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ABSTRACT
This paper focuses on an important optimization opportunity in
Python-hosted domain-specific languages (DSLs): the use of lazi-
ness for optimization, whereby multiple API calls are deferred and
then optimized prior to execution (rather than executing eagerly,
which would require executing each call in isolation). In existing
supports of lazy evaluation, laziness is “terminated” as soon as
control passes back to the host language in any way, limiting oppor-
tunities for optimization. This paper presents Cunctator, a frame-
work that extends this laziness to more of the Python language,
allowing intermediate values from DSLs like NumPy or Pandas to
flow back to the host Python code without triggering evaluation.
This exposes more opportunities for optimization and, more gen-
erally, allows for larger computation graphs to be built, producing
1.03-14.2X speedups on a set of programs in common libraries and
frameworks.

1 INTRODUCTION
Modern software is built upon APIs. Although APIs typically en-
capsulate highly optimized code, suboptimal usage of APIs can
cause large performance degradation. Such a problem is especially
common in Python programs, as Python has become the host lan-
guage of many popular libraries or domain-specific languages (DSL)
targeting performance-demanding tasks, such as NumPy [25], Pan-
das [18], PySpark [26], Tensorflow [6], and PyTorch [23].

Suboptimal usage of APIs typically involves a sequence of API
calls. For illustration purpose, we show a simple example in Fig-
ure 1(a). While the code is simple, it suffers the performance flaw
of a redundant temporary value: S1 creates an object and assigns
it to x, but after x points to another object in S2, Python garbage
collector (GC) releases the former object as it now has zero refer-
ence count. The program can be optimized by replacing the second
statement with an in-place operation: numpy.add(x, c, out=x).
The argument out=x instructs numpy.add to reuse x to store the
result. The optimization not only improves data locality, but also
reduces memory usage.

Existing work to tackle the problem of suboptimal API sequence
relies on lazy evaluation. Several API sets, such as Spark [26], Ten-
sorflow [6], and WeldNumpy [22], have been designed and imple-
mented in that way. They designate some APIs as eager APIs and
the rest as lazy APIs. Invocations of lazy APIs only log the APIs in
a certain form rather than execute them. Once an eager API is en-
countered, the logged sequence of APIs will be optimized together
and then executed. For instance, Figure 1b shows the WeldNumpy
version of the code in Figure 1a; the two add operations are not
evaluated until S4; before the evaluation happens, the WeldNumpy
runtime optimizes the two add operations and avoids the unneces-
sary object creation for x in the second add operation.

A fundamental problem underlying the API-based lazy evalua-
tion is the data dependence that arises between the invocations of
the APIs and the host Python code. Figure 1c gives an illustration.

S1:	x	=	numpy.add(a,b)
S2:	x	=	numpy.add(x,c)

(a)

S1:	wa=	weldarray(a)
S2:	x	=	weldnumpy.add(wa,b)
S3:	x	=	weldnumpy.add(x,c)
S4:	x.evaluate()

(b)

S1:	wa	=	weldarray(a)
S2:	x	=	weldnumpy.add(wa,b)
S3:	x	=	weldnumpy.add(x,c)
S4:	a[0]	=	0
S5:	x.evaluate()

(c)

Figure 1: NumPy example and WeldNumpy variants

Listing 1: A Spark programwith performance issues that are
hard to automatically optimize away
1 lines = sc.textFile("foo")
2 ws = lines.flatMap(lambda l: l.split())
3 ws = ws.filter(lambda x: re.match("^[\w]+$", x))
4 word_count = ws.count()
5 total_len = ws.map(lambda w: len(w)).sum()
6 avg_len = total_len / word_count

Compared to Figure 1b, the difference is that a Python statement
S4 updates the input of S1 before evaluate(). Python statements,
by default, are eagerly evaluated. But as the weldnumpy.add API is
lazily evaluated, S2 would end up using the wrong values of a.

Existing frameworks either leave the issue to the programmers
(e.g., in WeldNumpy [22]), relying on them to put in eager APIs at
the right places, or design the library such that any API that might
incur dependencies with the host code is designated as an eager
API, regardless of the context (e.g., in Spark [26] or TensorFlow [6]).
The former increases programmers’ burdens, while the latter often
misses optimization opportunities due to its conservative design.

Listing 1 shows an example in Spark. It loads a text file (Line 1),
splits the lines into words (Line 2), filters out illegal words (Line 3),
counts the number of words (Line 4), sums the lengths of all words
(Line 5), and finally outputs the average word length (Line 5). In
Spark, the APIs textFile, flatMap, filter, and map are always
lazily evaluated; both count and sum are always eagerly evaluated
APIs because they return values to the host code and hence the
value, in general, could potentially be operated on by the host
code. When an eager API is invoked, Spark fuses relevant lazy APIs
together into a pipeline; intermediate results are not cached. As
there are two eager API calls, the lazy operations textFile, filter,
and flatMap are evaluated twice at lines 4 and 5. The solution from
Spark is to introduce extra APIs such that programmers can use
them for caching. This “band-aid” solution further increases the
burdens of programmers, who now need to be concerned of not
only the usage of the many existing APIs but also the best places
to use the caching APIs.
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(b) Running example. Numbers on directed edges indicate the order of actions.

Figure 2: Overview of Cunctator.

Our study (§9) shows that these limitations prevent existing
frameworks from tapping into the full potential of lazy evalua-
tions for Python+API programs, leaving up to 14X performance
improvement yet to harvest.

The primary goal of this work is to create a solution that over-
comes the limitations of the existing methods for enabling lazy
evaluation for Python+API programming. The principles for de-
veloping our solution are two fold: (1) It should be automatic such
that programmers do not need to worry about manually finding
the best places in their code to insert APIs to trigger evaluations;
(2) it should be effective in postponing API evaluations to places as
late as possible to maximize API optimization opportunities.

The key to both principles is to effectively analyze data depen-
dencies between the host code and the APIs in a Python program.
The problem is challenging. Many features of Python, such as dy-
namic typing and reflection, make analysis of the host code difficult.
The difficulty is exacerbated by the extra need to analyze library
APIs and their interactions with the host code. The lack of such
automatic data dependence analysis is plausibly one of the main
reasons for the unsatisfying solutions being used today.

In this work, we address the challenge by developing an mini-
mum interference runtime watching scheme (MIN-watch for short).
The basic idea underlying MIN-watch is simple, tracking data ac-
cesses at runtime to detect data dependencies. The novelty is in how
MIN-watch makes the tracking efficient and effective for sound
dependence detection in the context of Python+API programs. MIN-
watch does it by taking advantage of the characteristics of Python
and the special needs in lazy evaluation for Python+API. It is re-
silient to Python language complexities. It minimizes runtime over-
head through a focused tracking scope in data and an efficient
runtime checking mechanism (bit-level flagging and deferred flag
resetting). It meanwhile imposes near-zero burdens on program-
mers. MIN-watch is based on a dependence theorem we introduce
to formulate the correctness of lazy evaluation in this host+API
context (§3).

Based on MIN-watch, we further develop Cunctator, a software
framework for materializing the extended lazy evaluation. Cunc-
tator consists of an intermediate representation (lazy IR) for the
deferred operations, a lazy IR evaluator, a class that delegates the
results of deferred operations and postpones operations applied to
itself, and a set of interfaces for redirecting API calls and registering
optimizers. With these components together, Cunctator provides

programmers the conveniences of enabling the automatic Best-
Effort Lazy Evaluation (BELE) for a Python library and harvesting
the optimization benefits.

To demonstrate the usefulness of Cunctator, we implement four
optimizations enabled by BELE for three API packages (numpy,
Spark, Pandas). Experiments on 15 programs show that the opti-
mizations generate 1.03-14.2X speedups. Stress testing shows that
the overhead of Cunctator is no greater than 2.25% (in its default
setting).

In summary, this work makes the following major contributions:

• It introduces the concept of Best-Effort Lazy Evaluation, and
shows that MIN-watch is effective in enabling data dependence
analysis for Python+API programs to support BELE.
• It develops the first software framework to support Best-Effort
Lazy Evaluation for Python+API programs.
• It demonstrates the effectiveness of the techniques in enabling
optimizations of Python+API programs.

2 OVERVIEW
Figure 2a illustrates Cunctator’s architecture. When an application
invokes a DSL API, the API call is redirected to a Cunctator opti-
mizer. Instead of evaluating the API, the optimizer records the API
in the form of Lazy IR (§5), and returns a lazy object. The lazy object
supports Lazy Value Propagation (LVP, see §4.2), which tries to prop-
agate a new lazy object when an operation is applied to the lazy
object. Cunctator employs MIN-watch (§4.1) to monitor accesses
to objects related with the deferred operations. When MIN-watch
encounters host statements or APIs that prevent further delays
(based on dependence theorems in §3), it triggers the evaluation
of the deferred operations. During the evaluation, the Cunctator
optimizer applies optimization passes (§6) onto the IR, and then
invokes the original DSL APIs for evaluation. To apply Cunctator
to a domain, the developers of the DSL optimizer only needs to use
Cunctator interfaces to specify redirections of the domain APIs, to
support MIN-watch for some common types, and to write domain-
specific optimizations. The extra work an application developer
needs to do is just to import one or several modules.

Figure 2b shows the execution flow of a NumPy program with
Cunctator. First, the np.add in line 1 is redirected to Cunctator
optimizer, which records the API call as a lazy IR instruction and
returns a lazy object 𝐿1. Note, the assignment to 𝑥 is not deferred
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but executed, and 𝑥 now points to the lazy object 𝐿1. The optimizer
also sets up the two arguments, a and b, for watching. At line 2,
because x is lazy, the Lazy Object class automatically captures and
logs this operation and defers its execution. Line 3 is similar to line
1, and Cunctator defers and logs the operation. That assignment
makes x point to 𝐿2; 𝐿1’s reference count reduces to zero, which
triggers Python’s garbage collection on 𝐿1. 𝐿1’s deconstructor, how-
ever, rather than deconstructs 𝐿1, defers the deconstruction and
inserts a del instruction into the IR. Line 4 tries to update a, which
is captured by MIN-watch, which triggers the evaluation of all
the deferred operations. The evaluator first invokes the optimizer,
which reduces redundant temporary variables, and then evaluates
the operations.

Before presenting the details of Cunctator, in the next section,
we first define some terms and prove a dependence theorem that
formulate Cunctator’s correctness.

3 DEPENDENCIES BETWEEN OPERATIONS
To ensure the correctness of Cunctator, one key aspect is to properly
manage the dependencies between postponed API calls and eagerly
executed statements. We first introduce a set of terms that are used
in the following discussions.

Terminology. Unless otherwise stated, an object denotes a Python
object. An operator denotes a Python built-in operator. An operation
denotes the process of applying an operator to its operands. For
example, foo.bar() consists of two operations: The ‘.’ operator
is applied to foo and "bar" to return a function object, which
becomes the operand of the ‘()’ operator. We in addition introduce
the following terms.

• Contents of an object: All in-memory states that could be poten-
tially accessed or updated directly through the object’s fields
and methods. Take the list object ["foo", "bar"] as an
example—its contents are the references to its two elements,
the string objects, rather than the characters of the strings.
By this definition, two objects could share contents, namely,
their methods or attributes could access or update the same
in-memory state.
• Sealed object: An object that shares no content with other ob-
jects. This means the contents of a sealed object can be accessed
or updated only by its own attributes or methods.
• Domestic object: An object whose attributes and methods access
no external resources (e.g., files and network) but only the
memory space of the current process. We are interested in
sealed and domestic objects (e.g., list objects).
• Dependents of an object: The object itself and the objects re-
ferred to in the contents of the object. For example, the depen-
dents of a list are itself and its elements.
• Relatives of an object: The union of the dependents of that object
and the dependents of its relatives.
• Regular operation: An operation is regular if the relatives of its
operands and return value are all sealed and domestic, and it
only accesses or updates the contents of its operands’ relatives
or newly created objects during the operation. In most cases, a
DSL API call is a regular operation.

Without noting otherwise, the following discussions assume
regular operations and sealed and domestic objects and there is no
exceptions. Section 4.4 discusses exceptions and other complexities.

Dependency types. Based on the above definitions, we classify
potential dependencies between an API call 𝑂𝐴 and a statement
𝑂𝐵 into three types:
• Return-access: The return value of𝑂𝐴 is accessed (read or writ-
ten) by 𝑂𝐵 , as illustrated by the top left example in Figure 3.
• Input-update: A relative of 𝑂𝐴’s operands is updated in 𝑂𝐵 ,
illustrated by the bottom left example in Figure 3.
• Update-access: 𝑂𝐴 updates a relative of its operand 𝐼 and 𝑂𝐵

accesses that relative, illustrated on the right side in Figure 3.
Cunctator uses a conservative version of this definition, which
forgoes the requirement of the two relatives being the same. It
simplifies runtime checking as shown later.

v1	=	foo(...)
v2	=	v1.bar

Return-access

v1	=	foo(v2,	...)
v2.bar	=	v3

Input-update

def	foo(arg1,	...):
		...
		arg1.bar	=	v0
		...

v1	=	foo(v2,	...)
v3	=	v2.bar

Update-access

Figure 3: Three types of dependencies

Dependency Theorem. This part presents the dependence the-
orem governing the validity of lazy evaluation for APIs, which
underpins the design of Best-Effort Lazy Evaluation.

Lemma 1. For anAPI call𝐴 followed by a statement𝐵, deferring the
execution of𝐴 to a point after 𝐵 does not change the data dependencies
between them if there are no return-access, input-update, or update-
access dependencies between them.

The lemma comes from the observation that for the properties
of sealed and domestic objects and regular operations, the three
types of dependencies cover all possible data dependencies (true de-
pendencies, anti-dependencies, output dependencies) [7] between
two statements.

Theorem 3.1. For an API call 𝐴 followed by a sequence of state-
ments 𝑆 , deferring the execution of 𝐴 to a point after 𝑆 is valid if
there are return-access, input-update, or update-access dependencies
between 𝐴 and none of the statements in 𝑆 .

This theorem is derived from the classic fundamental theorem of
dependence [7], which states the following: Any reordering trans-
formation that preserves every dependence in a program preserves
the meaning of that program. Deferring executions is clearly a kind
of reordering transformation. The deferring does not cause any
dependence changes according to Lemma 1 for none of the three
types of dependencies exist between 𝐴 and 𝑆 . The theorem hence
holds.

Theorem 3.1 is essentially a variant of the fundamental theorem
of dependence in the context of API lazy evaluation; the benefits of
having it are however significant. It entails what types of depen-
dencies are needed to consider during lazy evaluation, and what
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set of data objects are needed to watch, which lay the foundation
for the design of MIN-watch and BELE in the next section.

4 BEST-EFFORT LAZY EVALUATION (BELE)
The purpose of BELE is to defer DSL API calls until the necessary
moment. The central challenge that BELE confronts is to satisfy
three mutually constrained requirements: First, BELE has to ensure
correctness of the program. Second, the deferring period, or laziness,
should be as long as possible to harvest optimization opportunities.
Finally, the overhead should be low.

To address these challenges, we introduce minimum interference
runtime watching (MIN-watch) in §4.1 to detect, with low overhead,
input-update and update-access dependencies between deferred API
calls and host code. In addition, Cunctator §4.2 employs lazy value
propagation (LVP) to manage return-access dependencies while en-
suring enough laziness. The overheads of Cunctator and strategies
to control them are discussed in §4.3. Finally, §4.4 describes how to
handle special scenarios.

4.1 Minimum interference runtime watching
(MIN-Watch)

Based on Theorem 3.1, the key for BELE is in detecting data de-
pendencies. MIN-watch takes the way of runtime object watching,
which makes it not subject to the language complexities Python
imposes on compilers or other static methods.

4.1.1 Overview of MIN-Watch. What makes MIN-watch distinctive
over common runtime access tracking is the strategy it employs,
which takes advantage of the characteristics of this problem setting
and Python language properties, and uses a lightweight type-based
scheme for non-intrusive implementation. Specifically, the design
of MIN-watch draws on three observations: (1) In Python, most
memory accesses go through object interface with multiple layers
of redirection and procedure abstractions, hence a much reduced
sensitivity to runtime memory access tracking overhead compared
to many other languages and settings. (2) The key to BELE is the
dependence between API and host. So many data accesses that are
irrelevant to such dependencies can be exempted from tracking. (3)
Python object assignments and parameter passing are both through
references; so to check dependencies related to an actual object, it
is not necessary to track references to it, if the watching scheme is
put onto that object.

Built on the observations, MIN-watch has the following features:
(1) By focusing on API to host dependencies and Theorem 3.1, MIN-
watch concentrates runtime watching on only relevant data objects.
(2) It employs an efficient runtime checking mechanism (bit-level

#	in	module	numpy
#	gIR:	the	global	IR	scratchpad
def	add(a,	b):
			setupWatch(a,	True)
			setupWatch(b,	True)
			id	=	gIR.add_call(...)
			return	Lazy(gIR,	id)

def	setupWatch(obj,	watchUpdateOnly):
			for	r	in	findRelatives(obj):
						r.__set_watch__(watchUpdateOnly)

Figure 5: A high-level illustration of how MIN-watch works
for API numpy.add(a,b)
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notify
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Figure 6: Default implementation of watch protocol

flagging and deferred flag resetting) via Python interpreters to
minimize interference to program executions. (3) It employs a type-
based approach to enabling runtime object watching, but does it in
a non-intrusive way such that application developers need to make
no changes to the implementation of a data type for the approach
to take effect. Moreover, the utilities in Cunctator simplify the work
an optimizer developer1 needs to do to enable MIN-watch (and
BELE) for a domain DSL. The first two features make MIN-watch
efficient, and the other features make it easy to use.

Figure 5 uses numpy.add(a, b) as an example to illustrate at a
high level how MIN-watch works. The API was overloaded such
that when the API is called in a program, instead of doing the
computation of arrays addition, it sets up objects 𝑎 and 𝑏 and their
relatives for runtime watching via function setupWatch. Function
setupWatch calls a function findRelatives() to go through each
relative of an object, and calls __set_watch__ of that object to set
it up for runtime watching. The setup process flags some special
bits in the object header such that the extended Python interpreter,
when executing a statement, can recognize such objects and invoke
Cunctator lazy evaluation listener to evaluate deferred operations.

We next explain MIN-watch in detail, starting with the basic
watch protocol on a single object (§4.1.2), and moving on to describe
the procedure in finding and watching all relatives (§4.1.3).

4.1.2 Watch protocol. Cunctator adds the following method into
the root class in Python:

def __set_watch__(self, watchUpdateOnly):
# pseudo-code
self.watch_flag = WATCH_UPDATE_ONLY
g_watch_set.insert(self)

The parameter watchUpdateOnly determines whether the object
should be watched for read and write accesses (false) or just writes
(true).
1Please note the differences between an application developer and an optimizer
developer.
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Figure 6 depicts the actions when the protocol takes place. In the
setup time (e.g., when numpy.add(a,b) is called in the example
in Figure 5), __set_watch__ sets two bits in the object head to
indicate whether the object is to be watched for update only (01),
read/update (10), or nothing (00). These bits help the interpreter
determine the corresponding action quickly. Our implementation
borrows the first two bits of the reference count field of an object.
That saves extra memory, and also helps ensure that most third-
party binary libraries are still compatible by keeping the length
of the head unchanged. The method __set_watch__ in addition
adds the object into a global set watchSet. It is for fast resetting at
the time when the deferred operations are evaluated, which will be
elaborated in §4.1.4.

We extend Python interpreter such that it notifies Cunctator
lazy evaluation listener when the content of an object that is being
watched is accessed by a bytecode (e.g., LOAD_ATTR and STORE_SUBSCR).

The default implementation of __set_watch__ ignores the pa-
rameter watchUpdateOnly (i.e., assuming it is false). It is because
when just encountering the statement, for some data types, the
interpreter sometimes cannot tell whether the access would update
the object. (Note that it is legitimate in Python for a seemingly
read-only (e.g., foo.bar) operation to update the object.) This con-
servative implementation may reduce the laziness but won’t cause
correctness issues. For a given data type, the optimizer developer
can choose to customize its __set_watch__() method and other
methods to enable a more precise treatment.

It is worth noting that if an object is not sealed, accesses or up-
dates to the object’s contents through other objects are not watched
with the default implementation. This is fixed in the upper relatives
discovering component by not supporting the specific type, which
causes the watch process to fail and thus triggers eager evaluations
of involved operations.

4.1.3 Watching relatives. With the watch protocol, we can watch
a single object. MIN-watch requires watching all the relatives of
an object of interest as Figure 5 has shown. The watch framework
holds a registry that can register user-defined procedures to dis-
cover dependents of specific types. Through recursively calling
registered procedures, all relatives of an object can be found. For
example, a list 𝐴 contains objects 𝐵, 𝐶 , and 𝐷 , and 𝐷 is another
list that contains 𝐸 and 𝐹 . Then, the dependent-discovering pro-
cedure registered for type list returns 𝐵, 𝐶 , and 𝐷 for object 𝐴,
after which a recursive call of the procedure for 𝐷 returns 𝐸 and 𝐹 .
Typically, a type-specific dependent-discovering procedure is easy
to implement. For example, the procedure for list is as simple as2:

def list_deps(l):
for e in l:

yield e

Algorithm 1 shows the process of setting up to watch an object’s
relatives. The SetWatch procedure first checks existing watch flags
and returns in two cases: The first case is that the object is watched
for access, when the procedure returns disregarding the parameter
watchUpdateOnly. The second case is that the object is watched
for updates only and the parameter watchUpdateOnly is True. In
other cases, the procedure sets up to watch the object through the

2yield is a Python construct that returns the next value in the next call of its enclosing
function.

watch protocol and then recursively calls SetWatch for each of its
dependents (except for the object itself). If the type of the object
is not registered in the registry, the procedure raises an exception,
which will be caught by Cunctator to trigger an eager evaluation
of the involved operation.

Algorithm 1 Set up to watch an object’s relatives.
1: 𝐷𝑒𝑝𝑅𝑒𝑔← the registry for discovering dependents
2: procedure SetWatch(𝑜𝑏 𝑗 ,𝑤𝑎𝑡𝑐ℎ𝑈𝑝𝑑𝑎𝑡𝑒𝑂𝑛𝑙𝑦)
3: if 𝑜𝑏 𝑗 is watched for access then return
4: if 𝑤𝑎𝑡𝑐ℎ𝑈𝑝𝑑𝑎𝑡𝑒𝑂𝑛𝑙𝑦 ∧ 𝑜𝑏 𝑗 is watched then return
5: 𝑜𝑏 𝑗 .__set_watch__(𝑤𝑎𝑡𝑐ℎ𝑈𝑝𝑑𝑎𝑡𝑒𝑂𝑛𝑙𝑦)
6: for all 𝑑 ∈ Deps(𝑜𝑏 𝑗 ) do
7: SetWatch(𝑑 ,𝑤𝑎𝑡𝑐ℎ𝑈𝑝𝑑𝑎𝑡𝑒𝑂𝑛𝑙𝑦)
8: procedure Deps(𝑜𝑏 𝑗 )
9: if type(𝑜𝑏 𝑗 ) is registered in 𝐷𝑒𝑝𝑅𝑒𝑔 then
10: return 𝐷𝑒𝑝𝑅𝑒𝑔.getHandler(type(𝑜𝑏 𝑗 ))(𝑜𝑏 𝑗 )
11: else
12: raise an exception

When Cunctator defers an operation, it invokes the SetWatch
procedure for all the operands except for lazy values, whose poten-
tial dependency is handled by lazy value propagation.

4.1.4 Unwatching objects via deferred flag resetting. After the de-
ferred operations are triggered to get evaluated (or when a watch
procedure is aborted because of an unsupported type, see §4.1.3),
Cunctator would need to clear the watch flags of all watched ob-
jects. Otherwise, later accesses to them would trigger unnecessary
evaluations. Going through all the objects could incur substan-
tial overhead. Cunctator circumvents it by introducing a global
watchSet. Recall in Figure 6, __set_watch__() puts an object to be
watched into watchSet at setup time. That set is emptied once the
evaluation of deferred operations is triggered. Python interpreter,
when it encounters an object with watching bits set, would check
whether that object is within watchSet. If not, it cleans the watch
bits; otherwise, it invokes Cunctator lazy evaluation listener.

4.2 Lazy value propagation
Return-access dependency is easy to detect for lazily evaluated
operations, since all subsequent visits to the return value fall to
the actually returned lazy object, which can trigger the evaluation
whenever it is used, similar to how the modifier lazy works in
some other popular languages (e.g., Scala and Swift). However, too
often, a lazy object is used shortly after it is returned. For example,
in the statement (a, b) = lazy_func(), the lazy object is used to
unpack its elements right after it is returned from lazy_func(). In
such cases, an evaluate-when-used semantics of lazy objects results
in short-lived laziness, and leaves no optimization opportunities.
As a solution to ensure sufficient laziness, we enhance Python with
lazy value propagation (LVP), which propagates new lazy values for
most operations applied to existing lazy values. The return-access
dependency is thence not violated, since the operation that uses
the return value is deferred as well.

When a lazy value is being operated, LVP records the operation
into the lazy IR and then returns a newly created lazy object. One
problem that LVP has to solve is when the propagation should stop
– in other words, when the true evaluation should be triggered.

5
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Listing 2: Lazy value propagation
class Lazy:

def __init__(self, ir, v):
self.__ir, self.__v = ir, v

def __add__(self, r):
if self.__ir.evaluated(self.__v):

return self.__ir.value(self.__v) + r
watch(r)
newv = self.__ir.add_op2('+', self, r)
return Lazy(self.__ir, newv)

def __bool__(self):
return bool(self.__ir.evaluate(self.__v))

# More overwritten operations
...

An evident scenario is when a lazy value is used to determine
the execution branch (e.g., the if condition). Theoretically, we
could explore all possible paths and collect the lazy IR in the form
of computational tree logic (CTL) [9]. Such exploration, however,
would introduce large overhead, while its benefit is unclear. Another
situation of stopping LVP involves overhead control (see §4.3).

Cunctator implements LVPwithin the class of lazy objects through
operator overwriting, as shown in Listing 2. A lazy object is bound
with one lazy IR variable. The __add__ function, for instance, over-
writes the operation lazy + r. Their operands are set up for watch-
ing before the operation is recorded in the lazy IR. Other operations
are overwritten in a similar way, except for the bool() operation,
which triggers the evaluation, as the operation is invoked when a
value is used for branch selection. Although the bool() operation
does not necessarily imply branching, it is a good heuristic.

It is worth noting that Cunctator chooses to implement LVP in
pure Python for fast prototyping. We plan to re-implement it as
a part of Python interpreter in the future. This built-in LVP will
have lower overhead and know precisely when a value is used for
branch selection.

4.3 Overhead control
If there are too many inexpensive DSL API calls or too many prop-
agated lazy values, generating and evaluating the lazy IR could
introduce too much overhead. Although such cases never appear
in our experiments, we still introduce a dynamic scheme to pre-
vent it from happening in the extreme cases. Cuncator employs
a parameter N𝐼𝑅𝑃𝑆 to control how many lazy IR instructions can
be generated per second. Initially, Cunctator sets a variableM to
N𝐼𝑅𝑃𝑆 . When the total number of generated instructions is equal to
M, Cunctator evaluates recorded IR, then it setsM to N𝐼𝑅𝑃𝑆 ∗𝑇 ,
in which 𝑇 is the total elapsed time since the first API is deferred.
IfM’s new value is smaller than its old value, it indicates that the
program is an extreme case; Cunctator disables itself by avoding
API redirection and LVP. In our experiments, we setN𝐼𝑅𝑃𝑆 to 1000.
4.4 Additional complexities

Exception. Theorem 3.1 assumes that neither 𝑂𝐴 nor 𝑂𝐵 raises
exceptions. Exceptions could direct the execution to their handlers.
If there is no exception handler set up, which is the case for most
of the DSL programs we encountered, any raised exception would
cause the program to crash. Thus, Cunctator disregards potential
exceptions of an operation when there is no installed exception

handler. When the current context has exception handlers, Cunc-
tator disables BELE, and thence, all operations are eagerly evalu-
ated. Cunctator checks the currently installed exception handlers
through an interface added to Python interpreter.
External dependency. Theorem 3.1 assumes that 𝑂𝐴 and 𝑂𝐵 are
not dependent on each other through external resources (e.g., one
writes to a file, and the other reads the file). Cunctator considers
that the information of whether lazily evaluated APIs access exter-
nal resources as domain knowledge and relies on the optimizer’s
developer to provide the knowledge. If none of the lazily evaluated
operations access external resources, there is no external depen-
dency. Otherwise, a monitor that watches the program’s system
calls could notify Cunctator when the program tries to access exter-
nal resources; Cunctator can then avoid deferring the operations.
Unwatchable objects. Although the watch framework works in
most cases, there are objects that cannot be watched because they
are not sealed or domestic. For example, if an object holds a seg-
ment of shared memory, an update to the shared memory in another
process will not notify the listener. In addition, it is impractical to
implement MIN-watch for all potential types; thus, some uncom-
mon types may not support MIN-watch. Any kind of unwatchable
object causes an involved operation to be eagerly evaluated.
Loss of seal. A sealed object may become not sealed at runtime.
For example, numpy.ones() creates a sealed object O; however,
O.reshape() may create a new object P that shares O’ data buffer
(not a Python object) through pointer alias, rendering that O is
not sealed any more, and updates to the data buffer by operating P
cannot be monitored by watching O. Therefore, if a type supports
MIN-Watch, and there is a method of the type leaks the content,
the method needs to mark the involved object as unwatchable by
setting watch flags’ value to 11 (see §4.1.2). Subsequent attempts to
set watch on O will enforce eager evaluation.

5 INTERMEDIATE REPRESENTATION
This section gives details on the design of the lazy IR in Cuncta-
tor. The lazy IR has a static single assignment (SSA) form. Each
instruction is a 4-tuple:

< 𝐼𝐷,𝑂𝑃,𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠,𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 >

𝐼𝐷 is a globally unique name, which represents the result of current
instruction. 𝑂𝑃 is the operator, such as ‘+’, ‘.’ (attribute access),
‘[]’ (array alike access), ‘()’ (function calls). 𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠 are stored
as a list. 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 can be used to store any extra info that the
optimizer may use. For an API call, for instance, it is logged as a
call instruction (𝑂𝑃 is ‘()’), the function pointer is stored in the
𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠 field along with the function’s arguments, and the API
name is put into the 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 field.

An operand of an IR instruction could be either a lazy value or a
non-lazy value. When an operand is a lazy value, the instruction
stores its 𝐼𝐷 . For a non-lazy value, the instruction stores a reference
to it. (In our discussion, 𝐿𝑥 denotes a lazy value, 𝑁𝑥 a non-lazy
value, and 𝑉𝑥 can be any value.)

Cunctator provides a simple interface for optimizer developers
of a DSL to register optimization passes. Each optimization pass
accepts a sequence of IR instructions as input, and outputs an
optimized sequence. Registered optimization passes are chained
in order. During an evaluation, the sequence of all recorded IR
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instructions since the last evaluation is passed down through all
optimization passes.

6 OPTIMIZERS
Cunctator is an enabler. By enabling BELE, it paves the way for
many optimizations that are not supported by existing DSL frame-
works. We have implemented proof-of-concept DSL optimizers for
NumPy, Pandas, and Spark. These optimizations fall into two cate-
gories: in-language optimization and cross-language optimization.
The in-language optimization tries to identify inefficient API uses
and replace them with some other APIs of the DSL. The cross-
language optimization tries to replace APIs of one DSL with APIs
of another DSL. Two techniques for each category are illustrated
in the following sections.

6.1 Reducing temporary variables in NumPy
Redundant temporary variables are a performance issue in many
NumPy programs. They impair performance in two ways. First,
value assignment to a new variable has worse data locality than
an in-place value update. Second, depending on the array size, a
temporary variable can consume a lot of memory and thus increase
peak memory usage.

When the API call trace is collected as lazy IR in Cunctator, an
optimizer can easily optimize away a redundant temporary variable
through patternmatching and IR rewriting. At the patternmatching
stage, the optimizer locates a redundant temporary variable 𝐿𝑎 if
the following conditions are all satisfied:
• 𝐿𝑎 ’s value is initialized from the result of an operation that
generates a new value rather than performing in-place update.
• 𝐿𝑎 participates in no in-place updating operations.
• 𝐿𝑎 is passed to an operation 𝑂 that generates a new value 𝐿𝑏 ,
and 𝑂 has a counterpart 𝑂 ′ that performs an in-place update.
• After being used in operation 𝑂 , 𝐿𝑎 is deleted and participates
in no other operations.

At the IR rewriting stage, the optimizer replaces the operation 𝑂

with 𝑂 ′, which saves the result to 𝐿𝑎 . Figure 2b shows an example
of this optimization technique.

6.2 Adaptive caching for PySpark
PySpark is Spark’s Python programming interface. Although Spark’s
runtime employs lazy evaluation to optimize its API call sequences,
it fails to handle performance flaws similar to that in Listing 1, be-
cause an eager API does not know whether the intermediate result
of a lazy API will be used by a subsequent eager API.

With Cunctator, the performance problem in Listing 1 can be
optimized away by adding cache operations for intermediate results
used by more than one eager operation, as shown in Figure 7. The
IR shown on the left side of the figure is collected by Cunctator.
Note that del instructions are omitted for concision. Based on
the collected IR, the optimizer constructs a data flow graph for all
Spark operations. If two or more eager operations share a common
ancestor, the optimizer inserts a cache operation at the fork.

Another similar performance problem involves unnecessary
cache operations, namely, cache operations for intermediate re-
sults used by only one eager API. Such operations introduce unnec-
essary memory writing and consume a lot of memory. Based on the

same graph analysis as was used for inserting cache operations, the
optimizer can identify and remove unnecessary cache operations.

6.3 From NumPy to WeldNumpy
WeldNumpy [5] was developed as a replacement for NumPy with
better performance, which was achieved via two main techniques.
First, WeldNumpy exploits lazy evaluation instead of eager evalua-
tion, which is used in NumPy. Second, WeldNumpy implements its
APIs using Weld IR [22], an intermediate representation designed
for parallel data processing. Through lazy evaluation, the IR frag-
ments of invoked APIs are combined into an IR program. During a
true evaluation, the IR program is compiled and optimized for na-
tive hardware. Some major optimization techniques are loop fusion,
loop tiling, and vectorization. WeldNumpy provides weldarray, a
subclass of NumPy’s ndarray. Thus, after an ndarray is converted
to a weldarray, the new object supports most NumPy operations
and enjoys improved performance.

However, as WeldNumpy is lazily evaluated, it requires users
to explicitly call evaluate() when necessary. The evaluate()
method should not be invoked too often; otherwise, theWeldNumpy
runtime misses optimization opportunities and introduces over-
heads of compiling the Weld IR. Neither should it be too late as
that would cause errors. Thus, a NumPy-to-WeldNumpy translator
needs to figure out the appropriate positions to insert evaluate().

The evaluating positions can be located by identifying exposed
lazy variables. A variable is exposed if it is used beyond the DSL’s
APIs, which means the true value of the variable may be required, or
it is alive at the end of the collected lazy IR, which allows potential
external usage of the variable during subsequent execution. When
a variable is exposed but lazy, it should be explicitly evaluated. Such
variables can be identified within an one-pass scan of the lazy IR.
The translator can thence insert evaluate() for these variables.

Figure 8 shows an example of translating NumPy toWeldNumpy.
The translated IR first converts 𝐿1, an ndarray, to a weldarray, such
that 𝐿2, 𝐿3, and 𝐿4 enjoy WeldNumpy’s optimization. However,
np.array_equal() is not supported byWeldNumpy; thus, operand
𝐿3 has to be evaluated before being passed. While 𝐿4 is explicitly
evaluated because of potential exposure, 𝐿2 remains lazy, since it is
deleted and has no external use.

Such a translator leverages the laziness analysis enabled by Cunc-
tator. It might be tempting to think that the translation could be
done through a compiler without Cunctator. Note that that compiler
would have to face the laziness analysis problem as Cunctator tack-
les; if it ignores that, its replacement of an eagerly evaluated NumPy
API with a lazy evaluated WeldNumpy could cause errors. Doing
the laziness analysis is difficult for a compiler for the many chal-
lenges (e.g., Python complexities, API-host interplay) mentioned in
the introduction section.

6.4 From Pandas to Spark
Both Pandas and Spark provide a class called DataFrame. They
both represent logical tables, which have named and typed columns.
While Pandas’ operations in DataFrame are eagerly evaluated, most
of Spark’s DataFrame methods are lazily evaluated. During a true
evaluation, Spark employs a code generation technique [20] to
compile an operation sequence. Such technique renders the Spark
DataFrame API a performant replacement of Pandas. In addition,
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L1	=	...
L2	=	L1.filter
L3	=	L2(Vf1)
L4	=	L3.count
L5	=	L4()
L6	=	L3.map
L7	=	L6(Vf2)
L8	=	L7.sum
...

filter
count

map sum

Collected IR

...

filter
count

map sum
... cache

L1	=	...
L2	=	L1.filter
L9	=	L2(Vf1)
L10	=	L9.cache
L3	=	L10()
L4	=	L3.count
L5	=	L4()
L6	=	L3.map
L7	=	L6(Vf2)
L8	=	L7.sum
...

Optimized IR

Figure 7: Adding cache operation in Spark

L6=np.random.rand(N1)
L1=weldarray(L6)
L2=L1+0
L3=L1*1
L7=L3.evaluate
L8=L7()
L4=L1==L2
L9=L4.evaluate
L10=L9()
L5=np.array_equal(L1,L3)
del	L1
del	L2
del	L3

L1=np.random.rand(N1)
L2=L1+0
L3=L1*1
L4=L1==L2
L5=np.array_equal(L1,L3)
del	L1
del	L2
del	L3

Figure 8: NumPy to WeldNumpy
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Figure 9: Pandas to Spark

Spark has native support for Pandas, including Pandas UDF [1],
by which a user can apply Pandas operations to a Spark Column.
Spark also contains type casting APIs that convert between Spark
DataFrame and Pandas DataFrame. These features offers conve-
niences to translation of a Pandas program to a Spark program.

Similar to NumPy to WeldNumpy, the laziness analysis by Cunc-
tator puts down the basis for the development of an automatic
Pandas-to-Spark translator. Our prototype focuses on a common
use pattern of Pandas: A program first loads a file as a DataFrame,
then performs some operations on it, and finally outputs the result.
In such a pattern, only one DataFrame object is involved, and no
Pandas DataFrame object or Series (typically represents a column)
object is exposed, so all instances of the two types only participate in
Pandas operations. When such a pattern is matched, the translator
tries to optimize it.

During the translation, the Pandas file loading function is re-
placed by a counterpart in Spark, thus creating a Spark DataFrame.
Correspondingly, the Series objects selected fromPandas’ Dataframe
become Spark Column objects. If there is a sequence of operations on
a Series that outputs another Series, the sequence is synthesized
into a Pandas UDF for Spark, which is applied to the corresponding
Spark Column. If a Series is assigned to the Pandas DataFrame,
the corresponding Column is assigned to the Spark Dataframe as
well. When an operation on a Series returns an object other than a
Series, if the operation (e.g., unique()) has a counterpart in Spark,
the Column is applied to the corresponding Spark operation, and
then the result is converted to the expected type; otherwise (e.g.,

diff()), the Column is selected and converted to a Series before
applying the operation. Figure 9 illustrates the translation for a
Pandas program collected from the Pandas Cookbook [2].

7 API REDIRECTION
If a DSL’s runtime needs to leverage Cunctator to perform optimiza-
tion, the optimizer developer needs to redirect the APIs in the DSL
through renaming and rewriting. With the Cunctator framework,
the process is made simple. For example, to redirect numpy.add in
NumPy’s runtime, current implementation of numpy.add could be
renamed to numpy._add; then, a new implementation of numpy.add
will just record API calls as lazy IR instructions and returns a lazy
object as shown in Figure 5.

To simplify the process, Cunctator offers some utilities. For the
aforementioned example, what the optimizer developer needs to
write to put the following into the module numpy:

def add(*args, **kwargs):
return lazy_call("numpy.add", numpy._add, *args,

**kwargs, kwargsToUpdate={"out"})

Method lazy_call is the utility interface that Cunctator offers. Its
first argument is for the annotation field of a call instruction (see
§5). The argument kwargsToUpdate specifies that numpy._add is
going to update only its argument out (if there is one). The call to
lazy_call in this example will essentially materialize the method
shown in Figure 5.

8 EFFORTS IN APPLYING CUNCTATOR
There is some work needed from the library developers. These work
needs to be done only once for a given library; the results can benefit
all programs using that library. These one-time work includes: (1)
redirecting some APIs that are important for performance (other
APIs can be left alone, which will be treated in the same way as
host Python code is); (2) supporting MIN-watch for some common
types; and (3) implementing optimization passes. Table 1 shows
our prototype optimizers’ summary in these work. For a common
programmer that uses a library, the only change she needs to make
to her code is to insert one or several lines of code to import the
optimizer.

We initially considered automatic library transformations, but
found that it was difficult to do for the complexities of Python. It is,
for instance, often impossible for static code analysis to tell whether
an argument is subject to modifications, due to dynamic types,
aliases, higher-level functions, and inter-procedural complexities.
The design choice made in Cunctator is a choice for practicability.
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Table 1: Summary of optimizers

Optimizer #APIs∗ Supported types† Opt pass LoC‡

NumPy 45 ndarray, dtype 50 (§6.1)
93 (§6.3)

Spark 24 RDD, StorageLevel 201 (§6.2)
Pandas 28 DataFrame, Series 436 (§6.4)

* The number of redirected APIs.
† The types that support dependent discovery.
‡ Lines of code for implementing the optimization passes described in §6.

9 EVALUATION
In this section, we conduct a series of experiments to (1) demon-
strate the usefulness of the four optimizations (§6) enabled by Cunc-
tator, and (2) measure the runtime overhead of Cunctator. Time
usage is collected by the timeit command of jupyter [3], which
adaptively chooses a number of repetitions in favor of timing accu-
racy. Peak memory usage is collected bymemit command extended
by memory-profiler [4], which profiles a program’s memory usage
line by line. The test platform for NumPy and Pandas is a Linux
machine with Intel Xeon Silver 4114 CPUs. Spark programs run on
a cluster of eight Linux machines with AMD Opteron 6128 CPUs.

9.1 Optimizers
We collect 15 programs for the experiments that are rele-vant to
the example optimizations described in the previous section; five
for each of the three packages (NumPy, Spark, Pandas). Thirteen of
them were collected from Github; the other two were the examples
used in the earlier sections of this paper—we included them to show
the performance benefits from the described optimizations. Table
2 shows the descriptions and inputs of all benchmarks. Figure 11
shows the speedups in different optimizer settings. Detailed results
are presented in Figure 10. Each program set is discussed separately
in following subsections.

9.1.1 NumPy. The temporary variable reducer (abbr. reduceTmp)
accelerates all benchmarks, with speedups ranging from 1.19X to
1.54X. The highest speedup is achieved on P1, because its operations
are easy to compute and hence the cost of temporary variable is
prominent. Besides time benefits, reduceTmp also reduces peak
memory usage. P4 highlights the reduction with a rate of 75%. The
high rate is because of pipelined operations, which means each
temporary variable is only used one time and then discarded.

For WeldNumpy converter, we test it with one thread (abbr.Weld
1T ) and ten threads (abbr. Weld 10T ) separately. Weld 1T shows
speedups ranging from 1.01X to 1.95X. Because WeldNumpy cur-
rently supports only a limited number of NumPy APIs, for unsup-
ported APIs, it needs to transform data fromWeld format to NumPy
format to perform the operations, and if necessary, the results need
to be transformed back. As WeldNumpy evolves to support more
APIs,Weld 1T is going to perform better. Moreover, with ten threads,
WeldNumpy achieves significant speedups up to 12.5X. Note that
Weld has built-in support for multi-threading but NumPy does not.

9.1.2 Spark. The Spark optimizer shows speedups ranging from
1.03X to 1.87X. Among the benchmarks, P1 and P2 lack cache();
P3 and P5 have unnecessary cache(); P4 has a cache() operation
at a useless location, while the place that needs cache() does not
have one. Our optimizer fixes them all. It adds cache() to P1 and

P2, removes cache() from P3 and P5, and corrects P4 by removing
the unnecessary cache() and adding one at the appropriate place.

In addition, we test the benchmarks with Cunctator enabled but
optimizing pass disabled(abbr. w/o opt). The results show no per-
formance degradation. This confirms that MIN-watch has almost no
overhead for non-watched objects, as PySpark programs typically
invoke user defined functions written in Python frequently.

9.1.3 Pandas. The Pandas-to-Spark optimizer is tested with one
Spark thread (abbr. Spark 1T) and ten Spark threads (abbr. Spark
10T). Note that Spark supports multi-threading but Pandas does
not. Spark 1T shows speedups on three programs. This is impres-
sive because, while Pandas enjoys the high performance of SIMD
instructions, Spark’s query compiler emits Java bytecode. The slow-
down on P1 is dominated by Spark’s CSV loader, which performs
much worse than Pandas’ loader in this case. Nevertheless, Spark
10T enjoys speedups as high as 14.2X on all benchmarks.

9.2 Overheads
For programs cannot be optimized, a major concern is the over-
head, which is highly related to the number of lazy IR instructions
recorded. To investigate the overhead in different cases, we design
an adversarial case for stress-testing:

def cps_simulator(M, N):
for i in range(M):

numpy.ones(N)

The program calls𝑀 times of numpy.ones(N), which initializes
a vector of size 𝑁 . By tuning𝑀 and 𝑁 , we can control the number
of calls per second (CPS) and the total run time. We then combine
some representative values of CPS and overhead control thresholds
(see §4.3). For each combination, we run a ten-second experiment
with Cunctator. By substracting the results with corresponding
baseline results, we obtain an overhead matrix, shown as Table 3.

The overhead increases when CPS increases. When CPS exceeds
the threshold, Cunctator disables itself for the later part of the run;
the overhead drops. For the default threshold (1000), the worst over-
head is 2.35%, which happens in the extreme case where there are
1000 function calls per second. In practice, a program is unlikely to
have a stable CPS rate close to the threshold, thus the overhead is
much lower. In addition, it is worth noting that Cunctator is mainly
implemented in Python, except for the MIN-watch. If we reimple-
ment some critical components in C, such as lazy IR evaluator, a
lower overhead is expected.

It is worth noting that, in the domains that we explored, the
number of relatives per object is few, hence our benchmarks bear
little overhead of finding relatives. For example, a NumPy array
usually has no relative if its buffer belongs to itself, or only one
relative if its buffer is from another object. For domains where
deeply nested objects are common, the overhead control threshold
can be adjusted to fit the need of the domains.

9.3 Threats to Validity
Cunctator is evaluated based on Python 3.7.3, NumPy 1.17.0, Weld-
Numpy 0.0.1, Pandas 0.25.0, and Spark 2.4.3. The APIs and im-
plementation of these software packages may change after new
versions are released. Thus the new releases may invalidate our
optimization techniques and evaluation results. Nevertheless, new
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Table 2: Descriptions of collected benchmarks

NumPy Spark Pandas
P1

Input
Program in Figure 1a
vectors of size 109

Program in Listing 1
text file of 90MB

Find names of median occurrence
csv file of 273MB

P2
Input

Compute vibration energy
vectors of size 5×108

Demultiplex a file to multiple files
xml file of 244MB

Find top complaints
csv file of 526MB

P3
Input

Find least-squares solution
vectors of size 5×108

Transform data format
json file of 62MB

Find ratios of noise complaints
csv file of 526MB

P4
Input

Find log-likelihood of N(𝜇, 𝜎2)
vectors of size 5×108

Intersect IDs in two tables
two csv files of 34MB

Find unique zip codes after data cleaning
csv file of 526MB

P5
Input

Compute Black-Scholes model
vectors of size 108

Find counts of different words
text file of 460MB

Find top occupations wrt. male ratio
csv file of 240MB

P1 P2 P3 P4 P5
NumPy time usage (mean ± std. dev.)

baseline 12.5 s ± 2.95 ms 41.1 s ± 75.4 ms 27.4 s ± 5.51 ms 43.2 s ± 57.6 ms 39.1 s ± 23 ms
reduceTmp 8.14 s ± 2.14 ms 34 s ± 15.3 ms 22.9 s ± 105 ms 33.7 s ± 26.9 ms 32.9 s ± 22.7 ms

Weld 1T 6.38 s ± 34.1 ms 39.1 s ± 87.6 ms 21.8 s ± 45 ms 42.7 s ± 144 ms 22.6 s ± 28.3 ms
Weld 10T 995 ms ± 9.24 ms 27 s ± 142 ms 17.4 s ± 60.3 ms 15.6 s ± 44.4 ms 9.94 s ± 35 ms

NumPy peak memory usage (MB)
baseline 38181 19131 19130 15316 9213

reduceTmp 30577 11503 15317 3873 6251
Spark time usage (mean ± std. dev.)

baseline 31.9 s ± 123 ms 82 s ± 698 ms 38.5 s ± 116 ms 20.9 s ± 36 ms 49.1 s ± 272 ms
w/o opt 32.1 s ± 215 ms 81 s ± 639 ms 38.5 s ± 178 ms 21.1 s ± 75.8 ms 49.2 s ± 392 ms

optimized 17.1 s ± 93.4 ms 48.8 s ± 348 ms 28.8 s ± 66.8 ms 20.3 s ± 317 ms 47 s ± 226 ms
Pandas time usage (mean ± std. dev.)

baseline 6.03 s ± 50.3 ms 9.65 s ± 21.8 ms 9.8 s ± 13.4 ms 9.72 s ± 40.7 ms 7.7 s ± 37.4 ms
Spark 1T 17.1 s ± 100 ms 5.51 s ± 152 ms 3.01 s ± 127 ms 5.76 s ± 101 ms 7.45 s ± 241 ms
Spark 10T 2.92 s ± 203 ms 951 ms ± 51 ms 690 ms ± 26.9 ms 1.3 s ± 145 ms 1.29 s ± 59 ms

Figure 10: Benchmark results
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Figure 11: Speedups

Table 3: Overhead (percentage of 10s program runs)

CPS
50 500 1000 2000 10000

Th
re
sh
ol
d 50 0 0.85 0.85 1.7 0

500 0.35 3.05 1.05 1.8 0
1000 0.25 2.35 2.25 1.7 0
2000 0.15 2.15 2.05 2.5 0.1
10000 0.15 1.25 1.75 2.9 11.8

patterns of API misuses related to these new releases are likely
to appear. Unless the new versions employ a technique similar to
BELE, Cunctator can be leveraged to optimize the new patterns.

10 RELATEDWORK
Lazy evaluation has been studied extensively in functional pro-
gramming [8, 12–14, 17]. Scala [21] provides a lazy keyword to
express the call-by-need semantics of a variable. However, Scala
does not manage the potential side-effect of a thunk, the expression
bound to the lazy variable; thus, the correctness of lazy evaluation
relies on the programmer. Many hosted DSLs (e.g., Spark [26] and
Tensorflow [6]) employ lazy evaluation; their limitations have been
discussed in §1.

There are some studies on optimizing DSLs. Weld [22] and its
limitations have been discussed and compared with. Delite [24]
is a framework for developing Scala-hosted DSLs by leveraging
generative programming [10]. Similarly to Cunctator, it lazily eval-
uates DSL operations and logs them as a form of IR, which will be

optimized and executed at a certain point in time. However, Delite
provides no mechanism to handle the dependencies between DSL
operations and their host code.

There are several earlier studies (e.g., telescoping languages [15],
Broadway [11]) that try to use manual annotations of libraries to
help optimizations. They give no systematic considerations of the
host-API dynamic dependencies. Numba [16] is a JIT compiler of
Python that targets optimizing manipulations of ndarray in NumPy.
AutoGraph [19] employs static code conversion and generative
programming to tranform PyTorch-style programs to Tensorflow-
style programs. All these methods and tools offer a closed set of
optimization techniques for specific program semantics. Cunctator
does not include any optimization technique but provides a general
framework to simplify the creation of a DSL optimizer.

11 CONCLUSION
This paper introduces the concept of BELE, and describes MIN-
watch, the first efficient runtime monitoring method tailored to
data dependence analysis between host code and APIs for BELE.
The paper demonstrates the usefulness of Cunctator in enabling
four optimizations that are not supported by existing frameworks,
giving 1.03-14.2X speedups. While Cunctator targets Python-hosted
DSLs, we believe the potentially applicability of the techniques goes
much beyond Python.

10
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