
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Sequential Model Optimization for Software Process Control
Tianpei Xia, Jianfeng Chen, Rui Shu, Tim Menzies

txia4@ncsu.edu,jchen37@ncsu.edu,rshu@ncsu.edu,timm@ieee.org
North Carolina State University

Raleigh, United States

ABSTRACT
Many methods have been proposed to estimate how much effort
is required to build and maintain software. Much of that research
assumes a “classic” waterfall-based approach rather than contem-
porary agile projects. Also, much of that work tries to recommend
a single method– an approach that makes the dubious assumption
that one method can handle the diversity of software project data.

To address these drawbacks, we apply a configuration technique
called “ROME” (Rapid Optimizing Methods for Estimation), which
uses sequential model-based optimization to find what combination
of techniques works best for a particular data set. In this paper, we
test this method using data from 1161 classic waterfall projects and
446 contemporary agile projects (from Github).

We find that ROME achieves better performance (in terms of
magnitude of relative error and standardized accuracy) than ex-
isting state-of-the-art methods for both classic and contemporary
problems. From this work, we conclude that it is not best to rec-
ommend one method for estimation. Rather, it is better to search
through a wide range of different methods to find what works best
for local data.

To the best of our knowledge, this is the largest effort estimation
experiment yet attempted and the only one to test its methods on
classic and contemporary projects.

KEYWORDS
Effort Estimation, COCOMO, Hyperparameter Tuning, Regression
Trees, Sequential Model Optimization

1 INTRODUCTION
Estimating development effort can be difficult [26], and incorrect
estimates can harm the outcome of software projects [34, 35, 58, 61].
This is true for both classic waterfall projects and contemporary
agile projects. In the case of large government waterfall projects,
it is required that the proposed budget is double-checked by some
estimation model [37]. In the case of agile projects (where resources
are adjusted as the work progresses), when developers are forced
to build their software using too few resources, then the first thing
that is usually jettisoned is the software quality task [36]. When
monitoring for “project health”, the managers of large open source
distributions will shun such distressed projects (so that software
will not get widely used [62]).

Much of the prior work on effort estimation has focuses on classic
waterfall projects [1, 7, 56, 57] (where the estimate is required before
the project commences). There are many challenges with adapting
classic waterfall estimation to contemporary agile projects:

• Firstly, the goal of estimation has to change.
• Secondly, the way we select estimation models has to mature.

Submitted to ICSE’2020, August 23, 2019.

Regarding the goal of estimation, in classic waterfall estimation, the
goal is to get the budget right, before any work starts. However,
when estimating contemporary agile projects, the goal is different.
Some agile projects are fully staffed by large fluctuating volunteer
groups working in their spare time. For those groups, delivering
software is less a matter of project management as it is the enthusi-
asm of their user community for their product. But there are other
kinds of contemporary agile projects that do need good estima-
tion methods. Increasingly, commercial companies spend developer
salary to maintain and improve agile open source projects. Braiek et
al. document contemporary agile open source data mining products
that are developed by commercial companies as a way to attract
(and hold) more customers on their platforms [9]. Bird et al. report
the surprising finding that, certain high profile contemporary agile
projects are not built by a diverse open source community from
around the globe. Instead, that software is mostly updated at two
commercial sites during normal office hours [5]. Krishna et al. re-
port that IBM asked for help to adjust, on a month-to-month basis,
the staffing allocations for their suite of contemporary agile open
source tools (which IBM maintains for its client base) [30]. That is,
whereas classic waterfall projects need estimates of for future work,
the managers of these agile projects need estimates to know if their
current staff allocation is sufficient for the tasks at hand [48].

Regarding how we select estimation models, we note that as soft-
ware engineering gets more diverse, it becomes less and less likely
that any single estimation model will work across all those projects.
So instead of recommending a particular estimation model:

To find what works best for local data, we need ways to
survey a wide range of different estimation models.

For this surveying task, we recommend a new approach called
“ROME” (Rapid Optimizing Methods for Estimation), which uses
sequential model-based optimization to explore possible config-
urations for an effort estimator. In that process, the results from
exploring a few configurations are used to guess results across the
remaining configurations. The configuration that yields the best
guess (lowest error) is then actually applied, after which ROME
updates its knowledge of what is a good configuration.

To evaluate ROME, we ask these research questions:
RQ1: Is effort estimation effective for classic waterfall and

contemporary agile projects? Effort estimation needs to be ef-
fective to use in real-world software tasks. According to Sarro et
al, industrial competitive predictions of project effort usually lie
within 0.3 and 0.4 of the actual value [52]. We provide evidence that
the performance of our method in classic waterfall and contem-
porary agile data sets lies within the currently claimed industrial
human-expert-based thresholds, thereby demonstrating that:

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2020, May 23-29, 2020, Seoul, South Korea Xia et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Lesson1: Effort estimation is effective on both classic water-
fall projects and contemporary agile projects.

RQ2: Does ROME have better performance than existing es-
timation methods? To answer this question, we study 1161 clas-
sic waterfall projects and 446 contemporary agile projects (from
Github). ROME’s performance is compared to some standard effort
estimators as well as two recent prominent systems: Whigham et
al.’s ATML tool from TOSEM’15 [63] as well as Sarro et al’s LP4EE
tool from TOMSE’18 [51]. We find that:

Lesson2: ROME generated best estimates in most cases.

Here, we measured “best” using the measures that are standard in
the field; i.e. MacDonell”s and Shepperd’s standardized accuracy
measure [55] and the MRE measure used by other researchers [52].

RQ3: When we have new effort data sets, what configura-
tions to use for effort estimation tasks? The tool we call ROME
is a combination of sequential model optimization and CART. For
pragmatic reasons, practitioners prefer a simpler rig. Hence we
are often asked if the optimizer is required or if, usually, certain
configurations generally work well across all data sets. To answer
this question, we counted what configurations were selected in the
experiments of this paper. In those counts, we saw:

Lesson3: There is no clear pattern in what configurations are
needed. Hence, model optimization needs to be repeated for
each new data set.

RQ4: When we apply ROME on effort data sets, can it help
us to find themost important features of the data?One feature
of ROME is that if a feature is not informative, it will be dropped in
the generated estimation model. Hence, when we say “most impor-
tant”, we really mean the “mostly used in our methods”. Looking
across our results, we find that certain size features are always used,
but always in combination with a wide variety of other features.
Hence:

Lesson4: There are no “best” set of effort estimation features
since each project uses these features in a different way.

Overall the contributions of this paper are:
• Our results clearly deprecate the use of off-the-shelf estima-
tion tools. Based on the RQ3 and RQ4 results, practitioners
should use tools like ROME to find the features/modeling
options that work best for their local data.

• To the best of our knowledge, this is the largest effort estima-
tion experiment yet reported (we use data from 1161 classic
waterfall projects and 446 contemporary agile projects).

• Using that data, this paper makes a clear demonstration that
effort estimation works well for classic waterfall projects as
well as contemporary agile projects. In terms of the practi-
cality of effort estimation research, this is a landmark result
since it means that decades of research into effort estimation
of classic waterfall projects can now be applied to contem-
porary agile software systems.

• We offer a new benchmark in effort estimation.
• We offer an open source version of ROME1.

1https://github.com/arennax/effort_rome

AgileWaterfall

Requirements

Design

Implementation

Verification

Maintenance

Planning

Testing

Feedback Designing

Release

Analyzing

Figure 1: Waterfall vs. Agile in Software Development

The last one is more of a system contribution than a research con-
tribution. Nevertheless, in terms of support the reproduction and
extension of our results, this contribution is useful.

The rest of this paper is structured as follows. The next section
discusses the history and different methods for effort estimation
tasks. This is followed by a description of our experimental data,
methods and the results. After that, a discussion section explores
open issues with this work.

2 BACKGROUND
Software effort estimation is the procedure to provide approximate
advice on how much human effort is required to plan, design and
develop a software project. Usually, this human effort is expressed
in terms of hours, days or months of human work. Since software
development is a highly dynamic and fluid process, any estimate
can only be approximate. Still, doing estimation is necessary since
it is important to allocate resources properly in software projects
to avoid waste. In some cases, improper allocation of funding can
cause a considerable waste of resource and time [12, 21, 23, 49].

Much effort estimationwork assumes a classic waterfall model [1,
7, 56, 57], first documented by Royce et al. in 1970 [50]. In this
approach, project teams move to the next phase of development
or testing if the previous step successfully completes. Estimation
happens before the coding started. Further, once the funds are
allocated, there is little opportunity to change that allocation.

Currently, the dominating software development style is agile
model (first documented by Edmonds et al. in 1974 [14]). Agile
uses continuous iteration of development and testing. Unlike the
Waterfall model, development and testing activities are concurrent.
This allows more communication between customers, developers,
managers, and testers. Figure 1 contrasts these two models.

Having said that the agile style dominates, we also hasten to add
that waterfall projects still exist and still needs effort estimation.
This is particularly true in the case of large government or military
software contracts, especially when their funding comes from legis-
lation. For such projects, funds have to be allocated before the work
starts. Also, as said in the introduction, for such large government
waterfall projects, it is often required that the proposed budget is
double-checked by some estimation model [37]. For these reasons:

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Sequential Model Optimization for Software Process Control ICSE 2020, May 23-29, 2020, Seoul, South Korea

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Effort estimation methods need to support both classic
waterfall projects and contemporary agile projects.

Effort estimation in software development can be categorized into
human-based and algorithm-based methods [28, 53]. In this pa-
per we focus on algorithm-based methods since they are preferred
when estimates have to be audited or debated (these methods are
explicit and available for inspection). To understand the range of
possible estimates, we can run the algorithm as many times as
necessary, which may not be applicable by using human-based
methods. Algorithm-based methods can have comparable perfor-
mance to human-based ones. Jørgensen et al. indicates that even
very strong advocates of human-based methods acknowledge that
algorithm-based methods are useful for learning the uncertainty
about particular estimates [25].

Algorithm-based methods have been widely explored in the past
few decades including classic model like COCOMO andmore recent
proposals like ATLM [63] and LP4EE [51].

2.1 COCOMO
COCOMO (the COnstructive COst MOdel) is a procedural cost
estimate model for software projects proposed by Boehm et al.
based on LOC (number of Lines of Code). It is often used as a
process of reliably predicting the various parameters associated
with making a project such as size, effort, cost, time and quality. In
late 1970s, Boehm was able to gather 63 project data points that
could be published and to extend the model to include alternative
development modes that covered other types of software such
as business data processing. The resulting model was called the
Constructive Cost Model, or COCOMO, and was published along
with the data in the book Software Engineering Economics [8]. In
this first version model (COCOMO-I), project attributes were scored
using just a few coarse-grained values (very low, low, nominal,
high, very high). These attributes are effort multipliers where a
off-nominal value changes the estimate by some number greater
or smaller than one. In COCOMO-I, all attributes (except KLOC)
effect effort linearly.

Boehm created a consortium for industrial organizations after
COCOMO was released. It collected information on 161 projects
from commercial, aerospace, government, and non-profit organi-
zations. Based on an analysis of those 161 projects, new attributes
called scale factors were added to the original model, which had an
exponential impact on effort. Using the new data, Boehm et al. de-
veloped COCOMO-II model that map the project descriptors (very
low, low, etc.) into the specific values [7]:

effort = a
∏
i

EMi ∗ KLOCb+0.01
∑
j SFj (1)

Inside this equation, a,b are the local calibration parameters (with
default values of 2.94 and 0.91). EM stands for effort multipliers,
and SF are scale factors. Boehm offers a simple linear time local
calibration procedure [7] to update these defaults using the local
training data. The calculated effortmeasures “development months”
where one month is 152 hours of work (and includes development
and management hours). For details about COCOMO attributes,
see tiny.cc/ccm_attr.

2.2 Beyond COCOMO
For modern software development, it is necessary to develop new
technique and make changes to improve COCOMO-style estima-
tion. Robles et al. report that more companies are turning to open
source software projects (e.g. Agile software projects on Github),
other than traditional waterfall style projects for their new business
strategy [48]. For old parametric estimating models like COCOMO,
Shepperd et al. found it is difficult to determine some of their fea-
tures for the estimations [53]. COCOMO measured software size
by using LOC (line of code), but this feature is not available dur-
ing the coding procedure, and it is difficult to make comparisons
between different programming languages that may take varying
numbers of statements to perform a given function. Jeffery et al. in-
dicated that parametric model like COCOMO need to be calibrated
to be used effectively in their study [24], which is another evidence
that old parametric estimating models like COCOMO may not be
appropriate for newer tasks.

2.2.1 ATLM. Automatically Transformed Linear Model (ATLM) is
a multiple linear regression model proposed byWhigham et al. [63].
It calculates the effort as:

effort = β0 +
∑
i

βi × ai + εi

where ai is explanatory attribute and εi is error to the actual value.
The prediction weight βi is determined using least square error
estimation [43]. Additionally, transformations are applied on the
attributes to further minimize the error in the model. In case of cate-
gorical attributes, the standard approach of “dummy variables" [22]
is applied. While, for continuous attributes, transformations such
as logarithmic, square root, or no transformation is employed such
that the skewness of the attribute is minimum.

It should be noted that, ATLM does not consider relatively com-
plex techniques like using model residuals, box transformations or
step-wise regression (which are standard) when developing a linear
regression model. The authors make this decision since they intend
ATLM to be a simple baseline model rather than the “best" model.

2.2.2 LP4EE. Linear Programming for Effort Estimation (LP4EE)
is a newly developed method by Sarro et al. [51], it aims to achieve
the best outcome from a mathematical model with a linear objective
function subject to linear equality and inequality constraints. The
feasible region is given by the intersection of the constraints and the
Simplex (linear programming algorithm) is able to find a point in the
polyhedron where the function has the smallest error in polynomial
time. In effort estimation problem, this model minimizes the Sum
of Absolute Residual (SAR), when a new project is presented to the
model, LP4EE predicts the effort as

effort = a1 ∗ x1 + a2 ∗ x2 + ... + an ∗ xn

where xi is the value of a given project feature and ai is the cor-
responding coefficient evaluated by linear programming. Sarro et
al. propose LP4EE as another baseline model for effort estimation
since it provides similar or more accurate estimates than ATLM
and is much less sensitive than ATLM to multiple data splits and
different cross-validation methods[51].

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE 2020, May 23-29, 2020, Seoul, South Korea Xia et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

2.2.3 Machine Learning-based Effort Estimators. Many machine
learning algorithms have been used for software effort estimation.
Random Forest [10] and Support Vector Regression [11] are such
instances of regression methods. Random Forest (RF) is an ensem-
ble learning method for regression (and classification) tasks that
builds a set of trees when training the model. To make the final
prediction , it uses the mode of the classes (classification) or mean
prediction (regression) of the individual trees. Support Vector Re-
gression (SVR) uses kernel functions to project the data onto a
new hyperspace where complex non-linear patterns can be simply
represented. Another learning approach is to use a K = 5 nearest-
neighbor method [56]. For each test instance, KNN then selects k
similar analogies out of a training set. The resultant prediction is
the the mean of the class value of those k neighbors.

Some algorithm-based estimators use regression trees such as
CART [32]. CART is a tree learner that divides a data set, then
recurses on each split. If data contains more than min_sample_split,
then a split is attempted. On the other hand, if a split contains no
more than min_samples_leaf, then the recursion stops. CART finds
the attributes whose ranges contain rows with least variance in
the number of defects. If an attribute ranges ri is found in ni rows
each with an effort variance of vi , then CART seeks the attribute
with a split that most minimizes

∑
i
(√
vi × ni/(

∑
i ni)

)
. For more

details on the CART parameters, see Table 1. Note that we choose
the tuning range by using advice from Fu et al. [19].

Table 1: CART’s parameters.

Parameter Type Default Tuning Range Description

max_feature numerical None [0.01, 1] Number of features to consider
when looking for the best split

max_depth numerical None [1, 12] The maximum depth of the
decision tree

min_sample_split numerical 2 [0, 20] Minimum samples required to
split internal nodes

min_sample_leaf numerical 1 [1, 12] Minimum samples required to
be at a leaf node

Before moving on from CART, we note a detail that will become
important when we discuss our third research question. Note that
decreasing max_depth and increasing min_sample_leaf will result
in smaller trees. In such smaller trees, few features will appear;
specifically, on those features that most minimize the standard
deviation of the target class. In the experimental rig described
below, many times, we will generate trees using different settings
to Table 1. By counting the the number of times a feature appears
in these trees, we can infer what features are the most important
to effort estimation.

2.2.4 Hyperparameter Optimization. Hyperparameters control the
algorithm policies of the learners. Choosing appropriate hyper-
parameters plays a critical role in the performance of machine
learning models. Tuning hyperparameters is the process of search-
ing the most optimal hyperparameter options for machine learning
models [4, 17]. Some popular methods to tune the hyperparameters
are grid search and differential evolution.

Grid search [3] is a technique that using brute force of all combi-
nations for hyperparameters. Although the Grid search method is
a simple algorithm to use, it suffers if data have high dimensional
space called the “curse of dimensionality”. Previous work has shown

Results

Optimizer

z

Learner

Testing Data

Stop
Rule

Tuned Learner

Yes

No

Evaluate

Tu
n

in
g

Training/Validation
Data

ROME

Figure 2: ROME’s architecture

that grid search might also miss important optimizations [20] or run
needlessly slowly since, often, only a few of the tuning parameters
really matter [2].

Differential evolution (DE) [60]. The premise of DE is that the
best way to mutate the existing tunings is to extrapolate between
current solutions. Three solutions a,b, c are selected at random.
For each tuning parameter k , at some probability cr , we replace
the old tuning xk with yk where yk = ak + f × (bk − ck) where f
is a parameter controlling differential weight. The main loop of
DE runs over the population of size np, replacing old items with
new candidates (if new candidate is better). This means that, as the
loop progresses, the population is full of increasingly more valuable
solutions (which, in turn, helps extrapolation).

Bayesian optimization [45] works by assuming the unknown
function was sampled from a Gaussian Process and maintains a
posterior distribution for this function as observation are made.
However, it might not be well-suited for optimization over contin-
uous domains with large number of dimensions [18].

2.2.5 ROME. Standard hyperparameter optimization with DE or
Baysian optimization can be a tedious and time consuming task [20].
Utilizing sequential model optimization, FLASH terminates after
just a few dozen executions of different learner control parameters.
ROME uses FLASH [42] to tune CART [32].

As shown in Figure 2, ROME has a learning layer and a optimiz-
ing layer. When training data arrives, the estimator in the learning
layer is being trained, and the optimizer in optimizing layer pro-
vides better hyperparameters to the learner to help improve the
performance of estimators. Such trained learner will be evaluated
on the validation data afterwards. Once some stopping criteria is
met, the generated learner is then passed to the test data for final
testing.

When we design ROME, we want it to be as flexible as possible.
It was simple to “pop the top” and replace the optimizing layer with
another optimizer. In this paper, ROME uses FLASH [42] as the
optimizer. Since the result from that initial study were promising,
we paused further experimentation to record those results. In future
work, we will try other optimizers.

FLASH comes from research into software configuration. One
of the new insights that leads to this paper was that “configu-
ration” is a synonym for “hyperparameter optimziation”. Hence,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Sequential Model Optimization for Software Process Control ICSE 2020, May 23-29, 2020, Seoul, South Korea

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: Some data from the NASA10 data set (one row per project). For a definition of the terms in row1 (“prec”, “flex”, “resl”
etc.) see tiny.cc/ccm_attr. As to the different columns, scale factors change effort exponentially while effort multipliers have
a linear impact on effort. Any effort multiplier with a value of “3” is a nominal value; i.e. it multiplies the effort by a multiple
of 1.0. Effort multipliers above and below “3” can each effect project effort by a multiple ranging from 0.7 to 1.74.

prec flex resl team pmat rely cplx data ruse time stor pvol acap pcap pcon aexp plex ltex tool sced site docu kloc months
2 2 2 3 3 4 5 4 3 5 6 4 4 4 3 4 3 3 1 3 4 4 77 1830
2 2 2 3 3 5 5 2 3 5 6 2 4 3 3 2 1 2 2 3 4 4 24 648
2 2 2 3 3 4 5 3 3 5 5 4 3 3 3 3 2 2 1 3 4 4 23 492
2 2 3 3 2 4 4 3 2 3 3 4 3 3 3 3 3 4 2 3 5 3 146 3292
2 3 3 5 3 3 4 3 2 4 4 2 5 5 4 5 1 5 3 3 6 3 113 1080︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸︷︷︸

scale factors effort multipliers size effort

Table 3: Descriptive Statistics of the classic effort data sets. Terms in red are removed from this study, for reasons discussed in
the text.

feature min max mean std

ke
m
er
er

Langu. 1 3 1.2 0.6
Hdware 1 6 2.3 1.7
Duration 5 31 14.3 7.5
KSLOC 39 450 186.6 136.8
AdjFP 100 2307 999.1 589.6
RAWFP 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

al
br
ec
ht

Input 7 193 40.2 36.9
Output 12 150 47.2 35.2
Inquiry 0 75 16.9 19.3
File 3 60 17.4 15.5
FPAdj 1 1 1.0 0.1
RawFPs 190 1902 638.5 452.7
AdjFP 199 1902 647.6 488.0
Effort 0 105 21.9 28.4

is
bs
g1
0

UFP 1 2 1.2 0.4
IS 1 10 3.2 3.0
DP 1 5 2.6 1.1
LT 1 3 1.6 0.8
PPL 1 14 5.1 4.1
CA 1 2 1.1 0.3
FS 44 1371 343.8 304.2
RS 1 4 1.7 0.9
FPS 1 5 3.5 0.7
Effort 87 14453 2959 3518

fin
ni
sh

hw 1 3 1.3 0.6
at 1 5 2.2 1.5
FP 65 1814 763.6 510.8
co 2 10 6.3 2.7
prod 1 29 10.1 7.1
lnsize 4 8 6.4 0.8
lneff 6 10 8.4 1.2
Effort 460 26670 7678 7135

feature min max mean std

m
iy
az
ak
i

KLOC 7 390 63.4 71.9
SCRN 0 150 28.4 30.4
FORM 0 76 20.9 18.1
FILE 2 100 27.7 20.4
ESCRN 0 2113 473.0 514.3
EFORM 0 1566 447.1 389.6
EFILE 57 3800 936.6 709.4
Effort 6 340 55.6 60.1

m
ax
w
el
l

App 1 5 2.4 1.0
Har 1 5 2.6 1.0
Dba 0 4 1.0 0.4
Ifc 1 2 1.9 0.2
Source 1 2 1.9 0.3
Telon. 0 1 0.2 0.4
Nlan 1 4 2.5 1.0
T01 1 5 3.0 1.0
T02 1 5 3.0 0.7
T03 2 5 3.0 0.9
T04 2 5 3.2 0.7
T05 1 5 3.0 0.7
T06 1 4 2.9 0.7
T07 1 5 3.2 0.9
T08 2 5 3.8 1.0
T09 2 5 4.1 0.7
T10 2 5 3.6 0.9
T11 2 5 3.4 1.0
T12 2 5 3.8 0.7
T13 1 5 3.1 1.0
T14 1 5 3.3 1.0
Dura. 4 54 17.2 10.7
Size 48 3643 673.3 784.1
Time 1 9 5.6 2.1
Effort 583 63694 8223 10500

feature min max mean std

de
sh
ar
na
is

TeamExp 0 4 2.3 1.3
MngExp 0 7 2.6 1.5
Length 1 36 11.3 6.8
Trans.s 9 886 177.5 146.1
Entities 7 387 120.5 86.1
AdjPts 73 1127 298.0 182.3
Effort 546 23940 4834 4188

ki
tc
he
nh

am

code 1 6 2.1 0.9
type 0 6 2.4 0.9
duration 37 946 206.4 134.1
fun_pts 15 18137 527.7 1522
estimate 121 79870 2856 6789
esti_mtd 1 5 2.5 0.9
Effort 219 113930 3113 9598

ch
in
a

ID 1 499 250.0 144.2
AFP 9 17518 486.9 1059
Input 0 9404 167.1 486.3
Output 0 2455 113.6 221.3
Enquiry 0 952 61.6 105.4
File 0 2955 91.2 210.3
Interface 0 1572 24.2 85.0
Added 0 13580 360.4 829.8
changed 0 5193 85.1 290.9
Deleted 0 2657 12.4 124.2
PDR_A 0 84 11.8 12.1
PDR_U 0 97 12.1 12.8
NPDR_A 0 101 13.3 14.0
NPDU_U 0 108 13.6 14.8
Resource 1 4 1.5 0.8
Dev.Type 0 0 0.0 0.0
Duration 1 84 8.7 7.3
N_effort 31 54620 4278 7071
Effort 26 54620 3921 6481

hyperparameter-optimization-via-configuration tools has not pre-
viously been explored in the literature. Also, prior to this paper,
such optimizers have not been used for effort estimation.

FLASH is a sequential model-based optimizer [3] (also known in
the machine learning literature as an active learner [13] or, in the
statistics literature as optimal experimental design [44]). No matter
whatever the name is, the idea behind it is the same: reflect on the
model built so far to find the next best example to evaluate. To
tune a learning algorithm, FLASH explores N possible tunings as
follows:

(1) Set the evaluation budget b. Based on prior work [42], we
used b = 200.

(2) Run the learning algorithm with n = 20 to randomly select
tunings.

(3) Build an archive of n examples holding pairs of parameter
settings and their resulting performance scores.

(4) Using that archive, learn a surrogate to predicts performance.
As per the methods of Nair et al. [42], our surrogates come
from CART [32].

(5) Use the surrogate to guess M performance scores where
M < N andM ≫ n parameter settings. Note that this step is
very fast because all required is to runM vectors downwards
some very small CART trees.

(6) use a selection function to select the most “interesting” set-
ting. We use the setting whose prediction has the smallest
predicted error.

(7) Collect performance scores by evaluating “interesting” using
the data miners. Set b = b − 1.

(8) Add “interesting” to archive. If b > 0, goto step 4.
(9) Else, halt.
In summary, given what we already know about the tunings

(represented in a CART tree), FLASH finds the potentially best
tunings (in Step 6); then evaluate the performance (in Step 7); then
update the model with the results of that evaluation.

3 EMPIRICAL STUDY
3.1 Data
To evaluate the proposed ROME framework comprehensively, we
test it out on both COCOMO-style data and non COCOMO-style

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2020, May 23-29, 2020, Seoul, South Korea Xia et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 4: Descriptive Statistics of the Github data sets, for details of each feature, see tiny.cc/condatadetail. Terms in red are
removed from this study, for reasons discussed in the text.

feature min max mean std

ja
va
_i
ni
t

LOC 5 31 14.3 7.5
EI 39 450 186.6 136.8
EO 100 2307 999.1 589.6
AFP 97 2284 993.9 597.4
APEX 39 450 186.6 136.8
LPEX 100 2307 999.1 589.6
FILES 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

w
eb
sh
op

_i
ni
t LOC 5 31 14.3 7.5

EI 39 450 186.6 136.8
EO 100 2307 999.1 589.6
AFP 97 2284 993.9 597.4
APEX 39 450 186.6 136.8
LPEX 100 2307 999.1 589.6
FILES 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

feature min max mean std

ja
va
_i
nc
re

LOC 5 31 14.3 7.5
EI 39 450 186.6 136.8
EO 100 2307 999.1 589.6
AFP 97 2284 993.9 597.4
APEX 39 450 186.6 136.8
LPEX 100 2307 999.1 589.6
FILES 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

w
eb
sh
op

_i
nc
re LOC 5 31 14.3 7.5

EI 39 450 186.6 136.8
EO 100 2307 999.1 589.6
AFP 97 2284 993.9 597.4
APEX 39 450 186.6 136.8
LPEX 100 2307 999.1 589.6
FILES 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

feature min max mean std

ja
va
_fi

na
l LOC 5 31 14.3 7.5

EI 39 450 186.6 136.8
EO 100 2307 999.1 589.6
AFP 97 2284 993.9 597.4
APEX 39 450 186.6 136.8
LPEX 100 2307 999.1 589.6
FILES 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

w
eb
sh
op

_fi
na
l LOC 5 31 14.3 7.5

EI 39 450 186.6 136.8
EO 100 2307 999.1 589.6
AFP 97 2284 993.9 597.4
APEX 39 450 186.6 136.8
LPEX 100 2307 999.1 589.6
FILES 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

data. For COCOMO-style data, we include 216 projects from the
SEACRAFT repository2; In Table 2, we list a sample of our data.
This data set has been widely used to evaluate effort estimation
methods for COCOMO-sytle data, which serves the same purpose to
compare our proposed framework with the COCOMO-II procedure.

To test how ROME performs on non COCOMO data, we use 945
classic effort projects from the SEACRAFT, plus data collected from
446 projects on Github by Qi et al. [47] from Github, separately. See
Table 3 and Table 4.

Note that some features of these non COCOMO style data sets are
not used in our experiment because they are (1) naturally irrelevant
to their effort values (e.g., ID, Syear), (2) unavailable at the prediction
phase (e.g., duration, LOC), (3) highly correlated or overlap to each
other (e.g., raw function point and adjusted function points). A
data cleaning process is applied to solve this issue. Those removed
features are highlighted as italic in Table 3 and Table 4.

3.2 Experimental Rig
In our experiments, we used a M*N-way cross-validation to split
training and testing data for the estimators. That is, in M times,
shuffle the data randomly (using a different random number seed)
then divide the data into N bins. For i ∈ N , bin i is used to test a
model build from the other bins. Following the advice of Nair et
al. [41], we use N = 3 andM = 20 for our effort data sets.

As a procedural detail, first we divided the data and then we
applied the treatments. That is, all treatments saw the same training
and test data.

In this experiment, we do not tune ATLM or LP4EE since they
were designed to be used “off-the-shelf” (Whigham et al. [63] de-
clare that one of ATLM’s most important features is that it does not
need tuning). We also do not tune SVR and RF since we treat them
as baseline algorithm-based methods in our benchmarks (i.e. use de-
fault settings in scikit-learn for these algorithms). Here, we add KNN
and CART with default settings, since these methods often appear
in effort estimation literature [28, 37, 51, 52]. As to COCOMO-II, we
applied Boehm’s local calibration procedure [7] on the training data
to adjust the (a,b) parameters of Equation 1. Lastly, we compared
the performance of our optimizer FLASH with that of Differential
Evolution [60]. Using advice from Storn and Fu et al. [19, 60], for
DE we use {np, g, cr, generations} = {20, 0.75, 0.3, 10}.

2http://tiny.cc/seacraft

3.3 Performance Metrics
The results from each test set are evaluated in terms magnitude
of the relative error (MRE) and Standardized Accuracy (SA). MRE
is defined in terms of AR, the magnitude of the absolute residual.
This is computed from the difference between predicted and actual
effort values:

AR = |actuali − predictedi |
MRE is the magnitude of the relative error calculated by expressing
AR as a ratio of actual effort:

MRE =
|actuali − predictedi |

actuali
MRE is criticized by some researchers as it is biased towards

error underestimations [16, 27, 29, 46, 54, 59]. Nevertheless, we use
it here since there exists known baselines for human performance
in effort estimation expressed in terms of MRE [39].

Because of the issues with MRE, some researchers prefer the
use of other (more standardized) measures, such as Standardized
Accuracy (SA) [31, 55]. SA is based on Mean Absolute Error (MAE),
which is defined in terms of

MAE =
1
N

n∑
i=1

|RealEfforti − EstimatedEfforti |

where N is the number of projects used for evaluating the perfor-
mance. SA uses MAE as follows:

SA = (1 −
MAEPj

MAErдuess
) × 100

where MAEPj is the MAE of the approach Pj being evaluated and
MAErguess is the MAE of a large number (e.g., 1000 runs) of random
guesses. Over many runs, MAErguess will converge on simply using
the sample mean [55]. That is, SA represents how much better Pj is
than random guessing. Values near zero means that the prediction
model Pj is practically useless, performing little better than random
guesses [55].

Note that for MRE values, smaller are better and for SA values,
larger are better. We use these since there are advocates for both
in the literature. For example, Shepperd and MacDonell argue con-
vincingly for the use of SA [55] (as well as for the use of effect size
tests in effort estimation). Also in 2016, MRE was used by Sarro
et al. [52] to argue their estimators were competitive with human
estimates (which Molokken et al. [40] says lies within 30% and 40%
of the true value).

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Sequential Model Optimization for Software Process Control ICSE 2020, May 23-29, 2020, Seoul, South Korea

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 5: MRE (Magnitude of the Relative Error), lower values are better. For each row, the gray cells show the results that are
statistically significantly better than anything else on that row (as judged by a Scott-Knot bootstrap test plus an A12 effect size
test). If multiple treatments tied for “best”, then there will be multiple gray cells in a row.

Scikit-Learn Tuned New methods COCOMODataset KNN SVR CART RF CART_DE ROME ATLM LP4EE COCOMO-II
kemerer 0.56 0.59 0.55 0.50 0.32 0.37 0.76 0.54 N/A
albrecht 0.45 0.56 0.53 0.46 0.32 0.33 1.40 0.44 N/A
isbsg10 0.73 0.72 0.74 0.78 0.59 0.62 1.27 0.75 N/A
finnish 0.64 0.74 0.57 0.57 0.48 0.42 0.87 0.63 N/A
miyazaki 0.47 0.37 0.47 0.46 0.32 0.32 0.37 0.33 N/A
maxwell 0.56 0.56 0.52 0.51 0.38 0.36 2.82 0.51 N/A
desharnais 0.50 0.48 0.49 0.46 0.35 0.35 0.54 0.38 N/A
kitchenham 0.39 0.60 0.49 0.43 0.38 0.34 1.06 0.38 N/A

classic

china 0.64 0.71 0.71 0.69 0.64 0.61 0.48 0.45 N/A

cocomo10 0.67 0.86 0.33 0.30 0.30 0.28 2.49 0.32 0.60
cocomo81 0.93 0.89 0.77 0.76 0.65 0.64 3.37 0.65 0.49cocomo
nasa93 0.70 0.84 0.42 0.41 0.42 0.40 0.90 0.38 0.61

java_init 0.52 0.65 0.33 0.32 0.28 0.28 0.67 0.31 N/A
java_incre 0.62 0.72 0.42 0.41 0.32 0.28 0.45 0.33 N/A
java_final 0.50 0.64 0.31 0.31 0.28 0.24 0.53 0.31 N/A
webshop_init 0.41 0.43 0.50 0.40 0.27 0.28 0.67 0.25 N/A
webshop_incre 0.44 0.44 0.44 0.40 0.28 0.28 0.53 0.38 N/A

contemporary

webshop_final 0.46 0.45 0.52 0.44 0.28 0.28 0.66 0.41 N/A

Table 6: SA (Standard Accuracy), higher values are better. Same format at Table 5; i.e. best results on are shown in gray.

Scikit-Learn Tuned New methods COCOMODataset KNN SVR CART RF CART_DE ROME ATLM LP4EE COCOMO-II
kemerer 0.38 0.28 0.42 0.41 0.55 0.43 0.30 0.40 N/A
albrecht 0.51 0.30 0.41 0.49 0.59 0.65 0.34 0.47 N/A
isbsg10 0.28 0.25 0.20 0.22 0.33 0.30 0.30 0.22 N/A
finnish 0.40 0.24 0.42 0.44 0.49 0.54 0.41 0.39 N/A
miyazaki 0.45 0.41 0.41 0.46 0.53 0.53 0.50 0.52 N/A
maxwell 0.39 0.30 0.37 0.44 0.51 0.55 -1.07 0.52 N/A
desharnais 0.44 0.43 0.39 0.46 0.53 0.53 0.37 0.48 N/A
kitchenham 0.47 0.32 0.34 0.41 0.40 0.44 -0.03 0.52 N/A

classic

china 0.28 0.21 0.12 0.21 0.27 0.30 0.12 0.32 N/A

cocomo10 0.22 0.14 0.52 0.59 0.59 0.61 -0.13 0.29 0.30
cocomo81 0.10 0.05 0.18 0.15 0.27 0.25 -1.14 0.20 0.27cocomo
nasa93 0.08 0.14 0.36 0.37 0.36 0.41 0.34 0.41 0.30

java_init 0.37 0.30 0.48 0.51 0.59 0.57 0.33 0.58 N/A
java_incre 0.35 0.25 0.53 0.49 0.54 0.63 0.37 0.61 N/A
java_final 0.43 0.30 0.57 0.57 0.62 0.67 0.41 0.62 N/A
webshop_init 0.51 0.48 0.45 0.49 0.59 0.59 0.36 0.58 N/A
webshop_incre 0.53 0.43 0.56 0.57 0.64 0.67 0.49 0.65 N/A

contemporary

webshop_final 0.47 0.44 0.49 0.52 0.61 0.61 0.44 0.58 N/A

3.4 Statistical Methods
From the cross-valuations, we report themedian value, which is the
50th percentile of the test scores seen in the M*N results. For each
data set, the results from a M*N-way are sorted by their median
value, then ranked using the Scott-Knott test recommended for
ranking effort estimation experiments byMittas et al. in TSE’13 [38].

Scott-Knott is a top-down bi-clustering method that recursively
divides sorted treatments. Division stops when there is only one
treatment left or when a division of numerous treatments generates
splits that are statistically indistinguishable. To judge when two sets
of treatments are indistinguishable, we use a conjunction of both a
95% bootstrap significance test [15] and a A12 test for a non-small
effect size difference in the distributions [37]. These tests were used

since their non-parametric nature avoids issues with non-Gaussian
distributions.

4 RESULTS
In this section, we present the experimental results. To answer the
questions raised in Section 3, we conducted our experiments in the
following sections:

• Compare performance of ROME with other methods on
COCOMO-style data, classic effort data and Agile data sets
collected from Github.

• Look into the internal structure of ROME and count the
feature node in the tree it built.

RQ1: Is effort estimation effective for classicwaterfall and
contemporary agile projects?

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSE 2020, May 23-29, 2020, Seoul, South Korea Xia et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 7: How often is each treatment seen to be best in Ta-
ble 5 and Table 6.

Rank Method Win Times
1 CART_FLASH (ROME) 33/36
2 CART_DE 24/36
3 LP4EE 15/36
4 ATLM 3/36
5 RF 2/36
5 KNN 2/36
6 CART 1/36
7 SVR 0/36

To find if effort estimation method is effective, we ran ROME
on both classic waterfall data sets and contemporary agile data
sets. The performance value, in terms of MRE, is shown in Table 5.
Recall that Sarro et al. argued that effective software projects have
predictions of effort lie 0.3 and 0.4 of the actual value [52]. As
can be observed, ROME obtained MRE value less than 0.40 in 15
out of all 18 cases. Also, in terms of applicability to contemporary
methods, it is significant to note that all the MREs seen in the
contemporary projects are under 0.30. That is, with these results,
we can recommend ROME to the current practice, especially for
the current contemporary agile projects. Overall:

Lesson1: Effort estimation is effective on both classic water-
fall projects and contemporary agile projects.

In terms of the practicality of effort estimation research, this
is a landmark result since it means that decades of research into
effort estimation of classic waterfall projects can now be applied to
contemporary agile software systems.

RQ2: Does ROME have better performance than existing
estimation methods?

To answer this question, we ran ROME and the other baseline
methods LP4EE, ATLM, KNN, SVR, CART, RF, on classic waterfall
data sets and contemporary agile data sets. MRE and SA scores
for all our methods are shown in Table 5 and Table 6. Note the
COCOMO-II is only applied to the COCOMO data sets (since the
other data sets do not have the features needed by COCOMO).

In Table 5 and Table 6, each row shows results from a different
data set. For each row, the gray cells show the results that are
statistically significantly better than anything else on that row (as
judged by a Scott-Knot bootstrap test plus an A12 effect size test).
If multiple treatments tied for “best”, then there will be multiple
gray cells in a row. In those tables, better methods have more gray
cells. Table 7 tallies the gray cells counts for all methods.

From the tallies of Table 7, we conclude that KNN, SVR, CART
(untuned), RF and ATLM most often perform worse than anything
else. While LP4EE does best for standard accuracy, in terms of MRE,
it is not competitive against the tuned methods (CART, tuned by DE
or FLASH). As to DE tuning CART, it performs better than LP4EE,
but not as good as ROME (CART tuned by FLASH). In summary:

Lesson2: ROME generated best estimates in most cases.

0

100

200

300

400

FILES AFP EO LTEX EI APEX

website_final website_incre website_init
java_final java_incre java_init

Figure 3: Selected features on Github data sets (for SA)

RQ3: When we have new effort data sets, what configura-
tions to use for effort estimation tasks?

When we discuss this work with our industrial colleagues, they
want to know “the bottom line”; i.e. what they should use or, at
the very least, what they should not use. If the hyperparameter
tunings for effort estimators found by this paper were nearly always
the same, then this study could conclude by recommending better
values for default settings. This would be a most promising result
since, in future when new data arrives, the complexities of tuning
in ROME framework would not be needed.

Unfortunately, this turns out not to be the case. Table 8 shows the
percent frequencies with which some tuning decision appears in
our M*N-way cross validations (this table uses results from FLASH
tuning CART since, as shown below, this usually leads to best
MRE results). Note that in those results it is not true that across
most data sets there is a setting that is usually selected (though
min_samples_leaf less than 3 is often a popular setting). Accord-
ingly, from Table 8, we concludes that there is much variations of
the best tunings.

This finding is quite aligned with Fu et al. [19], where for soft-
ware defect predictors, no best tunings for all tasks. Therefore,
we always prefer to have a fast hyperparameter tuning technique
to quickly find the best tuning for the current tasks. Our ROME
framework is such of tool to use.

Since there are no “best” default settings for all, based on the
results of Table 7, for similar effort estimation tasks, we say:

Lesson3: There is no clear pattern in what configurations are
needed. Hence, model optimization needs to be repeated for
each new data set.

RQ4:Whenwe apply ROME on effort data sets, can it help
us to find the most important features of the data?

When CART’s tuning parameters were described in §2.2.3, it
was observed that when CART is run multiple times (with different
hyperparameters) then it can be used to gauge the value of using a
particular feature.

Figure 3 and Figure 4 show counts of how often a feature ap-
peared in the trees found by ROME from the above experiments.
Here, we only show data from the classic COCOMO and contem-
porary Github projects since the classic non-COCOMO data sets
all use different features.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Sequential Model Optimization for Software Process Control ICSE 2020, May 23-29, 2020, Seoul, South Korea

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 8: Tunings discovered by hyperparameter selections (CART+FLASH, MRE results). Cells in this table show the percent
of times a particular choice was made. White text on black denotes choices made in more than 50% of tunings.

%max_features max_depth min_sample_split min_samples_leaf
(selected at random; (of trees) (continuation (termination
100% means “use all”) criteria) criteria)
25% 50% 75% 100% ≤03 ≤06 ≤09 ≤12 ≤5 ≤10 ≤15 ≤20 ≤03 ≤06 ≤09 ≤12

cocomo10 23 38 18 21 42 45 11 02 85 11 04 00 79 12 06 03

cocomo81 26 33 18 23 52 22 18 08 73 25 02 00 78 17 04 01

nasa93 31 27 28 24 47 29 18 06 55 21 11 13 53 27 14 06

java_init 13 14 57 26 36 32 24 08 64 19 12 05 71 21 07 01

java_incre 21 13 36 30 29 39 22 10 42 26 19 13 83 12 02 03

java_final 19 16 32 33 24 45 25 06 44 21 18 17 72 11 12 05

webshop_init 33 21 26 20 57 37 05 01 38 36 13 13 41 27 23 09

webshop_incre 26 16 27 31 31 30 23 16 41 22 23 16 44 35 17 04

webshop_final 42 16 22 20 33 22 17 28 59 27 09 05 62 31 04 03

KEY: 10 20 30 40 50 60 70 80 90 100 %

0

50

100

150

200

lo
c

tim
e

tu
rn

re
ly

da
ta

to
ol

ve
xp

st
or

cp
lx

le
xp

ae
xp

m
od

p

vi
rt

sc
ed

ac
ap

pc
ap

cocomo10 nasa93 cocomo81

Figure 4: Selected feature on COCOMO data sets (for SA)

In Figure 3, the maximum number of times a feature can appear
is 360 times (6 data sets, 3 way cross-validation, 20 repeats). One size
attribute (FILES) appears very frequently but it is not often picked
just by itself (we know this from the max_depth results of Table 8
where more often than not, CART used trees that held more than
three features). But as to what other features were combined with
FILES, that is clear. Looking at the AFP, EO, LTEX, EI, APEX results
of Figure 3, we see that every other feature got used, sometimes.

A similar pattern appears in Figure 4. In this figure, the maximum
number of times a feature can appear is 180 (3 data sets, 3 way cross-
validation, 20 repeats). Once again, a size attribute (LOC) appears
very frequently. But just as before, we see that every other feature
got used, sometimes. Hence we say:

Lesson4: There are no “best” set of effort estimation features
since each project uses these features in a different way

As mentioned in the introduction, the results from RQ3 and RQ4
clearly deprecate the use of off-the-shelf estimation tools. Practi-
tioners should use tools like ROME to find the features/modeling
options that work best for their local data.

5 THREATS TO VALIDITY
Internal Bias: Many of our methods contain stochastic random
operators. To reduce the bias from random operators, we repeated
our experiment in 20 times and applied statistical tests to remove
spurious distinctions.

Parameter Bias: For other studies, this is a significant question
since (as shown above) the settings to the control parameters of the
learners can have a positive effect on the efficacy of the estimation.
That said, recall thatmuch of the technology of this paper concerned
methods to explore the space of possible parameters. Hence we
assert that this study suffers much less parameter bias than other
studies.

Sampling Bias: While we tested ROME on both old COCOMO-
Style data sets, classic effort data sets and newly collected open
source data sets, it would be inappropriate to conclude that ROME
tuning always perform better than others methods for other data
sets. As researchers, what we can do to mitigate this problem is to
carefully document our methods, publish our tools as open source
software packages, and support the research community as they
try to repeat/improve/refute our results on a broader set of data.

Another sampling bias comes from our choice of effort estimation
technologies. Here, we compared ROME against technologies that
are often seen in the effort estimation literature. We also took care
to include in our comparisons two new and prominent methods
recently published in TOSEM. But even with all that, this study has
not explored all the effort estimation methods seen in the recent
literature. To some extent, that was because no single paper can
explore all algorithms. But also, sometimes we choose not to explore
certain algorithms since they are out-of-scope for this study. For
example, apart from LP4EE, Sarro et al. also offer another estimation
method based on genetic algorithms called CoGEE [52]. That tool
optimizes for multiple goals so it would not be a fair comparison
to the tools used here (in defense of that decision, we note that
the authors do not compare LP4EE to CoGEE in their TOSEM’18
paper).

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE 2020, May 23-29, 2020, Seoul, South Korea Xia et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

6 CONCLUSIONS AND FUTUREWORK
Effort estimation methods need to support both classic waterfall
projects and contemporary agile projects. For something as complex
as the effort estimation of modern software projects, no single
method works best. Instead, best results come from trying out a
large number of candidate methods.

Sequential model-based optimization is an effective way to ex-
plore a range of configuration options for effort estimation. Our
sequential optimizer came from research into software configu-
ration. One of the new insights that leads to this paper was that
“configuration” is a synonym for “hyperparameter optimziation”.
Hence, hyperparameter-optimization-via-configuration tools has
not previously been explored in the literature. Also, prior to this
paper, such optimizers have not been used for effort estimation.

When this optimizerwas applied to 1161 classic waterfall projects
and 446 contemporary agile projects we found that:

• RQ1: we could successfully apply the same optimization
method to classic and contemporary projects. This is a sig-
nificant result since it means that decades of effort estimation
research can now be applied to contemporary agile systems.

• RQ2: those optimizations yielded better estimates than other
methods studied here.

• RQ3, RQ4: different data sets need different hyperparam-
eter optimizations and use different features. This means
that we should deprecate the use of off-the-shelf estimation
tools. Practitioners should use tools like ROME to find the
features/modeling options that work best for their local data.

To the best of our knowledge, this is the largest effort estimation
experiment yet reported.

As to future work, there is much to do. Clearly, we need to
try other learners (e.g. neural nets, Bayesian learners or gradient
boosting tree) and other optimizers (e.g. SMAC [33] or vZ [6]).

Also, now that we can use Github data for effort estimation, it is
time to scale this analysis to the large number of projects available
at that source. In the study of this paper, our RQ3, RQ4 results
found no stability in the features used or hyperparameter options
selected. We conjecture that such stable conclusions may exist– if
we look at much more project data.

More generally, in the study of effort estimation, most prior work
only focus on comparisons of new estimation methods, but very
less studies comparing latest technique with old classic models (e.g.
COCOMO). Given the results of this paper, it is now important to
validate newly proposed methods against different type of effort
project data sets (e.g. Waterfall and Agile). Further, if we are mining
current Github projects, we might be able to use the methods of
this paper to go beyond mere effort estimation to look more predict
better for other measures of project health (e.g. number of new
contributors each month).

REFERENCES
[1] Oddur Benediktsson, Darren Dalcher, Karl Reed, and Mark Woodman. 2003.

COCOMO-based effort estimation for iterative and incremental software devel-
opment. Software Quality Journal 11, 4 (2003), 265–281.

[2] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-parameter
Optimization. J. Mach. Learn. Res. 13, 1 (Feb. 2012), 281–305.

[3] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Al-
gorithms for hyper-parameter optimization. In Advances in neural information
processing systems. 2546–2554.

[4] Andre Biedenkapp, Katharina Eggensperger, Thomas Elsken, Stefan Falkner,
Matthias Feurer, Matilde Gargiani, Frank Hutter, Aaron Klein, Marius Lindauer,
Ilya Loshchilov, et al. 2018. Hyperparameter Optimization. Artificial Intelligence
1 (2018), 35.

[5] Christian Bird and Nachiappan Nagappan. 2012. Who? where? what? examining
distributed development in two large open source projects. In 2012 9th IEEE
Working Conference on Mining Software Repositories (MSR). IEEE, 237–246.

[6] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. 2015. νZ-an optimizing
SMT solver. In International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems. Springer, 194–199.

[7] Barry Boehm, Chris Abts, A Winsor Brown, Sunita Chulani, Bradford K Clark,
Ellis Horowitz, Ray Madachy, Donald J Reifer, and Bert Steece. 2000. Cost
estimation with COCOMO II. ed: Upper Saddle River, NJ: Prentice-Hall (2000).

[8] B. W. Boehm. 1981. Software engineering economics. Prentice-Hall.
[9] Houssem Ben Braiek, Foutse Khomh, and Bram Adams. 2018. The Open-closed

Principle of Modern Machine Learning Frameworks. In Proceedings of the 15th
International Conference on Mining Software Repositories (MSR ’18). ACM, New
York, NY, USA, 353–363. https://doi.org/10.1145/3196398.3196445

[10] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[11] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector

machines. ACM transactions on intelligent systems and technology (TIST) 2, 3
(2011), 27.

[12] K. Cowing. 2002. NASA to Shut Down Checkout & Launch Control System.
http://www.spaceref.com/news/viewnews.html?id=475. (2002).

[13] S. Das, W. Wong, T. Dietterich, A. Fern, and A. Emmott. 2016. Incorporating
Expert Feedback into Active Anomaly Discovery. In 2016 IEEE 16th International
Conference on Data Mining (ICDM). 853–858. https://doi.org/10.1109/ICDM.2016.
0102

[14] Ernest A Edmonds. 1974. A process for the development of software for non-
technical users as an adaptive system. General Systems 19 (1974), 215–218.

[15] B. Efron and J. Tibshirani. 1993. Introduction to bootstrap. Chapman & Hall.
[16] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. 2003. A simulation study of

the model evaluation criterion MMRE. TSE 29, 11 (2003), 985–995.
[17] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. 2017.

Forward and reverse gradient-based hyperparameter optimization. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70. JMLR. org,
1165–1173.

[18] Peter I Frazier. 2018. A tutorial on Bayesian optimization. arXiv preprint
arXiv:1807.02811 (2018).

[19] W. Fu, T. Menzies, and X. Shen. 2016. Tuning for software analytics: Is it really
necessary? IST Journal 76 (2016), 135–146.

[20] Wei Fu, Vivek Nair, and Tim Menzies. 2016. Why is differential evolution better
than grid search for tuning defect predictors? arXiv preprint arXiv:1609.02613
(2016).

[21] S. Germano and A. Hufford. 2016. Finish Line to Close 25% of Stores and Replace
CEO Glenn Lyon. https://www.wsj.com/articles/finish-line-to-close-25-of-stores-
swaps-ceo-1452171033. (2016).

[22] Melissa A Hardy. 1993. Regression with dummy variables. Vol. 93. Sage.
[23] V. Hazrati. 2011. IT Projects: 400% Over-Budget and only 25% of Benefits Realized.

https://www.infoq.com/news/2011/10/risky-it-projects. (2011).
[24] D Ross Jeffery and G Low. 1990. Calibrating estimation tools for software devel-

opment. Software Engineering Journal 5, 4 (1990), 215–221.
[25] M. Jørgensen and T. M. Gruschke. 2009. The impact of lessons-learned sessions

on effort estimation and uncertainty assessments. TSE 35, 3 (2009), 368–383.
[26] C. F. Kemerer. 1987. An empirical validation of software cost estimation models.

CACM 30, 5 (1987), 416–429.
[27] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd. 2001. What

accuracy statistics really measure. IEEE Software 148, 3 (2001), 81–85.
[28] E. Kocaguneli, T. Menzies, A. Bener, and J.W. Keung. 2012. Exploiting the essential

assumptions of analogy-based effort estimation. TSE 38, 2 (2012), 425–438.
[29] M. Korte and D. Port. 2008. Confidence in software cost estimation results based

on MMRE and PRED. In PROMISE’08. 63–70.
[30] Rahul Krishna, Amritanshu Agrawal, Akond Rahman, Alexander Sobran, and

Tim Menzies. 2018. What is the connection between issues, bugs, and enhance-
ments?: Lessons learned from 800+ software projects. In Proceedings of the 40th
International Conference on Software Engineering: Software Engineering in Practice.
ACM, 306–315.

[31] W. B. Langdon, J. Dolado, F. Sarro, and M. Harman. 2016. Exact mean absolute
error of baseline predictor, MARP0. IST 73 (2016), 16–18.

[32] R. Olshen C. Stone L.Breiman, J. Friedman. 1984. Classification and Regression
Trees. Wadsworth.

[33] Marius Lindauer and FrankHutter. 2017. Warmstarting ofModel-basedAlgorithm
Configuration. CoRR abs/1709.04636 (2017). arXiv:1709.04636 http://arxiv.org/
abs/1709.04636

[34] S. McConnell. 2006. Software estimation: demystifying the black art. Microsoft
press.

[35] Emilia Mendes and Nile Mosley. 2002. Further investigation into the use of
CBR and stepwise regression to predict development effort for web hypermedia

10

https://doi.org/10.1145/3196398.3196445
https://doi.org/10.1109/ICDM.2016.0102
https://doi.org/10.1109/ICDM.2016.0102
http://arxiv.org/abs/1709.04636
http://arxiv.org/abs/1709.04636
http://arxiv.org/abs/1709.04636

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Sequential Model Optimization for Software Process Control ICSE 2020, May 23-29, 2020, Seoul, South Korea

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

applications. In ESEM’02. IEEE, 79–90.
[36] Tim Menzies, Markland Benson, Ken Costello, Christina Moats, Melissa Northey,

and Julian Richardson. 2008. Learning better IV&V practices. Innovations in
Systems and Software Engineering 4, 2 (01 Jun 2008), 169–183. https://doi.org/10.
1007/s11334-008-0046-3

[37] T. Menzies, Y. Yang, G. Mathew, B.W. Boehm, and J. Hihn. 2017. Negative Results
for Software Effort Estimation. ESE 22, 5 (2017), 2658–2683. https://doi.org/10.
1007/s10664-016-9472-2

[38] N. Mittas and L. Angelis. 2013. Ranking and Clustering Software Cost Estimation
Models through a Multiple Comparisons Algorithm. IEEE Trans SE 39, 4 (April
2013), 537–551. https://doi.org/10.1109/TSE.2012.45

[39] K. Molokken and M. Jorgensen. 2003. A review of software surveys on software
effort estimation. In 2003 International Symposium on Empirical Software Engi-
neering, 2003. ISESE 2003. Proceedings. 223–230. https://doi.org/10.1109/ISESE.
2003.1237981

[40] Kjetil Molokken and Magne Jorgensen. 2003. A review of software surveys on
software effort estimation. In Empirical Software Engineering, 2003. ISESE 2003.
Proceedings. 2003 International Symposium on. IEEE, 223–230.

[41] V. Nair, A. Agrawal, J. Chen, W. Fu, G. Mathew, T. Menzies, L. L. Minku, M.
Wagner, and Z. Yu. 2018. Data-Driven Search-based Software Engineering. In
MSR.

[42] V. Nair, Z. Yu, T. Menzies, N. Siegmund, and S. Apel. 2018. Finding Faster
Configurations using FLASH. IEEE Transactions on Software Engineering (2018),
1–1. https://doi.org/10.1109/TSE.2018.2870895

[43] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. 1996. Applied linear
statistical models. Vol. 4. Irwin Chicago.

[44] Fredrik Olsson. 2009. A literature survey of active machine learning in the context
of natural language processing. (2009).

[45] Martin Pelikan. 1999. A simple implementation of the Bayesian optimization
algorithm (BOA) in C++(version 1.0). Illigal Report 99011 (1999).

[46] D. Port and M. Korte. 2008. Comparative studies of the model evaluation criterion
mmre and pred in software cost estimation research. In ESEM’08. 51–60.

[47] Fumin Qi, Xiao-Yuan Jing, Xiaoke Zhu, Xiaoyuan Xie, Baowen Xu, and Shi Ying.
2017. Software effort estimation based on open source projects: Case study of
Github. Information and Software Technology 92 (2017), 145–157.

[48] Gregorio Robles, JesúsMGonzález-Barahona, Carlos Cervigón, Andrea Capiluppi,
and Daniel Izquierdo-Cortázar. 2014. Estimating development effort in free/open
source software projects by mining software repositories: a case study of open-
stack. In Proceedings of the 11th Working Conference on Mining Software Reposito-
ries. ACM, 222–231.

[49] K. Roman. 2016. Federal government’s Canada.ca project ‘off the rails’
https://www.cbc.ca/news/politics/canadaca-federal-website-delays-1.3893254.
(2016).

[50] W Royce. 1970. The software lifecycle model (Waterfall Model). In Proc. WEST-
CON, Vol. 314.

[51] Federica Sarro and Alessio Petrozziello. 2018. Linear Programming as a Baseline
for Software Effort Estimation. ACM Transactions on Software Engineering and
Methodology (TOSEM) (2018).

[52] F. Sarro, A. Petrozziello, and M. Harman. 2016. Multi-objective software effort
estimation. In ICSE. ACM, 619–630.

[53] M. Shepperd. 2007. Software project economics: a roadmap. In 2007 Future of
Software Engineering. IEEE Computer Society, 304–315.

[54] M. Shepperd, M. Cartwright, and G. Kadoda. 2000. On building prediction systems
for software engineers. EMSE 5, 3 (2000), 175–182.

[55] M. Shepperd and S. MacDonell. 2012. Evaluating prediction systems in software
project estimation. IST 54, 8 (2012), 820–827.

[56] M. Shepperd and C. Schofield. 1997. Estimating software project effort using
analogies. TSE 23, 11 (1997), 736–743.

[57] Alaa F Sheta. 2006. Estimation of the COCOMO model parameters using genetic
algorithms for NASA software projects. Journal of Computer Science 2, 2 (2006),
118–123.

[58] I. Sommerville. 2010. Software engineering. Addison-Wesley.
[59] E. Stensrud, T. Foss, B. Kitchenham, and I. Myrtveit. 2003. A further empirical

investigation of the relationship of MRE and project size. ESE 8, 2 (2003), 139–161.
[60] R. Storn and K. Price. 1997. Differential evolution–a simple and efficient heuristic

for global optimization over cont. spaces. JoGO 11, 4 (1997), 341–359.
[61] A. Trendowicz and R. Jeffery. 2014. Software project effort estimation. Foundations

and Best Practice Guidelines for Success, Constructive Cost Model–COCOMO pags
(2014), 277–293.

[62] Dindin Wahyudin, Khabib Mustofa, Alexander Schatten, Stefan Biffl, and A
Min Tjoa. 2007. Monitoring the âĂĲhealthâĂİ status of open source web-
engineering projects. International Journal of Web Information Systems 3, 1/2
(2007), 116–139.

[63] P. A. Whigham, C. A. Owen, and S. G. Macdonell. 2015. A Baseline Model
for Software Effort Estimation. TOSEM 24, 3, Article 20 (May 2015), 11 pages.
https://doi.org/10.1145/2738037

11

https://doi.org/10.1007/s11334-008-0046-3
https://doi.org/10.1007/s11334-008-0046-3
https://doi.org/10.1007/s10664-016-9472-2
https://doi.org/10.1007/s10664-016-9472-2
https://doi.org/10.1109/TSE.2012.45
https://doi.org/10.1109/ISESE.2003.1237981
https://doi.org/10.1109/ISESE.2003.1237981
https://doi.org/10.1109/TSE.2018.2870895
https://doi.org/10.1145/2738037

	Abstract
	1 Introduction
	2 Background
	2.1 COCOMO
	2.2 Beyond COCOMO

	3 Empirical Study
	3.1 Data
	3.2 Experimental Rig
	3.3 Performance Metrics
	3.4 Statistical Methods

	4 Results
	5 Threats to Validity
	6 Conclusions and Future Work
	References

