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ABSTRACT
What AI tools are needed for SE? Ideally, we should have simple
rules that peek at data, then say “use this tool” or “use that tool”.

To �nd such a rule, we explored 120 di�erent data sets address-
ing numerous problems, including bad smell detection, predicting
Github issue close time, bug report analysis, defect prediction and
dozens of other non-SE problems. To this data, we apply a SE-based
tool that (a) out-performs the state-of-the-art for these SE problems
yet (b) fails very badly on standard AI problems.

In those results, we can �nd a simple rule for when to use/avoid
the SE-based tool. SE data is often about infrequent issues, like
the occasional defect, or the rarely exploited security violation, or
the requirement that holds for one special case. But as we show,
standard AI tools work best when the target is relatively more
frequent. Also, we can exploit this special properties of SE, to great
e�ect (to rapidly �nd better optimizations for SE tasks via a tactic
called “dodging”, explained in this paper).

More generally, this result sayswe need a new kind of SE research
for developing new AI tools that are more suited to SE problems.

1 INTRODUCTION
The last 15 years have seen a dramatic increase in the application of
AI tools on software engineering– as evidenced by numerous highly
cited publications [30, 38, 43, 47, 48, 51, 54, 69, 75] and the growing
prominence of venues such as the Mining Software Repositories
conference (now ranked in the top dozen software systems venue
by Google Scholar). Researchers reported that these AI tools are
often used in a “black box” manner without re�ecting on the merits
of choices associated with a particular tool [9, 23].

Such black-box usage is risky since it means SE practitioners
might be applying the wrong tool. An emerging question in the
application of AI techniques to software engineering is the validity
of the assumptions that underlie the creation of those tools and
techniques [3, 9, 23, 58, 71]. These articles show superior results can
be obtained by specializing AI tools to the particulars of software
engineering problem (see examples in next section).

One way to specialize AI tools for software engineering is hy-
perparameter optimization that automatically search through the
space of possible learner settings to discover, for example, how
many clusters work best for K-means. Table 1 shows some of the
hyperparameter options seen in recent SE papers. The search space
is very large. Assuming that the numerics of Table 1 are divided
into ten bins, then there are billions of di�erent combinations in
that table. Hence, these optimizers can be very slow to execute.

Also, even when they work, these optimizers do not o�er any
generalization across their results. Hyperparameter optimiza-
tion does not o�er general rules for when some AI tools are more
useful than others. This is signi�cant de�ciency. If such an insight

Submitted to ICSE’2020, August 23, 2019.

was available, we could o�er engineers a simple rule that lets them
quickly select appropriate AI tools.

To address this de�ciency, this paper applies various tools to
numerous problems from SE and elsewhere. Some of these tools are
general AI tools while another, called DODGE [1], was developed
by Agrawal et al. speci�cally for SE applications. This tool is a
hyperparameter optimizer that auto-adjusts learner settings in a
somewhat unusual way (see the “relax” heuristics of §3). Agrawal
et al. [1] justi�ed that approach via certain SE-based properties and
some limited experimentation of 16 data sets from two SE problems
(bug report analysis and defect prediction).

Agrawal et al. did not test their supposed “SE-based” tool on
non-SE problems. Therefore we apply DODGE to 120 data sets
from SE and elsewhere. Speci�cally, 37 non-SE problems from the
standard AI literature (taken from a standard machine learning data
repository) aswell as 83 SE problemswhich includes 6 issue tracking
data sets, 10 defect prediction data sets 63 data sets exploring Github
issue close time; and 4 data sets exploring bad smell detection.

We see that DODGE fails badly on non-SE problems but per-
forms very well on SE problems. From that experience, we can:

• O�er a method for deciding when to use/avoid general AI tools.
• Describe a case study utilizing that methodology.
• Show that this method can indeed recommend when to use a
general AI tool or a SE-based tool.

• Show that this recommendation is useful and if we follow them,
we can �nd better optimizations for SE problems.

• Show that SE data is very di�erent to the data used to develop
many AI tools. SE problem data is often about infrequent issues,
for e.g., the occasional defect, the rarely exploited security vi-
olation, the requirement that only holds for one small part of
a system. But as shown by our results, many standard AI tools
work best when the target is relatively more frequent.

The rest of this paper is structured as follows. The next section o�ers
notes on related work and some standard AI tools. This is followed
by a description of DODGE in §3. After that, in §4, we describe the
120 data sets used to test DODGE as well as other more standard AI
tools. The experiments of §5 illustrate how well DODGE performs
for SE problems and how badly it performs otherwise. The meta-
analysis of §6 generates the rule that explains why DODGE works
so well/poorly for SE/other problem types.

Our conclusion is that the algorithms which we call “general AI
tools” may not be “general” at all. Rather, they are tools which are
powerful in their home domain but need to be used with care if
applied to some new domains like software engineering. Hence,
we argue that it is not good enough to just take AI tools developed
elsewhere, then apply them verbatim to SE problems. Software
engineers need to develop AI tools that are better suited to the
particulars of SE problems.

As to the relationship to prior work, Table 1 and §3 are shortened
version of material from Agrawal et al. [1]. Also, of the 120 data sets
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processed here, 16 come from that prior study– see the results in
§5.41 and §5.4.2 (but just as a quality assurance measure, we reran
all the experiments for those 16 data sets). The rest of this paper
is new, including the experiments on 104 new data sets, and the
meta-analysis of §6.

2 BACKGROUND
2.1 Lessons from Applying Standard AI Tools
This section o�ers examples where other SE researchers have ar-
gued that software engineering is di�erent (so we need our own
kind of specialized AI tools).

Binkley et al. [9] note that information retrieval tools for SE
often equates word frequency with word importance, even though
the number of occurrences of a variable name such as“tmp” is
not necessarily indicative of its importance. They argue that the
negative impacts of such di�erences manifest themselves when
o�-the-shelf IR tools are applied in the software domain.

Software analytics usually applies standard AI data mining al-
gorithms as “black boxes” [9, 23], where researchers do not tinker
with internal design choices of those AI tools. This is not ideal.
Much recent research has shown that such automatic hyperparam-
eter optimizers can automate that tinkering process, and greatly
improve predictive performances [3, 4, 23, 61, 71].

Another example comes from sentiment analysis. Standard sen-
timent analysis tools are usually trained on non-SE data (e.g., the
Wall Street Journal or Wikipedia). Novielli et al. [58] recently de-
veloped their own sentiment analysis for the software engineering
domain. After re-training those tools on an SE corpus, they found
not only better performance at predicting sentiment, but also more
agreement between di�erent sentiment analysis tools.

Yet another example of “SE needs di�erent AI tools” comes from
the “naturalness” work of Devanbu et al [32]. Software has the
property that some terms are used very often and everything else
is used with exponentially less frequency. This means that n-gram
“language models” (where frequency counts of the last N terms are
used to predict the next term) can be very insightful for (a) rec-
ommending what should be used next; or (b) predicting that the
next token is unusual and possibly erroneous [67]. Note that this
“natural” approach can be more insightful than standard AI tools
such as deep learning [31].

While the above work certainly illustrates the main point of this
paper, it does not o�er a simple general rule to look at new data and
decide when to use pre-existing standard AI tools or when to move
on to other technologies. This paper tried answering the same.

2.2 Standard AI Tools
This section describes some standard AI tools: grid search, DE, GA,
SVM, Random Forests, decision tree learners, logistic regression,
Naive Bayes, LDA, and EM. All these algorithms are examples of
general AI tools developed outside of software engineering and
then applied to SE. That is, one way to view SE is that it is just a
problem domain where general AI tools can be deployed.

This paper takes another view. We say software engineering
is di�erent and that those di�erences mean that best results arise
from tools specialized to the particulars of software engineering.
One such tool is DODGE (described in the next section).

Table 1: Hyperparameter options seen in recent SE papers [2,
3, 23, 25] and in the documentation of a widely-used data
mining library (Scikit-learn [62]) for a list of options not
explored in those studies. While this list is incomplete, it
does include many of the hyperparameter optimizations be-
ing explored in the literature.

Learners:
• DecisionTreeClassi�er(criterion=b, splitter=c, min_samples_split=a)

– a, b, c= randuniform(0.0,1.0), randchoice([‘gini’,‘entropy’]),
randchoice([‘best’,‘random’])

• RandomForestClassi�er(n_estimators=a,criterion=b, min_samples_split=c)
– a,b,c = randint(50, 150), randchoice([’gini’, ’entropy’]),

randuniform(0.0, 1.0)
• LogisticRegression(penalty=a, tol=b, C=�oat(c))

– a,b,c=randchoice([‘l1’,‘l2’]), randuniform(0.0,0.1), randint(1,500)
• MultinomialNB(alpha=a) = randuniform(0.0,0.1)
• KNeighborsClassi�er(n_neighbors=a, weights=b, p=d, metric=c)

– a, b,c = randint(2, 25), randchoice([‘uniform’, ‘distance’]),
randchoice([‘minkowski’,‘chebyshev’])

– if c==’minkowski’: d= randint(1,15) else: d=2

Pre-processors for defect prediction, Issue lifetime, Bad Smells:
• StandardScaler
• MinMaxScaler
• MaxAbsScaler
• RobustScaler(quantile_range=(a, b)) = randint(0,50), randint(51,100)
• KernelCenterer
• QuantileTransformer(n_quantiles=a, output_distribution=c, subsample=b)

– a, b = randint(100, 1000), randint(1000, 1e5)
– c = randchoice([‘normal’,‘uniform’])

• Normalizer(norm=a) = randchoice([‘l1’, ‘l2’,‘max’])
• Binarizer(threshold=a) = randuniform(0,100)
• SMOTE(a=n_neighbors, b=n_synthetics, c=Minkowski_exponent)

– a,b = randit(1,20),randchoice(50,100,200,400)
– c = randuniform(0.1,5)

Pre-Processors for Text mining:
• CountVectorizer(max_df=a, min_df=b) = randint(100, 1000), randint(1, 10)
• T�dfVectorizer(max_df=a, min_df=b, norm=c)

– a, b,c = randint(100, 1000), randint(1, 10), randchoice([‘l1’, ‘l2’, None])
• HashingVectorizer(n_features=a, norm=b)

– a = randchoice([1000, 2000, 4000, 6000, 8000, 10000])
– b = randchoice([‘l1’, ‘l2’, None])

• LatentDirichletAllocation(n_components=a, doc_topic_prior=b,
topic_word_prior=c, learning_decay=d, learning_o�set=e,batch_size=f)
– a, b, c = randint(10, 50), randuniform(0, 1), randuniform(0, 1)
– d, e = randuniform(0.51, 1.0), randuniform(1, 50),
– f = randchoice([150,180,210,250,300])

We comparatively evaluated DODGE against AI tools which have
been published in prior SE research. This paper does not compare
DODGE against all other learners and all other hyperparameter
optimizers (since such a comparison would not �t into a single
paper). Instead, we use baselines as found in the SE literature about
bad smell detection, predicting Github issue close time, bug report
analysis, and defect prediction.

For example, for defect prediction, our classi�ers come from a
study by Ghotra et al. [25]. They found that the performance of
dozens of data miners (applied to defect prediction) clustered into
just few groups. By sampling a few algorithms from each group,
we can explore the range of AI tools seen in defect prediction.

Clustering algorithms like EM [16] divide the data into related
groups, then check the properties of each group. Another clustering
method used in text mining, is Latent Dirichlet Allocation [11] that
infers “topics” (commonly associated words). After documents are
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scored according to how often they use some topic, a secondary
classi�er can then be used to distinguish the di�erent topics.

Clustering algorithms like EM and LDA do not make use of
any class variable. Naive Bayes classi�ers [18], on the other hand,
always divide the data on the class. New examples are then classi�ed
according to which class is most similar. Also, logistic regression
�ts the data to a particular parametric form (the logistic function).

Another learner that uses the class variable are decision tree
algorithms [14, 65]. These learners divide the data using the at-
tribute whose values most separate the classes. This learner then
recurses on each division. Random Forests [13] build a “committee”
of multiple decision trees, using di�erent sub-samples of the data.
Conclusions then come from some voting procedure across all the
decision trees in the forest.

Standard clustering and decision tree algorithms base their anal-
ysis using the raw problem data. But what if some extra derived
attribute is best at separating the classes? To address that issue,
SVMs use some “kernel” to infer those extra dimension [12].

As for hyperparameter optimization, recall that these are tools
to �nd a learner’s control settings (e.g., see Table 1). As mentioned
above, we do not compare DODGE against all other hyperparam-
eter optimization methods. Instead, we compare DODGE against
prior hyperparameter optimization methods seen in SE literature.
For example, for text mining of SE data, Panichella et al. [61] used
genetic algorithm [27] (GA) to “evolve” a set of randomly gener-
ated control settings for SE text miners by repeating the following
procedure, across many “generations”: (a) mutate a large popula-
tion of alternate settings; (b) prune the worse performing settings;
(c) combine pairs of the better, mutated options.

An alternative hyperparameter optimization strategy is the dif-
ferential evolution [70] used by Wu et al. [23] and others [3]. DE
generates mutants by interpolating between the better ranked set-
tings. These better settings are kept in a “frontier list”. Di�erential
evolution iterates over the frontier, checking each candidate against
a new mutant. If the new mutant is better, it replaces the frontier
item, thus improving the space of examples used for subsequent
mutant interpolation.

Tantithamthavorn et al. [71] used a grid search for their hyper-
parameter optimization study. Grid search runs nested “for-loops”
over the range of each control options. Fu et al. [24] found that for
defect prediction, grid search ran 100 to 1000 times slower than DE.

3 DODGE: AN SE-BASED AI TOOL
This section describes DODGE, a tool described by Agrawal et
al. [1] as an “SE-based” optimizer.

Given an ever evolving set of tools, languages, platforms, tasks,
user expectations, development population, development practices,
etc, we might expect that any prediction about an SE project will
only ever be approximately accurate, i.e., within � of the true value.
Agrawal et al. reasoned that � is not a problem to be solved, but a
resource that could be exploited, as follows:

The RELAX heuristic: Ignore anything less than � .

DODGE applies this RELAX heuristic to do hyperparameter opti-
mization. To illustrate this process, consider the following example.
We are exploring the hyperparameter space of Table 1 and we are

scoring each option via the recall and false alarm rate of the learner
that uses those settings (for a de�nition of these scores, see §5).

Given performance goals with the range 0  �  1, � divides the
performance output space into (1/�)� cells. For example, consider
the � = 2 goals of recall and false alarm. These have minimum and
maximum values of zero and one. Hence, if � = 0.2, then these
scores divide into �ve regions (at 0.2, 0.4, 0.6, 0.8). As shown in

recall

false alarm

Figure 1: 25
outputs of
size � .

Figure 1, these divided scores separate a
two-dimensional plot of recall vs false alarm
scores into (1/0.2)2 = 25 cells. In those cells,
green denotes good performance (high recall,
low false alarm) and red denotes cells with
relatively worse performance.

When billions of inputs (in Table 1) are
mapped into the 25 cells of Figure 1, then
many inputs are redundant, i.e., lead to the
same outputs. The faster we can “dodge” re-
dundant options, the faster we can move on
to explore the other (1/�)� possible outputs.

To implement “dodging”, DODGE models Table 1 as a tree where
all nodes have intiial weightsw = 0. Next, N1 times, DODGE selects
branches at random. We evaluate the options in a branch and if the
resulting scores are within � of any previous scores, then DODGE
deprecates those options viaw = w � 1. Elsew = w + 1.

After that, DODGE freezes the selected branches found so far.
N2 times, DODGE then makes random selection to restrict any
numeric ranges. When a range is initially evaluated, a random
number r = random(lo, hi) is selected and its weightw(r ) is set to
zero. Subsequently, this weight is adjusted (as described above).
When a new value is required (i.e., when the branch is evaluated
again) then if the best, worst weights seen so far (in this range) are
x ,� (respectively) then we reset lo, hi to:

IF x  � THEN lo, hi = x , (x + �)/2 ELSE lo, hi = (x + �)/2,x
When � is large, a few samples should su�ce to �nd good results.

Hence, Agrawal et al. [1] recommends � = 0.2 and N1 + N2 = 30.
DODGE can be recommended for two reasons. Firstly, for SE

problems, DODGE’s optimizations are better than the prior state-
of-the-art (evidence: see [1], and the rest of this paper). Secondly,
DODGE achieves those results very quickly. Based on the default
parameters suggested by Goldberg [27], Storn [70], and using some
empirical results from Fu et al. [23], we can compute the number
of times a hyperparameter optimizer would have to call a data
miner. Assuming that, 25 times1 we are analyzing 10 data sets, then
hyperparameter optimizationwith grid search or genetic algorithms
or di�erential evolution or DODGE would need to call a data miner
107 or 106 or 105 or 104 times (respectively).

4 BUTWHENWILL DODGE FAIL?
This section describes the problem data used to evaluate DODGE.

Agrawal et al. say DODGE is an “SE-based” algorithm whose
success depends on RELAX heuristic which, in turn, depends on
the high variability of predictions for software. Their approach is
so unusual that it is reasonable to ask “when won’t it work?”. To
1Why 25? In a 5x5 cross-val experiment, the data set order is randomized �ve times.
Each time, the data is divided into �ve bins. Then, for each bin, that bin becomes a
test set of a model learned from the other bins.
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amc average method complexity
avg cc average McCabe
ca a�erent couplings
cam cohesion amongst classes
cbm coupling between methods
cbo coupling between objects
ce e�erent couplings
dam data access
dit depth of inheritance tree
ic inheritance coupling

lcom (lcom3) 2 measures of lack of cohesion in methods
loc lines of code

max cc maximum McCabe
mfa functional abstraction
moa aggregation
noc number of children
npm number of public methods
rfc response for a class
wmc weighted methods per class
defects Boolean: where defects found in bug-tracking

Table 2: Static code metrics for defect prediction. For details,
see [42].

answer this question, the rest of this paper applies DODGE to 120
data sets, 83 of which come from SE while the others are from the
AI literature. Agrawal et al. previously studied 16 of these data sets
(and none of their data came from non-SE problems).

We will �nd that DODGE works very well for SE case studies
and very badly for standard AI case studies. Later in this paper, we
precisely characterize the kinds of data for which DODGE is not
recommended.

All these pre-processed data sets are available on-line at https:
//github.com/binded4review.

4.1 Defect Prediction
Software developers are smart, but sometimesmakemistakes. Hence,
it is essential to test software before the deployment [8, 56, 59, 80].
Software bugs are not evenly distributed across the project [29,
39, 53, 60]. Hence, a useful way to perform software testing is to
allocate most assessment budgets to the more defect-prone parts
in software projects. Data miners can learn a predictor for defect
proneness using, for e.g., the static code metrics of Table 2.

In a recent study, Rahman et al. [66] compared (a) static code
analysis tools FindBugs, Jlint, and PMD and (b) static code defect
predictors (which they called “statistical defect prediction”) built
using logistic regression. They found no signi�cant di�erences in
the cost-e�ectiveness of these approaches. This result is interest-
ing since code defect prediction can be quickly adapted to new
languages by building lightweight parsers to extract static code
metrics. The same is not true for static code analyzers that need
much modi�cation when languages update.

A recent survey of 395 practitioners from 33 countries and �ve
continents [72] found that over 90% of the respondents were willing
to adopt defect prediction techniques. Also, when Misirli et al. [53]
built a defect prediction model for a telecommunications company,
those models could predict 87% of �les with defects. Those models
also decreased inspection e�orts by 72%, and reduced post-release
defects by 44%.

Table 3 shows the static code data used in this paper. All these
projects have multiple versions and we use older versions to predict
the properties of the latest version. Note the �uctuating frequen-
cies of the target class in the training and testing data (sometimes

Table 3: Defect prediction data from http://tiny.cc/seacraft.
Uses metrics from Table 2.

Training Data Testing DataProject Versions % of Defects Versions % of Defects
Poi 1.5, 2.0, 2.5 426/936 = 46% 3.0 281/442 = 64%
Lucene 2.0, 2.2 235/442 = 53% 2.4 203/340 = 60%
Camel 1.0, 1.2, 1.4 374/1819 = 21% 1.6 188/965 = 19%
Log4j 1.0, 1.1 71/244 = 29% 1.2 189/205 = 92%
Xerces 1.2, 1.3 140/893 = 16% 1.4 437/588 = 74%
Velocity 1.4, 1.5 289/410 = 70% 1.6 78/229 = 34%
Xalan 2.4, 2.5, 2.6 908/2411 = 38% 2.7 898/909 = 99%
Ivy 1.1, 1.4 79/352 = 22% 2.0 40/352 = 11%
Synapse 1.0, 1.1 76/379 = 20% 1.2 86/256 = 34%
Jedit 3.2,4.0, 4.1,4.2 292/1257 = 23% 4.3 11/492 = 2%

Table 4: Issue tracking data (from http://tiny.cc/seacraft).

Dataset No. of Documents No. of Unique Words Severe %
PitsA 965 155,165 39
PitsB 1650 104,052 40
PitsC 323 23,799 56
PitsD 182 15,517 92
PitsE 825 93,750 63
PitsF 744 28,620 64

increasing, sometimes decreasing), for e.g., xerces has target fre-
quency changes between 16 to 74% while in jedit it changes from 23
to 2%. One of the challenges of doing data mining in such domains is
�nding learner settings that can cope with some wide �uctuations.

4.2 Text Mining Issue Reports
Many SE project artifacts come in the form of unstructured text such
as word processing �les, slide presentations, comments, Github
issue reports, etc. According to White [73], 80% of business is con-
ducted on unstructured data, 85% of all data stored is held in an
unstructured format and unstructured data doubles every three
months. Nadkarni and Yezhkova [57] say that 1600 Exabytes of
data appears in unstructured sources and that each year, humans
generate more unstructured artifacts than structured.

Mining such unstructured data is complicated by the presence
of free form natural language which is semantically very complex
and may not conform to any known grammar. In practice, text
documents require tens of thousands of attributes (one for each
word). For example Table 4 shows the number of unique words
found in the issue tracking system for six NASA projects PitsA,
PitsB, PitsC, etc. [44, 49]. Our PITS dataset contains tens to hundreds
of thousands of words (even when reduced to unique words, there
are still 10,000+ unique words). One other thing to note in Table 4 is
that the target class frequencies are much higher than with defect
prediction (median=60%).

For such large vocabulary problems, one of the tasks of a text
miner is dimensionality reduction. See Table 1 for a list of dimen-
sionality reduction pre-processing methods applied to the Table 4.
After pre-processing, one of the learners from Table 1 was applied
to predict for issue severity.

While these data mention �ve classes of severity, two of them
comprise nearly all the examples. Hence, for this study we use the
most common class and combine all the others into “other”. Agrawal
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Table 5: Metrics used in Issue lifetime data

Commit Comment Issue
nCommitsByActorsT meanCommentSizeT issueCleanedBodyLen
nCommitsByCreator nComments nIssuesByCreator
nCommitsByUniqueActorsT nIssuesByCreatorClosed
nCommitsInProject nIssuesCreatedInProject
nCommitsProjectT nIssuesCreatedInProjectClosed

nIssuesCreatedProjectClosedT
nIssuesCreatedProjectT

Misc. nActors, nLabels, nSubscribedByT

et al. [1] showed that using Table 1, they could auto-con�gure
classi�ers to better predict for this binary severity problem.

4.3 Issue Lifetime Estimation
Issue tracking systems collect information about system failures,
feature requests, and system improvements. Based on this informa-
tion and actual project planing, developers select the issues to be
�xed.

Predicting the time it may take to close an issue has multiple
bene�ts for the developers, managers, and stakeholders involved in
a software project. Such predictions helps software developers to
better prioritize work. For an issue close time prediction generated
at issue creation time can be used, for example, to auto-categorize
the issue or send a noti�cation if it is predicted to be an easy �x. Also,
such predictions helps managers to e�ectively allocate resources
and improve consistency of release cycles. Lastly, such predictions
helps project stakeholders understand changes in project timelines.

Such predictions can be generated via data mining. Rees-Jones et
al. [68] analyzed the Giger et al. [26] data using Hall’s CFS feature
selector [28] and the C4.5 decision tree learner [65]. They found
that the attributes of Table 5 could be used to generate very accurate
predictions for issue lifetime. Table 6 shows information about the
nine projects used in the Rees-Jones study. Note here that the target
class frequencies vary greatly from 2 to 42%.

4.4 Bad Code Smell Detection
According to Fowler [21], bad smells (i.e., code smells) are “a surface
indication that usually corresponds to a deeper problem”. Studies
suggest a relationship between code smells and poormaintainability
or defect proneness [76, 77, 81]. Research on software refactoring
endorses the use of code-smells as a guide for improving the quality
of code as a preventative maintenance. Consequently, code smells
are captured by popular static analysis tools, like PMD, Check-
Style, FindBugs, and SonarQube. Much recent progress has been
made towards adopting data mining AI tools to classify code smells.
Kreimer [40] proposes an adaptive detection to combine known
methods for �nding design �aws. Khomh et al. [36] proposed a
Bayesian approach to detect occurrences of the Blob antipattern
on open-source programs. Khomh et al. [37] also proposed an ap-
proach to build Bayesian Belief Networks. Yang et al. [78] studied
the judgment of individual users by applying machine learning
algorithms on code clones.

Recently, Fontana et al. [5] considered 74 systems in data mining
analysis. Table 7 shows the data used in that analysis. This corpus
comes from 11 systems written in Java, characterized by di�erent
sizes and belonging to di�erent application domains. The authors
computed a large set of object-oriented metrics belonging at a class,

Table 6: Issue Lifetime Estimation Data from [68]

Project Name Dataset # of instances # metrics (see Table 5).Total Closed (%)

camel

1 day

5056

698 (14.0)

18

7 days 437 (9.0)
14 days 148 (3.0)
30 days 167 (3.0)
90 days 298 (6.0)
180 days 657 (13.0)
365 days 2052 (41.0)

cloudstack

1 day

1551

658 (42.0)

18

7 days 457 (29.0)
14 days 101 (7.0)
30 days 107 (7.0)
90 days 133 (9.0)
180 days 65 (4.0)
365 days 23 (2.0)

cocoon

1 day

2045

125 (6.0)

18

7 days 92 (4.0)
14 days 32 (2.0)
30 days 45 (2.0)
90 days 86 (4.0)
180 days 51 (3.0)
365 days 73 (3.5)

node

1 day

6207

2426 (39.0)

18

7 days 1800 (29.0)
14 days 521 (8.0)
30 days 453 (7.0)
90 days 552 (9.0)
180 days 254 (4.0)
365 days 180 (3.0)

deeplearning

1 day

1434

931 (65.0)

18

7 days 214 (15.0)
14 days 76 (5.0)
30 days 72 (5.0)
90 days 69 (5.0)
180 days 39 (3.0)
365 days 32 (2.0)

hadoop

1 day

12191

40 (0.0)

18

7 days 65 (1.0)
14 days 107 (1.0)
30 days 396 (3.0)
90 days 1743 (14.0)
180 days 2182 (18.0)
365 days 2133 (17.5)

hive

1 day

5648

18 (0.0)

18

7 days 22 (0.0)
14 days 58 (1.0)
30 days 178 (3.0)
90 days 1050 (19.0)
180 days 1356 (24.0)
365 days 1440 (25.0)

ofbiz

1 day

6177

1515 (25.0)

18

7 days 1169 (19.0)
14 days 467 (8.0)
30 days 477 (8.0)
90 days 574 (9.0)
180 days 469 (7.5)
365 days 402 (6.5)

qpid

1 day

5475

203 (4.0)

18

7 days 188 (3.0)
14 days 84 (2.0)
30 days 178 (3.0)
90 days 558 (10.0)
180 days 860 (16.0)
365 days 531 (10.0)

Table 7: Bad code smell detection data from [5]

Nature Dataset No. of instances No. of attributes Smelly %
Method Feature Envy 109 82 45
Method Long Method 109 82 43.1
Class God Class 139 61 43.9
Class Data Class 119 61 42

method, package, and project level. A detailed list of metrics are
available in appendices of [5]. Note in Table 7, how the target class
frequencies are all around 43%,
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Table 8: NON-SE problems: 37 UCI Datasets statistics.

Area Dataset # of
instances

# of
attributes Class %

Computer optdigits 1143 64 50
Physical satellite 2159 36 28
Physical climate-sim 540 18 91
Financial credit-approval 653 15 45
Medicine cancer 569 30 37
Business shop-intention 12330 17 15
Computer Vision image 660 19 50
Life covtype 12240 54 22
Computer hand 29876 15 47
Social drug-consumption 1885 30 23
Environment biodegrade 1055 41 34
Social adult 45222 14 25
Physical crowdsource 1887 28 24
Medicine blood-transfusion 748 4 24
Financial credit-default 30000 23 22
Medicine cervical-cancer 668 33 7
Social autism 609 19 30
Marketing bank 3090 20 12
Financial bankrupt 4769 64 3
Financial audit 775 25 39
Life contraceptive 1473 9 56
Life mushroom 5644 22 38
Computer pendigits 2288 16 50
Security phishing 11055 30 56
Automobile car 1728 6 30
Medicine diabetic 1151 19 53
Physical hepmass 2000 27 50
Physical htru2 17898 8 9
Computer kddcup 3203 41 69
Automobile sensorless-drive 10638 48 50
Physical waveform 3304 21 50
Physical annealing 716 10 13
Medicine cardiotocography 2126 40 22
Phyical shuttle 54489 9 16
Electrical electric-stable 10000 12 36
Physical gamma 19020 10 35
Medicine liver 579 10 72

4.5 Non-SE Problems
The UCI machine learning repository [7, 17, 22] was created in 1987
to foster experimental research in machine learning. To say the
least, this repository is commonly used by industrial and academic
researchers (evidence: the 2007, 2010, and 2017 version of the repos-
itory are cited 4020, 3179 and 4179 times respectively [7, 17, 22]).
Many of AI tools used in SE were certi�ed using data from UCI.
This repository holds 100s of data mining problems from many
problem areas including engineering, molecular biology, medicine,
�nance and politics. Using a recent state-of-the-art machine learn-
ing paper [74] we identi�ed 37 UCI data sets that machine learning
researchers often use in their analysis (see Table 8).

One issue with comparing Table 8 to the SE problems is that
the former often have N > 2 classes whereas the SE problems use
binary classi�cation. Also, sometimes, the SE data exhibits large
class imbalances (where the target is less than 25% of the total).
Such imbalances are acute in the issue lifetime data in Table 6 but
it also appears sometimes in the test data of Table 3.

We considered various ways to remove this threat to validity
including (a) clustering and sub-sampling each cluster; (b) some
biased sampling of the UCI data. In then end, we adopted a very
simple method (lest anything more complex introduced its own
biases). For each UCI dataset, we selected:

• The UCI rows from the most frequent and rarest class;
• And declared that the UCI rarest class is the target class.

5 EXPERIMENTS AND RESULTS
To comparatively evaluate the performance of AI tools, we need
performance measures (§5.1), appropriate experimental rigs (§5.2),
and statistical tests (§5.3).

5.1 Performance Measures
D2h, or “distance to heaven”, shows how close a classi�er falls to
“heaven” (where recall=1 and false alarms (FPR)=0) [15]:

Recall = TruePositives/(TruePositives + FalseNegatives) (1)
FPR = FalsePositives/(FalsePositives + TrueNegatives) (2)

d2h =
⇣p

(1 � Recall)2 + (0 � FPR)2
⌘
/
p
2 (3)

Here, the
p
2 term normalizes d2h to the range zero to one.

For defect prediction, Popt(20) comments on the inspection e�ort
required after a defect predictor is triggered. Popt(20) = 1 � �opt ,
where �opt is the area between the e�ort (code-churn-based) cu-
mulative lift charts of the optimal learner and the proposed learner.
To calculate Popt(20), we divide all the code modules into those
predicted to be defective (D) or not (N ). Both sets are then sorted
in ascending order of lines of code. The two sorted sets are then
laid out across the x-axis, with D before N . On such a chart, the y-
axis shows what percent of the defects would be recalled if we
traverse the code sorted that x-axis order. Following from Os-
trand et al. [60], Popt is reported at the 20% point. Futher, fol-
lowing Kamei, Yang et al. [35, 55, 79] we normalize Popt using:
Popt (m) = 1 � S (optimal )�S (m)

S (optimal )�S (worst ) where S(optimal), S(m) and
S(worst) represent the area of curve under the optimal learner, pro-
posed learner, and worst learner. Note that the worst model is built
by sorting all the changes according to the actual defect density
in ascending order. After normalization, Popt(20) (like d2h) has the
range zero to one. Note that larger values of Popt(20) are better; but
smaller values of d2h are better.

5.2 Experimental Rigs
Jimeneze et al. [33] recommended that train/test data be labelled
in their natural temporal sequence. E..g. for defect data, we apply
training and hyperparameter optimization to the prior versions,
then tested on the latest version. We call this approach RIG0.

When such temporal markers are absent, we applied a cross-val
method (which is also standard in literature, for e.g., see [79]). Given
one data set and N possible treatments, then 25 times we use 80%
of the data (selected at random) for training and hyperparameter
optimization, then use the remaining 20% of the data for testing.
We call this approach RIG1.

5.3 Statistical Tests
When comparing results from two samples, we need a statistical
signi�cance test (to certify that the distributions are indeed di�er-
ent) and an e�ect size test (to check that the di�erences are more
than a “small e�ect”). Here, we used tests which have been past
peer reviewed in the literature [2, 3]. Speci�cally, we use Efron’s
95% con�dence bootstrap procedure [19] and the A12 e�ect test
endorsed by Acuri & Briand in their ICSE paper [6].
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5.4 Results
In the following, when we say “DODGE”, that is shorthand for
DODGE using Table 1 with N1 + N2 = 15, � = 0.2. Also, when we
say “DODGE performed better”, we mean that, according to a 95%
bootstrap and the A12 test, DODGE performed signi�cantly better
by more than a small e�ect.

Table 9: Ten defect predic-
tion results. Smote+means
SMOTE+ DE tuning + best
of the Ghotra’15 learners.

Best tooldata D2h Popt
Poi Dodge Smote+

Lucene Dodge Dodge
Camel Dodge Dodge
Log4j Smote+ Dodge
Xerces Dodge Dodge
Velocity Dodge Dodge
Xalan Smote+ Dodge
Ivy Dodge Dodge

Synapse Dodge Dodge
Jedit Smote+ Dodge

5.4.1 Defect Prediction. Ta-
ble 9 shows which AI tools
found best predictors for de-
fects, using the data of §4.1.

One issue with defect pre-
diction is the occasional pres-
ence of class imbalance. If
the target class is not com-
mon (as in camel, ivy, jedit
and to a lesser extent veloc-
ity and synapse), it can be
di�cult for a data mining al-
gorithm to generate a model
that can locate it. Researchers
have used class balancing tech-
niques such as SMOTE to ad-
dress this problem [3].

Table 9 study compares DODGE versus methods selected from
prior state-of-the-art SE papers. An ICSE’18 paper [3] reported that
hyperparameter tuning (using DE) of SMOTE usually produces best
results (and this result holds across multiple learners, applied after
class rebalancing). We used SMOTE tuning (for data-processing)
plus learners taken from Ghotra et al. [25] (who found that the
performance of dozens of data miners can be clustered into just
a few groups). We used learners sampled across those clusters
(Random Forests, CART, SVM, KNN (k = 5), Naive Bayes, Logistic
Regression).

Table 9 results were generated usingRIG0with d2h and Popt(20)
as the performance goal. DODGE performed statistically better
than the prior state-of-the-art in sixteen out of twenty data sets.

Table 10: Six text
mining results.

Data Best tool
PitsA Dodge
PitsB LDA + DE
PitsC Dodge
PitsD Dodge
PitsE Dodge
PitsF Dodge

5.4.2 Text Mining Issues Reports. Ta-
ble 10 shows which AI tools found best
predictors for the data of §4.2. In this
study, all data were preprocessed using
the usual text mining �lters [20]. We
implemented stop words removal using
NLTK toolkit [10] (to ignore very com-
mon short words such as “and” or “the”).
Next, Porter’s stemming �lter [64] was
used to delete uninformative word end-
ings (e.g., after performing stemming,
all the following words would be rewrit-
ten to “connect”: “connection”, “connections”, “connective”, “con-
nected”, “connecting”).

Table 10 study compares DODGE versus methods seen in prior
state-of-the-art SE papers: speci�cally, SVM plus Latent Dirichlet
allocation [11] with hyperparameter optimization via di�erential
evolution [2] or genetic algorithms [61].

Table 11: Sixty three issue lifetime prediction results.
DODGE loses to random forests in colored cells.

Days till closed
Data > 365 < 180 < 90 < 30 < 14 < 7 < 1
cloudstack Dodge Dodge Dodge RF RF Dodge RF
node Dodge Dodge Dodge Dodge RF Dodge Dodge
deeplearning Dodge Dodge Dodge Dodge Dodge Dodge RF
cocoon RF RF Dodge Dodge Dodge Dodge Dodge
ofbiz Dodge Dodge Dodge Dodge Dodge Dodge Dodge
camel RF Dodge Dodge RF RF Dodge Dodge
hadoop Dodge Dodge Dodge RF RF Dodge RF
qpid Dodge Dodge Dodge Dodge Dodge Dodge Dodge
hive RF RF Dodge Dodge Dodge Dodge Dodge
DODGE wins 6/9 7/9 9/9 6/9 5/9 9/9 6/9

Table 10 results were generated using RIG1 with d2h as the
performance goal. In these results, DODGE performed statistically
better than the prior state-of-the-art (in �ve out of six data sets).

5.4.3 Issue Lifetime Estimation. Table 11 shows which AI tools
found best predictors, using the data of §4.3. The table compares
DODGE versus the methods in a recent study on issue lifetime
estimation [68], i.e., feature selection with the Correlation Feature
Selection algorithm [28] followed by classi�cation using Random
Forests.

Table 11 results were generated using RIG1 with d2h as the
performance goal. In these results, DODGE performed statistically
better than prior work (in 47/63=75% of the datasets).

5.4.4 Bad Code Smell Detection. Figure 2 shows which AI tools
found best predictors, using the data of §4.4. The �gure compares
DODGE versus bad smell detectors from a TSE’18 paper [41] that
studied bad smells. The TSE article used Decision Trees (CART),
Random Forests, Logistic Regression and KNN(k = 5). To the best

Figure 2: Four bad smell prediction results. Boxes indicate
75th-25th range seen in 25 repeats. Whiskers extend from
min to max. Horizontal line in the middle of each box indi-
cates median value. In this �gure, lower values are be�er.

.
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Table 12: Thirty seven results from non-SE problems. Col-
ored cells show where DODGE performs best.

Data Best tool Data Best tool
optdigits RF satellite RF

climate-sim SVM credit-approval Dodge
cancer SVM shop-intention RF
image RF covtype RF
hand RF drug-consumption Dodge

biodegrade RF adult RF
crowdsource RF blood-transfusion Dodge
credit-default SVM cervical-cancer Dodge

autism RF bank SVM
bankrupt Dodge audit RF

contraceptive SVM mushroom RF
pendigits RF phishing RF

car RF diabetic SVM
hepmass RF htru2 SVM
kddcup RF sensorless-drive RF

waveform SVM annealing RF
cardiotocography RF shuttle RF
electric-stable RF gamma RF

liver Dodge

of our knowledge, there has not been any prior case study applying
hyperparameter optimizer to bad smell prediction.

Figure 2 results were generated using RIG1 with d2h as the
performance goal. In those results, DODGE has the same median
performance as prior work for two data sets (FeatureEnvy and
GodClass) and performed statistically better that the prior state-of-
the-art (for DataClass and LongMethod). That is, compared to the
other algorithms used in this study, DODGE statistically performs
as well or better than anything else.

5.4.5 Non SE-Problems. The results so far support DODGE’s ap-
proach to hyperparameter optimization. But all the above problems
come from the SE domain. When we turn to non-SE problems, a
very di�erent pattern was observed.

Table 12 shows which AI tools found best predictors for the 37
di�erent problems from §4.5.

In Table 12, DODGE was compared against standard data min-
ers (CART, Random Forests, Logistic Regression and KNN(k = 5)).
Table 12 results were generated using RIG1 with d2h as the perfor-
mance goal. Each cell of that table lists the best performing learner.
Note that despite its use of hyperparameter optimization (which
should have given some advantage) DODGE performs very badly
(only succeeds in 6/31 problems).

6 META-ANALYSIS
This section addresses the puzzle raised by the above results. DODGE
works very well for SE problems and works very poorly for non-SE
problems. Why?

6.1 Methodology
This section describes our method for learning what kind of prob-
lems works best for SE/AI-based tools.

(1) GivenM treatments for data, divide those treatments into those
from SE and those from elsewhere. In our case, DODDE is the
SE-based tool. Also, as discussed in §2.2, grid search, DE, GA,
SVM, Random Forests, decision tree learners, logistic regression,
Naive Bayes, LDA, and EM are representative of standard AI.

(2) Apply thoseM treatments to P data sets (some SE, some from
elsewhere). In the case of this paper, our data was described
above.

(3) (Optional): As done in this paper, we recommend guiding that
exploration by adopting the methods seen in recent publica-
tions in high-pro�le SE venues (since such methods have some
pedigree in the literature).

(4) Using statistical methods and experimental rigs appropriate to
those problems, build a table of data showing what AI tools work
best for each data sets. In that table:
• For the dependent class, use the name of the best AI tool.
• For the independent variables, use some data characteristics
shared by all your problems. For this study, we used the
independent attributes described in the next section.

(5) Run a decision tree learner (CART or C4.5) over that table.
(6) Read the generated tree to learn what kind of data is best pro-

cessed by general AI tools or SE-based tools.

6.2 Independent Variables for the
Meta-Analysis

To understand when DODGE performs well/fail, we need some
characterization of the data sets that holds across most of the above
data. All of the above problems are stored in tables of data and can
be described via:
• N = Number of samples (rows of example instances);
• F= Frequency of our selected target class;
Of course, our data has more independent information than these
two points. For example, we tried using some other attributes (the
percentile distributions of the expected value of the attribute en-
tropy). But when we applied the CFS [28] feature selector, all those
other independent attributes kept being deleted. Hence, to build a
rule for determining when to use/avoid DODGE, we used (N , F ).

The data generated in this way is shown at http://tiny.cc/variance_
defense.

6.3 Meta-Analysis Results
For this analysis, anything not labelled as “DODGE” was renamed
“general AI tool”. The following rule was generated. The number
of brackets after each conclusion shows the percentage of the data
that falls to each branch.

IF F <= 21.15%
THEN

IF N <= 12215
THEN use DODGE (55)
ELSE use general AI tools (3)

THEN
use general AI tools (42)

In summary, if the target class is not rare (more than 21%) then use
general AI tools. Otherwise, except for one infrequent case (3% of
our data), use DODGE.

Since this rule was learned via data mining, it is not a categorical
statement that, always, anything con�rming to one of its branches
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will 100% bene�t best from DODGE or some general AI tool. There
are certainly counter-examples to this rule in our data (particularly
with the text mining and bad smell data where the target classes are
quite common). Hence, in a 5-way cross-validation experiment, this
rule did not report 100% recalls or precisions for selecting which
tools:

class recall precision false alarm
DODGE 77 72 28

General AI 72 70 27

Nevertheless, given the complexity of the phenomena being ex-
plored here, the observed recall, precision, and false alarm rates are
remarkably good. Also, as discussed in the next section, we found
this rule insightful.

6.4 Discussion
We posted the rule learned above to a machine learning discussion
forum and received back the following insight. For many decades,
the AI community has been using the UCI repository as a source
of data for certifying their algorithms. Several of the data sets of
Table 8 have appeared in publications dating back at least to 1995
i.e., nearly 25 years ago [52]. Quirks of that data have hence led to
the development of algorithms that are skewed toward particular
kinds of data.

To say that another way, the algorithms that we have called “gen-
eral AI tools” may not be “general” at all. Rather, they may be tools
that are powerful in their home domain but need to be used with
care if applied to new domains such as software engineering. Many
data mining problems in software engineering target infrequent
phenomena. Hence, when the target class is relatively uncommon
(say, less than 20%), we can do better than just using AI tools built
and tested for data with much more frequent classes.

As to the connection of infrequent classes to the RELAX heuristic
of §3, it seems reasonable to assume that the more common the
target class, then:

• The easier it is to learn about the target;
• The �ner the control the learner has about its generated models;
• The smaller the � inaccuracy measure in the predictions;
• The fewer the redundant tuning options;
• And the less likely that the limited sampling of DODGE will �nd
good tunings;

On the other hand, when the target class becomes less frequent,
then:

• It is harder to �nd the target;
• The larger the observed � in the results;
• The greater the number of redundant tunings;
• The more likely that DODE will work.

That is, since software engineering often deals with relatively in-
frequent target classes, then we should expect to see a large �
uncertainty in our conclusions.

7 THREATS TO VALIDITY
7.1 Sampling Bias
Sampling bias threatens any classi�cation experiment since what
matters for some data sets may or may not hold for others.

But in our case, sampling bias may be mitigated since we ap-
plied our frameworks to many data sets. In fact, our reading of the
literature is that the above study uses much more data than most
other publications. Also, we assert we did not “cherry pick” our
data sets. All the non-SE data from [74] were applied here. As to
the SE data, we used everything we could access in the time frame
of this production of this paper.

That said, in future work, it would be important to check the
results of this paper against yet more data sets from yet more
problems from SE and elsewhere.

7.2 Learner Bias
When comparing DODGE against other AI tools, we did not explore
all other AI tools. As stated above, such a comparison would not
�t into a single paper. Instead, we use baselines taken from SE
literature about bad smell detection, predicting Github issue close
time, bug report analysis, and defect prediction. From that work we
used tools that have some pedigree in the literature [3, 25, 61, 71].

7.3 Evaluation Bias
This paper used two performancemeasures, i.e., Popt anddist2hea�en
and many others exist [34, 46, 50]. Note that just because other pa-
pers use a particular evalaution bias, then it need not follow that
it must be applied in all other papers. For example, precision is a
widely used evaluation method even though it is known to peform
badly when data sets have rare target classes [45].

7.4 Order Bias
For the performance evaluation part, the order that the data trained
and predicted can a�ects the results. To mitigate for order bias, we
used a cross-validation procedure that (multiple times) randomizes
the order of the data.

7.5 Construct Validity
At various stages of data collection by di�erent researchers, they
must have made engineering decisions about what attributes to be
extracted from Github for Issue lifetime data sets, or what object-
oriented metrics need to be extracted. While this can inject issues of
construct validity, we note that the data sets used here have also ap-
peared in other SE publications, i.e., the class labels used here have
veri�ed by other researchers. So at the very least, using this data,
we have no more construct validity bias than other researchers.

7.6 Statistical Validity
To increase the validity of our results, we applied two statistical
tests, bootstrap and the a12 e�ect size test. Both of these are non-
parametric tests so the above results are not susceptible to issues
of parametric bias.

7.7 External Validity
One threat to external validity is that this article compares DODGE
against existing baselines for traditional machine learning algo-
rithms. We do not compare our new approach against the kinds of
optimizers we might �nd in the search-based SE literature [63]. The
reason for this is that the main point of this paper is to document
a previously unobserved feature of the output space of software
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analytics. It is an open question whether or not DODGE is the best
way to explore output space In order to motivate the community to
explore that space, some work must demonstrate its existence and
o�er baseline results that, using the knowledge of output space, it
is possible to do better than past work. We hope that this paper
provides that motivation.

8 FUTUREWORK
Further to the discussion of in the Threats to Validity section, the
analysis of this paper should be extended with studies on di�erent
data sets and di�erent AI tools.

Another useful extension to the above would be to explore prob-
lems with three or more goals (e.g., reduce false alarms while at the
same time improving precision and recall). Currently, we have only
explored classi�cation tasks. DODGE needs to be applied for other
tasks such as regression task.

Right now, DODGE only deprecate tunings that lead to similar
results. Another approach would be to also depreciate tunings that
lead to similar and worse results (perhaps to rule out larger parts of
the output space, sooner).

Further, for pragmatically reasons it would be useful if the Table 1
list could be reduced to a smaller, faster to run, set of learners. That
is, here we would select learners that run fastest while generating
the most variable kinds of models.

Moving beyond DODGE, it would be useful to test the gen-
erality of the meta-analysis of §6. For example, Helendoorn and
Devanbu [31] report cases where a standard AI tool (deep learning)
is defeated by their own SE-based method (based on software “nat-
uralness”). To repeat the analysis of this paper, it would be useful to
collect a large library of problems where deep learning does/does
not work best, then look for problem data features that predict for
the success of deep learning.

9 CONCLUSION
Oneway to view SE is that it is just a problem domain where general
AI tools can be deployed. This paper takes another view. We say
software engineering is di�erent and that those di�erences mean
that best results arise from tools specialized to the particulars of
software engineering.

For example, SE problem data is often about infrequent issues,
for e.g., the occasional defect, the rarely exploited security violation,
the requirement that only holds for one small part of a system. But
as shown by the rule in §6.3, standard AI tools work best when the
target is relatively more frequent. That is:
• SE problem data may be inherently di�erent to the problem data
used to develop standard AI tools.

• And that di�erence can be used to (e.g.,) �nd better ways to
build predictions for SE classi�cation problems such as defect
prediction, issue text mining, Github issue lifetime estimation,
and bad code smell detection.

The tool used to �nd these better predictions, called DODGE, runs
orders of magnitude faster than other methods (see calculations
at the end of §5). We conjecture that DODGE works better and
faster than those other tools since those other general AI tools do
not appreciate the simplicity of the output space of SE problems
(Figure 1):

• AI tools such as grid search, di�erential evolution, or genetic
algorithms waste much CPU as they struggle to cover billions of
tuning options like Table 1 (most of which yield indistinguish-
ably di�erent results).

• This is a waste of e�ort since when billions of possibilities (Ta-
ble 1) are mapped into just a few outputs (Figure 1), then many
of those possibilities are redundant; i.e., they lead to the same
outputs.

DODGE knows that the faster we move away from these redundant
possibilities, the faster we can move on to explore the remaining
options. Hence, one lesson from the DODGE research is to say:

• Stop treating conclusion uncertainty as a problem;
• Instead, treat large conclusion uncertainty as a resource that
can be used to simplify the analysis of software systems.

In conclusion, it is not good enough to just take AI tools developed
elsewhwere, then apply them without modi�cation to SE problems.
Understanding SE is a di�erent problem to understanding other
problems that are more precisely controlled and restrained. The
algorithms that might be called “general AI tools” may not be
“general” at all. Rather, they are tools which are powerful in their
home domain but need to be used with care if applied to some
new domains like software engineering. Software engineers need
to develop AI tools that are better suited to the particulars of SE
problems. As shown in this paper:

• Such new algorithms can exploit the peculiarities of SE data to
dramatically simplify the analysis of software systems.

• Further, as shown in §6.3, it is possible to de�ne a rule that
precisely de�nes when not to use those SE-based tools.
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