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Abstract. We consider the problem of answering temporal queries on
RDF stores, in presence of time-agnostic RDFS domain ontologies, of
relational data sources that include temporal information, and of rules
that map the domain information in the source schemas into the tar-
get ontology. Our proposed solution consists of two rule-based domain-
independent algorithms. The first algorithm materializes target RDF
data via a version of data exchange that enriches both the data and
the ontology with temporal information from the relational sources. The
second algorithm accepts as inputs temporal queries expressed in terms
of the domain ontology, using SPARQL supplemented with a lightweight
easy-to-use formalism for time annotations and comparisons. The algo-
rithm translates the queries into the standard SPARQL form that re-
spects the structure of the temporal RDF information while preserving
the semantics of the questions, thus ensuring successful evaluation of the
queries on the materialized temporally-enriched RDF data. In this paper
we present the algorithms, report on their implementation and experi-
mental results for two application domains, and discuss future work.
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1 Introduction

In application domains that span industry, government, science, and global
health, data are often collected independently by different teams over time. As
the needs of the various data-collecting entities evolve, it is often the case that
data from multiple sources must be put together under a unified target format
(exchanged [4,14]), using source-to-target (s-t) rules developed by domain experts
for the purpose. In many real-life applications, there is an added requirement
that the target data format be aligned with the standard domain vocabulary.
Such vocabularies are developed by experts under the name of domain ontolo-
gies, with the information including concepts and relationships, as well as domain
rules governing their interaction. Our exposition will focus on a common real-life
scenario, in which ontologies and ontology-compliant data are expressed using
the RDF/S capabilities – those of the Resource Description Framework (RDF)



2 Jing Ao et al.

data model [26] enriched with additional RDFS specifications [27], – and are
queried using SPARQL [24,28], while the source data are relational.

In applications conforming to this relational-to-RDF/S data-exchange sce-
nario, e.g., in studies of antimicrobial resistance (AMR) [11], the source data
may contain important temporal information, while the applicable target do-
main ontologies lack temporal components. (In AMR this is the case with the
Antibiotic Resistance Ontology (ARO).3) At the same time, solutions that are
available for data exchange in the relational-to-RDF/S scenario, see, e.g., [22],
do not directly apply here, as they do not incorporate temporal semantics of
the data in easy-to-use ways. As a result, temporal information from the sources
can be lost in the exchange process, making it hard or even impossible for do-
main scientists to efficiently obtain correct answers to temporal queries posed
on the contents of the source data in terms of the target ontologies. This prob-
lem can be addressed on a case-by-case basis, by using in the data exchange
manually designed temporally enriched individual domain ontologies, as well as
“temporally aware” s-t rules that would be specifically developed for use with
such ontologies. Such custom solutions, however, would delegate to data analysts
or domain scientists the nontrivial task of temporally enhancing the originally
time-agnostic domain ontologies, such as ARO. As an additional burden on the
users, to be able to formulate correctly their temporal queries, domain analysts
or experts would need to be aware of how the temporal information is modeled
and represented in the resulting systems.

Contributions: In this paper, in the context of relational-to-RDF/S data
exchange, we consider the scenario in which domain analysts and scientists are
interested in obtaining answers to temporal queries formulated in terms of the
given time-agnostic target domain ontology, with the expectation that the tem-
poral information in the query answers would come from the data sources. We
assume that the users posing the queries are expert, rather than casual, users,
in the sense that they are familiar with formulating SPARQL queries using the
given RDFS ontology. We also assume that the expert users provide the s-t rules
that map the domain information in the source schemas into the time-agnostic
target ontology. In this scenario, we propose an approach that

– Enables users to formulate SPARQL-based temporal queries, and
– Returns to them answers to the queries, using the domain information en-

abled in the target by the s-t rules, with the temporal dimension of that
information coming from the sources via temporal enrichment.

Our declarative domain-independent approach for achieving these goals focuses
on separating temporal semantics from the domain semantics, and comprises
two algorithms. The first algorithm materializes target RDF data via a version
of data exchange that builds on the given s-t rules to enrich both the data
and the ontology with temporal information from the sources. The second al-
gorithm accepts as inputs temporal queries expressed in terms of the target
ontology, using SPARQL supplemented with a lightweight easy-to-use formal-
ism for time annotations and comparisons. The algorithm translates queries into

3 http://www.obofoundry.org/ontology/aro.html
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the standard SPARQL form that respects the structure of the temporal RDF
information while preserving the semantics of the questions, thus ensuring suc-
cessful evaluation of the queries on the materialized temporally-enriched RDF
data. In this paper we present the algorithms, report on their implementation
and experimental results for two application domains, and discuss future work.

Related Work: RDFS [27] is a language used in practice for describing
ontologies, see [1] and the Protege Ontology Library4 for RDFS-based ontology
examples. The need for temporal annotations and reasoning arises in many ap-
plication domains; toward addressing the need, Gutierrez et al. in [18] defined
temporal RDF and studied properties of inference in temporal graphs. Another
approach, which focuses on querying, is presented in [29]. For the RDFS layer, re-
search has been done on inference of temporal properties in temporal ontologies,
see, e.g., [32]. At the same time, the temporal aspect is usually not included
in the practical development of domain ontologies; our proposed approach in
this paper is designed to bridge this gap. In particular, we preserve the tempo-
ral source semantics in the target ontology-compliant domain data, by enabling
Allen interval relations [2], such as during or before, in queries on the data.

Data exchange has been studied extensively in the relational setting, see
[4,14]. Recently, considerable formal work has been done on temporal ontology-
mediated query access (OMQA), see [5]. OMQA differs in its objectives from
data exchange, on which we focus in this paper, as the latter considers mainly
materialization of exchanged data, while the former concentrates on certain an-
swers in query processing. In addition, OMQA uses a single schema, rather than
the source and target schemas, which are clearly separated in data exchange.
There has been preliminary work on data exchange from relations to RDF [7],
followed up by a proposal of a tool [6] for mapping elements of the source schemas
into the target RDFS ontology. [6,7] do not address temporal aspects of data ex-
change. To the best of our knowledge, temporal data exchange between relational
schemas and ontologies has not been studied formally. Even in the relational-to-
relational setting, [16] is the only publication that formally addresses temporal
data exchange, for the case in which each source-to-target dependency uses at
most one temporal variable. As time has its own semantics, adding it to data
exchange is not a matter of simply adding temporal attributes to data-exchange
rules. Thus, the formal constructs in [16] are rather involved. We use the results
of [16] in the experimental validation of our proposed approach.

Paper outline: Sections 2–3 detail the two domain-independent algorithms
that comprise the proposed approach, and illustrate their steps with a running
example. Section 4 reports on our implementation and experimental results.
Finally, Section 5 provides conclusions and directions of future work.

2 Temporal Enrichment of Ontologies and Data
The first problem that we consider is enrichment of time-agnostic RDFS ontolo-
gies and of the resulting materialized RDF data with temporal information from
the relational sources. Our domain-independent rule-based Algorithm 1, which

4 https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
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Fig. 1. The RDF (lower) level of this Figure shows two “subject-predicate-object”
(s,p,o) triples, where P1, FarmA, and Ampicillin are names (URIs) of resources, and
livesIn and usedOn are predicate names. At the RDFS (upper) level, the classes of
the entities involved are related to each other through the domains and ranges of the
predicates. Further, class Antibiotic Drug is shown to be a subclassOf Antimicrobial
Drug. The two layers are connected via type statements, shown as vertical arrows.

addresses the problem, accepts three inputs. The first input comprises relational
data sources with temporal information. We assume that temporal information
in a relation, if present, is expressed via a single marked column whose values are
time intervals. (Specifically, we assume concrete representation of valid time [9].)
The second input is the target time-agnostic RDFS domain ontology. The final
input is a set of source-to-target tuple-generating dependencies (s-t tgds) express-
ing the rules by which the source domain data can be materialized (exchanged) in
the format conforming to the target ontology. (We assume that domain experts
can design s-t tgds using tools such as that of, e.g., [6].) We assume that each
rule is a GLAV s-t tgd [4,14] with up to one temporal variable, which (if present
in the tgd) occurs once on the left-hand side (LHS) [16]. For s-t tgds to make
sense in the relational-to-RDF/S scenario, we represent each RDF/S triple on
the right-hand side (RHS) of the tgds, of the form “subject-predicate-object,” or
(s, p, o), as a relational atom of the form p(s, o). See Eq. (1) for an illustration.

Algorithm 1: Temporal enrichment of ontologies, s-t tgds, and RDF
data

Data: Relational data sources D, RDFS ontology O, and setM of s-t tgds.
Result: Temporally enriched OT ,MT , and RDF target data set FT .
begin

MT ←M; OT ← O; // initialization
for each atom p(s, o) on the right-hand side of each M ∈ M do

if p(s, o) is in the temporal-enrichment scope of M then

MT ← temporally enrich p(s, o) in M ; // first stage

OT ← temporally enrich the p-related part of OT ; // second stage

FT ← materialize D into RDF via data exchange usingMT ; // third stage

return OT ,MT , and FT ;

Algorithm 1 is based on straightforward domain-independent pattern-based
rules, and can be viewed as consisting of three conceptually distinct stages. In
the first stage, the algorithm adds “temporal-enrichment atom patterns” to the
RHS of the input s-t tgds. For the patterns, we use the temporal structures
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of [18], which, essentially, reify [17] RDF triples with their relevant temporal
adornments, see the RDF level of Fig. 2 for an illustration. (We use the structural
patterns of [18] to allow use of graph DBMSs without any special features for
storing the RDF results of materializing temporal data from the sources.) In the
second stage, the input time-agnostic ontology is augmented with RDFS-level
specifications of the temporal-enrichment structures that have been added to
the s-t tgds. Once both the input ontology and the input s-t tgds have been
thus temporally enriched, in the third stage the resulting s-t tgds can be used to
exchange the input (temporally-aware) data sources into the temporally-aware
RDF format consistent with the (now) temporally-aware output ontology. (We
assume that all of the materialized RDF data conform to the enriched ontology.)

Consider an example in the AMR domain. Suppose a data source has a re-
lation DrugUsage(Farm, Animal, AMR-Drug, Drug-Administration-Time),
which records the temporal history of AMR drug usage for animals in farms. Let
the relation have a single tuple (‘Farm A’,‘P1’,‘Ampicillin’,[1/1/2019,1/5/2019]).
Note that the (marked) Drug-Administration-Time column of the relation records
temporal-interval information, see the corresponding value in the tuple.

Suppose that AMR scientists are interested in obtaining answers to tempo-
ral queries posed using the ontology terminology. A fragment of the ontology
information is shown at the RDFS5 (top) level of Fig. 1. As the ontology is time
agnostic, the best way to exchange data from the DrugUsage source to a target
consistent with the ontology would be to use the s-t tgd

DrugUsage(f, a, d, t)→ livesIn(a, f) ∧ usedOn(d, a). (1)

Here, t is a temporal variable for the temporal attribute. Using this s-t tgd on the
DrugUsage relation would result in the data shown at the RDF level of Fig. 1.
Clearly, AMR scientists cannot get from these data a correct (nonempty) answer
to the query “return the farms that used antibiotic drugs on their animals in the
year 2019,” as there is no temporal information in the stored data of Fig. 1.

This problem can be solved by applying Algorithm 1 to the above ontology,
data source, and s-t tgd inputs. The algorithm will yield the enriched s-t tgd

DrugUsage(f, a, d, t)→ livesIn(a, f) ∧ usedOn(d, a) ∧ tsubj(c1, d)

∧ tpred(c1, usedOn) ∧ tobj(c1, a) ∧ temporal(c1, c2)

∧ interval(c2, c3) ∧ validFor(c3, t).

(2)

The RHS of the s-t tgd of Eq. (2) exhibits the temporal structure of [18] applied
to the RDF triple represented by the atom usedOn(d, a) on the RHS of Eq.
(1). (We assume that domain experts can mark up RHS atoms of the input
s-t tgds, to indicate the specific target RDF predicates that would receive the
temporal adornment of [18]. This is the meaning of the “temporal-enrichment
scope” criterion in Algorithm 1. The alternative is to allow for all the target
RDF predicates used in the input s-t tgds to be so temporally adorned.)

5 The notation used in Fig. 1–2 originates from [3].
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Fig. 2. This Figure shows an adornment of the Ampicillin-[is]-usedOn-P1 RDF triple
of Fig. 1 with a temporal structure of [18]. The RDFS layer shown indicates that the
RDFS temporal-adornment metadata associated with that RDF triple of Fig. 1 contain
a Statement class, linked to a node belonging to the TNode (temporal-node) class. The
TNode is, in turn, characterized by an interval-value class. The RDF level shows instan-
tiations of this RDFS structure — a (reified) statement s links the triple to temporal
node tn characterized (via ti) as an interval, with (validFor) value [1/1/2019,1/5/2019].

In Eq. (2), c1 (c2, c3, respectively) stands for f1(d, a, usedOn) (for f2(d, a,
usedOn), f3(d, a, usedOn), respectively). When Algorithm 1 materializes target
RDF data from the relational sources using such temporally enriched s-t tgds,
functions such as f1–f3 produce unique new URI values for the temporal struc-
tures of [18] with the RDF triples being materialized. Please see Fig. 2 for an
illustration; here, s, tn, and ti are the values produced by the three functions
of Eq. (2) for the RDF triple with predicate usedOn shown in Fig. 1. Finally,
the top half of Fig. 2 shows the time-enriched ontology information that results
from applying Algorithm 1 to the inputs of this example.

3 Querying the Materialized Temporally Enriched Data

Suppose that Algorithm 1 has been applied to the given relational data sources
D, time-agnostic target ontology O, and s-t tgds M. As a result, we obtain
an RDF/S data set (FT ,OT ) that materializes source information, including
temporal characterizations of the source data. See Fig. 2 for a partial illustra-
tion of (FT ,OT ) for the example of Section 2. Now the RDF query language
SPARQL [24,28] can be used to formulate, with respect to (w.r.t.) (FT ,OT ),
temporal queries such as QT

am: “Return farms that used antimicrobial drugs in
the year 2019,” see Fig. 3(c). This temporal query can be processed directly
on the data set (FT ,OT ) by a standard SPARQL processor, with a nonempty
answer successfully returned on the data coming from the DrugUsage relation.

As illustrated in Fig. 3(c), direct temporal querying of temporal RDF/S
data sets is already enabled by our approach of Section 2. At the same time,
our additional objective in this paper is to allow domain analysts and experts to
concentrate on the domain-ontology part of formulating such temporal queries,
while keeping the temporal part of the queries as easy to write as possible. For
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Fig. 3. Query QT
am asking for the farms that used antimicrobial drugs in the year 2019,

as (a) the original temporally-annotated SPARQL version, (b) the result of the rewrit-
ing of that version by the 1st stage of Algorithm 2, and (c) the result of the expansion
of version (b) by the 2nd stage of Algorithm 2. (In (c), initialDate and finalDate are
shorthand representations of combinations of standard SPARQL functions for extract-
ing the start/end points from the time-interval values bound to the temporal variable
?t.) Unlike (a)–(b), version (c) is directly executable by standard SPARQL processors.

this purpose, we offer domain experts an opportunity to formulate their temporal
queries via a temporal user interface (temporal UI) that we provide for SPARQL.
In the UI, standard SPARQL constructs are supplemented with temporal anno-
tations on RDF/S triple patterns in the queries, using the notation that we
borrow from the query format of [32], as well as with constructs for temporal
comparisons, such as during, before, and after, which are known as Allen
interval relations [2]. See Fig. 3(a) for an illustration, in which ?t is a temporal
annotation. The straightforward details of the temporal UI are omitted due to
the space limit. In the remainder of the exposition, we will refer to temporal-UI
versions of SPARQL queries as temporally annotated SPARQL queries.

Algorithm 2: Temporal querying of temporally enriched RDF/S data
sets

Data: RDFS ontology OT , RDF data set FT , temporally annotated SPARQL query Q.
Result: Answer set A to a SPARQL reformulation of Q on FT .
begin

R ← {Q}; // will reformulate Q into R that is executable on FT

for each triple pattern P in R do

if there is a hierarchy H in OT that applies to P then
R ← rewrite P in R in all ways using H; // 1st stage: rewriting

for each temporal annotation T in R do
R ← expand T in R into triple patterns; // 2nd stage: expansion

A ← ∅; // initializing set of answers to R on RDF data set FT

for each SPARQL query R in R do

A ← use SPARQL processor to add to A the result of processing R on FT ;

return A;
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We now present a domain-independent approach for reformulating tempo-
rally annotated SPARQL queries into (standard) SPARQL queries that respect
the structure of the temporal RDF information while preserving the semantics
of the questions. Acting on top of a SPARQL processor, our Algorithm 2 ensures
successful evaluation of temporally annotated SPARQL queries on the materi-
alized temporally-enriched RDF/S data generated by Algorithm 1 (Section 2).

Algorithm 2 accepts as inputs RDF/S data sets (FT ,OT ) and temporally an-
notated SPARQL queries Q expressed in terms of the domain-ontology part of
OT . (As discussed above, the temporal notation in Q comes from the lightweight
easy-to-use domain-independent formalism for time annotations and compar-
isons in our temporal UI.) The algorithm reformulates each given Q into a set
R of standard SPARQL queries conforming to the input ontology OT , and then
uses the SPARQL processor to obtain the answer to Q, by processing all the
queries in R on the input RDF/S data set (FT ,OT ).

The reformulation part of Algorithm 2 works in two stages, rewriting (1st
stage) and expansion (2nd stage). In the 1st stage, the algorithm uses domain-
independent pattern-based rules to repeatedly “unfold,” in the queries being
rewritten, :subClassOf and :subPropertyOf hierarchies w.r.t. the RDFS on-
tology OT , using the entailment rules of [12,17,25]. As a result, the input query
Q is turned into a set R of temporally annotated SPARQL queries that would
be directly executable on the data set FT but for their temporal annotations.
This process would transform the query of Fig. 3(a) into the query of Fig. 3(b).

The 2nd, expansion, stage of the query-reformulation process in Algorithm
2 uses domain-independent pattern-based rules to replace the temporal anno-
tations in the queries R with standard RDF/S constructs. Specifically, all the
temporal annotations of individual triple patterns in R are replaced with their
structural counterparts of [18] (as in, e.g., Fig. 2), and all the Allen interval re-
lations (e.g., during) are replaced with built-in comparisons on the endpoints of
the time intervals involved. (This process would transform the query of Fig. 3(b)
into the query of Fig. 3(c).) The resulting queries, which are SPARQL queries
without any nonstandard annotations, are submitted by the algorithm to the
SPARQL processor to obtain the answers to the input query.

4 Implementation and Experimental Results

4.1 Implementation and Experimental Setup

We have implemented Algorithms 1–2 on top of Java 1.8, using the Llunatic [15]
rule interpreter for rewriting and expanding temporally annotated queries into
standard executable SPARQL queries. The relational source data were stored
using PostgreSQL 11, and storing and manipulating target RDF triples was
done with RDF4J 3.0.1. All the experiments were conducted in the environment
of Ubuntu 18.04 Bionic with Core i7 3.20GHz, 16GB RAM, and 2TB HDD.

For the experiments, we used data environments in two application domains.
Each environment included a relational source schema, a time-agnostic target
RDFS domain ontology and, for translating the schema into the ontology, a set
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of GLAV s-t tgds each with at most one temporal variable, which, if present,
would occur exactly once on the LHS. Each data environment also included
relational source data generated with DataFiller [10] at multiple scale factors, to
calibrate the volume of the resulting data sets, as well as temporal queries defined
in terms of the domain ontologies, see Section 4.3. The first data environment
captures a real-life AMR scenario obtained from our collaboration [19] with
AMR researchers at NC State University. Each source AMR data set used in
the experiments consisted of four tables, Resistance, FarmInfo, CityInfo, and
WeatherEvents, with relative table-size ratios of 1:0.5:0.1:0.8. The Resistance
table would contain AMR-testing information coming from farms, for samples
of specific bacteria w.r.t. different antimicrobial drugs, e.g., Ampicillin, and the
date ranges for the tests. The three other tables would contain information about
the farms, their locations, and relevant weather events. We also used the RDFS
version of the time-agnostic ARO ontology for AMR, as well as s-t tgds developed
in our collaboration with AMR researchers.

The second data environment used in the experiments was based on the
TPC-BiH benchmark [13,20,21], which is used for evaluating the performance
of temporal databases. The TPC-BiH schema is based on eight TPC-H [30] re-
lations, which collectively reflect realistic information in a business-application
scenario. (For the relative TPC-BiH table-size ratios, see [30].) TPC-BiH intro-
duces temporal semantics for six of the eight TPC-H tables; in our experiments,
we used the valid-time interval attributes in the TPC-BiH schema. We converted
the TPC-BiH schema into a time-agnostic (cf. TPC-H) ontology and generated
the associated s-t tgds using an approach similar to those of [8,31].

4.2 Experimental Methodology and Expected Outcomes

The experiments, whose results are reported in Section 4.3, were designed around
specific properties of the outcomes of applying to the AMR and TPC-BiH en-
vironments the proposed approach (i.e., Algorithms 1–2) for temporal RDF/S
enrichment and querying. We evaluated the following properties of the outcomes:

– degree of preservation in the target of the temporal information from the
sources, see Fig. 4; and

– degree of correctness of the answers to temporal queries on the target, w.r.t.
the “benchmark” answers, see discussion of Experiments (I)-(II) below.

We evaluated the latter property both for queries that required rewriting
w.r.t. the :subClassOf and :subPropertyOf hierarchies in the given time-
agnostic ontologies (1st stage of Algorithm 2), and for queries that did not
require such rewriting, see Fig. 5. (In addition, we evaluated the efficiency of our
implementation, see discussion of Fig. 6 in Section 4.3.)

Our methodology for evaluating the above properties was as follows. Observe
that the proposed approach, embodied by Algorithms 1–2, would be provably
sound if it applied to the relational-to-relational scenario. That is, if the target
data were relational (instead of RDF/S), then, under our assumption (see Section
2) of all s-t tgds being GLAV with at most one temporal variable, correctness
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of temporal data exchange and of temporal querying on the materialized target
data would follow from the formal results of [16]. Thus, each experiment that
we are reporting on was done twice for each fixed data-environment input:

1. Experiment (I) would be conducted in the relational-to-relational scenario
using straightforward modifications of Algorithms 1–2. By [16], that exper-
iment would have provably correct outputs, which we would then adopt as
our expected outputs for the other experiment (i.e., Experiment (II)); and

2. Experiment (II) would be conducted in the relational-to-RDF/S scenario
using the original Algorithms 1–2. We would then translate the RDF outputs
into relations using straightforward transformations, and compare the results
with the expected outputs of Experiment (I) for the same input.

For all the cases in which the results of Experiments (I) and (II) were identical for
a given input, we would count all such cases as corroborations of the experimental
validation of correctness of the proposed approach, i.e., of Algorithms 1–2.

4.3 Summary of Experimental Results

We now report on our experimental results. As a high-level summary, for each
data environment used in the experiments, with each selected scale factor, and
for each temporal query that was considered, the results of Experiments (I) and
(II), as described in Section 4.2, were identical. We conclude that all these re-
sults experimentally validate the correctness of the proposed approach. (Formally
proving correctness of Algorithms 1–2 is a direction of our current work.)

Fig. 4. Evaluating information loss in data exchange with temporal RDF/S enrichment,
vs expected (relational-to-relational) outcomes. The X-axis shows the names of the s-t
tgds and the source-data sizes for the environments tested; the (logarithmic) Y-axis
shows the number of resulting data tuples. The [A/B] notation on top of the bars
shows the relative number of unmatched tuples between the two sets, see Section 4.3
for the details. Specifically, the meaning of [0/0] is that the two data sets are identical.

The data environments that were used to obtain the results shown in Fig. 4–6
are as follows: the AMR environment with the source data comprising 100, or
1,000, or 10,000 tuples, at the respective storage sizes of 23KB through 2.3MB, as
well as the TPC-BiH environment with the source data comprising 10,000 tuples,
at storage size of 3.2MB. (We are not reporting the results for additional values
of the scale factors that were tested for the AMR and TPC-BiH environments,
due to all such results being in line with the results reported in Fig. 4–6.)
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We report first on our results, in the AMR and TPC-BiH data environments,
for the degree of preservation in the target of the temporal information from the
sources, as enabled by Algorithm 1. Fig. 4 shows the sizes of the target data,
both relational (Experiments (I)) and RDF/S (the corresponding Experiments
(II)), that were obtained in the experiments. The [A/B] values on top of the
target data-size bars show the sizes of the outcomes of the set differences between
the two data sets in both directions, with the value A showing the number of
additional tuples obtained in the relational-to-relational setting, and with B
showing the symmetric number for the relational-to-RDF/S setting.6 For all the
results, we got A=B=0; that is, in each experiment we obtained identical sets of
tuples in the target temporal data. We conclude that the results experimentally
validate the correctness of our temporal-enrichment Algorithm 1.

Next, we discuss our results, in the AMR and TPC-BiH data environments,
for the degree of correctness of the answers to temporal queries on the RDF/S
target (Experiment (II)), w.r.t. the “benchmark” relational answers that would
be obtained via the respective Experiment (I), see Fig. 5. All the input queries
in the experiments were temporally annotated SPARQL queries of the form
illustrated in Fig. 3(a), which were then subjected to appropriate reformulations
via Algorithm 2, with the outputs being SPARQL queries of the form illustrated
in Fig. 3(c). We used the certain-answer semantics [4,14] in processing all the
queries. Among the queries that we tested in these experiments, the meaning of,
e.g., the AMR query Q2 in Fig. 5(a) is “return drugs that have been linked to
antibiotic resistance by any bacteria serotypes, and the relevant date ranges.”
In the TPC-BiH data environment, we tested 11 named temporal queries [20].

Fig. 5. Evaluating information loss in answers to temporal queries, vs expected
(relational-to-relational) benchmark outcomes, for (a) queries not requiring rewriting
w.r.t. RDFS hierarchies, and for (b) queries requiring such rewriting. The X-axes show
the names of the AMR and TPC-BiH queries tested. The (logarithmic) Y-axes show
query-answer sizes in tuples. The [A/B] notation on top of the bars shows the rela-
tive number of unmatched tuples between the two sets, see Section 4.3 for the details.
Specifically, the meaning of the [0/0] notation is that the two data sets are identical.

None of the queries mentioned in Fig. 5(a) required rewriting w.r.t. RDFS
hierarchies using the 1st stage of Algorithm 2. As a result, composing their se-
mantically equivalent SQL counterparts for the respective Experiments (I) was

6 Recall that part of each Experiment (II) was to convert the RDF outputs into rela-
tions, to enable the comparisons with the respective outputs of Experiment (I).
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straightforward. The experiments whose results are reported in Fig. 5(b) were
set up differently, as their temporally annotated input queries did require rewrit-
ing w.r.t. the RDFS :subClassOf and :subPropertyOf hierarchies. Among the
queries tested in these experiments, the meaning of, e.g., the query R2 in the
TPC-BiH environment (Fig. 5(b)) is “return the nations for all the entities that
have associated temporal information,” where “entities” is a superclass of both
“customers” and “suppliers.” For the Experiment (I) counterparts of the tem-
porally annotated SPARQL queries mentioned in Fig. 5(b), we manually con-
structed SQL queries that are semantically equivalent to the result of rewriting
the input queries for Experiment (II) using the 1st stage of Algorithm 2.7

Fig. 6. Measuring the time overhead of reformulating temporally annotated queries into
executable SPARQL as part of the overall query processing, for (a) queries not requiring
rewriting w.r.t. RDFS hierarchies, and for (b) queries requiring such rewriting. The X-
axes show the names of the AMR and TPC-BiH queries tested. The (logarithmic) Y-
axes show the response times in ms. Each bar height is the average of 10 runtimes. The
values in square brackets show the difference, for each query, between the processing
time with the reformulation overhead included (left bar) and excluded (right bar).

To summarize the results shown in Fig. 5, we obtained that the sets of query
answers were identical between Experiments (I) and (II), on all the inputs and
for all the individual queries tested. (The query answers were relations for both
(I) and (II), because none of the queries used graph-constructing features of
SPARQL.) Specifically, the set-difference meaning of the [A/B] notation on top
of the bars in Fig. 5 is the same as in Fig. 4, with A=B=0 in all the experiments
that we conducted. We conclude that our results for the degree of correctness
of the answers to temporal queries on the RDF/S target experimentally validate
the correctness of the proposed query-reformulation Algorithm 2.

Finally, Fig. 6 reports on the results for the runtime overhead of our imple-
mentation of the query-reformulation part of Algorithm 2, as part of the overall
response times for the queries tested. The heights of the bars shown in Fig. 6
show the overall response times for the temporally annotated queries, with the
Algorithm 2 reformulation overhead included in the left bar in each pairing, and
excluded in the corresponding right bar. The response times were measured both
for queries that did not require rewriting w.r.t. RDFS hierarchies (1st stage of
Algorithm 2), see Fig. 6(a), and for queries requiring such rewriting, see Fig.

7 Recall that, in contrast with the processing of SPARQL queries in RDF stores,
automatic rewriting of queries using hierarchies is not possible in relational DBMS.
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6(b). Not surprisingly, in all the cases tested, the overhead of Algorithm 2 de-
pended only on the size of the input query, rather than on the size of the stored
data processed by the query, or on the size of the query answer. As a result,
even for queries whose runtimes were over 16 sec after the reformulation part
of Algorithm 2, the overhead of applying Algorithm 2 was under 821 ms. This
value is below the query-response user-tolerance time threshold for interactive
systems [23], which means that it is considered by experts to be acceptable for
users querying the systems. Moreover, in additional experiments, in which we
used hardcoded rules, rather than the rule interpreter [15], the values of the Al-
gorithm 2 reformulation overhead dropped to tens of ms vs. the time-difference
values shown in Fig. 6. We conclude that the runtime overhead of using Algo-
rithm 2 in the reformulation of temporally annotated SPARQL queries is suffi-
ciently small to be tolerated by users, even when it uses generic rule interpreters,
and can be significantly reduced further if needed in mission-critical systems.

5 Conclusions and Future Work

In this paper we considered the scenario in which domain analysts and scientists
are interested in obtaining answers to temporal queries formulated in terms of
the given time-agnostic RDFS domain ontology, in presence of temporal infor-
mation in relational data sources and of source-to-target (s-t) rules for map-
ping domain information between the sources and the target ontology. We pre-
sented our declarative domain-independent algorithmic approach to addressing
the temporal-enrichment and query-answering problems in this scenario. In our
report on the approach, we described the algorithms and their implementation,
and presented our experimental results for two application domains.

Currently, we are working on formal proofs of correctness of our proposed
approach. Other directions of future formal and practical work on these topics
include incorporation into the framework of richer ontology formalisms such as
OWL [1], as well as of data-exchange dependencies that are more expressive
in their temporal aspect than those of [16]. Another promising direction is to
develop user interfaces that would make it easier for domain scientists that are
not computer experts to query their temporal data in terms of domain ontologies.
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12. Curé, O., Blin, G. (eds.): RDF Database Systems. Morgan Kaufmann (2015)
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