80 100 120 0 25 50 75 100 125 150 175
Ti(m)e (s) Time (s) Tinze)(s)
a, C,
Figure 3: Throughput in different workloads.
— ESG —— FluidFaas and light workloads is provided in Figure 7 and Figure 8
100 ‘ GPU 1 in the Appendix. As illustrated, FluidFaaS improves GPU
50 ‘ H J {J utilization by 75% compared to ESG during task bursts, which
ol S enables the higher throughput observed in Figure 3 (c). In
0 20 40 60 80 100 . . . oge .
100 ‘ GPU 2 this scenario, FluidFaaS can utilize a total of 7g.70gb, while
50 H 'L | M’ “ [-] ESG is limited to 4g.40gb, resulting in a 75% increase in
0 | throughput. In the medium workload, the ESG is limited
ey to using 4g.40gb and 2g.20gb slices, while FluidFaaS can
50 ‘] H (- ‘) " utilize all available slices, resulting in a 25% increase in
0 throughput. The throughput is similar in the light workload
100" - - T - S scenario because each GPU has a comparable utilization level.
2 5 - | — The high throughput allows FluidFaaS to complete all tasks
£ o } w] “ 1 ‘ [10% faster in medium workloads and 17% faster in heavy
> 100 2 “ - - Sy workloads compared to ESG, as shown in Figure 3(b) and
50 “ mm [T — (c). Thus, the earlier finish time leads to the GPU time sav-
0 J | ing. Additionally, this increased throughput results in shorter
100 2 0 & % o queuing times, as indicated in Table4, positively impacting
‘ GPU 6 .
50 Hlh A both end-to-end latency and SLO hit rates.
] |]
0 20 40 60 80 100
100 i GPU7 4.3 Breakdown
50 — || -
o H “ | W r Figure 5 illustrates the time breakdown of various workloads
100 2 — s 50 T for ESG (left) and FluidFaaS (right). In the light workload,
5 w [| | | both FluidFaaS and ESG perform similarly, with execution
. H \ r times within the SLO limit for each application. However, in

Figure 4: GPU utilization in the heavy workload.

FluidFaaS and ESG. In medium workloads, ESG cannot uti-
lize the 1g.10gb slices due to memory limitations, whereas
FluidFaaS can leverage all slices thanks to its DAG partition-
ing and pipeline construction. In heavy workloads, ESG can
only use the 4g.40gb slices, while FluidFaaS utilizes both the
4¢.40gb and 2g.20gb slices.

Figure 4 shows the GPU utilization in the heavy workload.
Due to space constraints, the GPU utilization for medium

the medium and heavy workloads, FluidFaaS demonstrates
up to 2.36 times lower latency than ESG. This reduction in
latency for FluidFaaS leads to higher SLO hit rates, while the
longer latency experienced by ESG in these workloads results
in lower SLO compliance, as shown in Table 4.

It is evident that FluidFaaS consistently experiences a
slightly longer data transfer overhead—ranging from 10ms to
40ms—due to communication between pipeline stages, com-
pared to ESG’s 1-5ms. Nevertheless, this overhead is offset
by FluidFaaS’s significantly shorter queuing times. ESG in-
curs much longer queuing times than FluidFaaS, with delays
up to three times longer, ranging from hundreds to thousands

Inference time mmm Data transfer time

Light workload

Medium workload

B Queuing time Hmm Cold start time

Heavy workload

1750 .I 4000 10000
— 1500 .I w =
8000
£ 1250 £ 3000 = £
= — £ £ =
& 1000 > > 6000 -
c € 2000 | e - -
g 70 I g i i e | S 40001 B
= ~ 1000 S i II ~ 2000 I =
250 1 || =
0 0 0
AppO Appl App2 App3 AppO Appl App2 App3 AppO Appl App2 App3

@

(b) (©

Figure 5: End-to-end latency breakdown. Left bar is for ESG and right one is for FluidFaaS.

Hybrid partition

4g.40gb+29.20gb+10.10gb

3g9.40gb+2g.20gb+2g.20gb

— ESG
—— FluidFaas

v
v

Throughput
-
o

Throughput
[
o

o w
o wu

— ESG

o — E6
—— FluidFaas 3

—— FluidFaas

Figure 6: Throughput in different partitions.

Table 5: Different MIG partition

Name

Partition

T* [1g.10gb *7]
2 * [2g.20gb*3+1g.10gb]

4 * [3g.40gb+4g.40gb]

1 * [4g.40gb+2g.20gb+1g.10gb]
Pl 8 * [4g 40gb+2g 20gb+1g.10gb]
P2 8 ¥ [3g.40gb+2g.20gb+2g.20gb]

Hybrid

of milliseconds, as depicted in Table 4. Therefore, the data
transfer overhead introduced by the pipeline in FluidFaaS
is marginal compared to the substantial benefits it brings in
reducing overall latency and improving performance under
heavier workloads.

4.4 Sensitive Study

In this section, we evaluate how FluidFaaS performs under
different MIG partitions. In the above evaluations, each GPU
is partitioned into one 4g.40gb instance, one 2g.20gb instance,
and one 1g.10gb instance. We also experimented with a hy-
brid partitioning scheme—where each GPU has different par-
titions—and an alternative uniform partitioning scheme that
divides each GPU into one 3g.40gb instance and two 2g.20gb
instances, as detailed in Table 5.

As shown in Table 4, both FluidFaaS and ESG perform
well under light workloads. However, under heavy workloads,
FluidFaaS leverages fragmented resources to achieve better
performance. Our sensitivity study demonstrates that Fluid-
FaaS outperforms ESG not only in a single partition but across
multiple partitions, especially when system resources are un-
derutilized. Figure 6 illustrates that FluidFaaS surpasses ESG

across all partitioning schemes. Specifically, in the hybrid
partition, FluidFaaS achieves 70% higher throughput; in par-
titioning scheme P1, it achieves 75% higher; and in scheme
P2, it reaches 78% higher throughput. These improvements
stem from the fragmented small MIG slices that cannot be
utilized by ESG but are effectively employed in pipelines by
FluidFaaS.

5 Related Work

Several studies have explored serverless ML inference, us-
ing NVIDIA’s MPS for GPU sharing to optimize batch
sizes and computational resource allocation to improve
throughput [18, 31, 38, 40, 42]. In these studies, all pro-
cesses under MPS share the same GPU resources—including
Streaming Multiprocessors (SMs), memory bandwidth, and
caches—which leads to serious interferences. Also, sharing
memory spaces increases the risk of unintended data access
between processes, posing security concerns in multi-tenant
environments. Streambox [37], which employs fine-grained
CUDA Streams, faces the same performance interference and
security issues.

ESG [21] proposes using NVIDIA’s Multi-Instance GPU
(MIG), which provides strong isolation, for GPU sharing in
serverless platforms. However, ESG uses the entire serverless
function as the unit for GPU resource assignment, causing se-
rious resource fragmentation and underutilization. Miso [25]
also suggested using MIG to co-run machine learning ap-
plications in cloud computing environments; however, they
predefined the MIG slices and determined application co-
location based on profiling data, lacking a flexible solution
for dynamic co-running decisions.

Other research on GPU-based serverless computing has
focused on optimizing CPU-GPU data transfers [20,43] and
reducing cold start overhead [32,33]. Some studies [23, 28]
have explored task scheduling on GPUs but treated the entire
GPU as the minimal computational unit. Additionally, ef-
forts have been made to extend serverless computing support
to heterogeneous hardware, including FPGAs and NVIDIA
DPUs [14,35]. Dgsf [16] proposed disaggregated GPUs for
serverless computing.

6 Conclusion

This paper proposes FluidFaaS, the first solution that enables
flexible GPU MIG management of the components within a
serverless ML function while minimizing resource fragmen-
tation and underutilization. It features novel programming
system support, on-the-fly pipeline construction, and GPU-
aware function state management. It demonstrates significant
improvements in system throughput and SLO hit rates com-
pared to existing solutions, underscoring the importance of
considering GPU-specific characteristics in serverless com-
puting environments. It opens new opportunities for flexible
resource management in GPU-based serverless platforms.

References

[1] DeblurGAN.
DeblurGAN.

https://github.com/pablodz/

[2] DEEPLABV3. https://pytorch.org/hub/
pytorch_vision_deeplabv3_resnet101/.

[3] NVIDIA 2020, Multi-Process Service (MPS). https:
//docs.nvidia.com/deploy/mps/index.html.

[4] NVIDIA k8s-device-plugin. https://github.com/
NVIDIA/k8s-device-plugin/.

[5] NVIDIA Multi-Instance GPU. https://www.nvidia.
com/en-us/technologies/multi-instance-gpu/.

[6] ResNet50. https://pytorch.org/hub/nvidia_
deeplearningexamples_resnet50/.

[7] Hervé Abdi. Coefficient of variation. Encyclopedia of
research design, 1(5):169—-171, 2010.

[8] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia
Smirni. Batch: Machine learning inference serving
on serverless platforms with adaptive batching. In
SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1-15. IEEE, 2020.

[9] Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and
George Porter. Sprocket: A serverless video processing
framework. In Proceedings of the ACM Symposium on
Cloud Computing, pages 263-274, 2018.

[10] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew
Zhang, and Ra Katz. Cirrus: A serverless framework
for end-to-end ml workflows. In Proceedings of the
ACM Symposium on Cloud Computing, pages 13-24,
2019.

[11] Liang-Chieh Chen, George Papandreou, Florian Schroff,
and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[12] Junguk Cho, Diman Zad Tootaghaj, Lianjie Cao, and
Puneet Sharma. Sla-driven ml inference framework for
clouds with heterogeneous accelerators. Proceedings of
Machine Learning and Systems, 4:20-32, 2022.

[13] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta,
Michal Podstawski, and Torsten Hoefler. Sebs: A server-
less benchmark suite for function-as-a-service comput-
ing. In Proceedings of the 22nd International Middle-
ware Conference, pages 64-78, 2021.

https://github.com/pablodz/DeblurGAN
https://github.com/pablodz/DeblurGAN
https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://github.com/NVIDIA/k8s-device-plugin/
https://github.com/NVIDIA/k8s-device-plugin/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://pytorch.org/hub/nvidia_deeplearningexamples_resnet50/
https://pytorch.org/hub/nvidia_deeplearningexamples_resnet50/

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia,
Binyu Zang, and Haibo Chen. Serverless computing on
heterogeneous computers. In Proceedings of the 27th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 797-813, 2022.

Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maxi-
milian Schwinger, Johannes Grohmann, Nikolas Herbst,
Cristina L Abad, and Alexandru Iosup. A review of
serverless use cases and their characteristics. arXiv
preprint arXiv:2008.11110, 2020.

Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng
Jia, Emmett Witchel, and Christopher J Rossbach. Dgsf:
Disaggregated gpus for serverless functions. In 2022
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 739-750. IEEE, 2022.

Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian
Brabete, Dmitrii Ustiugov, Yuvraj Patel, and Luo Mai.
Serverlessllm: Low-latency serverless inference for
large language models. In /8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
24), pages 135-153, 2024.

Jianfeng Gu, Yichao Zhu, Puxuan Wang, Mohak
Chadha, and Michael Gerndt. Fast-gshare: Enabling
efficient spatio-temporal gpu sharing in serverless com-

puting for deep learning inference. arXiv preprint
arXiv:2309.00558, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

Sungho Hong. GPU-enabled Functional-as-a-Service.
PhD thesis, Arizona State University, 2022.

Xinning Hui, Yuanchao Xu, Zhishan Guo, and Xipeng
Shen. Esg: Pipeline-conscious efficient scheduling of
dnn workflows on serverless platforms with shareable
gpus. In Proceedings of the 33rd International Sym-
posium on High-Performance Parallel and Distributed
Computing, pages 42-55, 2024.

Jeongchul Kim and Kyungyong Lee. Functionbench: A
suite of workloads for serverless cloud function service.
In 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), pages 502-504. IEEE, 2019.

Vincent Lannurien, Laurent d’Orazio, Olivier Barais, Es-
ther Bernard, Olivier Weppe, Laurent Beaulieu, Amine
Kacete, Stéphane Paquelet, and Jalil Boukhobza. Hero-
fake: Heterogeneous resources orchestration in a server-
less cloud—an application to deepfake detection. In 2023

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

IEEE/ACM 23rd International Symposium on Cluster,
Cloud and Internet Computing (CCGrid), pages 154—
165. 1IEEE, 2023.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose
Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Ze-
han Wang, et al. Photo-realistic single image super-
resolution using a generative adversarial network. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4681-4690, 2017.

Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gade-
pally, and Devesh Tiwari. Miso: exploiting multi-
instance gpu capability on multi-tenant gpu clusters.
In Proceedings of the 13th Symposium on Cloud Com-
puting, pages 173-189, 2022.

Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan
Cheng, Wenli Zheng, and Minyi Guo. Faasflow: enable
efficient workflow execution for function-as-a-service.
In Proceedings of the 27th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 782—796, 2022.

Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Sameh Elnikety, Somali Chaterji, and Saurabh
Bagchi. Orion and the three rights: Sizing, bundling,
and prewarming for serverless dags. In /16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 303-320, 2022.

Nathan Pemberton, Anton Zabreyko, Zhoujie Ding,
Randy Katz, and Joseph Gonzalez. Kernel-as-a-
service: A serverless interface to gpus. arXiv preprint
arXiv:2212.08146, 2022.

Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood
Dehghan, Osmar Zaiane, and Martin Jagersand. U2-net:
Going deeper with nested u-structure for salient object
detection. volume 106, page 107404, 2020.

René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monoc-
ular depth estimation: Mixing datasets for zero-shot
cross-dataset transfer, 2020.

Francisco Romero, Mark Zhao, Neeraja J Yadwadkar,
and Christos Kozyrakis. Llama: A heterogeneous &
serverless framework for auto-tuning video analytics
pipelines. In Proceedings of the ACM symposium on
cloud computing, pages 1-17, 2021.

Justin San Juan and Bernard Wong. Reducing the cost
of gpu cold starts in serverless deep learning inference
serving. In 2023 IEEE International Conference on
Pervasive Computing and Communications Workshops

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

and other Affiliated Events (PerCom Workshops), pages
225-230. IEEE, 2023.

Justin David Quitalig San Juan. Flashpoint: A low-
latency serverless platform for deep learning inference
serving. Master’s thesis, University of Waterloo, 2023.

Mohammad Shahrad, Rodrigo Fonseca, Iiigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo
Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Confer-
ence (USENIX ATC 20), pages 205-218, 2020.

Jessica Vandebon, Jose GF Coutinho, and Wayne Luk.
Scheduling hardware-accelerated cloud functions. Jour-
nal of Signal Processing Systems, 93:1419-1431, 2021.

Hao Wang, Di Niu, and Baochun Li. Distributed ma-
chine learning with a serverless architecture. In /EEE
INFOCOM 2019-1EEE Conference on Computer Com-
munications, pages 1288—1296. IEEE, 2019.

Hao Wu, Yue Yu, Junxiao Deng, Shadi Ibrahim, Song
Wu, Hao Fan, Ziyue Cheng, and Hai Jin. Streambox: A
lightweight gpu sandbox for serverless inference work-
flow. In 2024 USENIX Annual Technical Conference
(USENIX ATC 24), pages 59-73, 2024.

Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang,
Jie Li, Mingyang Zhao, Xingzhen Chen, and Keqiu Li.
Infless: a native serverless system for low-latency, high-
throughput inference. In Proceedings of the 27th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
768-781, 2022.

Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang,
Weisong Shi, and Qun Li. Lavea: Latency-aware video
analytics on edge computing platform. In Proceedings
of the Second ACM/IEEE Symposium on Edge Comput-
ing, pages 1-13, 2017.

Minchen Yu, Ao Wang, Dong Chen, Haoxuan Yu, Xi-
aonan Luo, Zhuohao Li, Wei Wang, Ruichuan Chen,
Dapeng Nie, and Haoran Yang. Faaswap: Slo-aware,

gpu-efficient serverless inference via model swapping.
arXiv preprint arXiv:2306.03622, 2023.

Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu
Zang, Ziqian Lu, Pingchao Yang, Chenggang Qin, and
Haibo Chen. Characterizing serverless platforms with
serverlessbench. In Proceedings of the 11th ACM Sym-
posium on Cloud Computing, pages 30-44, 2020.

10

[42]

[43]

[44]

Wei Zhang, Quan Chen, Kaihua Fu, Ningxin Zheng,
Zhiyi Huang, Jingwen Leng, and Minyi Guo. Astraea:
towards qos-aware and resource-efficient multi-stage
gpu services. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
570-582, 2022.

Ming Zhao, Kritshekhar Jha, and Sungho Hong. Gpu-
enabled function-as-a-service for machine learning in-
ference. arXiv preprint arXiv:2303.05601, 2023.

Zhuangzhuang Zhou, Yanqi Zhang, and Christina De-
limitrou. Aquatope: Qos-and-uncertainty-aware re-
source management for multi-stage serverless work-
flows. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1, pages
1-14, 2023.

Appendix

— ESG —— FluidFaas
100 GPU 1
501
0| : : J . .
0 20 40 60 80 100
100+ GPU 2
Il |
P S | | |
100‘ 0 20 40 60 80 100
GPU 3
50 1
J il OTni o
g 100‘ 0 20 40 60 80 100
c GPU 4
-% 50
s ol (1 []] |
= 0 20 40 60 80 100
100 GPU 5
50 Py
N w1
0 20 40 60 80 100
1001 h GPU 6
501 .
ol ' | I. IIML |
0 20 40 60 80 100
100 GPU 7
501
ol . ' l [ﬂll Iﬂﬂﬂl I
0 20 40 60 80 100
1001 GPU 8
50
0_ | ll
0 20 40 60 80 100
Time (s)

Figure 7: GPU utilization in the medium workload.

11

Utilization (%)

100

50 1

100

50 1

100

50 1

o

100

w
o

o

100

50 1

100

50 1

100

50 1

100

50 1

—— ESG —— FluidFaa$sS
GPU 1
I L 1
2‘0 4‘0 6‘0 80 1(‘)0 120
GPU 2
] A || JLULI.I | |||| i
2‘0 4‘0 60 80 160 120
GPU 3
] e
2‘0 4‘0 6‘0 8‘0 160 120
u GPU 4
2‘0 4‘0 GIO 8‘0 1(‘)0 120
GPU 5
ol .
2‘0 4’0 6‘0 Sb 1(;0 120
GPU 6
2‘0 4’0 6’0 Sb 1(;0 120
GPU 7
2‘0 4‘0 6‘0 8‘0 1(‘)0 120
GPU 8
2‘0 4:0 6‘0 8‘0 l(I)O 120
Time (s)

Figure 8: GPU utilization in the light workload.

	Introduction
	Design of FluidFaaS
	Overview
	Automatic Pipeline Instance Construction
	Programming Support
	Runtime Support in Invoker

	Evaluation Methodology
	Evaluation Results
	End-to-End Performance
	Detailed Analysis
	Breakdown
	Sensitive Study

	Related Work
	Conclusion

