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ABSTRACT
In high performance computing (HPC), o�en a wide range of
knowledge about the particular domains, so�ware applica-
tions, and hardware architectures are necessary for applying
the right optimizations in the appropriate contexts. In to-
day’s practice, however, such knowledge has been expressed
and managed in an ad-hoc manner by each individual. Sys-
tematic accumulation, sharing and reuse of the knowledge
across a broad community has been di�cult. �is paper
introduces OpenK, an ontology-based open infrastructure
for solving the problem. By centering around ontology – a
generic knowledge representation – and extensible designs,
it o�ers a promising support for lowering the barriers.

1 INTRODUCTION
So�ware optimization on a program o�en requires a wide
range of knowledge, from the program code, to the algo-
rithm it implements, the domain, the underlying hardware,
properties of various optimizations, their interactions, and
so on. �e problem is especially important for High Perfor-
mance Computing (HPC), where, some performance-critical
applications run on some large, complex supercomputers or
clusters. Optimizing these applications is especially di�cult,
due to the high requirement of the desired performance and
energy e�ciency, as well as the growing complexity in HPC
so�ware and hardware.

Currently, HPC knowledge has been sca�ered everywhere
in various formats. Examples include implicit assumptions
about the problem domains, semantics and usage constraints
of library functions, analysis and optimization guidelines
that are hard-coded inside compilers, hardware architecture
a�ributes and se�ings wri�en in whitepapers or compli-
cated system con�guration �les, and �ndings wri�en in
research papers, reports, and other documentations. �e ad-
hoc knowledge representation and organization have created
tremendous di�culties for the HPC community to e�ectively
accumulate, share, and reuse HPC knowledge.

Take optimizations of stencil computation as an example.
Stencil codes are a class of iterative kernels which update

array elements according to some �xed pa�erns, called sten-
cils. As the core computing pa�ern in many scienti�c simula-
tions, high-performance stencil computing has drawn many
studies in the last decades. Just an incomplete counting on
Google Scholar shows that there are 1,640 research docu-
ments published on the topic “stencil computations” in the
last �ve years, some on GPU memory performance, some on
non-uniform memory access (NUMA), and some on thread
scheduling or other optimizations. In addition, our inter-
actions with U.S. DOE National Labs show that even more
empirical studies on the topic have le� undocumented.

A survey of the practices in U.S. National Labs shows that
despite the large volume of prior work, there are still many
explorations going on the topic everyday. Many of them
are simple repetitions of some others’ explorations due to
the unawareness of the prior work or the unavailability of
their results. For example, a number of groups have spent
a lot of man power in �nding out the in�uence of di�erent
loop tilings on some stencil computations on NUMA sys-
tems. Many of the experiments are repetitions of the (some
formally documented, some not) explorations already done
by some other groups on identical or very similar platforms
and have ended up with the same conclusions or insights.

A fundamental reason for the redundant e�orts is the
di�culty in systematically collecting and leveraging prior
experiences. �at takes time and is sometimes even infeasi-
ble. For instance, collecting some major works on optimizing
stencil computations and summarizing the main contribu-
tions of each took a substantial part of a thesis work [12].
Even today, with the help of modern search engines, it still
takes the lead author of this paper about two months to �nd
a modest set of relevant papers, read and digest them.

�e observations on stencil computations represent a fun-
damental issue facing HPC—the lack of a �exible, open in-
frastructure for the HPC community to e�ectively share,
accumulate, and reuse HPC knowledge.

Developing such an infrastructure is the goal of this work.
�ere have been some scholarly research databases [22, 33,
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38], digital libraries, or technical forums (e.g., stackover-
�ow.com). However, they cannot meet the needs. For in-
stance, none of them allow automatic inference tools to be
built upon the knowledge base, none of them o�er a struc-
tural representation of the deep knowledge such that auto-
matic so�ware optimization agents can easily leverage, and
none of them allow the representation of computing pro-
grams or extensions to their infrastructures. �ere are some
knowledge managing systems in other domains, such as
Google Knowledge Graph [2] and GoKB [1]. �ese systems
are either for general knowledge or a domain (e.g., e-resource
library) without the special properties and requirements of
HPC (e.g., program code representations, systematic support
for program optimizations, etc.).

�e OpenK system we propose in this work is the �rst
infrastructure that provides a comprehensive way to help
the HPC community systematically accumulate, share, and
reuse HPC knowledge. OpenK’s design centers around on-
tology [37], a primary way to standardize the concept de�ni-
tions and knowledge representations for a domain. Such a
choice is crucial for removing inter-user collaboration barri-
ers as it standardizes terminology and concepts, and allows
many sources of knowledge to be represented in a way im-
mediately ready for automatic inferences and analysis.

OpenK is based on the modern development of knowl-
edge engineering. Some special properties of HPC, however,
creates a range of open challenges. Examples include what
techniques from the broad �eld of knowledge engineering
will best �t for this work, how to put these techniques to-
gether to meet the speci�c needs of HPC, how to leverage
them e�ectively, and what potential bene�ts such an infras-
tructure can bring.

�is paper describes the results of our e�orts in answering
these questions. It presents the structure of OpenK, and the
rationale for the major design choices. It demonstrates the
usage and bene�ts of OpenK through three case studies: an
optimization advisor for stencil computations, a GPU data
placement optimizer, and a collaborative data �ow analysis.
In them, OpenK substantially improves the productivity of
code analysis and optimizations and the extensibility of HPC
optimization tools.

�e results show that OpenK is a promising infrastruc-
ture for HPC knowledge management and for promoting the
HPC community synergy. At a higher level, OpenK is a step
to bridge the gap between HPC and knowledge engineering
�elds. Recent years have witnessed exiting advancements in
cognitive computing, knowledge engineering, and other re-
lated �elds. By allowing systematic representations of HPC
knowledge and connecting them with program optimiza-
tions, this work may open many opportunities for HPC to
bene�t from advancements in those �elds.

Overall, this work makes the following contributions:

• A�er exploring a broad set of techniques on knowl-
edge engineering, it identi�es the techniques that
suite HPC needs and puts them together into the
�rst infrastructure for supporting HPC knowledge
management, accumulation, sharing, and reuse.

• It reveals a range of design considerations, insights,
and principles, especially on overcoming the special
complexities in HPC. Some of the insights include
the use of ontology as the representation to accom-
modate the large variety of (and o�en unstructured)
knowledge in HPC, the extensive and modular de-
sign to support the many di�erent domains in HPC,
the versatile interfaces to enable the needed human
and so�ware interactions in optimizing HPC pro-
grams, and the leverage of the ontology ecosystem
that has been rapidly built in the past decade.

• It reports the usefulness of OpenK in improving the
productivity and tool extensibility of HPC in two use
case studies, demonstrating its promise in removing
the long-standing barriers for HPC knowledge man-
agement.

2 BACKGROUND
For the central role that ontology plays in OpenK, we �rst
give a brief introduction of ontology. Ontology [37] is a
concept originating in Philosophy, referring to the study of
the nature of being, as well as the basic categories of them
and their relations [28]. In recent decades, it has become a
formal way to explicitly represent the knowledge in a domain.
�e ontology of a domain consists of the concepts (or called
classes) in the domain, their instances (or called individuals),
and their relations (or called properties).

Ontology is embodied with a de�ned vocabulary, which
users can take as the standard terminology to formally ex-
press the knowledge in that domain. �e expression of a
piece of knowledge can state explicitly the relations between
these individuals and the classes de�ned in the ontology. An
ontology or ontology-based expression can be visualized as
Figure 1 illustrates. Each node in the graph represents a con-
cept or instance, and each edge carries a property indicating
the relations between the two nodes it connects. In Figure 1,
the edge between “Robot” and “Arm” indicates that the la�er
is a part of the former.

Textually, a common language for expressing ontologies is
the Web Ontology Language (OWL) [16]. OWL is based on
the description logic (DL) and is expressive enough for build-
ing sophisticated knowledge bases while still supporting
e�cient inference. Speci�cally, Resource Description Frame-
work (RDF) is a commonly used simple format of OWL for
knowledge representation. Each piece of knowledge is rep-
resented as a triple, (subject, property, object). For instance,
(“Tatooine”, instanceOf, “Planet”), states that “Tatooine” is
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Figure 1: An example ontology on Robotics.

an instance of “Planet”. Another popular variant is in the
form of property(subject, object). So the previous example
can also be wri�en as instanceOf (“Tatooine”,“Planet”).

Ontology has been used in the Semantic Web, so�ware
meta data management, Robotics, and some other �elds out-
side HPC. �e last several decades have witnessed some rapid
development of ontology-related techniques. A large body
of tools (e.g., Stanford Protégé [14], SWI-Prolog Semantic
Web Library [40], and HermiT [15]) have been developed
for creating ontologies and automatic reasoning upon an
ontology-based knowledge base, which enables automatic
questions-and-answers, consistency check of the knowledge
base, derivation of new knowledge, and so on.

3 SCOPE AND DESIGN CONSIDERATIONS
We �rst note that fully automating HPC knowledge aquisi-
tion from data and reports is not the goal of this work. It is
a task requiring continuous research in Machine Learning,
NLP, and Information Retrieval. �e goal of this work is to
provide an infrastructure, through which the HPC commu-
nity and automatic tools can put HPC knowledge together
in a way easy for other people or tools to reuse. �e main
consideratons for design are in seven dimensions.

(1) Generality. �e knowledge base must be able to accom-
modate a wide range of knowledge of various levels (e.g.,
so�ware and hardware), sources (e.g., domain experts, code),
and forms (e.g., code structures, optimization rules), thanks
to the broad range of knowledge that HPC needs.

(2)Deep Inference. �e representation of knowledge should
be amenable for automatic logic inferences (e.g., �nding out
the best way to optimize a given stencil computation on a
speci�c hardware) to make it possible to do sophisticated
knowledge exploitation rather than simple search as what
common search engines do. Such inferences are important
for tapping into the full potential of the accumulated knowl-
edge for HPC.

(3) Consistent Conceptualization. For the same concept,
di�erent groups may use di�erent names (e.g., worker groups

in OpenCL [34] versus thread blocks in CUDA [29] for GPU).
Inconsistency in the de�nition of concepts and terminology
may cause lots of di�culties for search and many confusions
in knowledge representations. �e knowledge management
infrastructure should ideally prevent them.

(4) Usability. With the infrastructure, it must be easy for
both the community and automatic so�ware agents to add,
update, retrieve, and visualize the HPC knowledge. And fur-
thermore, its knowledge representation should be standard,
intuitive, and e�cient in order to simplify the collaborations
among di�erent users and so�ware agents, helping promote
synergies.

(5) Extensibility. As an infrastructure for maximizing the
synergy of the HPC community, it should be inherently open
and extensible. �at refers to the infrastructure itself, which
should be easy to extend with new or improved functionali-
ties (e.g., deriving new knowledge through Machine Learning
modules). �at also refers to the knowledge base built in the
infrastructure in the sense that the community should be
able to add and access it �exibly.

(6) �ality. �ality control is essential for an open knowl-
edge base. �e infrastructure should have a way to identify
issues (e.g., inconsistency) in the knowledge base, mecha-
nisms for assessing the quality of added knowledge, and
methods for helping users avoid the negative in�uence of
errors in the added knowledge.

(7) Ecosystem. It would be ideal if there is already a so�-
ware ecosystem built around the knowledge representation.
�e existing tools in the ecosystem will help simplify the var-
ious tasks (knowledge base construction, consistency check,
inferences) related with the usage of the knowledge infras-
tructure.

4 OVERALL STRUCTURE OF OPENK
Designed to meet those considerations, OpenK o�ers a list
of features. �rough its web or programming interface, pro-
grammers or so�ware tools (e.g., compilers or program opti-
mizers) can add a broad range of knowledge into a centralized
public knowledge base on a cloud, and can retrieve the knowl-
edge, visualize it, or conduct automatic inferences (through
logic programming) upon it for enhancing the quality of
HPC. It allows easy extensions with additional modules and
functionalities. It uses automatic consistency checks, crowd-
sourcing and some other ways to help control and assess
the quality of knowledge. It facilitates the construction of a
common conceptual framework to help avoid terminological
or conceptual ambiguities. �e rich existing ecosystem of
ontology simpli�es both the construction and the usage of
the infrastructure.

Figure 2 depicts the overall structure of the OpenK frame-
work, which consists of a front end, a middle end, and a back
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Figure 2: Overall structure of OpenK.

end. �is section provides a brief overview of each part; next
section elaborates the internal design.

Front End. �e front end is the interface to the users (both
humans and so�ware agents). It includes three components.
�e �rst is a webpage–based interface, through which, hu-
mans can do the following:

• Submit queries related with the OpenK knowledge
base; the results will be displayed on the webpage
for browsing or downloading.

• Visualize—in a RDF graph manner—the knowledge
base or the query results.

• Submit ratings on a piece of knowledge to re�ect the
degree of approval to the knowledge (crowdsourc-
ing).

• Suggest extensions to the HPC ontology (e.g., adding
new concepts or relations to a sub-domain of the
ontology.)

• Submit new modules for logic reasoning of the knowl-
edge base or for converting raw information into the
ontology format.

• Upload new knowledge into the knowledge base.
�e uploaded knowledge can be in various formats,
including domain-speci�c forms, RDF, unstructured
documents (e.g., manuals on a library like MPI [18]),
or source code of a computer program.

�e second interface is a locally installed integrated devel-
opment environment (IDE) based on Protégé [14]. It o�ers
similar functionalities as the web interface o�ers, and addi-
tionally, provides further conveniences to the user through
various plugins for refactoring, querying and reasoning.

�e third interface is a programming interface, which is
intended to be used in other so�ware that needs to access the
knowledge base. What it currently supports are to add new
knowledge and to submit queries for knowledge retrieval.

�e API is based on SWI-Prolog Semantic Web Library [40]
and the Jena Ontology Framework [8].

Middle End. �e middle end of OpenK consists of two main
components. �e �rst is a set of logic reasoners including
SWI-Prolog [7] and HermiT [15] , which conduct automatic
logic inferences on the OpenK knowledge base to �nd an-
swers to queries (e.g., �nding the type of memory that best
�ts an array’s access pa�ern as Section 6 will present), or
check consistency of the knowledge base. �is component
is designed to be extensible, allowing easy incorporations of
modules for other types of analysis of the knowledge base
(e.g., statistical analysis through Machine Learning).

�e second component is a set of knowledge converters,
which take the inputs from various sources and/or in various
formats and generates knowledge represented in RDF triples
and sends it to the OpenK knowledge base. One of the imple-
mented converters in the current OpenK is a C/C++ program
converter, which converts an input C/C++ program into RDF
that captures the main language concepts, code structures,
data structures, and control �ows in the input program [41].
Another converter in OpenK converts a hardware speci�-
cation wri�en in a language called MSL [10] into RDF. In
addition, OpenK is equipped with Pellet [32], an e�cient
reasoner for querying and processing OWL-2 ontologies and
Semantic Web Rule Language (SWRL) rules [17]. For an
unstructured document uploaded by a user, if there is no
existing module for converting its content into RDF, OpenK
would treat the entire document as a single instance and
put it, along with any available meta data related with the
document, into the OpenK knowledge base. New converters
can be continuously added through some APIs.

All the middle-end modules themselves are documented
in the OpenK knowledge base such that users can easily �nd
out the right modules to use if they would like to specify
the reasoners or converters to use in their queries (such
speci�cations are optional; without them, OpenK would
select some default modules that are compatible to the given
query.)

Back End. �e back end of OpenK is the actual knowledge
base. Based on their nature, the knowledge in OpenK can be
classi�ed into four kinds.

�e �rst is an HPC ontology schema, which is made up of
the concepts and their relations in the various HPC domains.
It de�nes the vocabulary for the domains (e.g., constructs
and terms of C language or GPU architectures). To facilitate
a continuous growth of the ontology schema, OpenK o�ers
a high-level taxonomy of the domains of HPC whereby each
sub-domain can be separately populated by users in the sub-
domain through a set of API.

�e second kind is the knowledge on some concrete enti-
ties (e.g., a program or a hardware). We call them primary
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knowledge. Each element in it represents a concrete object
or an a�ribute of a concrete object (e.g., a memory system
and its size).

�e third kind is logic rules, such as what optimizations
should be applied under what conditions. �ese rules o�en
embody the optimization insights some explorations have
obtained (e.g. if a read-only array on GPU �ts in constant
memory, it should be put into constant memory for improved
performance.)

�e �nal kind is bulk knowledge, each entity of which is
a collection of information (e.g., the manual of a library),
the content of which is not yet parsable or representable in
ontology. Some unstructured documentations wri�en for
humans to read belong to this category. Even though their
contents are not yet amenable for automatic logic inferences,
keeping them in the knowledge base, along with their meta
data, can help provide references to users. Moreover, as more
advanced tools are added into OpenK, these documents could
later become automatically exploitable.

Despite their di�erent natures, the four kinds of knowl-
edge are represented in some coherent formats in OpenK,
forming a seamlessly integrated knowledge base for the rea-
soners in the Middle End to use. In the next section, we
give a more detailed description of OpenK, and explain how
they make OpenK able to meet the seven requirements listed
earlier.

5 INTERNALS OF OPENK
�e main techniques in OpenK are in the following �ve
aspects:

• HPC knowledge representation: How to represent the
various HPC knowledge internally to o�er both high
e�ciency and good �exibility.

• HPC knowledge submission: How to ease knowledge
submission.

• HPC knowledge derivation: How to support the deriva-
tion of new (or generalized) knowledge from what
OpenK already contains.

• HPC knowledge quality control: How to assess and
control the quality of the knowledge in OpenK.

• HPC knowledge capitalization: How to e�ectively
support the capitalizations of the knowledge in OpenK.

We next describe them each, along with the important
design principles and insights.

5.1 HPC Knowledge Representation
Driven by the various sources and forms of HPC knowl-
edge, we equip OpenK with an ontology-based knowledge
representation. As a formal way to provide a consistent con-
ceptualization of a domain, an ontology of a domain de�nes
the set of concepts, their relations, and corresponding terms

Figure 3: Part of the HPC knowledge taxonomy.

(and aliases) speci�c to the domain. Having such an ontol-
ogy can e�ectively avoid ambiguities in conceptualization
and terminology usage of a domain, removing barriers for
collaborations among a community in both growing and
leveraging the knowledge base.

It is not necessary to build a complete HPC ontology
for OpenK knowledge base to be useful. As the ontology
for some HPC sub-domain is constructed, problems in the
sub-domain can start bene�ting from the infrastructure and
knowledge base. Currently, OpenK provides the ontologies
de�ned for several speci�c areas of HPC, including an on-
tology of the C programming language (based on C99), an
ontology for GPU hardware, and an ontology for stencil
computations. �ese are useful for our case studies shown
later.

On the other hand, OpenK provides a framework with a
two-dimensional strategy to help with the creation of the
ontology and the organization of the knowledge of more
HPC sub-domains.

On one dimension (horizontal dimension), we classify the
set of HPC knowledge into a hierarchy of domains and cre-
ate a high-level HPC knowledge taxonomy as illustrated in
Figure 3. �is taxonomy is represented in RDF inside the
OpenK knowledge base and can be queried and visualized by
users through the OpenK interface. �e taxonomy has two
main purposes. (1) By organizing the knowledge base into
domains, it makes the knowledge base easy to browse. A
user can focus on the domains interesting to her. (2) �e iso-
lations provided by the taxonomy among di�erent domains
help simplify the expansion of the HPC ontology. When a
special interest group design and create the ontology (con-
cepts and vocabularies) speci�c to N-body simulations, for
instance, their changes to the HPC ontology will be con-
strained to a local scope of the taxonomy in OpenK, casting
li�le perturbation to the ontologies (and their usage) of other
domains. Meanwhile, despite the separate development of
the domains, the knowledge base in one domain can connect
with the knowledge base in another domain through RDF
edges that carry the corresponding relations between them.
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�e second dimension (vertical dimension) is a classi�ca-
tion of the knowledge within each domain and some stan-
dardized representations. As mentioned in the previous sec-
tion, the knowledge is categorized into primary knowledge,
bulk knowledge, and optimization rules.

�e �rst two kinds are both represented in RDF, respec-
tively for detailed knowledge with clear semantic de�ned in
the ontology and for linked resources the content of which
is not yet parsed and represented in ontology. �e generic
format of RDF allows various knowledge to be expressed
in a single coherent format, making automatic inferences
across the di�erent types and levels of knowledge possible.
Objects in the knowledge base are named in international-
ized resource identi�ers (IRIs) [16] to ensure the uniqueness
of resource names.

�e third kind—rules—is worth further explanations. In
HPC, through the decades of research e�orts, the commu-
nity have a�ained many insights on how to maximize the
execution speed, power e�ciency, and reliability of certain
applications running on certain systems. �ese insights,
involving logic relations, are o�en cumbersome to be ex-
pressed in RDF. But seamlessly integrating these insights
into the OpenK knowledge base is essential for capitaliz-
ing such exiting valuable knowledge. And the integration
should allow automatic inferences with these insights upon
the other parts of the knowledge base. Our solution is to use
Semantic Web Rule Language (SWRL) [17] to represent rules.
SWRL is a widely supported language extending OWL with
logic rules [17]. It helps extend the OpenK RDF-based knowl-
edge base with optimization rules; these rules may reference
the instances and concepts in the RDF triples. Modern rule
engines (e.g., Drools [30], the default rule engine integrated
into Protégé 5.0) conduct inferences on SWRL rules and its
related RDF-based ontologies seamlessly. A special compo-
nent of the OpenK knowledge base is the representation of
OpenK itself. It describes the structure of the knowledge base
in RDF and gets automatically updated when the knowledge
base changes (e.g., a sub-domain is added), making it easy
for users to learn about OpenK through its own interface.

5.2 HPC Knowledge Submission
As an infrastructure supporting HPC knowledge accumula-
tion, OpenK allows the submission of a wide range of knowl-
edge. If the external source is already in RDF or SWRL rules,
they can be directly added into the knowledge base. For
other kinds of sources, the knowledge conversion tools in
OpenK o�er the help. OpenK is currently equipped with
a set of conversion tools: a ROSE-compiler–based tool for
converting C/C++ programs into RDF [41], a tool for con-
verting hardware speci�cations (in MSL [10]) into RDF, and
a tool [39] for conversions between SWRL rules and Prolog

rules to support using Prolog as a logic reasoner. As an ex-
tensible infrastructure, it allows new conversion tools for
other types of knowledge to be added continuously. With
these tools, raw materials can be automatically converted
into knowledge stored into the knowledge base of OpenK.

For public HPC knowledge sources (e.g., public bench-
marks, documentations of some common libraries), OpenK
can automatically retrieve those materials and invoke the
conversion tools to turn them into the representations in its
knowledge base; it can keep the knowledge up to date by re-
peating the process periodically. For a non-public knowledge
source that a user would like to share (e.g., some experimen-
tal results, some API documentations), the user can provide
the URL of the source for OpenK to retrieve, or directly
upload the materials through the OpenK interface.

5.3 HPC Knowledge Derivation
Knowledge derivation is to derive new knowledge from the
knowledge already in the knowledge base. �is feature is es-
sential for generalizing HPC knowledge. For instance, when
GPU started to get adopted in HPC, a number of HPC applica-
tion groups in some US DOE national labs put in lots of man
power trying to port their applications onto GPU and opti-
mize them. Many of these e�orts could have been saved if
the experiences from some other groups could be e�ectively
translated into general insights and hence bene�t the port-
ing of some other applications. If OpenK was available, one
group may submit their observations of the e�ects of di�er-
ent optimizations and porting strategies of their applications,
along with the applications themselves, into the knowledge
base of OpenK. Although each of these observations may
be a�ained only on some speci�c application, as more ob-
servations are submi�ed, some automatic machine learning
tools could try to �nd correlations between the e�ective op-
timizations with certain properties of the applications and
hence crystallize the observations into some general insights
(e.g., for programs with many irregular memory accesses,
try to coalesce the memory references among threads in a
warp.) Such general knowledge may then be put into the
knowledge base of OpenK, and bene�t new applications.

�rough OpenK APIs, users can upload tools for deriving
knowledge from its RDF knowledge base. For proof of con-
cept, we have uploaded a correlation-based rule derivation
engine into OpenK. In addition to machine learning-based
tools, some logic inference tools can also provide some use-
ful new knowledge that could be added into the knowledge
base. For instance, OpenK already contains several program
analysis tools, including canonical loop analysis for �nding
canonical loops in a program, data access pa�ern analysis for
deriving the pa�erns of memory references from a program,
point-to alias analysis, and so on. Each of these analysis
tools may derive some useful a�ributes about a program.
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When these tools are invoked by a user, the results could be
also stored in the knowledge base of OpenK to save the time
needed for re-deriving those a�ributes. Upon changes to the
program, the save relevant a�ributes are invalided.

As more derived knowledge is added into the knowledge
base, there could be space concerns. OpenK split the knowl-
edge base into a core knowledge base and multiple loadable
supplemental knowledge bases. �e core knowledge base is
always loaded and others are loaded as needed. In addition,
OpenK is equipped with a cache-like management mecha-
nism. It maintains a bu�er to store derived supplemental
knowledge. When the upper limit of the bu�er gets reached,
OpenK starts to evict some of the stored knowledge (which
would need to be re-derived when needed). For the eviction
policy, there can be multiple choices: least-recently-used
(LRU), least-frequently-used (LFU), and their variants.

5.4 Knowledge�ality Control
Knowledge systems are frequently subject to inconsistency
and errors. A common di�culty for knowledge system devel-
opment is to maintain a high quality of the knowledge. As an
open platform that intends to accommodate knowledge from
many users in the HPC community, the quality control of
the knowledge base in OpenK is especially important. Errors
could be in various forms: factual errors in the submi�ed
primary knowledge, missing conditions in a submi�ed opti-
mization insight, misleading insights obtained through some
biased experiments, and so on.

OpenK has three quality control mechanisms.
�e �rst leverages the properties of ontology (RDF) and

SWRL-rules. �anks to the simple yet generic format of RDF
for knowledge representation and SWRL for logic rules, it is
easy to automatically detect inconsistencies in a RDF-based
knowledge base. For instance, assume we have a hasMem-
ory relation with a constraint that its object �eld must be
an instance of a Memory type. If a piece of knowledge like
(machine1, hasMemory, disk1) is put into the knowledge base,
where disk1 is not a memory type, consistency checking by
reasoners can easily discover such an error. �ere have been
a number of reasoners built for that purpose. We choose
HermiT [15], which is an ontology reasoner based on hyper-
tableau calculus that run more e�ciently than other tools.

�e second mechanism is to leverage a community syn-
ergy for quality control through crowdsourcing. Upon the
return of a query on a piece of knowledge, the webpage also
provides a �eld allowing the user to indicate whether she
�nds the knowledge useful or erroneous and for the user
to put down her comments. At the same time, the current
rating of the piece of knowledge is also shown along with the
returned knowledge on a query (for queries submi�ed both
by users directly or by so�ware agents), based on which, the
user or so�ware agent can get certain idea of the quality

of the knowledge and choose to use the knowledge or not.
Domain administrators may periodically review the pieces
of knowledge marked as erroneous.

Finally, OpenK has a built-in approval scheme. Some ma-
jor changes (e.g., adding the ontology of a new domain) to
the knowledge base or tool-sets are subject to the approval
of the administrator. Tool changes (e.g., adding a new knowl-
edge derivation tool) are put into a beta branch when they
are submi�ed by the users initially. Only a�er su�cient val-
idations by the community (through crowdsourcing), they
are commi�ed into the master branch.

5.5 HPC Knowledge Capitalization
�ere are many ways to use the OpenK knowledge base.
A user may directly query it to �nd out some properties
about a hardware or a program. She may also use OpenK
as a tool for code refactoring or manual optimizations by
submi�ing a program and the target system models and
querying OpenK for advices to optimize the program. OpenK
can also be used to assist some third-party so�ware analysis
or optimization tools. �e objectives that OpenK may help
achieve can be of a broad range, from execution speed to
energy e�ciency, performance debugging, and so on. For
instance, a compiler may query it to leverage some domain
knowledge in its compilation and optimization of a program;
a program autotuner may query it such that the expert’s
insights or domain knowledge stored in OpenK can help
the autotuner e�ectively prune the con�guration space and
quickly �nd the best parameters.

�e usage of ontology in OpenK for knowledge represen-
tation simpli�es the development of the so�ware agents for
capitalizing the knowledge base. �e tools can be wri�en
quickly through descriptive programming, and can seam-
lessly reference all kinds of relevant knowledge (programs,
hardware, domain-speci�c insights, etc.) in a single format.
We will demonstrate some of these bene�ts through the case
studies described in the next section.

To support these uses, OpenK provides a set of interfaces,
for human users and so�ware agents to submit queries and
receive the answers. �e interface to humans include a
search box on the webpage, which accepts both keywords
and queries wri�en in SPARQL and Prolog (two common lan-
guages for RDF-based logic querying). �e keyword-based
search is similar to those in common search engines based
on the Apache Solr framework [13]. �e support to SPARQL
and Prolog queries makes it possible for users to express
some more complex queries. SPARQL is a standard RDF
query language. It allows for a query to consist of triple
pa�erns, conjunctions, disjunctions, and optional pa�erns.
Many OWL reasoners, including HermiT, already support
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SPARQL queries. Prolog is a general-purpose logic program-
ming language. It is declarative: �e program logic is ex-
pressed in terms of relations, represented as facts and rules.
We use SWI-Prolog as our Prolog engine.

OpenK reports the search results with hyperlinks on the
keywords, through which, users can learn more about the
relevant knowledge. It also provides a visualization tool built
on the D3 library [6]. to display the results in a relational
graph, allowing �exible zooming functionalities.

OpenK provides a set of programming API for so�ware
agents to submit queries as well. �e results returned to
so�ware agents can be in several common formats (RDF,
JSON, CVS, XML), depending on the options used in the
submi�ed query.

E�ciency. Much of the inference upon ontology is through
logic reasoning. Recent years have seen some substantial
improvements of the performance of logic reasoners [5, 36].
For example, in SWI-Prolog, the ontology is stored as rela-
tion triples of (subject property object) with C extensions
and some indexes are built for each element in the triples. So
a search of a particular element can be done in constant time.
Additional optimizations can be applied to queries. �e cut
operator (i.e., the ! symbol) in Prolog, for instance, can help
avoid unwanted backtracking in search. It o�en helps to
quickly narrow down the search space if one follows some
existing guidelines when writing queries [7]. Meanwhile, in
cases where the relevant knowledge base is simple and con-
sists of straightforward facts in triples (e.g., some memory
con�gurations), one may construct a customized lightweight
parser in high performance languages to achieve be�er per-
formance than using a heavy-weight logic reasoner. Our case
studies shown next indicate that the e�ciency of ontology-
based program analysis has an e�ciency level comparable
to traditional imperative implementations.

6 USE CASE STUDIES
In this section, we describe three use case studies of OpenK.
�e �rst is to assist programmers in manual transformations
of some stencil applications to achieve a high performance,
the second is to enable collaborative operations of two dif-
ferent compilers to enhance the quality of their program
analyses, and the third is to help an automatic GPU program
optimizer determine the best ways to place data on GPU
memory.

�rough them, we examine the conveniences that OpenK
brings to the organization of various HPC-relevant knowl-
edge, to the accumulation of knowledge, and to the exploita-
tion of the combination of these knowledge for program
analysis and optimizations. We will also report our obser-
vations on the e�ciency of ontology-based analysis, and

! ", $
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i
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Figure 4: An example of stencil computations.

Figure 5: Part of the ontology of stencil computation
optimizations.

the experience we had as users of OpenK in inpu�ing and
retrieving the knowledge.

6.1 Case I: Stencil Computation
Optimizations

�e �rst case study uses stencil computation to demonstrate
how OpenK supports knowledge representation, accumula-
tion, reuse, and capitalizations.

Stencil computation refers to a computation pa�ern, in
which, the value of a point in a multi-dimensional spatial
grid at time t is updated iteratively using the values of its
neighboring points at times before t . Figure 4 gives a simple
example, in which, the value of point A[i, j] is set to the
average of its four immediate neighbors. Di�erent stencil
computations di�er in the expressions and neighbor sets, but
are all about computations local to a grid.

Stencil computation is an extensively studied computa-
tion pa�ern. However, for the lack of a systematic way to
organize the knowledge, the prior �ndings are sca�ered in
thousands of papers and reports, di�cult for the public to
leverage. Our survey in DOE National Labs show that, for a
given stencil computation and a target system, frequently,
people just start a whole process of manual exploration and
performance tuning to reach some satisfying performance.
Duplicated experiments are common.

In this case study, we examine how the situation could be
di�erent if OpenK is made available to the community. To
do that, we build the ontology schema for the stencil compu-
tation sub-domain in OpenK. Figure 5 gives a glimpse of it.
We collected 30 research papers on optimizations of stencil
computations, and then ask 10 computer science graduate
students to play the role of the di�erent research groups that
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1. On single-core cache-based arch, tiling 
is effective if problem size is large 
than cache capacity.

2. For stencils with higher arithmetic 
intensity (>27-point), register blocking 
and reordering is useful.

3. On x86 and Blue Gene/P arch, explicit 
SIMD is effective.

4. On x86 arch and AMD Barcelona, icc
compiler (w/ automatic SIMD) is better 
than gcc.

5. SIMD requires data alignment (16-byte 
boundary) and array padding.

6. For memory bound computation, bandwidth 
optimization is effective, and SIMD has 
limited benefits.

7. 7-point stencil is easy to be memory 
bound.

8. Xeon E5355, 3D 7-point stencil, problem 
size 5123, cache blocking is ineffective 
but CSE (common subexpression 
elimination) is useful.

Figure 6: Some insights on optimizing stencil compu-
tations.

have done those prior studies. For that purpose, they are
then asked to read three of the papers beforehand to get fa-
miliar with the works. Before the experiments, they learned
OpenK through its documents. Among these students, four
have some general understandings of stencil computations,
the others do not. In the experiment, they are asked to put
down the key insights or knowledge from the papers they
read in the format required by OpenK, and upload them into
OpenK.

Knowledge Representation and Accumulation. �e exper-
imental results show that in most cases, the time taken to
represent and upload the knowledge in one paper is 10–
20min (without counting the time in reading the papers).
�e longest time is 45min, which is for a theory-intensive
paper with knowledge involving some mathematical deriva-
tions and model analysis. It is also the �rst paper the student
worked on. According to the feedback from the students, the
process needs only a short learning period, and the frame-
work is overall convenient to use for representing and up-
loading knowledge from the papers.

�e knowledge uploaded by the students are automati-
cally integrated into a knowledge base by OpenK. Along
with some previously uploaded optimization insights that
were derived from a thesis on high performance stencil com-
putations [12], it forms an ontology-based knowledge base
for optimizations of stencil computations. Figure 6 shows
some of the insights (in English for readability).

Knowledge Capitalization. To test the usefulness of the
knowledge base, a student who has only some general under-
standing of stencil computations uses OpenK as an “optimiza-
tion advisor” to optimize the performance of four stencils: a
3-D 7-point stencil on a 5123-point grid and on a 10242 × 256
grid, and a 3-D 27-point stencil on the same two grids. �e

Table 1: �e speedup of di�erent optimizations. �e
stars (*) mark the ones suggested by the OpenK (size-
1: 5123, size-2: 10242×512, CSE: common subexpression
elimination).

Grid
size

neighbor
size

Cache
blocking

SIMD,
Array
padding

Unrolling,
CSE

size-1 7-p 10% * ≈ 0 ≈ 0
size-1 27-p ≈ 0 13% * 30% *
size-2 7-p 22% * ≈ 0 ≈ 0
size-2 27-p 8% 14% * 42.5% *

7-point stencils are from a heating-process simulation, and
the 27-point stencils are from Stencil Probe [20]. �e target
architecture is Intel Xeon E3-1200 (4-core 3.2GHz, 8G RAM,
32K L1, 256K L2 and 6MB L3).

OpenK proves quite useful. Even though the particular
architecture was not used in the knowledge base in OpenK,
a�er the student inputs the computation pa�erns and the
architecture model into OpenK, OpenK still provides sev-
eral suggested optimizations likely suiting the target stencil
computations on that architecture. Some of the suggested
optimizations are those that have shown to hold across archi-
tectures for a certain kind of stencils (e.g., the second insight
in Figure 6), some are inferred by the inference tool in OpenK
across multiple insights based on the properties of the input
stencil and the underlying architecture (e.g., the 6th and 7th
rules in Figure 6 lead to the suggestion on optimizing for
memory bandwidth if the input is a 7-point stencil to run on
a system with less memory bandwidth than a similar system
already tested and recorded in the knowledge base).

Table 1 reports the main set of optimizations the student
has implemented. �e stars (∗) indicate the optimizations
suggested by OpenK to the stencils. For comparison, the
student implemented all three optimizations on all of the
stencils. �e results show that OpenK suggests the optimiza-
tions suitable to each stencil. �e entire optimization process
took less than 4 hours. In comparison, without OpenK, a
user that has no clear directions to explore would need to
investigate a wide range of possible code transformations,
which, according to our interactions with the groups in DOE
national labs, o�en takes at least several days to achieve a
speedup comparable to what the student has achieved.

6.2 Case II: Enabling Cooperations Among
So�ware Tools

Our second case study demonstrates the bene�ts of OpenK
in promoting a synergy between di�erent so�ware tools.
We use Liveness analysis in two compilers as the example.
Liveness analysis is one of the primary data �ow analyses in
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Figure 7: Improvement of the precision of Liveness
analysis by cooperations enabled by OpenK between
LLVM-Clang and ROSE compilers.

compilers. A variable is live at a point if there is at least one
path leaving that point, along which, the variable is used be-
fore being rede�ned. Such information drives many program
optimizations (e.g., dead store elimination). As a may-type
data �ow analysis, Liveness analysis is conservative—that is,
if a variable belongs to the Live-out set of a basic block, it
means that the compiler is uncertain whether the variable
is dead at the end of the basic block. So, for two di�erent
Liveness analyses (both are sound and conservative), if a
variable belongs to the result from one analysis but not the
other, we can conclude that that variable is not live at the end
of the said basic block. In another word, the intersection of
the results of the two Liveness analyses gives a more precise
result than either of them.

Our study uses two open-source compilers, LLVM-Clang [23]
and ROSE [31]. �ey both have their own Liveness analy-
ses developed before. However, they di�er in the reported
Live-out sets, and also the variable names and program lo-
cations used in their representations. Because OpenK can
already represent an arbitrary C/C++ program in ontology,
we write converters to map the the variable names and pro-
gram locations used in the Live-out sets of both compilers
to our ontology representation. With that, through Prolog,
we develop a 65-line Prolog code that works on the ontology
representation to easily extract out the intersection of the
sets of Live-out variables reported by the two compilers for
each basic block of a given program.

As the output (denoted asC) is the intersection of the out-
puts of two analyses, we de�ne the precision enhancement
over the results of one of the analyses A as

enhancement =
|A|

|C |
.

On the NAS Parallel Benchmarks (NPB) [4], the approach
improves the average precision of Liveness analysis by over
10% and 20% for LLVM-Clang and ROSE respectively.

�is case study demonstrates the bene�ts of OpenK in
bridging the gap between separately developed so�ware
tools. Although it is possible that one may be able to combine
the results of the two compilers through the development of
an ad-hoc common representation, the representation needs
to be designed and more over, code needs to be developed
from scratch to map the results of two compilers to the com-
mon representation, to manipulate the representation, and
to deal with their di�erent code representations. In com-
parison, the ontology-based knowledge representation plus
the existing facilities OpenK o�ers (e.g., converters of C/C++
programs to ontology, seamless integration with the Prolog
engine) help ease the process. Furthermore, as the results
are represented in ontology as well, they can be easily used
with other ontology-represented knowledge (e.g., hardware
or library APIs) for other uses.

6.3 Case III: GPU Data Placement
Our third case study demonstrates the bene�ts of OpenK
in helping make so�ware optimizers more extensible. �e
problem is GPU data placement. GPU has complex mem-
ory systems [10]. On NVIDIA Kepler GPUs, for instance,
there are more than eight types of memory and cache with
di�erent performance characteristics. Determining which
type of memory should hold which data object requires the
knowledge about the program (such as data access pa�erns),
hardware memory speci�cations and optimization rules.

Previous work uses customized memory speci�cations to
express the needed architecture knowledge. For example,
the PORPLE framework [10] uses a memory speci�cation
language (MSL) for the description of a memory system.
�e disadvantage is that it is only extensible for a new GPU
with a similar architecture. For hardware with new a�ributes
beyond the MSL syntax, the MSL syntax and its parser would
need some non-trivial modi�cations.

In OpenK, the ontology representation is more generic
and extensible. We don’t need to design any speci�c syntax
for hardware knowledge. Only new concepts and relations
(or properties) in the hardware domain need to be added. Fig-
ure 8 illustrates part of the GPU ontology. Listing 1 shows the
description of the Global Memory on the NVIDIA K20c GPU
card. �e ontology captures relations between the global
memory and other components of the GPU and also the at-
tributes of the memory. It is expressive and easy to extend.
With the ontology-based representation of both program
and hardware knowledge, it is easy to develop analyses to
guide data placement optimizations on GPU.

OpenK also simpli�es the combination of various methods
for data placement. Data placement guidance can rely on
heuristic rules, mathematical modeling, or their combina-
tions. For instance, a previous study [19] makes the decisions
based on some empirical rules on data access pa�erns and
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Figure 8: Part of the GPU hardware ontology.

Listing 1: ontology of Tesla K20c global memory
globalMem k20c type GlobalMemory ;
g lobalMem k20c hasUpperLeve l L2 ;
g lobalMem k20c s h a r e S c o p e d i e ;
g lobalMem k20c p i e c e s 1 ;
g lobalMem k20c s o f t w a r e m a n a g e a b l e t r u e ;
g lobalMem k20c a c c e s s i b l e ” rw ” ;
g lobalMem k20c h a s s i z e 5 0 3 2 7 0 6 0 4 8 ;
. . . % o m i t t e d

memory properties. An example rule is that constant mem-
ory is suitable for read-only data which is small enough
and satis�es the same address read condition (i.e., memory
accesses to the array are the same across all threads in a
warp). PORPLE [10], on the other hand, uses analytical cost
models for �nding good placements of data. It enumerates
possible placement plans and estimates the cost of each plan
in terms of memory latency. It coordinates the placements
of all arrays rather than considering them separately as the
rule-based method does.

With OpenK, it is easy to combine the heuristic rules and
the analytical models into a single analysis for guiding data
placement. For example, the aforementioned rule for con-
stant memory can be expressed in SWRL shown in Listing 2
in OpenK. �e algorithm used in the previous data placement
optimizer (PORPLE) can be wri�en concisely as Listing 3
in the logic programming language Prolog to work on the
OpenK knowledge base. It shows three Prolog rules. �e
“:” separates the head (le�) and the body (right) of the rule;
names in italic font are variables. �e meaning of a rule is
that the head is true if the all the phrases in the body are
true.

�e top-level algorithm in Prolog optimalPlace �nds all
the possible placement plans and estimates the cost of each
plan. �e possiblePlacement enumerates all possible plans.
With the help of the �ea library [39], the SWRl rule for plac-
ing data into constant memory (suitableMem) is integrated
into the Prolog algorithm to help narrow down the search
space. �e estimation of the cost of each placement is based

on cache behaviors and is computing-intensive. OpenK im-
plements the computing through a Prolog-based extension
called computable [35].

Listing 2: SWRL rule for using constant memory
(italic for variables)

i s A r r a y (x )∧readOnly (x )∧ConstantMem (y )
∧ s i z e F i t (x ,y )∧sameAccessWithinWarp (x )
−> su i tab leMem (x ,y )

Listing 3: Algorithm of data placement written in Pro-
log

o p t i m a l P l a c e (BestPlacement ) :−
f i n d a l l ( Placement ,
( p o s s i b l e P l a c e m e n t ( Placement ) ,
hasCos t ( Placement , Cost ) ) ,
P l a cem ent s ) ,
min imalCost ( Placements , BestPlacement ) .

p o s s i b l e P l a c e m e n t ( Placement ) :−
f i n d a l l ( P l ace ,
( i s A r r a y (Array ) ,
su i tab leMem (Array , Mem ) ,
P l a c e = p l a c e (Array , Mem ) ) ,
P lacement ) .

hasCos t ( Placement , Cost ) :−
hasCommand ( hasCost , Cmd ) ,
c a l l (Cmd , Placement , Cost ) .

We measure the performance improvements that the sug-
gested data placements by OpenK bring to a set of GPU
programs. �ese programs have been used in prior stud-
ies [9, 10], including some from the RODINIA suite [9] and
two kernels glassForce, glassControl from the DOE applica-
tion LULESH [21]. �e speedups over the original bench-
marks are shown in Figure 9, agreeing with the speedups
achieved using the previous imperative implementation of
the placement analysis. �e analysis time taken by OpenK is
on average 5% longer than the imperative implementations
do.

Compared to the previous MSL-based method [10], the
OpenK-based analyses are more extensible and sharable due
to their ontology representations and declarative algorithms.
For example, in PORPLE, to add knowledge of some new
GPUs memory features, the MSL format must be modi�ed to
add the corresponding �elds; the code for parsing MSL and
querying the placement engine should be revised as well. In
OpenK, the changes are simpler: �rough a graphic interface,
users can easily add or remove a concept, and add queries
on the new features into the analysis rules.
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7 RELATEDWORK
For its expressiveness, ontology has been adopted in many
�elds. In so�ware engineering, so�ware ontology (SWO) [26]
is proposed for the meta information of so�ware (e.g., li-
censes, publishing processes, data formats). A recent study
uses ontology to simplify the development of program anal-
ysis tools [41]. Ontology has also been shown to be useful
for domain-speci�c language development [24]. None of
them is about building up an entire knowledge management
infrastructure.

�ere have been some infrastructures developed to help
manage the knowledge in some domains, including GoKB
for the meta data of electronic library resources [1], clinical
research [11], some for enabling scholarly discovery through
interlinked pro�les of people and other research-related in-
formation (e.g., VIVO [22]), some for scienti�c literature
search (e.g., Semantic Scholar [38]), and some for identify-
ing useful hypotheses and experiments in a scienti�c liter-
ature [33]. Although these search tools could help reduce
the time a researcher needs to �nd literatures, they do not
support systematic representation, accumulation, sharing
and capitalization of the key knowledge contained in the
literatures. Google Knowledge Graph [2] is a framework for
representing some general knowledge (along with certain
medical-domain knowledge). It is not an open infrastructure
and lacks the necessary features (e.g., code representation,
support to program optimizations) to �t the needs of HPC.
OpenHPC.community [3] is a website dedicated to promote
collaborations among the HPC community. But it is for
aggregating common tools and libraries (e.g., provisioning
tools, scienti�c libraries) for deploying and managing HPC
Linux clusters, rather than for o�ering a general platform
for HPC knowledge sharing.

�ere are also some related work on speci�c task. For
example, the Program Database Toolkit (PDT) [25] builds
a database of high level program information from source
code to assist program analysis in IDEs. Instead, we build

knowledge graph from source code which enables interac-
tion with other knowledge like hardware and also enables
logic inference. Another relevant work is the LighthouseHPC
project [27], which is designed for the matrix algebra com-
putation problem in HPC. It uses so�ware ontology to guide
optimization and also contains a systematic taxonomy for
the matrix algebra problem.

To the best of our knowledge, OpenK is the �rst infras-
tructure designed to help the HPC community to systemati-
cally accumulate, share, and reuse HPC knowledge. It builds
upon the recent advancements in knowledge engineering,
while featuring a unique design for overcoming the special
complexities in HPC, including the use of ontology as the
representation to accommodate the large variety of knowl-
edge in HPC, the extensive and modular design to support
the many di�erent domains in HPC, the versatile interfaces
to enable the needed complex human and so�ware interac-
tions in optimizing HPC programs, and the leverage of the
ontology ecosystem that has been rapidly built in the past
decade.

8 CONCLUSION
In this paper, we have introduced OpenK, the �rst infrastruc-
ture that o�ers some systematic support to help the HPC
community accumulate, share, and reuse various HPC knowl-
edge. Centered around ontology, its design makes it able to
represent di�erent sources and types of HPC knowledge in
a coherent format, amenable for logic reasoners and other
inference tools to e�ectively guide so�ware optimizations on
complex, and continuously changing HPC architectures. Ex-
periments demonstrate the promise of OpenK for facilitating
HPC in improving the productivity in code optimizations and
enhancing the extensibility of so�ware optimizers. We plan
to release the infrastructure to the public to help promote
the synergy among the HPC community.
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