
Noise Removal with Regular Expression in
Knowledge Graphs

Pei-Yu Hou Rada Chirkova David Wright

North Carolina State University

1 Introduction

With more and more knowledge graphs appear in the real-world data pre-
sentation, the complexity of the knowledge graph is increasing, such as het-
erogeneous graphs in the biomedical area [5, 8]. Analytics on heterogeneous
knowledge graphs is challenging because the types of nodes and edges are
different. To be efficient, methods of extracting linear paths from knowledge
graphs might fail to capture the rich semantics and topology of knowledge
graphs. To be effective, methods of using the entire knowledge graph might
introduce too much noise irrelevant to the topics.

One of the downstream analytical tasks connecting graphs and data
analysis is graph embedding, which converts the graph presentation into
the numerical presentation. Among various embedding methods, random-
walk based methods are known to be an efficient way to execute such trans-
formation [1, 10]. However, they are originally developed for homogeneous
graphs [4, 9].

Without considering any limitations, the random walk will walk through
any nodes including those that are irrelevant. It causes inaccurate infor-
mation extraction and therefore incorrect inference from downstream data
analysis. A solution to limit the node types (meta-path) was proposed to
avoid such incorrect walks in citation networks [2]. Nevertheless, they as-
sume edge type is unique between two types of nodes. Knowledge graphs in
the biomedical area contain more complicated relations between entities.

Toy Example. To illustrate, Figure 1 showcases a toy example involving
a biomedical knowledge graph. Suppose now we need to execute a graph
embedding task for the downstream data analysis. The graph embedding
pipeline takes the graph as input shown in Figure 1.

1



Figure 1: A biomedical knowledge graph

Unlike homogeneous graphs, a heterogeneous graph contains multiple
types of nodes and edges that represent more complicated relations. For
example, see Figure 1, the user wants to observe and analyze a specific
relation (e.g. Drug through BINDS, Gene through ASSOCIATES, and then
Disease).

Suppose our current starting node is "Drug A" (which is Drug), a random
walk can go to any node from "Drug A" as long as it connects to it. In other
words, the space for the basic random walk is the same as the input graph
itself. Hence, the random walk could be Drug A-[Causes]-Side Effect,
which is clearly not correct.

If we consider using a meta-path (e.g. Drug-Gene-Disease) to limit
the node types, the assigned meta-path will only give the specified types of
nodes the possibility to walk through before the random walk is performed.
Therefore, a walk from Drug A can go through anything, and Gene through
anything, and then Disease, irrelevant nodes have been removed. Figure 2a
illustrates the resulting modified random walk space.

While using node limiting meta-path to filter the graph provides a smaller
space for executing a random walk, we still have the problem of non-unique
edge types that allow undesirable paths. One example is the path Drug A-
[DOWNREGULATES]-Gene III-[DOWNREGULATES]-Disease 3 .

The actual relations that the user wants to observe are Drug through
BINDS, Gene through ASSOCIATE, and then Disease. Edge types are neces-
sary to specify as well. The filtered graph should be like in Figure 2b, so that
each path from Drug A would not go through unwanted nodes or unwanted
edges.

2



(a) The filtered graph when we consider using the meta-path.

(b) The exact graph that user desires.
.

Figure 2: The motivating example

To capture accurate information and filter irrelevant noise, a user-oriented
subgraph construction approach is proposed in this study. Regular expres-
sion has been widely used in the applications of finding text patterns in
documents as well as in graph databases [6, 13]. In this report, we leverage
user-specified regular expression to find semantic subgraphs in heterogeneous
knowledge graphs and thus achieve preliminary noise removal for downstream
analytical tasks.

The rest of the report is organized as follows. In Section 2, we formulate
the problem and introduce relevant definitions. In Section 3, we illustrate our
approach in detail. In Section 4, we use a real-world dataset to demostrate
the subgraph construction with regular expression patterns and evaluate the
noise removal. In Section 5, we provide an extended application with our
approach. We conclude this report with some remarks in Section 6.

3



2 Problem Formulation

We formalize the semantic subgraph construction problem in this section.

Definition 1. Heterogeneous Graph. A heterogeneous graph is defined
as a (directed/undirected) graph G = (V,E) with an object mapping func-
tion φ : V → A and a link type mapping function ψ : E → R. A and R are
the sets of predefined object types and link types, where |A|+ |R| > 2. The
case when |A| = 1 and |R| = 1 is defined as a homogeneous graph.

Definition 2. Knowledge Graph.A knowledge graph is defined as a di-
rected graph G = (V,E, TV , TE), where each node vi ∈ V is assigned a node
type and each edge ej ∈ E an edge type from TV and TE respectively.

In a knowledge graph, nodes are entities and edges are relations so that
they construct subject-property-object triple facts. Each path of the form
(head entity, relation, tail entity) (denoted as < h, r, t >) indicates a relation-
ship of r from entity h to entity t, where h, t ∈ V are entities and r ∈ E is the
relation. The form < h, r, t > is called a knowledge graph triplet. Because
entities and relations in a knowledge graph are usually of different types, a
knowledge graph can be viewed as an instance of the heterogeneous graph.
For example, suppose we have a small knowledge graph in Figure 3, where
the capital letters (e.g. X, Y, Z, etc.) represent the node types TV , and the
small letters (e.g. a, b, c, etc.) represent the edge type TE . An instance of
a knowledge graph triplet is <Z8, a, Y1>.

Figure 3: The example knowledge graph

In real-world data, a knowledge graph could contain a lot of unwanted
information, especially when the graph is completed from crowdsourcing [12].

4



In this study, compared to the original complete graph, we explore a pre-
filtered subgraph as a potential solution to the noise.

Definition 3. Subgraph. A subgraph of G is defined as G′ = (V ′, E′),
where V ′ ⊆ V , and E′ ⊆ E.

Definition 4. Semantic Subgraph. A semantic subgraph is defined as
Q = {(V ′, E′, T ′V , T ′E)| fits certain conditions that user provides in G, such
as an the user-specified semantic path P}, where V ′ ⊆ V , E′ ⊆ E, T ′V ⊆ TV ,
T ′E ⊆ TE .

In this paper we solve the following problem:

Problem. Semantic Subgraph Construction. Given a knowledge graph
G, the task is to find a semantic subgraph Gv0,P for an anchor node v0 under
the user-specified semantic path P. To solve this problem, we require the
following information as input:

• a heterogeneous knowledge graph G = (V,E, TV , TE)

• a starting node v0

• a user-specified path P

The output of the problem is a subgraph Gv0,P = {(V ′, E′, T ′V , T ′E)|at
least a path v0

e0−→ v1
e1−→ ...

ek−→ vk exists in G match P}, where V ′ ⊆ V , and
E′ ⊆ E, T ′V ⊆ TV , T ′E ⊆ TE , and vi and ei, ∀i represent nodes and edges it
matched semantically the types in path P.

We assume that the semantic subgraph is a small subset of the input
graph, with the additional information representing noise to the user. We
assert that by using user-specified path pattern P filtering, we can eliminate
most of the noise in the input graph, increasing the efficiency of downstream
analytic tasks.

3 Semantic Subgraph Construction

In this section, we illustrate our approach of semantic subgraph construction
process. We introduce each phase in sequence and then demonstrate some
examples of the subgraph construction.

In our subgraph construction problem, the objective is equivalent to
match the user-specified path pattern and the languages in the input knowl-
edge graph. In this study, we use regular expression to represent user-
specified path pattern. We know that: (1) Rregular expression pattern can

5



be expanded to multiple possible strings; (2) There may be a lot of matched
paths in the input knowledge graph.

To simply our thought, we can view the two types of texts as user’s
text and graph’s text. We first understand what the user wants and find if
those are in the graph. Therefore, below we implement regular expression
expansion for understanding what the user wants from user’s text, graph
triplet-string generation, and matched paths searching for finding if those
are in the graph in graph’s text.

3.1 Regular Expression Expansion

Our approach to filtering noise from knowledge graphs uses regular expres-
sion. In this section, we define the language and regular expression.

Let Σ be an alphabet. A word w over an alphabet Σ is a finite ordered
sequence of symbols in Σ, e.g., w = {si0, si1, ..., sin | si ∈ Σ for i ≤ |Σ| and
n ≥ 0}. A language L is an arbitrary set of words over Σ. Some simple but
powerful operations can work with languages, such as union, intersection,
difference, concatenation, etc.

Definition 5. Concatenation of Languages. Given languages L1 and
L2, we define their concatenation to be the language L1 ◦ L2 = {xy|x ∈
L1, y ∈ L2}

Therefore, given languages L,

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise
(1)

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.

Definition 6. Kleene Closure of Languages. The Kleene Closure of L
is set of strings formed by taking any number of strings from L, possibly
with repetitions and concatenating all of them.

L∗ =
⋃
i≥0

Li (2)

A regular expression is a formula for representing a language in terms
of “elementary” languages combined using the three operations: union, con-
catenation and Kleene closure.

Definition 7. Regular Expression. R is a regular expression if R is

6



1. a for some a in the alphabet Σ,

2. ε

3. ∅

4. (R1 ∪R2), where R1 and R2 are regular expressions

5. (R1 ◦R2), where R1 and R2 are regular expressions

6. (R∗1), where R1 is a regular expression

In items 1 and 2, the regular expressions a and ε represent the languages
{a} and {ε}, respectively. In item 3, the regular expression ∅ represents the
empty language. In items 4, 5, and 6, the expressions represent the languages
obtained by taking the union or concatenation of the languages R1 and R2,
or the Kleene closure of the language R1, respectively.

Definition 8. Regular Language. A language L ⊆ Σ∗ is a regular lan-
guage iff there is a regular expression R such that L(R) = L.

Let ΣKG = {V ∪ E} be the alphabet on a knowledge graph. Strings
in the language of a general knowledge graph must be in the form of a
triplet (node-edge-node) pattern, which we can define as a regular expression:
LKG = {(viejvk)∗ | where ej is a directed edge from vi to vk}. However,
what we are interested in are regular expressions specified by the types of
nodes and edges, which are semantic attributes of the node and edge objects.
Below we define the language of a knowledge graph:

Definition 9. Language of a Knowledge Graph. Let rs be a simple
semantic regular expression. The language of rs:

L(rs) = {titjtk | ti = type(vi), tj = type(ej), and tk = type(vk)}

In this phrase, the generic generate function can be used for expanding
all possible texts from the user-specified regular expression pattern [11]. For
example, if the user enter Z(aY|dT) as the regular expression pattern input,
the output will be a list including ZaY, ZdT. After knowing all the texts
that user-specified (user’s text), we need to know what the language is in
the graph (graph’s text) in our next step.

7



3.2 Triplet-strings Generation

In this study, we use the term triplet-strings to refer to the concatenated
strings of head-node type, edge type, and tail-node type. To see what we
have in the graph’s text, triplet-strings generation is necessary for each hop.

Figure 4: The current path

For example, in Figure 3 above, given Z8 as the starting node, the triplet-
strings from Z8 to its neighbors include Z-[a]->Y, Z-[a]->Y, Z-[d]->T, and
Z<-[d]-U, as shown in Figure 4.

Algorithm 1: tripletString(G, v0)
Input: The graph G, node v0
Output: A dictionary of triplet-string from input node to all

neighbor nodes, P
begin

initialize P ;
T0 ← type label of node v0;
for v ∈ v′0s neighbors do

initialize string list s;
for all edges from v0 to v do

TE ← edge type label;
T1 ← node v’s type label;
if v is a successor then

Concatenate T0, TE , ‘>’, T1 and Append to s;
if v is a predecessor then

Concatenate T0, TE , ‘<’, T1 and Append to s;

P [v] ← s;
return P .

Algorithm 1 demonstrates the triplet-strings generating process with a
graph G and a starting node v0 as input. To simplify, we adopt an easier

8



format of the triplet-string output, such as using Za>Y to represent Z-[a]->Y.
Consequently, the output of triplet-strings will be Za>Y, Za>Y, Zd>T, and Z<dU
in our example.

3.3 Matched Paths Searching

Regular expression is often used in pattern matching, such as text pattern
searching in a text document. That implies the pattern should be shorter
than the document (source). However, in our problem, the source is the
triplet-strings from the graph, which will be shorter than the user-specified
regular expression pattern.

To tackle this problem, in our matched paths searching process, we adopt
a dynamic way to match. We scan the input string, adjust the length by
each hop, and conduct the string matching until the end of the input string
is scanned.

Algorithm 2 demonstrates the matched paths searching process with a
graph G, a starting node v0, and a string s as input. Because we have already
expanded the regular expression pattern into one or more strings in our first
phase, here we only need to match one string with multiple triplet-strings
from the graph.

We assign hop to count the number of hop in the path searching, x, y to
indicate the position of input string s, prevNodes and nextNodes to control
the path connection, matchedStr and currentStr to identify the language
string that we have matched (confirmed) and the current string that we want
to compare (uncertain).

With controlling the variables above, we, in fact, use a dynamic way to
find the matched paths in the graph. In our next section, more examples
will be provided.

9



Algorithm 2: findMatchedPaths(G, v, s)
Input: The graph G, node v, string s
Output: A list of all matched path, M
begin

hop← 1; x, y ← 0; prevNodes← ∅; nextNodes← v;
matchedStr ← type label of v; currentStr ← ∅;
initialize M ;
while y < length(s) do

y ← x+ 1; regStr ← substring(s, 0, y);
for n ∈ nextNodes do

initialize tempN, tempStr;
for k, tripletStr ∈ tripletString(G, v) do

initialize path;
Append n to path;
currentStr ← Concatenate matchedStr and
tripletStr;
if currentStr matches regStr then

Append k to tempN ; append tripletStr to
tempStr; append k to path;

if length(path) > 1 then
if hop == 1 then

Append path to M ;

for every path i ∈M do
if the end node == n then

Append k to M [i];

matchedStr ← Concatenate matchedStr and tempStr;
initialize cList;
for i = 0; i < length(M) do

if hop < length(M [i]) then
Append M [i] to cList;

prevNodes← nextNodes; nextNodes← tempN ;
M ← cList; hop← hop+ 1; x← y − 1;

return M ;

10



3.4 Main Process

Incorporated with previous algorithms, the semantic subgraph construction
process can be accomplished by the main process as shown in Algorithm 3.

The user takes the graph G, the starting node v, and the regular expres-
sion pattern P as the input. Regular expression expansion will generate all
possible strings from user-specified pattern. We assign N as am empty set
to collect nodes in every path which is identified as a matched path from
matched paths searching. Once the program collects all the nodes with the
information from G, the output will be the subgraph Gv,P .

Algorithm 3: SubgraphConstruct(G, v, P)
Input: The knowledge graph G = (V,E, TV , TE), starting node v,

regex pattern P
Output: Subgraph Gv,P
begin

regexSet ← using generic generate function to expand P;
initialize N ;
/* Let N be the union set of matched nodes */
for each string s ∈ regexSet do

paths ← findMatchedPaths(G, v, s);
/* Let path be the matched paths */
for each path p ∈ paths do

for each node n ∈ p do
N ← N ∪ n;

Gv,P ← create the subgraph object of G with matched nodes set
N ;
return Gv,P .

For instance, if we use the knowledge graph in Figure 3 as our input
graph G, and set Z8 as the starting anchor node v0. Users can specify a
regular expression path P such as:

1. P1 = {Z−→a Y−→c X
−→
d T}

Staring from Z8 in Figure 3, since P1 matches the paths ’Z8 − a →
Y6 − c → X7 − d → T2’ and ’Z8 − a → Y1 − c → X7 − d → T2’, the
relevant nodes that user wants should be Z8, Y6, Y1, X7, T2. To union
those nodes and construct a subgraph from our proposed procedure,
the resulting semantic subgraph is shown in Figure 5a.

11



2. P2 = {Z
←−
d U
←−
f T}

Staring from Z8 in Figure 3, since P2 matches the path ’Z8 ← d −
U10 ← f−T3’, the relevant nodes that user wants should be Z8, U10, T3.
To union those nodes and construct a subgraph from our proposed
procedure, the resulting semantic subgraph is shown in Figure 5b.

3. P3 = {Z(−→a Y |(
−→
d T
−→
f U)+)−→e W}

In regular expressions, the pipe (|) is a special character that means
find either the part of the pattern on the left or the right side of the
pipe. A regular expression followed by a plus sign (+) matches one or
more occurrences of the one-character or pattern in parentheses.

Staring from Z8 in Figure 3, since P3 matches the paths ’Z8 − a →
Y1−e→W9’ and ’Z8−d→ T5−f → U4−d→ T3−f → U10−e→W9’,
the relevant nodes that user wants should be Z8, Y1,W9, T5, U4, T3, U10.
To union those nodes and construct a subgraph from our proposed
procedure, the resulting semantic subgraph is shown in Figure 5c.

(a) The subgraph of using P1 (b) The subgraph of using P2

(c) The subgraph of using P3

Figure 5: The results of using user-defined RE paths from Figure 3

12



4 Results

In this section, we present our approach with real-world dataset and evaluate
the noise removal by using graph entropy.

4.1 Real-world Dataset

We demonstrate the subgraph construction with regular expression using a
biomedical network - Hetionet [5]. A subset of it is extracted and shown in
Figure 6a.

Example 1. If we take the following inputs, after the subgraph construction
process, the output semantic subgraph would be shown in Figure 6b.

Inputs:

• the knowledge graph in Figure 6a.

• the starting node,
ID = 5 (NAME = Flavoxate, TYPE = Compound).

• the regular expression,
CompoundBINDS_CbG>GeneASSOCIATES_DaG<Disease.

(a) The input graph (b) The output subgraph

Figure 6: The subgraph construction of example 1

13



Example 2. If we take the following inputs, after the subgraph construction
process, the output semantic subgraph would be shown in Figure 7b.

Inputs:

• the knowledge graph in Figure 7a.

• the starting node,
ID = 5 (NAME = Flavoxate, TYPE = Compound).

• the regular expression,
CompoundDOWNREGULATES_CdG>GeneASSOCIATES_DaG<Disease.

(a) The input graph (b) The output subgraph

Figure 7: The subgraph construction of example 2

Example 3. If we take the following inputs, the output semantic graph
would be shown in Figure 8b.

Inputs:

• the knowledge graph in Figure 8a.

• the starting node,
ID = 5 (NAME = Flavoxate, TYPE = Compound).

• the regular expression,
Compound(BINDS_CbG>|DOWNREGULATES_CdG>)GeneASSOCIATES_DaG<Disease.

14



(a) The input graph (b) The output subgraph

Figure 8: The subgraph construction of example 3

4.2 Evaluation Metrics

In this study, we focus on the noise removal from a given graph. Intuitively,
for example, we know that Figure 1 has more noise than Figure 2a because
it contains more unwanted information to the user.

To quantify the noise, we define the noise by the difference between the
amount of information from the given graph and the graph that user actually
wants. We propose doing it with the entropy. The amount of information
from graphs are measured by the graph entropy. In this paper, the graph
entropy computation in [3,7] was adopted. It computes the node entropy in
a graph based on its topological diversity information:

h(i) = −
N∑
j=1

rij log(rij) (3)

where rij is the transition probability of node ni to node nj in the graph.
Note that when computing h(i), we only consider the topological structure
of whole graph without differentiating node types. The graph entropy of the
given graph is the summation of all nodes’ entropy:

Definition 10. Graph Entropy.

HG =

NG∑
i=1

h(i) (4)

15



where NG is the total number of nodes in the given graph.

Once we have the graph entropy of the given graph and the filtered graph
that user desired, the noise of a given graph to the user can be calculated as
the following.

Definition 11. Noise in the Graph.

N = HG −Huser (5)

where Huser is the graph entropy of user specified graph, and HG is the
given graph.

In the examples of Section 4.1, the corresponding graph entropy and the
amount of noise removal are computed and listed in Table 1.

Table 1: The Amount of Noise Removal

Graph Graph entropy Noise removal
HG, Huser HG −Huser

Input Graph 5.682 0
Example 1 4.072 1.610
Example 2 2.461 3.222
Example 3 4.392 1.290

The graph entropy of the input graph HG is 5.682. After filtering with
our approach, the graph entropy of example 1 in Section 4.1 is 4.072, which
reduce 1.61 amount of noise from the input graph. The graph entropy of
example 2 is 2.461, which reduce 3.222 amount of noise from the input graph.
We can see the significant reduction in Figure 7. Example 3 is the union of
example 1 and 2. The graph entropy of example 3 is 4.392, which reduce
1.29 amount of noise from the input graph.

5 Extended Application on Graph Embedding

This section presents an extended application of our approach – semantic
subgraph construction, incorporated with random walk based graph embed-
ding methods [2, 4, 9].

To apply our method on graph embedding methods, the process would
be composed of three modules: 1) Subgraph Construction – it generates

16



semantic subgraphs for each node based on a user-specified regular expres-
sion pattern to assure a meaningful random walk; 2) Random Walk – the
subgraphs are further used to execute the random walk in order to produce
corresponding sentences for entities; 3) Skip Gram – by inputting the sen-
tences, it generates the latent feature vectors for each node.

Therefore, the incorporation of random walk based graph embedding and
our subgraph construction method will be demonstrated as Algorithm 4.

Algorithm 4: Graph Embedding with Subgraph Construction
Input: The knowledge graph G = (V,E, TV , TE), regex pattern P,

num. of walks per node w, walk length l, embedding
dimension d

Output: The node embeddings X ∈ R|V |×d
begin

initialize X;
for v ∈ V do

Gvi,P = SubgraphConstruct(G, v, P);
walks = RandomWalk(Gv,P , v, w, l);
X = SkipGram(X,walks, d);
/* See [2,4,9] for RandomWalk and SkipGram. */

return X.

6 Concluding Remarks

In this report, we propose a user-oriented approach - semantic subgraph
construction with regular expression to better capture the rich semantics
and topology as well as remove irrelevant information in the heterogeneous
knowledge graphs. Regular expression helps users to identify their desire
semantic pattern, which represents filtering unwanted both nodes and edges.
Several examples have shown the effectiveness of noise removal from the
user-specified regular expression pattern.

After obtaining semantic subgraphs, we can therefore perform the down-
stream tasks, such as random walk procedure in graph embedding methods
illustrated in Section 5. It allows us to capture a more meaningful walk
before learning its feature matrix in a heterogeneous graph and therefore
guarantee a correct inference from downstream data analytics.

17



References

[1] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A
comprehensive survey of graph embedding: Problems, techniques, and
applications. IEEE Transactions on Knowledge and Data Engineering,
30(9):1616–1637, 2018.

[2] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec:
Scalable representation learning for heterogeneous networks. In Proceed-
ings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 135–144, 2017.

[3] Nathan Eagle, Michael Macy, and Rob Claxton. Network diversity and
economic development. Science, 328(5981):1029–1031, 2010.

[4] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864,
2016.

[5] Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo
Brueggeman, Sabrina L Chen, Dexter Hadley, Ari Green, Pouya
Khankhanian, and Sergio E Baranzini. Systematic integration of
biomedical knowledge prioritizes drugs for repurposing. Elife, 6:e26726,
2017.

[6] André Koschmieder and Ulf Leser. Regular path queries on large graphs.
In International Conference on Scientific and Statistical Database Man-
agement, pages 177–194. Springer, 2012.

[7] Shenghao Liu, Bang Wang, and Minghua Xu. Serge: Successive event
recommendation based on graph entropy for event-based social net-
works. IEEE Access, 6:3020–3030, 2017.

[8] Kenneth Morton, Patrick Wang, Chris Bizon, Steven Cox, James
Balhoff, Yaphet Kebede, Karamarie Fecho, and Alexander Tropsha.
Robokop: an abstraction layer and user interface for knowledge graphs
to support question answering. Bioinformatics, 35(24):5382–5384, 2019.

[9] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 701–710, 2014.

18



[10] Chang Su, Jie Tong, Yongjun Zhu, Peng Cui, and Fei Wang. Net-
work embedding in biomedical data science. Briefings in bioinformatics,
21(1):182–197, 2020.

[11] Adam Tauber. Exrex-regular expression string generator.

[12] Guojia Wan, Bo Du, Shirui Pan, and Jia Wu. Adaptive knowledge sub-
graph ensemble for robust and trustworthy knowledge graph completion.
World Wide Web, 23(1):471–490, 2020.

[13] Hongzhi Wang, Jiabao Han, Bin Shao, and Jianzhong Li. Reg-
ular expression matching on billion-nodes graphs. arXiv preprint
arXiv:1904.11653, 2019.

19


