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ABSTRACT
Many methods have been proposed to estimate how much effort
is required to build and maintain software. Much of that research
assumes a “classic” waterfall-based approach rather than contem-
porary agile projects. Also, much of that work tries to recommend
a single method– an approach that makes the dubious assumption
that one method can handle the diversity of software project data.

To address these drawbacks, we apply a configuration technique
called “ROME” (Rapid Optimizing Methods for Estimation), which
uses sequential model-based optimization to find what combination
of techniques works best for a particular data set. In this paper, we
test this method using data from 1161 classic waterfall projects and
446 contemporary agile projects (from Github).

We find that ROME achieves better performance (in terms of
magnitude of relative error and standardized accuracy) than ex-
isting state-of-the-art methods for both classic and contemporary
problems. From this work, we conclude that it is not best to rec-
ommend one method for estimation. Rather, it is better to search
through a wide range of different methods to find what works best
for local data.

To the best of our knowledge, this is the largest effort estimation
experiment yet attempted and the only one to test its methods on
classic and contemporary projects.

KEYWORDS
Effort Estimation, COCOMO, Hyperparameter Tuning, Regression
Trees, Sequential Model Optimization

1 INTRODUCTION
Estimating development effort can be difficult [26], and incorrect
estimates can harm the outcome of software projects [34, 35, 58, 61].
This is true for both classic waterfall projects and contemporary
agile projects. In the case of large government waterfall projects,
it is required that the proposed budget is double-checked by some
estimation model [37]. In the case of agile projects (where resources
are adjusted as the work progresses), when developers are forced
to build their software using too few resources, then the first thing
that is usually jettisoned is the software quality task [36]. When
monitoring for “project health”, the managers of large open source
distributions will shun such distressed projects (so that software
will not get widely used [62]).

Much of the prior work on effort estimation has focuses on classic
waterfall projects [1, 7, 56, 57] (where the estimate is required before
the project commences). There are many challenges with adapting
classic waterfall estimation to contemporary agile projects:

• Firstly, the goal of estimation has to change.
• Secondly, the way we select estimation models has to mature.

Submitted to ICSE’2020, August 23, 2019.

Regarding the goal of estimation, in classic waterfall estimation, the
goal is to get the budget right, before any work starts. However,
when estimating contemporary agile projects, the goal is different.
Some agile projects are fully staffed by large fluctuating volunteer
groups working in their spare time. For those groups, delivering
software is less a matter of project management as it is the enthusi-
asm of their user community for their product. But there are other
kinds of contemporary agile projects that do need good estima-
tion methods. Increasingly, commercial companies spend developer
salary to maintain and improve agile open source projects. Braiek et
al. document contemporary agile open source data mining products
that are developed by commercial companies as a way to attract
(and hold) more customers on their platforms [9]. Bird et al. report
the surprising finding that, certain high profile contemporary agile
projects are not built by a diverse open source community from
around the globe. Instead, that software is mostly updated at two
commercial sites during normal office hours [5]. Krishna et al. re-
port that IBM asked for help to adjust, on a month-to-month basis,
the staffing allocations for their suite of contemporary agile open
source tools (which IBM maintains for its client base) [30]. That is,
whereas classic waterfall projects need estimates of for future work,
the managers of these agile projects need estimates to know if their
current staff allocation is sufficient for the tasks at hand [48].

Regarding how we select estimation models, we note that as soft-
ware engineering gets more diverse, it becomes less and less likely
that any single estimation model will work across all those projects.
So instead of recommending a particular estimation model:

To find what works best for local data, we need ways to
survey a wide range of different estimation models.

For this surveying task, we recommend a new approach called
“ROME” (Rapid Optimizing Methods for Estimation), which uses
sequential model-based optimization to explore possible config-
urations for an effort estimator. In that process, the results from
exploring a few configurations are used to guess results across the
remaining configurations. The configuration that yields the best
guess (lowest error) is then actually applied, after which ROME
updates its knowledge of what is a good configuration.

To evaluate ROME, we ask these research questions:
RQ1: Is effort estimation effective for classic waterfall and

contemporary agile projects? Effort estimation needs to be ef-
fective to use in real-world software tasks. According to Sarro et
al, industrial competitive predictions of project effort usually lie
within 0.3 and 0.4 of the actual value [52]. We provide evidence that
the performance of our method in classic waterfall and contem-
porary agile data sets lies within the currently claimed industrial
human-expert-based thresholds, thereby demonstrating that:
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Lesson1: Effort estimation is effective on both classic water-
fall projects and contemporary agile projects.

RQ2: Does ROME have better performance than existing es-
timation methods? To answer this question, we study 1161 clas-
sic waterfall projects and 446 contemporary agile projects (from
Github). ROME’s performance is compared to some standard effort
estimators as well as two recent prominent systems: Whigham et
al.’s ATML tool from TOSEM’15 [63] as well as Sarro et al’s LP4EE
tool from TOMSE’18 [51]. We find that:

Lesson2: ROME generated best estimates in most cases.

Here, we measured “best” using the measures that are standard in
the field; i.e. MacDonell”s and Shepperd’s standardized accuracy
measure [55] and the MRE measure used by other researchers [52].

RQ3: When we have new effort data sets, what configura-
tions to use for effort estimation tasks? The tool we call ROME
is a combination of sequential model optimization and CART. For
pragmatic reasons, practitioners prefer a simpler rig. Hence we
are often asked if the optimizer is required or if, usually, certain
configurations generally work well across all data sets. To answer
this question, we counted what configurations were selected in the
experiments of this paper. In those counts, we saw:

Lesson3: There is no clear pattern in what configurations are
needed. Hence, model optimization needs to be repeated for
each new data set.

RQ4: When we apply ROME on effort data sets, can it help
us to find themost important features of the data?One feature
of ROME is that if a feature is not informative, it will be dropped in
the generated estimation model. Hence, when we say “most impor-
tant”, we really mean the “mostly used in our methods”. Looking
across our results, we find that certain size features are always used,
but always in combination with a wide variety of other features.
Hence:

Lesson4: There are no “best” set of effort estimation features
since each project uses these features in a different way.

Overall the contributions of this paper are:
• Our results clearly deprecate the use of off-the-shelf estima-
tion tools. Based on the RQ3 and RQ4 results, practitioners
should use tools like ROME to find the features/modeling
options that work best for their local data.

• To the best of our knowledge, this is the largest effort estima-
tion experiment yet reported (we use data from 1161 classic
waterfall projects and 446 contemporary agile projects).

• Using that data, this paper makes a clear demonstration that
effort estimation works well for classic waterfall projects as
well as contemporary agile projects. In terms of the practi-
cality of effort estimation research, this is a landmark result
since it means that decades of research into effort estimation
of classic waterfall projects can now be applied to contem-
porary agile software systems.

• We offer a new benchmark in effort estimation.
• We offer an open source version of ROME1.

1https://github.com/arennax/effort_rome

AgileWaterfall

Requirements

Design

Implementation

Verification

Maintenance

Planning

Testing

Feedback Designing

Release

Analyzing

Figure 1: Waterfall vs. Agile in Software Development

The last one is more of a system contribution than a research con-
tribution. Nevertheless, in terms of support the reproduction and
extension of our results, this contribution is useful.

The rest of this paper is structured as follows. The next section
discusses the history and different methods for effort estimation
tasks. This is followed by a description of our experimental data,
methods and the results. After that, a discussion section explores
open issues with this work.

2 BACKGROUND
Software effort estimation is the procedure to provide approximate
advice on how much human effort is required to plan, design and
develop a software project. Usually, this human effort is expressed
in terms of hours, days or months of human work. Since software
development is a highly dynamic and fluid process, any estimate
can only be approximate. Still, doing estimation is necessary since
it is important to allocate resources properly in software projects
to avoid waste. In some cases, improper allocation of funding can
cause a considerable waste of resource and time [12, 21, 23, 49].

Much effort estimationwork assumes a classic waterfall model [1,
7, 56, 57], first documented by Royce et al. in 1970 [50]. In this
approach, project teams move to the next phase of development
or testing if the previous step successfully completes. Estimation
happens before the coding started. Further, once the funds are
allocated, there is little opportunity to change that allocation.

Currently, the dominating software development style is agile
model (first documented by Edmonds et al. in 1974 [14]). Agile
uses continuous iteration of development and testing. Unlike the
Waterfall model, development and testing activities are concurrent.
This allows more communication between customers, developers,
managers, and testers. Figure 1 contrasts these two models.

Having said that the agile style dominates, we also hasten to add
that waterfall projects still exist and still needs effort estimation.
This is particularly true in the case of large government or military
software contracts, especially when their funding comes from legis-
lation. For such projects, funds have to be allocated before the work
starts. Also, as said in the introduction, for such large government
waterfall projects, it is often required that the proposed budget is
double-checked by some estimation model [37]. For these reasons:
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Effort estimation methods need to support both classic
waterfall projects and contemporary agile projects.

Effort estimation in software development can be categorized into
human-based and algorithm-based methods [28, 53]. In this pa-
per we focus on algorithm-based methods since they are preferred
when estimates have to be audited or debated (these methods are
explicit and available for inspection). To understand the range of
possible estimates, we can run the algorithm as many times as
necessary, which may not be applicable by using human-based
methods. Algorithm-based methods can have comparable perfor-
mance to human-based ones. Jørgensen et al. indicates that even
very strong advocates of human-based methods acknowledge that
algorithm-based methods are useful for learning the uncertainty
about particular estimates [25].

Algorithm-based methods have been widely explored in the past
few decades including classic model like COCOMO andmore recent
proposals like ATLM [63] and LP4EE [51].

2.1 COCOMO
COCOMO (the COnstructive COst MOdel) is a procedural cost
estimate model for software projects proposed by Boehm et al.
based on LOC (number of Lines of Code). It is often used as a
process of reliably predicting the various parameters associated
with making a project such as size, effort, cost, time and quality. In
late 1970s, Boehm was able to gather 63 project data points that
could be published and to extend the model to include alternative
development modes that covered other types of software such
as business data processing. The resulting model was called the
Constructive Cost Model, or COCOMO, and was published along
with the data in the book Software Engineering Economics [8]. In
this first version model (COCOMO-I), project attributes were scored
using just a few coarse-grained values (very low, low, nominal,
high, very high). These attributes are effort multipliers where a
off-nominal value changes the estimate by some number greater
or smaller than one. In COCOMO-I, all attributes (except KLOC)
effect effort linearly.

Boehm created a consortium for industrial organizations after
COCOMO was released. It collected information on 161 projects
from commercial, aerospace, government, and non-profit organi-
zations. Based on an analysis of those 161 projects, new attributes
called scale factors were added to the original model, which had an
exponential impact on effort. Using the new data, Boehm et al. de-
veloped COCOMO-II model that map the project descriptors (very
low, low, etc.) into the specific values [7]:

effort = a
∏
i

EMi ∗ KLOCb+0.01
∑
j SFj (1)

Inside this equation, a,b are the local calibration parameters (with
default values of 2.94 and 0.91). EM stands for effort multipliers,
and SF are scale factors. Boehm offers a simple linear time local
calibration procedure [7] to update these defaults using the local
training data. The calculated effortmeasures “development months”
where one month is 152 hours of work (and includes development
and management hours). For details about COCOMO attributes,
see tiny.cc/ccm_attr.

2.2 Beyond COCOMO
For modern software development, it is necessary to develop new
technique and make changes to improve COCOMO-style estima-
tion. Robles et al. report that more companies are turning to open
source software projects (e.g. Agile software projects on Github),
other than traditional waterfall style projects for their new business
strategy [48]. For old parametric estimating models like COCOMO,
Shepperd et al. found it is difficult to determine some of their fea-
tures for the estimations [53]. COCOMO measured software size
by using LOC (line of code), but this feature is not available dur-
ing the coding procedure, and it is difficult to make comparisons
between different programming languages that may take varying
numbers of statements to perform a given function. Jeffery et al. in-
dicated that parametric model like COCOMO need to be calibrated
to be used effectively in their study [24], which is another evidence
that old parametric estimating models like COCOMO may not be
appropriate for newer tasks.

2.2.1 ATLM. Automatically Transformed Linear Model (ATLM) is
a multiple linear regression model proposed byWhigham et al. [63].
It calculates the effort as:

effort = β0 +
∑
i

βi × ai + εi

where ai is explanatory attribute and εi is error to the actual value.
The prediction weight βi is determined using least square error
estimation [43]. Additionally, transformations are applied on the
attributes to further minimize the error in the model. In case of cate-
gorical attributes, the standard approach of “dummy variables" [22]
is applied. While, for continuous attributes, transformations such
as logarithmic, square root, or no transformation is employed such
that the skewness of the attribute is minimum.

It should be noted that, ATLM does not consider relatively com-
plex techniques like using model residuals, box transformations or
step-wise regression (which are standard) when developing a linear
regression model. The authors make this decision since they intend
ATLM to be a simple baseline model rather than the “best" model.

2.2.2 LP4EE. Linear Programming for Effort Estimation (LP4EE)
is a newly developed method by Sarro et al. [51], it aims to achieve
the best outcome from a mathematical model with a linear objective
function subject to linear equality and inequality constraints. The
feasible region is given by the intersection of the constraints and the
Simplex (linear programming algorithm) is able to find a point in the
polyhedron where the function has the smallest error in polynomial
time. In effort estimation problem, this model minimizes the Sum
of Absolute Residual (SAR), when a new project is presented to the
model, LP4EE predicts the effort as

effort = a1 ∗ x1 + a2 ∗ x2 + ... + an ∗ xn

where xi is the value of a given project feature and ai is the cor-
responding coefficient evaluated by linear programming. Sarro et
al. propose LP4EE as another baseline model for effort estimation
since it provides similar or more accurate estimates than ATLM
and is much less sensitive than ATLM to multiple data splits and
different cross-validation methods[51].
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2.2.3 Machine Learning-based Effort Estimators. Many machine
learning algorithms have been used for software effort estimation.
Random Forest [10] and Support Vector Regression [11] are such
instances of regression methods. Random Forest (RF) is an ensem-
ble learning method for regression (and classification) tasks that
builds a set of trees when training the model. To make the final
prediction , it uses the mode of the classes (classification) or mean
prediction (regression) of the individual trees. Support Vector Re-
gression (SVR) uses kernel functions to project the data onto a
new hyperspace where complex non-linear patterns can be simply
represented. Another learning approach is to use a K = 5 nearest-
neighbor method [56]. For each test instance, KNN then selects k
similar analogies out of a training set. The resultant prediction is
the the mean of the class value of those k neighbors.

Some algorithm-based estimators use regression trees such as
CART [32]. CART is a tree learner that divides a data set, then
recurses on each split. If data contains more than min_sample_split,
then a split is attempted. On the other hand, if a split contains no
more than min_samples_leaf, then the recursion stops. CART finds
the attributes whose ranges contain rows with least variance in
the number of defects. If an attribute ranges ri is found in ni rows
each with an effort variance of vi , then CART seeks the attribute
with a split that most minimizes

∑
i
(√
vi × ni/(

∑
i ni )

)
. For more

details on the CART parameters, see Table 1. Note that we choose
the tuning range by using advice from Fu et al. [19].

Table 1: CART’s parameters.

Parameter Type Default Tuning Range Description

max_feature numerical None [0.01, 1] Number of features to consider
when looking for the best split

max_depth numerical None [1, 12] The maximum depth of the
decision tree

min_sample_split numerical 2 [0, 20] Minimum samples required to
split internal nodes

min_sample_leaf numerical 1 [1, 12] Minimum samples required to
be at a leaf node

Before moving on from CART, we note a detail that will become
important when we discuss our third research question. Note that
decreasing max_depth and increasing min_sample_leaf will result
in smaller trees. In such smaller trees, few features will appear;
specifically, on those features that most minimize the standard
deviation of the target class. In the experimental rig described
below, many times, we will generate trees using different settings
to Table 1. By counting the the number of times a feature appears
in these trees, we can infer what features are the most important
to effort estimation.

2.2.4 Hyperparameter Optimization. Hyperparameters control the
algorithm policies of the learners. Choosing appropriate hyper-
parameters plays a critical role in the performance of machine
learning models. Tuning hyperparameters is the process of search-
ing the most optimal hyperparameter options for machine learning
models [4, 17]. Some popular methods to tune the hyperparameters
are grid search and differential evolution.

Grid search [3] is a technique that using brute force of all combi-
nations for hyperparameters. Although the Grid search method is
a simple algorithm to use, it suffers if data have high dimensional
space called the “curse of dimensionality”. Previous work has shown

Results

Optimizer

z

Learner

Testing Data

Stop 
Rule

Tuned Learner

Yes

No

Evaluate

Tu
n

in
g

Training/Validation 
Data

ROME

Figure 2: ROME’s architecture

that grid search might also miss important optimizations [20] or run
needlessly slowly since, often, only a few of the tuning parameters
really matter [2].

Differential evolution (DE) [60]. The premise of DE is that the
best way to mutate the existing tunings is to extrapolate between
current solutions. Three solutions a,b, c are selected at random.
For each tuning parameter k , at some probability cr , we replace
the old tuning xk with yk where yk = ak + f × (bk − ck ) where f
is a parameter controlling differential weight. The main loop of
DE runs over the population of size np, replacing old items with
new candidates (if new candidate is better). This means that, as the
loop progresses, the population is full of increasingly more valuable
solutions (which, in turn, helps extrapolation).

Bayesian optimization [45] works by assuming the unknown
function was sampled from a Gaussian Process and maintains a
posterior distribution for this function as observation are made.
However, it might not be well-suited for optimization over contin-
uous domains with large number of dimensions [18].

2.2.5 ROME. Standard hyperparameter optimization with DE or
Baysian optimization can be a tedious and time consuming task [20].
Utilizing sequential model optimization, FLASH terminates after
just a few dozen executions of different learner control parameters.
ROME uses FLASH [42] to tune CART [32].

As shown in Figure 2, ROME has a learning layer and a optimiz-
ing layer. When training data arrives, the estimator in the learning
layer is being trained, and the optimizer in optimizing layer pro-
vides better hyperparameters to the learner to help improve the
performance of estimators. Such trained learner will be evaluated
on the validation data afterwards. Once some stopping criteria is
met, the generated learner is then passed to the test data for final
testing.

When we design ROME, we want it to be as flexible as possible.
It was simple to “pop the top” and replace the optimizing layer with
another optimizer. In this paper, ROME uses FLASH [42] as the
optimizer. Since the result from that initial study were promising,
we paused further experimentation to record those results. In future
work, we will try other optimizers.

FLASH comes from research into software configuration. One
of the new insights that leads to this paper was that “configu-
ration” is a synonym for “hyperparameter optimziation”. Hence,

4
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Table 2: Some data from the NASA10 data set (one row per project). For a definition of the terms in row1 (“prec”, “flex”, “resl”
etc.) see tiny.cc/ccm_attr. As to the different columns, scale factors change effort exponentially while effort multipliers have
a linear impact on effort. Any effort multiplier with a value of “3” is a nominal value; i.e. it multiplies the effort by a multiple
of 1.0. Effort multipliers above and below “3” can each effect project effort by a multiple ranging from 0.7 to 1.74.

prec flex resl team pmat rely cplx data ruse time stor pvol acap pcap pcon aexp plex ltex tool sced site docu kloc months
2 2 2 3 3 4 5 4 3 5 6 4 4 4 3 4 3 3 1 3 4 4 77 1830
2 2 2 3 3 5 5 2 3 5 6 2 4 3 3 2 1 2 2 3 4 4 24 648
2 2 2 3 3 4 5 3 3 5 5 4 3 3 3 3 2 2 1 3 4 4 23 492
2 2 3 3 2 4 4 3 2 3 3 4 3 3 3 3 3 4 2 3 5 3 146 3292
2 3 3 5 3 3 4 3 2 4 4 2 5 5 4 5 1 5 3 3 6 3 113 1080︸                         ︷︷                         ︸ ︸                                                                                                                                      ︷︷                                                                                                                                      ︸ ︸︷︷︸ ︸︷︷︸

scale factors effort multipliers size effort

Table 3: Descriptive Statistics of the classic effort data sets. Terms in red are removed from this study, for reasons discussed in
the text.

feature min max mean std

ke
m
er
er

Langu. 1 3 1.2 0.6
Hdware 1 6 2.3 1.7
Duration 5 31 14.3 7.5
KSLOC 39 450 186.6 136.8
AdjFP 100 2307 999.1 589.6
RAWFP 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

al
br
ec
ht

Input 7 193 40.2 36.9
Output 12 150 47.2 35.2
Inquiry 0 75 16.9 19.3
File 3 60 17.4 15.5
FPAdj 1 1 1.0 0.1
RawFPs 190 1902 638.5 452.7
AdjFP 199 1902 647.6 488.0
Effort 0 105 21.9 28.4

is
bs
g1
0

UFP 1 2 1.2 0.4
IS 1 10 3.2 3.0
DP 1 5 2.6 1.1
LT 1 3 1.6 0.8
PPL 1 14 5.1 4.1
CA 1 2 1.1 0.3
FS 44 1371 343.8 304.2
RS 1 4 1.7 0.9
FPS 1 5 3.5 0.7
Effort 87 14453 2959 3518

fin
ni
sh

hw 1 3 1.3 0.6
at 1 5 2.2 1.5
FP 65 1814 763.6 510.8
co 2 10 6.3 2.7
prod 1 29 10.1 7.1
lnsize 4 8 6.4 0.8
lneff 6 10 8.4 1.2
Effort 460 26670 7678 7135

feature min max mean std

m
iy
az
ak
i

KLOC 7 390 63.4 71.9
SCRN 0 150 28.4 30.4
FORM 0 76 20.9 18.1
FILE 2 100 27.7 20.4
ESCRN 0 2113 473.0 514.3
EFORM 0 1566 447.1 389.6
EFILE 57 3800 936.6 709.4
Effort 6 340 55.6 60.1

m
ax
w
el
l

App 1 5 2.4 1.0
Har 1 5 2.6 1.0
Dba 0 4 1.0 0.4
Ifc 1 2 1.9 0.2
Source 1 2 1.9 0.3
Telon. 0 1 0.2 0.4
Nlan 1 4 2.5 1.0
T01 1 5 3.0 1.0
T02 1 5 3.0 0.7
T03 2 5 3.0 0.9
T04 2 5 3.2 0.7
T05 1 5 3.0 0.7
T06 1 4 2.9 0.7
T07 1 5 3.2 0.9
T08 2 5 3.8 1.0
T09 2 5 4.1 0.7
T10 2 5 3.6 0.9
T11 2 5 3.4 1.0
T12 2 5 3.8 0.7
T13 1 5 3.1 1.0
T14 1 5 3.3 1.0
Dura. 4 54 17.2 10.7
Size 48 3643 673.3 784.1
Time 1 9 5.6 2.1
Effort 583 63694 8223 10500

feature min max mean std

de
sh
ar
na
is

TeamExp 0 4 2.3 1.3
MngExp 0 7 2.6 1.5
Length 1 36 11.3 6.8
Trans.s 9 886 177.5 146.1
Entities 7 387 120.5 86.1
AdjPts 73 1127 298.0 182.3
Effort 546 23940 4834 4188

ki
tc
he
nh

am

code 1 6 2.1 0.9
type 0 6 2.4 0.9
duration 37 946 206.4 134.1
fun_pts 15 18137 527.7 1522
estimate 121 79870 2856 6789
esti_mtd 1 5 2.5 0.9
Effort 219 113930 3113 9598

ch
in
a

ID 1 499 250.0 144.2
AFP 9 17518 486.9 1059
Input 0 9404 167.1 486.3
Output 0 2455 113.6 221.3
Enquiry 0 952 61.6 105.4
File 0 2955 91.2 210.3
Interface 0 1572 24.2 85.0
Added 0 13580 360.4 829.8
changed 0 5193 85.1 290.9
Deleted 0 2657 12.4 124.2
PDR_A 0 84 11.8 12.1
PDR_U 0 97 12.1 12.8
NPDR_A 0 101 13.3 14.0
NPDU_U 0 108 13.6 14.8
Resource 1 4 1.5 0.8
Dev.Type 0 0 0.0 0.0
Duration 1 84 8.7 7.3
N_effort 31 54620 4278 7071
Effort 26 54620 3921 6481

hyperparameter-optimization-via-configuration tools has not pre-
viously been explored in the literature. Also, prior to this paper,
such optimizers have not been used for effort estimation.

FLASH is a sequential model-based optimizer [3] (also known in
the machine learning literature as an active learner [13] or, in the
statistics literature as optimal experimental design [44]). No matter
whatever the name is, the idea behind it is the same: reflect on the
model built so far to find the next best example to evaluate. To
tune a learning algorithm, FLASH explores N possible tunings as
follows:

(1) Set the evaluation budget b. Based on prior work [42], we
used b = 200.

(2) Run the learning algorithm with n = 20 to randomly select
tunings.

(3) Build an archive of n examples holding pairs of parameter
settings and their resulting performance scores.

(4) Using that archive, learn a surrogate to predicts performance.
As per the methods of Nair et al. [42], our surrogates come
from CART [32].

(5) Use the surrogate to guess M performance scores where
M < N andM ≫ n parameter settings. Note that this step is
very fast because all required is to runM vectors downwards
some very small CART trees.

(6) use a selection function to select the most “interesting” set-
ting. We use the setting whose prediction has the smallest
predicted error.

(7) Collect performance scores by evaluating “interesting” using
the data miners. Set b = b − 1.

(8) Add “interesting” to archive. If b > 0, goto step 4.
(9) Else, halt.
In summary, given what we already know about the tunings

(represented in a CART tree), FLASH finds the potentially best
tunings (in Step 6); then evaluate the performance (in Step 7); then
update the model with the results of that evaluation.

3 EMPIRICAL STUDY
3.1 Data
To evaluate the proposed ROME framework comprehensively, we
test it out on both COCOMO-style data and non COCOMO-style
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Table 4: Descriptive Statistics of the Github data sets, for details of each feature, see tiny.cc/condatadetail. Terms in red are
removed from this study, for reasons discussed in the text.

feature min max mean std

ja
va
_i
ni
t

LOC 5 31 14.3 7.5
EI 39 450 186.6 136.8
EO 100 2307 999.1 589.6
AFP 97 2284 993.9 597.4
APEX 39 450 186.6 136.8
LPEX 100 2307 999.1 589.6
FILES 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

w
eb
sh
op

_i
ni
t LOC 5 31 14.3 7.5

EI 39 450 186.6 136.8
EO 100 2307 999.1 589.6
AFP 97 2284 993.9 597.4
APEX 39 450 186.6 136.8
LPEX 100 2307 999.1 589.6
FILES 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

feature min max mean std

ja
va
_i
nc
re

LOC 5 31 14.3 7.5
EI 39 450 186.6 136.8
EO 100 2307 999.1 589.6
AFP 97 2284 993.9 597.4
APEX 39 450 186.6 136.8
LPEX 100 2307 999.1 589.6
FILES 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

w
eb
sh
op

_i
nc
re LOC 5 31 14.3 7.5

EI 39 450 186.6 136.8
EO 100 2307 999.1 589.6
AFP 97 2284 993.9 597.4
APEX 39 450 186.6 136.8
LPEX 100 2307 999.1 589.6
FILES 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

feature min max mean std

ja
va
_fi

na
l LOC 5 31 14.3 7.5

EI 39 450 186.6 136.8
EO 100 2307 999.1 589.6
AFP 97 2284 993.9 597.4
APEX 39 450 186.6 136.8
LPEX 100 2307 999.1 589.6
FILES 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

w
eb
sh
op

_fi
na
l LOC 5 31 14.3 7.5

EI 39 450 186.6 136.8
EO 100 2307 999.1 589.6
AFP 97 2284 993.9 597.4
APEX 39 450 186.6 136.8
LPEX 100 2307 999.1 589.6
FILES 97 2284 993.9 597.4
Effort 23 1107 219.2 263.1

data. For COCOMO-style data, we include 216 projects from the
SEACRAFT repository2; In Table 2, we list a sample of our data.
This data set has been widely used to evaluate effort estimation
methods for COCOMO-sytle data, which serves the same purpose to
compare our proposed framework with the COCOMO-II procedure.

To test how ROME performs on non COCOMO data, we use 945
classic effort projects from the SEACRAFT, plus data collected from
446 projects on Github by Qi et al. [47] from Github, separately. See
Table 3 and Table 4.

Note that some features of these non COCOMO style data sets are
not used in our experiment because they are (1) naturally irrelevant
to their effort values (e.g., ID, Syear), (2) unavailable at the prediction
phase (e.g., duration, LOC), (3) highly correlated or overlap to each
other (e.g., raw function point and adjusted function points). A
data cleaning process is applied to solve this issue. Those removed
features are highlighted as italic in Table 3 and Table 4.

3.2 Experimental Rig
In our experiments, we used a M*N-way cross-validation to split
training and testing data for the estimators. That is, in M times,
shuffle the data randomly (using a different random number seed)
then divide the data into N bins. For i ∈ N , bin i is used to test a
model build from the other bins. Following the advice of Nair et
al. [41], we use N = 3 andM = 20 for our effort data sets.

As a procedural detail, first we divided the data and then we
applied the treatments. That is, all treatments saw the same training
and test data.

In this experiment, we do not tune ATLM or LP4EE since they
were designed to be used “off-the-shelf” (Whigham et al. [63] de-
clare that one of ATLM’s most important features is that it does not
need tuning). We also do not tune SVR and RF since we treat them
as baseline algorithm-based methods in our benchmarks (i.e. use de-
fault settings in scikit-learn for these algorithms). Here, we add KNN
and CART with default settings, since these methods often appear
in effort estimation literature [28, 37, 51, 52]. As to COCOMO-II, we
applied Boehm’s local calibration procedure [7] on the training data
to adjust the (a,b) parameters of Equation 1. Lastly, we compared
the performance of our optimizer FLASH with that of Differential
Evolution [60]. Using advice from Storn and Fu et al. [19, 60], for
DE we use {np, g, cr, generations} = {20, 0.75, 0.3, 10}.

2http://tiny.cc/seacraft

3.3 Performance Metrics
The results from each test set are evaluated in terms magnitude
of the relative error (MRE) and Standardized Accuracy (SA). MRE
is defined in terms of AR, the magnitude of the absolute residual.
This is computed from the difference between predicted and actual
effort values:

AR = |actuali − predictedi |
MRE is the magnitude of the relative error calculated by expressing
AR as a ratio of actual effort:

MRE =
|actuali − predictedi |

actuali
MRE is criticized by some researchers as it is biased towards

error underestimations [16, 27, 29, 46, 54, 59]. Nevertheless, we use
it here since there exists known baselines for human performance
in effort estimation expressed in terms of MRE [39].

Because of the issues with MRE, some researchers prefer the
use of other (more standardized) measures, such as Standardized
Accuracy (SA) [31, 55]. SA is based on Mean Absolute Error (MAE),
which is defined in terms of

MAE =
1
N

n∑
i=1

|RealEfforti − EstimatedEfforti |

where N is the number of projects used for evaluating the perfor-
mance. SA uses MAE as follows:

SA = (1 −
MAEPj

MAErдuess
) × 100

where MAEPj is the MAE of the approach Pj being evaluated and
MAErguess is the MAE of a large number (e.g., 1000 runs) of random
guesses. Over many runs, MAErguess will converge on simply using
the sample mean [55]. That is, SA represents how much better Pj is
than random guessing. Values near zero means that the prediction
model Pj is practically useless, performing little better than random
guesses [55].

Note that for MRE values, smaller are better and for SA values,
larger are better. We use these since there are advocates for both
in the literature. For example, Shepperd and MacDonell argue con-
vincingly for the use of SA [55] (as well as for the use of effect size
tests in effort estimation). Also in 2016, MRE was used by Sarro
et al. [52] to argue their estimators were competitive with human
estimates (which Molokken et al. [40] says lies within 30% and 40%
of the true value).
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Table 5: MRE (Magnitude of the Relative Error), lower values are better. For each row, the gray cells show the results that are
statistically significantly better than anything else on that row (as judged by a Scott-Knot bootstrap test plus an A12 effect size
test). If multiple treatments tied for “best”, then there will be multiple gray cells in a row.

Scikit-Learn Tuned New methods COCOMODataset KNN SVR CART RF CART_DE ROME ATLM LP4EE COCOMO-II
kemerer 0.56 0.59 0.55 0.50 0.32 0.37 0.76 0.54 N/A
albrecht 0.45 0.56 0.53 0.46 0.32 0.33 1.40 0.44 N/A
isbsg10 0.73 0.72 0.74 0.78 0.59 0.62 1.27 0.75 N/A
finnish 0.64 0.74 0.57 0.57 0.48 0.42 0.87 0.63 N/A
miyazaki 0.47 0.37 0.47 0.46 0.32 0.32 0.37 0.33 N/A
maxwell 0.56 0.56 0.52 0.51 0.38 0.36 2.82 0.51 N/A
desharnais 0.50 0.48 0.49 0.46 0.35 0.35 0.54 0.38 N/A
kitchenham 0.39 0.60 0.49 0.43 0.38 0.34 1.06 0.38 N/A

classic

china 0.64 0.71 0.71 0.69 0.64 0.61 0.48 0.45 N/A

cocomo10 0.67 0.86 0.33 0.30 0.30 0.28 2.49 0.32 0.60
cocomo81 0.93 0.89 0.77 0.76 0.65 0.64 3.37 0.65 0.49cocomo
nasa93 0.70 0.84 0.42 0.41 0.42 0.40 0.90 0.38 0.61

java_init 0.52 0.65 0.33 0.32 0.28 0.28 0.67 0.31 N/A
java_incre 0.62 0.72 0.42 0.41 0.32 0.28 0.45 0.33 N/A
java_final 0.50 0.64 0.31 0.31 0.28 0.24 0.53 0.31 N/A
webshop_init 0.41 0.43 0.50 0.40 0.27 0.28 0.67 0.25 N/A
webshop_incre 0.44 0.44 0.44 0.40 0.28 0.28 0.53 0.38 N/A

contemporary

webshop_final 0.46 0.45 0.52 0.44 0.28 0.28 0.66 0.41 N/A

Table 6: SA (Standard Accuracy), higher values are better. Same format at Table 5; i.e. best results on are shown in gray.

Scikit-Learn Tuned New methods COCOMODataset KNN SVR CART RF CART_DE ROME ATLM LP4EE COCOMO-II
kemerer 0.38 0.28 0.42 0.41 0.55 0.43 0.30 0.40 N/A
albrecht 0.51 0.30 0.41 0.49 0.59 0.65 0.34 0.47 N/A
isbsg10 0.28 0.25 0.20 0.22 0.33 0.30 0.30 0.22 N/A
finnish 0.40 0.24 0.42 0.44 0.49 0.54 0.41 0.39 N/A
miyazaki 0.45 0.41 0.41 0.46 0.53 0.53 0.50 0.52 N/A
maxwell 0.39 0.30 0.37 0.44 0.51 0.55 -1.07 0.52 N/A
desharnais 0.44 0.43 0.39 0.46 0.53 0.53 0.37 0.48 N/A
kitchenham 0.47 0.32 0.34 0.41 0.40 0.44 -0.03 0.52 N/A

classic

china 0.28 0.21 0.12 0.21 0.27 0.30 0.12 0.32 N/A

cocomo10 0.22 0.14 0.52 0.59 0.59 0.61 -0.13 0.29 0.30
cocomo81 0.10 0.05 0.18 0.15 0.27 0.25 -1.14 0.20 0.27cocomo
nasa93 0.08 0.14 0.36 0.37 0.36 0.41 0.34 0.41 0.30

java_init 0.37 0.30 0.48 0.51 0.59 0.57 0.33 0.58 N/A
java_incre 0.35 0.25 0.53 0.49 0.54 0.63 0.37 0.61 N/A
java_final 0.43 0.30 0.57 0.57 0.62 0.67 0.41 0.62 N/A
webshop_init 0.51 0.48 0.45 0.49 0.59 0.59 0.36 0.58 N/A
webshop_incre 0.53 0.43 0.56 0.57 0.64 0.67 0.49 0.65 N/A

contemporary

webshop_final 0.47 0.44 0.49 0.52 0.61 0.61 0.44 0.58 N/A

3.4 Statistical Methods
From the cross-valuations, we report themedian value, which is the
50th percentile of the test scores seen in the M*N results. For each
data set, the results from a M*N-way are sorted by their median
value, then ranked using the Scott-Knott test recommended for
ranking effort estimation experiments byMittas et al. in TSE’13 [38].

Scott-Knott is a top-down bi-clustering method that recursively
divides sorted treatments. Division stops when there is only one
treatment left or when a division of numerous treatments generates
splits that are statistically indistinguishable. To judge when two sets
of treatments are indistinguishable, we use a conjunction of both a
95% bootstrap significance test [15] and a A12 test for a non-small
effect size difference in the distributions [37]. These tests were used

since their non-parametric nature avoids issues with non-Gaussian
distributions.

4 RESULTS
In this section, we present the experimental results. To answer the
questions raised in Section 3, we conducted our experiments in the
following sections:

• Compare performance of ROME with other methods on
COCOMO-style data, classic effort data and Agile data sets
collected from Github.

• Look into the internal structure of ROME and count the
feature node in the tree it built.

RQ1: Is effort estimation effective for classicwaterfall and
contemporary agile projects?
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Table 7: How often is each treatment seen to be best in Ta-
ble 5 and Table 6.

Rank Method Win Times
1 CART_FLASH (ROME) 33/36
2 CART_DE 24/36
3 LP4EE 15/36
4 ATLM 3/36
5 RF 2/36
5 KNN 2/36
6 CART 1/36
7 SVR 0/36

To find if effort estimation method is effective, we ran ROME
on both classic waterfall data sets and contemporary agile data
sets. The performance value, in terms of MRE, is shown in Table 5.
Recall that Sarro et al. argued that effective software projects have
predictions of effort lie 0.3 and 0.4 of the actual value [52]. As
can be observed, ROME obtained MRE value less than 0.40 in 15
out of all 18 cases. Also, in terms of applicability to contemporary
methods, it is significant to note that all the MREs seen in the
contemporary projects are under 0.30. That is, with these results,
we can recommend ROME to the current practice, especially for
the current contemporary agile projects. Overall:

Lesson1: Effort estimation is effective on both classic water-
fall projects and contemporary agile projects.

In terms of the practicality of effort estimation research, this
is a landmark result since it means that decades of research into
effort estimation of classic waterfall projects can now be applied to
contemporary agile software systems.

RQ2: Does ROME have better performance than existing
estimation methods?

To answer this question, we ran ROME and the other baseline
methods LP4EE, ATLM, KNN, SVR, CART, RF, on classic waterfall
data sets and contemporary agile data sets. MRE and SA scores
for all our methods are shown in Table 5 and Table 6. Note the
COCOMO-II is only applied to the COCOMO data sets (since the
other data sets do not have the features needed by COCOMO).

In Table 5 and Table 6, each row shows results from a different
data set. For each row, the gray cells show the results that are
statistically significantly better than anything else on that row (as
judged by a Scott-Knot bootstrap test plus an A12 effect size test).
If multiple treatments tied for “best”, then there will be multiple
gray cells in a row. In those tables, better methods have more gray
cells. Table 7 tallies the gray cells counts for all methods.

From the tallies of Table 7, we conclude that KNN, SVR, CART
(untuned), RF and ATLM most often perform worse than anything
else. While LP4EE does best for standard accuracy, in terms of MRE,
it is not competitive against the tuned methods (CART, tuned by DE
or FLASH). As to DE tuning CART, it performs better than LP4EE,
but not as good as ROME (CART tuned by FLASH). In summary:

Lesson2: ROME generated best estimates in most cases.

0

100

200

300

400

FILES AFP EO LTEX EI APEX

website_final website_incre website_init
java_final java_incre java_init

Figure 3: Selected features on Github data sets (for SA)

RQ3: When we have new effort data sets, what configura-
tions to use for effort estimation tasks?

When we discuss this work with our industrial colleagues, they
want to know “the bottom line”; i.e. what they should use or, at
the very least, what they should not use. If the hyperparameter
tunings for effort estimators found by this paper were nearly always
the same, then this study could conclude by recommending better
values for default settings. This would be a most promising result
since, in future when new data arrives, the complexities of tuning
in ROME framework would not be needed.

Unfortunately, this turns out not to be the case. Table 8 shows the
percent frequencies with which some tuning decision appears in
our M*N-way cross validations (this table uses results from FLASH
tuning CART since, as shown below, this usually leads to best
MRE results). Note that in those results it is not true that across
most data sets there is a setting that is usually selected (though
min_samples_leaf less than 3 is often a popular setting). Accord-
ingly, from Table 8, we concludes that there is much variations of
the best tunings.

This finding is quite aligned with Fu et al. [19], where for soft-
ware defect predictors, no best tunings for all tasks. Therefore,
we always prefer to have a fast hyperparameter tuning technique
to quickly find the best tuning for the current tasks. Our ROME
framework is such of tool to use.

Since there are no “best” default settings for all, based on the
results of Table 7, for similar effort estimation tasks, we say:

Lesson3: There is no clear pattern in what configurations are
needed. Hence, model optimization needs to be repeated for
each new data set.

RQ4:Whenwe apply ROME on effort data sets, can it help
us to find the most important features of the data?

When CART’s tuning parameters were described in §2.2.3, it
was observed that when CART is run multiple times (with different
hyperparameters) then it can be used to gauge the value of using a
particular feature.

Figure 3 and Figure 4 show counts of how often a feature ap-
peared in the trees found by ROME from the above experiments.
Here, we only show data from the classic COCOMO and contem-
porary Github projects since the classic non-COCOMO data sets
all use different features.
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Table 8: Tunings discovered by hyperparameter selections (CART+FLASH, MRE results). Cells in this table show the percent
of times a particular choice was made. White text on black denotes choices made in more than 50% of tunings.

%max_features max_depth min_sample_split min_samples_leaf
(selected at random; (of trees) (continuation (termination
100% means “use all”) criteria) criteria)
25% 50% 75% 100% ≤03 ≤06 ≤09 ≤12 ≤5 ≤10 ≤15 ≤20 ≤03 ≤06 ≤09 ≤12

cocomo10 23 38 18 21 42 45 11 02 85 11 04 00 79 12 06 03

cocomo81 26 33 18 23 52 22 18 08 73 25 02 00 78 17 04 01

nasa93 31 27 28 24 47 29 18 06 55 21 11 13 53 27 14 06

java_init 13 14 57 26 36 32 24 08 64 19 12 05 71 21 07 01

java_incre 21 13 36 30 29 39 22 10 42 26 19 13 83 12 02 03

java_final 19 16 32 33 24 45 25 06 44 21 18 17 72 11 12 05

webshop_init 33 21 26 20 57 37 05 01 38 36 13 13 41 27 23 09

webshop_incre 26 16 27 31 31 30 23 16 41 22 23 16 44 35 17 04

webshop_final 42 16 22 20 33 22 17 28 59 27 09 05 62 31 04 03
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Figure 4: Selected feature on COCOMO data sets (for SA)

In Figure 3, the maximum number of times a feature can appear
is 360 times (6 data sets, 3 way cross-validation, 20 repeats). One size
attribute (FILES) appears very frequently but it is not often picked
just by itself (we know this from the max_depth results of Table 8
where more often than not, CART used trees that held more than
three features). But as to what other features were combined with
FILES, that is clear. Looking at the AFP, EO, LTEX, EI, APEX results
of Figure 3, we see that every other feature got used, sometimes.

A similar pattern appears in Figure 4. In this figure, the maximum
number of times a feature can appear is 180 (3 data sets, 3 way cross-
validation, 20 repeats). Once again, a size attribute (LOC) appears
very frequently. But just as before, we see that every other feature
got used, sometimes. Hence we say:

Lesson4: There are no “best” set of effort estimation features
since each project uses these features in a different way

As mentioned in the introduction, the results from RQ3 and RQ4
clearly deprecate the use of off-the-shelf estimation tools. Practi-
tioners should use tools like ROME to find the features/modeling
options that work best for their local data.

5 THREATS TO VALIDITY
Internal Bias: Many of our methods contain stochastic random
operators. To reduce the bias from random operators, we repeated
our experiment in 20 times and applied statistical tests to remove
spurious distinctions.

Parameter Bias: For other studies, this is a significant question
since (as shown above) the settings to the control parameters of the
learners can have a positive effect on the efficacy of the estimation.
That said, recall thatmuch of the technology of this paper concerned
methods to explore the space of possible parameters. Hence we
assert that this study suffers much less parameter bias than other
studies.

Sampling Bias: While we tested ROME on both old COCOMO-
Style data sets, classic effort data sets and newly collected open
source data sets, it would be inappropriate to conclude that ROME
tuning always perform better than others methods for other data
sets. As researchers, what we can do to mitigate this problem is to
carefully document our methods, publish our tools as open source
software packages, and support the research community as they
try to repeat/improve/refute our results on a broader set of data.

Another sampling bias comes from our choice of effort estimation
technologies. Here, we compared ROME against technologies that
are often seen in the effort estimation literature. We also took care
to include in our comparisons two new and prominent methods
recently published in TOSEM. But even with all that, this study has
not explored all the effort estimation methods seen in the recent
literature. To some extent, that was because no single paper can
explore all algorithms. But also, sometimes we choose not to explore
certain algorithms since they are out-of-scope for this study. For
example, apart from LP4EE, Sarro et al. also offer another estimation
method based on genetic algorithms called CoGEE [52]. That tool
optimizes for multiple goals so it would not be a fair comparison
to the tools used here (in defense of that decision, we note that
the authors do not compare LP4EE to CoGEE in their TOSEM’18
paper).
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6 CONCLUSIONS AND FUTUREWORK
Effort estimation methods need to support both classic waterfall
projects and contemporary agile projects. For something as complex
as the effort estimation of modern software projects, no single
method works best. Instead, best results come from trying out a
large number of candidate methods.

Sequential model-based optimization is an effective way to ex-
plore a range of configuration options for effort estimation. Our
sequential optimizer came from research into software configu-
ration. One of the new insights that leads to this paper was that
“configuration” is a synonym for “hyperparameter optimziation”.
Hence, hyperparameter-optimization-via-configuration tools has
not previously been explored in the literature. Also, prior to this
paper, such optimizers have not been used for effort estimation.

When this optimizerwas applied to 1161 classic waterfall projects
and 446 contemporary agile projects we found that:

• RQ1: we could successfully apply the same optimization
method to classic and contemporary projects. This is a sig-
nificant result since it means that decades of effort estimation
research can now be applied to contemporary agile systems.

• RQ2: those optimizations yielded better estimates than other
methods studied here.

• RQ3, RQ4: different data sets need different hyperparam-
eter optimizations and use different features. This means
that we should deprecate the use of off-the-shelf estimation
tools. Practitioners should use tools like ROME to find the
features/modeling options that work best for their local data.

To the best of our knowledge, this is the largest effort estimation
experiment yet reported.

As to future work, there is much to do. Clearly, we need to
try other learners (e.g. neural nets, Bayesian learners or gradient
boosting tree) and other optimizers (e.g. SMAC [33] or vZ [6]).

Also, now that we can use Github data for effort estimation, it is
time to scale this analysis to the large number of projects available
at that source. In the study of this paper, our RQ3, RQ4 results
found no stability in the features used or hyperparameter options
selected. We conjecture that such stable conclusions may exist– if
we look at much more project data.

More generally, in the study of effort estimation, most prior work
only focus on comparisons of new estimation methods, but very
less studies comparing latest technique with old classic models (e.g.
COCOMO). Given the results of this paper, it is now important to
validate newly proposed methods against different type of effort
project data sets (e.g. Waterfall and Agile). Further, if we are mining
current Github projects, we might be able to use the methods of
this paper to go beyond mere effort estimation to look more predict
better for other measures of project health (e.g. number of new
contributors each month).
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