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ABSTRACT
Within a large space of tests, many variables may have the same
settings. AI researchers report that when solutions share settings,
then solutions can be found, faster, by �rst �nding and setting just
a few of the shared variables- a phenomenon they call “backdoors”.

This paper shows that backdoors can dramatically improve test
case generation. If backdoors exist, then they exist in most solutions.
Hence, test suites can be quickly generated just by sampling around
average values seen in a few randomly selected valid tests (as done
by our new algorithm called S���).

When applied to 27 real-world test case studies S��� ran 10 to
3000 times faster (median to max) than a prior report (at ICSE’18).
While prior work found tests that were 70% valid, all S���’s tests
were valid Test engineers would �nd it easier to use S���’s tests
since those test suites are 10 to 750 times smaller (median to max)
than those found by prior work.

KEYWORDS
SAT solvers, test suite generation, mutation

1 INTRODUCTION
Many software testing or veri�cation problems (such as test suite
minimization, combinatorial testing, and test case prioritization)
can be transformed into “SAT”; i.e. a propositional satis�ability
problem (see §2.2 for details). In theory, this is a useful transforma-
tion since “SAT solvers” are well-studied algorithms in computer
science. As Micheal Lowry said at a panel at ASE’15:

“It used to be that reduction to SAT proved a problem’s
intractability. But with the new SAT solvers, that reduc-
tion now demonstrates practicality.”

However, in practice, general SAT solvers, such as the Z3 [14],
MathSAT [8], vZ [6] et al., are challenged by the complexity of
real-world software models. For example, the largest benchmark
for SAT Competition 2017 [25] had 58,000 variables– which is far
smaller than (e.g.) the 300,000 variable problems seen in the recent
SE testing literature [15]. Accordingly, researchers explore various
heuristics to take best advantage of the SAT solvers. For example
Dutra et al. argued at ICSE’18 [15] that test variants built from other
valid tests are probably also valid. In their approach, new tests are
generated using the deltas between valid cases a,b, c:

d = c � (a � b) (1)

This is a useful heuristic for speeding up test case generation since
the � “exclusive or” operator is much faster to apply than a theorem
prover. But heuristics like Eq. 1 must be applied cautiously. In their
haste to quickly generate solutions, these heuristics might introduce

Submitted to ICSE’2020, August 23, 2019.

new problems. For example, in the case of QuickSampler, algorithm-
generated million of samples without validation guarantees. Such
invalid solutions cannot be applied during the testing. Hence, in
practice, the results from a heuristic test generation may require a
post-generation “sanity check”. In the case of QuickSampler, this
sanity check would take more than 50 hours (i.e. much longer than
the original execution time). Another issue with heuristic methods
is that they may not always generate unique tests. For example, in
one sample of 10 million tests generated from the blasted_case47
benchmark. QuickSampler only found 26,000 unique valid solutions.
That is, 99% of the tests were repeating other tests.

It turns out that repeated solutions can be exploited, to great
e�ect. When used for test generation, SAT solvers represent soft-
ware code as propositional formula (using the methods of §2.2). AI
researchers report that when the solutions to propositional formula
share settings, then solutions can be found, faster, by �rst �nding
and setting some of the shared variables [42]. AI researchers call
this phenomenon the “backdoor e�ect” [42].

The trick to exploiting backdoors is �nding the “backdoor vari-
ables”; i.e. those with settings shared bymost solutions. The starting
point for this paper was the observation that, when such backdoors
exist, they can be seen in the common settings of a random sample
of successful examples (in our case, valid test cases). We hence
conjectured that, to exploit backdoors for test generation, just:

Sample around the average values seen in a few ran-
domly selected valid tests.

We call such exploration the “S��� tactic”. The intuition here is
that, when backdoors exist, the common settings seen in a smallM
sample may also be the common settings in a large N � M sample.

To evaluate this intuition we implemented the tactic in an algo-
rithm called S��� that combines Eq. 1 with the Z3 theorem prover
with the Snap tactic (i.e. sample around average values seen in a
few randomly selected valid tests). Then we study four questions:

RQ1: How reliable is the Eq. 1 heuristic? One reason we
advocate S��� is that this method fully veri�es each test. But is
that necessary? How often does Eq. 1 produce invalid tests? Our
experiments con�rm Dutra et al.’s estimate that the percent of
invalid tests generated by Eq. 1 is 30% or less. But that median
result does not fully characterize the variability of that distribution.
In a third of case studies, the percent of valid tests generated by
Eq. 1 is very low (25% to 50%) (median to max). Hence:

Conclusion #1: Eq. 1 should not be used without veri�cation
of the resulting test.

In this regard, it is signi�cant to say that since S���’s tests suites
are so small, it is possible to quickly verify all tests. That is, unlike
QuickSampler, all S���’s tests are valid.
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RQ2: How fast is S���? In a result con�rming the value of
backdoors for test suite generation, we see that:

Conclusion #2: S���was 10 to 3000 times faster thanQuick-
Sampler (median to max).

RQ3: How easy is it to apply S���’s test cases? Pragmati-
cally, the smaller a test suite, the easier it is for programmers to run
those tests. We �nd that:

Conclusion #3: S���’s test caseswere 10 to 750 times smaller
than those of QuickSampler (median to max).

Small tests suites are important since:
• Industrial researchers [45] advise that one of the major costs
of testing is the developer time required to investigate failed
tests. If we are running 10 to 750 fewer tests, then that also
reduces how much developer time is spent on managing
failed tests.

• When test suites are 10 to 750 times smaller, then they are
faster to execute. Faster test execution means that software
teams can certify a new release, quicker. This is particularly
important for organizations using continuous integration
since faster test suites mean they can make more releases
each day– which means that clients can sooner receive new
(or �xed) features.

• Many current organizations spend tens of millions of dollars
each year (or more) on cloud-based facilities to run large
tests suites [45]. The fewer the tests those organizations have
to run, the cheaper their testing.

• Finally, the methods of this paper automate the di�cult task
of �nding test suite inputs, with the goal of driving the tests
deep within many parts of the software. But what outputs
are required/ expected/ deprecated when those inputs are
given to a program? If testing for (e.g.) core dumps, then
specifying o�-nominal behavior is trivial (just look for a
core dump �le). But for many other, more nuanced, business
cases, specifying what should (and should not) be seen when
a test executes is a time-consuming task requiring a deep
understanding of the purpose and context of the software.
By minimizing the number of tests being executed, we are
also minimizing the developer e�ort required to specify the
expected nominal and o�-behavior associated with each test
execution.

RQ4: How diverse are the S��� test cases? Since S��� ex-
plores far fewer tests than QuickSampler, its tests suites could be
less diverse. Nevertheless:

Conclusion #4: The diversity of S���’s test suites is very
similar to those of QuickSampler.

In summary, the unique contributions of this paper are:
• To the best of our knowledge, this paper is the �rst applica-
tion in SE testing of backdoor-based reasoning.

• Another contribution of this paper is the de�nition and eval-
uation of several techniques for exploiting the backdoor

variables (using “sample the average values of some valid
solutions”).

• This paper o�ers an open-source version of a tool called S���
that encodes these backdoor exploitation methods1. While
this is more of a "systems" contribution than a "research"
contribution, the availability of such a reference system lets
other researchers to check and extend our results.

• We show that for test-case generation, backdoor-based rea-
soning generates much smaller solutions as the prior state-
of-the-art; and does so far faster. Further, 100% of our tests
are valid (while other methods may only generate 70% valid
tests, or less).

The rest of this paper is structured as follows. The next section o�ers
background notes on backdoor-based reasoning; and using SAT
solvers for test case generation. After that, we describe methods
for quickly �nding backdoors. These are then tested on the same
case studies used in the ICSE’18 QuickSampler paper. After showing
those empirical results, we discuss threats to validity.

Before starting, we digress to make the following point. This
paper should not be read as a criticism of QuickSampler. Rather, our
aim is to explore core computational processes (tactics for the faster
exploration of propositional equations) within SE. We explore test
case generation since that is a hard problem of much relevance to
current SE practice (see the last point). For that exploration, we use
QuickSampler as a baseline reference system from the recent SE
testing literature. Such baselines are important since, using it, we
can then comparatively assess other methods (e.g. S���’s backdoor-
based reasoning). In this case, the results of that assessment were
quite dramatic: orders of magnitude reduction in (a) test generation
time as well as (b) the size of the generated tests; also (c) 100% of
our tests are valid.

2 BACKGROUND
2.1 About Backdoors
As described in the next section, generating software tests can be
characterized as solving a propositional formula. This is a useful
insight since propositional satis�ability is a well-studied problem
with many mature tools. Modern constraint solvers, i.e. SAT-solvers
are based on so-called Davis-Putnam-Logemann-Loveland (DPLL)
procedure [13], or some variant. The DPLL procedure searches
systematically for a satisfying assignment, applying �rst unit prop-
agation and pure literal elimination as often as possible. Then, DPLL
branches on the truth value of a variable, and recurses.

SAT has applications in many areas, including areas outside of
software engineering. For this reason, the AI literature contains
numerous studies on SAT solvers. That literature has lead to some
surprising results. For example, Williams et al. [42] de�ned “back-
doors” as small sets of variables that capture the overall combina-
torics of a problem. Later Gaspers et al. [22] formally de�ned the
“backdoor” as

A backdoor set is a set of variables of a propositional
formula such that �xing the truth values of the vari-
ables in the backdoor set moves the formula into some
polynomial-time decidable class.

1Source code at http://github.com/blindedForReview
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1 int mid(int x, int y, int z) {
2 if (x < y) {
3 if (y < z) return y;
4 else if (x < z) return z;
5 else return x;
6 } else if (x < z) return x;
7 else if (y < z) return z;
8 else return y; }

The code above has the six branches shown below. Each branch is a logical constraint
C1 _C2 _C3 . . . _C6. A valid test selects x, y, z such that it satis�es these constraints.
path 1: [C1: x < y < z] L2->L3
path 2: [C2: x < z < y] L2->L3->L4
path 3: [C3: z < x < y] L2->L3->L4->L5
path 4: [C4: y < x < z] L2->L6
path 5: [C5: y < z < x] L2->L6->L7
path 6: [C6: z < y < x] L2->L6->L7->L8

via SMT conversion tools [20]. By convention, the disjunction _Ci is transformed into the
conjunction normal form (CNF)C0

1 ^C0
2 . . .. A valid assignment to the CNF, i.e. the assignment

that ful�lls all clauses, is corresponding to a test case, covering some branch of code.

Figure 1: A script of C programming can be translated into CNF form, the target problem discussed in this paper.

That is, backdoors are a way to turn very slow exponential time
tasks into much faster polynomial-time tasks. Numerous studies
have con�rmed the existence of such backdoors, inmany domains[2,
4, 31, 36]. Fichte et al. [19] proposed backdoor-based methods to
solve the answer set programming problem (ASP), i.e. the search
for answer sets in disjunctive logic programs. Up to then, the most
successful solvers for disjunctive ASP [23] were based on SAT
techniques and the concept of loop formulas [30]. Fichte et al. ex-
ploited the small distance of a disjunctive program from being
normal (such distance is measured in terms of the size the smallest
backdoor to normality, i.e. the smallest number of atoms whose
deletion makes the program normal). Among the structured (i.e.
non-random) domains, experiments showed that only 1 to 10% of
atoms were included in the smallest strong backdoors. Also, Kro-
negger et al. [29] proposed an algorithm to �lter the backdoors for
planning problem. Their “backdoors for planning” method built
upon the so-called causal graph. Such graphs model the dependen-
cies between variables in planning instances. Based on the structure
of the causal graph, various tractable fragments of planning can
be identi�ed. The algorithm contains two phases: 1) the detection
phase – �nding the small backdoor and 2) the evaluation phase –
using the additional information given in the backdoor to solve the
planning instance.

The above works show that a small ratio (< 10%) of variables,
i.e. the backdoors, did signi�cantly reduce the complexity of the SE
models. But showing that the backdoors exist is a di�erent question
to “how to �nd the backdoors, quickly”. Fichte and Kronegger etc.’s
methods are not optimized to reduce CPU cost or minimize the
size of the returned model (which are two properties that we desire
in test suites). What’s more, their algorithms are not simple to
understand and implement, due to the somewhat arcane and tricky
nature of their lemmas and propositions.

2.2 Theorem Proving in Software Testing
This section describes some of the ways software testing can be
recast as a theorem proving problem. Note that, once recast in this
way, SAT solvers can be used as test case generation tools.

Arito et al. proposed a framework to transform the test suite min-
imization problem (TSMP) in regression testing into a constrained
SAT problem [3]. This transformation is done by modeling TSMP
instances as a set of Pseudo-Boolean constraints that are later trans-
lated to SAT instances. TSMP has two objectives: 1) minimizing the

testing cost and 2) maximizing the program coverage. To start with,
a set of test cases T = {t1, t2, t3, . . .} as well as their running time
cost {c1, c2, . . .} is de�ned.

• ti is a binary signal indicating if the test case i should be
tested.

• The information about whether test case ti covers some
element in the program ej is stored as the binary matrix
M = [mi j ].

To translate the TSMP into constrained problems, we have all fol-
lowing pseudo-boolean constraints:

Õn
i=1 ci ti  B and

Õm
j=1 ej � P

where B 2 Z is the maximum allowed cost and P 2 {1, 2, . . . ,m}
is the minimum coverage level. Having the pseudo-boolean con-
straints, Een et al. [16] provides three techniques to translate pseudo-
boolean constraints (linear constraints over boolean variables) into
clauses that can be handled by a SAT-solver.

As another scenario, combinatorial testing [38] can be expressed
in the form of conjunctive normal form (CNF) and hence studied by
a SAT solver. Combinatorial testing covers interactions of parame-
ters in the system under test. A well-chosen sampling mechanism
can reduce the cost of software and system testing by reducing
the number of test cases to be executed [44]. Considering the sys-
tem environment {AMD, Intel} ⇥ {Windows, MacOS, Linux} ⇥ {IE,
Firefox, Safari}. Note that not all combinations valid. For example,
MacOS does not support AMD processor while IE does not support
MacOS, etc. All of such constraints can be expressed as the feature
model [27] or as product lines. Further, such a feature model can
be transformed into the CNF formulas [35], at which point, SAT
solvers can compute out the valid testing environment combination.

Last but not least, given a script of C programming, one can trans-
late it into CNF formulas, as done in Figure 1. Symbolic/dynamic
execution techniques [5, 12] extract the possible execution branches
of a procedural program. Each branch is a conjunction of conditions
Bi = Cx ^C� ^ ... so the whole program can be summarized as the
disjunction Bi _Bj _ .... Using deMorgan’s rules2 these clauses can
be converted to conjunctive normal form (CNF) where the inputs
to the program are the variables in the CNF.

2 Disjunctions to conjunctions: P _Q ⌘ (¬P ^ ¬Q )
Conjunctions to disjunctions: ¬(P ^Q ) ⌘ ¬P _ ¬Q .
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Table 1: S��� and its related work for solving theorem proving constraints via sampling.

Reference Year Citation Sampling methodology Case study size
(max |variables |)

Verifying
samples

Distribution/
diversity reported

[47] 1999 105 Binary Decision Diagram ⇡1.3K
[26] 2003 50 Interval-propagation-based 200
[46] 2004 54 Binary Decision Diagram < 1K
[41] 2004 141 Random Walk +W���S�� No experiment conducted
[24] 2011 88 Sampling via determinism 6k
[17] 2012 25 M��S�� + Search Tree Experiment details not reported
[11] 2014 29 Hashing based 400K
[9] 2015 28 Hashing based (paralleling) 400K
[34] 2016 29 Universal hashing 400K
[15] 2018 5 Z3 + Eq. 1 �ipping 400K
S��� 2019 this

paper
Z3 + Eq. 1 + local sampling 400K

/ : the absence / presence of corresponding item : only partial case studies (the small case studies) were reported

2.3 Theorem Prover Research in SE
As shown in Table 1, much prior research has explored scaling
theorem proving for software engineering. One way to tame the
theorem proving problem is to simplify or decompose the CNF
formulas. A recent example in this arena was GreenTire, proposed
by Jia et al. [28]. GreenTire supports constraint reuse based on the
logical implication relation among constraints. One advantage of
this approach is its e�ciency guarantees. Similar to the analyti-
cal methods in linear programming, they are always applied to a
speci�c class of problem. However, even with the improved theo-
rem prover, such methods may be di�cult to be adopted in large
models. GreenTire was tested in 7 case studies. Each case study was
corresponding to a small code script with ten lines of code, e.g. the
BinTree in [40]. For the larger models, such as those explored in
this paper, the following methods might do better.

Another approach, which we will call sampling, is to combine
theorem provers Z3 with stochastic sampling heuristics. For exam-
ple, given random selections forb, c , Eq. 1 might be used to generate
a new test suite, without calling a theorem prover. Theorem proving
might then be applied to some (small) subset of the newly generated
tests, just to assess how well the heuristics are working.

The earliest sampling tools were based on binary decision dia-
grams (BDDs) [1]. Yuan et al. [46, 47] build a BDD from the input
constraint model and then weighted the branches of the vertices in
the tree such that a stochastic walk from root to the leaf was able
to generate samples with the desired distribution. In other work,
Iyer proposed a technique named RACE which has been applied
in multiple industrial solutions [26]. RACE (a) builds a high-level
model to represent the constraints; then (b) implements a branch-
and-bound algorithm for sampling diverse solutions. The advantage
of RACE is its implementation simplicity. However, RACE, as well as
the BDD-based approached introduced above, return highly biased
samples, that is, highly non-uniform samples. For testing, this is not
recommended since it means small parts of the code get explored
at a much higher frequency than others.

Using a SAT solverWalkSat [39], Wei et al. [41] proposed Sam-
pleSAT. SampleSAT combines random walk steps with greedy steps

fromWalkSat– amethod that works well for small models. However,
due to the greedy nature ofWalkSat, the performance of SampleSAT
is highly skewed as the size of the constraint model increases.

For seeking diverse samples, universal hashing [33] techniques
have been proposed. These algorithms were designed for strong
guarantees of uniformity. Meel et al. [34] provided an overview
of key ingredients of integration of universal hashing and SAT
solvers; e.g. with universal hashing, it is possible to guarantee uni-
form solutions to a constraint model. These hashing algorithms
can be applied to the extreme large models (with near 0.5M vari-
ables). More recently, several improved hashing-based techniques
have been purposed to balance the scalability of the algorithm as
well as diversity (i.e. uniform distribution) requirements. For exam-
ple, Chakraborty et al. proposed an algorithm named UniGen [11],
following by the Unigen2 [9]. UniGen provides strong theoretical
guarantees on the uniformity of generated solutions and has ap-
plied to constraint models with hundreds of thousands of variables.
However, UniGen su�ered from a large computation resource re-
quirement. Later work explored a parallel version of this approach.
Unigen2 achieved near linear speedup of the number of CPU cores.

To the best of our knowledge, the state-of-the-art technique for
generating test cases using theorem provers is QuickSampler [15].
QuickSampler was evaluated on large real-world case studies, some
of which have more than 400K variables. At ICSE’18, it was shown
that QuickSampler outperforms aforementioned Unigen2 as well as
another similar technique named SearchTreeSampler [17]. Quick-
Sampler starts from a set of valid solutions generated by Z3. Next,
it computes the di�erences between the solutions using Eq. 1. New
test cases generated in this manner are not guaranteed to be valid.
QuickSampler de�nes three terms, we use later in this paper:

• A test suite is a set of valid tests.
• A test is valid if uses input settings that satisfy the CNF.
• One test suite is more diverse than another if it uses more
variable within the CNF disjunctions. Diverse test suites are
preferred since they cover more parts of the code.

According to Dutra et al.’s experiments, the percent of valid tests
found by QuickSampler can be higher than 70%. The percent of

4
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0) Set up
(a) let N = 100; i.e. initial sample size;
(b) let k = 5; i.e. number of clusters;
(c) let suite= ;; i.e. the output test suite;
(d) let samples= ;; i.e. a temporary work space.

1) Initial samples generation:
(a) Add N solutions (from Z3) to samples
(b) Put all samples into suite (since they are valid)

2) Delta preparation:
(a) Find delta � = (a � b) for all a, b 2 samples.
(b) Weight each delta by how often it repeats

3) Sampling
(a) Find k centroids in samples using k-means ;
(b) For each centroid c , repeat N times:

(i) Stochastically pick deltas �i , �j at prob. equal to their weight.
(ii) Get new candidate via c � (�i _ �j )
(iii) Verify new candidate using Z3;
(iv) If invalid, repair using Z3 (see §3.1). Add to sample;
(v) Add new to suite;

4) Loop or terminate:
(a) If diversity improving (see §3.2), go to step 2. Else return suite.

Figure 2: S���

valid tests found by S���, on the other hand, is 100%. Further, as
shown below, S��� builds those tests with enough diversity much
faster than QuickSampler.

3 IMPLEMENTING THE SNAP TACTIC
In the S��� algorithm if Figure 2, each test is a set of zeros or ones
(false, true) assigned to all the variables in a CNF formula.

As shown in initial samples (steps 1a,1b), instead of computing
some deltas between many tests, S��� restrains mutation to the
deltas between a few valid tests (generated from Z3). S��� builds a
pool of 10,000 deltas from N = 100 valid tests (which mean calling
a theorem prover only N = 100 times). S��� uses this pool as a
set of candidate “mutators” for existing tests (and by “mutator”, we
mean an operation that converts an existing test into a new one).

After that, in delta preparation (steps 2a,2b), S��� applies Eq. 1.
Note that the more often a setting repeats, the more likely it is a
backdoor variable. Hence, step 2b sorts the deltas on occurrence
frequency. This sort is used in step 3b.

In sample (steps 3a,3b), S���� samples around the average val-
ues seen in a few randomly selected valid tests. Here, "averaging" is
inferred by using the median values seen in k clusters. Note that, in
step 3b, we use deltas that are more likely to be backdoor variables
(i.e. we use the deltas that occur more frequently).

Step 3b.ii is where we verify the new candidate using Z3. S���
explores far fewer candidates than QuickSampler (10 to 750 times
fewer, see §5.3). Since we are exploring less, we can take the time
to verify them all. Hence, 100% of S���’s tests are valid (and the
same is not true for QuickSampler– see §5.1).

Note that in 3b.iv, if a candidate passes veri�cation, we output it
then forget about it. Else, we repair it and add it to our clusters. We
do this since test cases that pass veri�cation do not add new infor-
mation to our samples. However, when an instance fails veri�cation
and is repaired, that o�ers new settings.

Note also that S��� takes great care in how it calls a theorem
prover. Theorem provers are much slower for generating new tests
than repairing invalid tests than for verifying that a test is valid
(since there are more options for generation that for repairing than
for veri�cation). Hence, S��� needs to verify more than it repairs
(and also do repairs more than generating new tests). Accordingly,

The call to Z3 in step 1a can be the slowest (since this a generate
call that must navigate all the constraints of our CNF). Hence, we
only do this N = 100 times. Also, the call to Z3 in step 3b.iii is a
veri�cation call and is much faster since all the variables are set.
Finally, The call of Z3 in the step 3b.iv repair call, is slower than
step 3b.iii since (as discussed below), our repair operator introduces
some open choices into the test. Note that we only need to repair
the small minority of new tests that fail veri�cation. Later in this
paper, we can use Figure 4 to show that repairs are only needed on
30% (median) of all tests.

3.1 Implementing “Repair”
S���’s repair function deletes “dubious” parts of a test case, then
uses Z3 to �ll in the the gaps. In this way, when we repair a test,
most bits are set and Z3 only has to search a small space.

To �nd the “dubious” section, we re�ect on how step 3b.ii oper-
ates. Recall that the new test uses � = a � b and a,b are valid tests
taken from samples. Since a,b were valid, then the “dubious” parts
of the test is anything that was not seen in both a and b. Hence, we
preserve the bits in c � � bits (where the corresponding � bit was
1), while removing all other bits (where � bit was 0). For example:

• When mutating c =(1,0,0,1,1,0,0,0) using � =(1,0,1,0, 1,0,1,0).
• If c � � =(0,0,1,1,0,0,1,0) is invalid, then S��� deletes the
“dubious” sections as follows.

• S��� preserves any “1” bits that were seen in � .
• S��� deletes the others; e.g. bits 2, 4, 6, 8 (0,�A0,1,�A1,0,�A0, 1,�A0).
• Z3 is then called to �ll out the missing bits of (0?1?0?1?).

3.2 Implementing “Termination”
To implement S���’s termination criteria (step 4a), we need a work-
ing measure of diversity. Recall from the introduction that one test
suite is more diverse than another if it uses more of the variable
settings with disjunctions inside the CNF. Diverse test suites are
better since they cover more parts of the code.

To measure diversity, we used Feldt et al. [18]’s normalized com-
pression distance (NCD). A test suite with high NCD implies higher
code coverage during the testing3. NCD uses gzip to the estimate
Kolmogorov complexity [32] of the tests. If C(x) is the length of
compression of x and C(X ) is the compression length of binary
string set X ’s concatenation, then:

NCD(X ) = C(X ) �minx 2X {C(x)}
maxx 2X {C(X\{x})} (2)

S��� exits if NCD improves by X  5% in the last T = 10 minutes.

3.3 Engineering Choices
S��� uses theses control parameters (set via engineering judgment):

3Aside: we note that we did not adopt the diversity metric (distribution of samples
displayed as a histogram) from [9, 15] since computing that metric is very time-
consuming. For the case studies of this paper, that calculation required days of CPU.
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• X = 5%;
• T = 10 minutes;
• N = 100 samples;
• k = 5 clusters.

In future work, it could be insightful to vary these values.
Another area that might bear further investigation is the clus-

tering method used in step 3a. For this paper, we tried di�erent
clustering methods. Clustering ran so fast that we were not mo-
tivated to explore alternate algorithms. Also, we found that the
details of the clustering were less important than pruning away
most of the items within each cluster (so that we only mutate the
centroid).

4 EXPERIMENTAL SET-UP
4.1 Code
To explore the research questions shown in the introduction, the
S��� system shown in Algorithm 2 was implemented in C++ using
Z3 v4.8.4 (the latest release when the experiment was conducted).
A k-means cluster was added using the free edition of ALGLIB [7],
a numerical analysis and data processing library delivered for free
under GPL or Personal/Academic license. QuickSampler does not
integrate the samples veri�cation into the work�ow. Hence, in the
experiment, we adjusted the work�ow of QuickSampler so that
all samples are veri�ed before termination. Also, the outputs of
QuickSampler were the assignments of independent support. The
independent support is a subset of variables which completely deter-
mines all the assignments to a formula [15]. In practice, engineers
need the complete test case input; consequently, for valid sam-
ples, we extended the QuickSampler to get full assignments of all
variables from independent support’s assignment via propagation.

4.2 Experimental Rig
We compared S��� to the state-of-the-art QuickSampler, technique
purposed by Dutra et al. at ICSE’18. To ensure a repeatable result,
we updated the Z3 solver in QuickSampler into the latest version.

To reduce the observation error and test the performance ro-
bustness, we repeated all experiment 30 times with 30 di�erent
random seeds. To simulate real practice, such random seeds were
used in Z3 solver (for initial solution generation), ALGLIB (for the
k-means) and other components. Due to the space limitation, we
cannot report results for all 30 repeats. Correspondingly we report
the medium or the IQR (75-25th variations) results.

All experiments were conducted on Xeon-E5@2GHz machines
with 4GB memory, running CentOS. These were multi-core ma-
chines but for systems reasons, we only used one core per machine.

4.3 Case Studies
Table 2 lists the case studies used in this work. We can see that the
number of variables ranges from hundreds to more than 486K. The
large examples have more than 50K clauses, which is very huge. For
exposition purposes, we divided the case studies into three groups:
the small case studies with vars < 6K ; the medium case studies
with 6K < vars < 12K and the large case studies with vars > 12K .

For the following reasons, our case studies are the same as those
used in the QuickSampler paper:

Table 2: Case studies used in this paper. Sorted by number of
variables. Medium sized-problems are highlightedwith blue
rows while the large ones are in orange rows. Three items
(markedwith *) are not included in some further reports (see
text). See text for details.

Size Case studies Vars Clauses
blasted_case47 118 328
blasted_case110 287 1263
s820a_7_4 616 1703
s820a_15_7 685 1987
s1238a_3_2 685 1850

Small s1196a_3_2 689 1805
s832a_15_7 693 2017
blasted_case_1_b12_2* 827 2725
blasted_squaring16* 1627 5835
blasted_squaring7* 1628 5837
70.sk_3_40 4669 15864
ProcessBean.sk_8_64 4767 14458
56.sk_6_38 4836 17828
35.sk_3_52 4894 10547
80.sk_2_48 4963 17060
7.sk_4_50 6674 24816
doublyLinkedList.sk_8_37 6889 26918
19.sk_3_48 6984 23867
29.sk_3_45 8857 31557

Medium isolateRightmost.sk_7_481 10024 35275
17.sk_3_45 10081 27056
81.sk_5_51 10764 38006
LoginService2.sk_23_36 11510 41411
sort.sk_8_52 12124 49611
parity.sk_11_11 13115 47506
77.sk_3_44 14524 27573

Large 20.sk_1_51 15465 60994
enqueueSeqSK.sk_10_42 16465 58515
karatsuba.sk_7_41 19593 82417
tutorial3.sk_4_31 486193 2598178

• We wanted to compare our method to QuickSampler;
• Their case studies were online available;
• Their case studies are used in multiple papers [9, 11, 15, 34]
etc.

These case studies are representative of scenarios engineers met
in software testing or circuit testing in embedded system design.
They include bit-blasted versions of SMTLib case studies, ISCAS89
circuits augmented with parity conditions on randomly chosen
subsets of outputs and next-state variables, problems arising from
automated program synthesis and constraints arising in bounded
theorem proving. For more introduction of the case studies, please
see [9, 15].

For pragmatic reasons, certain case studies were omitted from
our study. For example, we do not report on diagStencilClean.sk_41_36
in the experiment since the purpose of this paper is to sample a set
of valid solutions to meet the diversity requirement; while there are
only 13 valid solutions from this model. The QuickSampler spent
20 minutes (on average) to search for one solution.

Also, we do report on the case studies marked with a star(*) in
Table 2. Based on the experiment, we found that even though the
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Figure 3: Number of identical deltas among 100*100 pair of
valid solution deltas for all case studies. Same color scheme
as Table 2.

QuickSampler generates tens of millions of samples for these exam-
ples, all samples were the assignment to the independent support
(de�ned in §4.1). The omission of these case studies is not a critical
issue. Solving or sampling these examples is not di�cult; since they
are all very small, as compared to other larger case studies.

5 RESULTS
The rest of this paper use themachinery de�ned above to answer the
four research questions posed in the introduction. Before answering
those questions, we o�er one negative result. Table 2 color-coded
our case studies such that the medium to large case studies is shown
in blue and orange. Looking across all the following results, with
the exception of runtimes, we see no pattern in the color coding
(e.g. it is not true that larger problems have more duplicates). From
this lack-of-pattern, we conclude that the complexity of test suite
generation comes from the relationships between the variables, and
not necessarily the number of variables themselves.

5.1 RQ1: How Reliable is the Eq. 1 Heuristic?
QuickSampler ran quickly since it assumed that tests generated
using Eq. 1 did not need veri�cation. To check that assumption,
for each case study, we randomly generated 100 valid solutions,
S = {s1, s2, . . . s100} using Z3. Next, we selected three {a,b, c} 2 S
and built a new test case using Eq. 1; i.e. new = c � (a � b).

Figure 4: RQ1 results: percentage of valid mutations found
it step3b.iii (computed separately for each case study).

Figure 3 lists the number of identical deltas seen in 1002 of those
deltas. Among all case studies, we rarely found large sets of unique
deltas. Hence, among the 100 valid solutions given by Z3, many �s
were shared within pairwise solutions. This is important since if
otherwise, the Eq. 1 heuristic would be dubious.

The percentage of these deltas that proved to be valid in step3b.iii
of Algorithm 1 are shown in Figure 4. Dutra et al.’s estimate was
that the percentage of valid tests generated by Eq. 1 was usually
70% or more. As shown by the median values of Figure 4, this was
indeed the case. However, we also see that in the lower third of
those results, the percent of valid tests generated by Eq. 1 is very
low: 25% to 50% (median to max). This result alone would be enough
to make us cautious about using QuickSampler since, when the Eq. 1
heuristics fails, it seems to fail very badly. We recommend:

Conclusion #1: Eq. 1 should not be used without veri�cation
of the resulting test.

By way of comparisons, it is useful to add here that S��� veri�es
every test case it generates. This is practical for S���, but imprac-
tical for QuickSampler since these two systems typically process
102 to 108 test cases, respectively. In any case, another reason to
recommend S��� is that this tool delivers tests suites where 100%
of all tests are valid.

5.2 RQ2: How Fast is S���?
Figure 5 shows the execution time required for S��� and Quick-
Sampler. The y-axis of this plot is a log-scale and shows time in
seconds. These results are shown in the same order as Table 2. That
is, from left to right, these case studies grow from around 300 to
around 3,000,000 clauses.

For the smaller case studies, shown on the left, S��� is sometimes
slower than QuickSampler. Moving left to right, from smaller to
larger case studies, it can be seen that S��� often terminates much
faster than QuickSampler. On the very right-hand side of Figure 5,
there are some results where is seems S��� is not particularly fastest.
This is due to the log-scale applied to the y-axis. Even in these cases,
S��� is terminating in less than our while other approaches need
more than two hours.

Figure 6 is a summary of Figure 5 that divides the execution time
for both systems. From this �gure it can be seen:
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Figure 5: RQ3 results: Time to terminated (seconds), The y-axis is in log scale. The S��� sampling time for s1238_a_3_2 and
parity.sk_11_11 is not reported since their achievedNCDweremuchworse thanQuickSampler’s (see Figure 7). Figure 6 illustrates
the corresponding speedups.

Figure 6: RQ2 results: Sorted speedup (time(QuickSampler) /
time(S���)). If over 100, then S��� terminates earlier.

Conclusion #2: S���was 10 to 3000 times faster thanQuick-
Sampler (median to max).

There are some exceptions to this conclusion, where QuickSam-
pler was faster than S��� (see the right-hand-side of Figure 6).
Those cases are usually for small models (17,000 clauses or less).
For medium to larger models, with 20,000 to 2.5 million clauses,
S��� is often orders of magnitude faster.

5.3 RQ3: How Easy is it to Apply S���’s Test
Cases?

Table 3 compares the number of tests from QuickSampler and S���.
As shown by the last column in that table:

Conclusion #4: S���’s test caseswere 10 to 750 times smaller
than those of QuickSampler (median to max).

Hence we say that using S��� is easier than other methods, where
“easier” is de�ned as per our Introduction. That is, when test suites

are 10 to 750 times smaller, then they are faster to run, consumes
less cloud-compute resources, and means developers have to spend
less time processing failed tests.

5.4 RQ4: How Diverse are the S��� Test Cases?
Figure 7 compares the diversity of the test suites generated by our
two systems. These results are expressed as ratios of the observed
NCD values. Results less than one indicate that S���’s test suites
are less diverse than QuickSampler. In the median case, the ratio is
one; i.e. in terms of central tendency, there is no di�erence between
the two algorithms.

We have analyzed the Figure 7 results with a bootstrap test
at 95% con�dence (to test for statistically signi�cant results), and
a Cohen’s e�ect size test (to rule out trivially small di�erences).
Based on those tests, we say that in 20

25 = 80% of these results,
there is no signi�cant di�erence (of non-trivial size) between the
two algorithms. Further, in two cases where there was a statistical
di�erence (tutorial2,sk_4_31 and karatsuba_sk_7_41) the di�erence
is less than 10%. Pragmatically, we argue that such a small di�erence
is not troubling. Hence, we say:

Conclusion #4: The diversity of S���’s test suites is very
similar to those of QuickSampler.

That said, there are two examples where S����’s diversity is
markedly less than one (see s1238a_3_2 and parity.sk_11_11). In
terms of scoring di�erent algorithms, it could be argued that these
examples might mean that QuickSampler is the preferred algorithm
but only (a) if numerous invalid tests are not an issue; (b) if testing
resources are fast and cheap (so saving time and money on cloud-
compute test facilities is not worthwhile); and (c) if developer time
is cheap (so the time required to specify expected test output, or
processing large numbers of failed tests, is not an issue).
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Table 3: RQ3: results. Number of unique valid cases in test
suite. Sorted by last column. Same color scheme as Table 2.

SS SQ SQ/
Case studies S��� QuickSampler SS
blasted_case47 2899 71 0.02
isolateRightmost 15480 7510 0.49
LoginService2 404 210 0.52
19.sk_3_48 204 200 0.98
70.sk_3_40 3050 4270 1.40
s820a_15_7 29065 70099 2.41
29.sk_3_45 225 660 2.93
s820a_7_4 37463 124457 3.32
s832a_15_7 27540 96764 3.51
s1196a_3_2 225 1890 8.40
enqueueSeqSK 338 2495 7.38
blasted_case110 274 2386 8.71
tutorial3.sk_4_31 336 2953 8.79
81.sk_5_51 227 2814 12.40
sort.sk_8_52 812 10184 12.54
karatsuba.sk_7_41 139 4210 30.29
20.sk_1_51 239 10039 42.00
doublyLinkedList 278 12042 43.32
17.sk_3_45 228 12780 56.05
ProcessBean 1193 75392 63.20
7.sk_4_50 258 18090 70.12
56.sk_6_38 1827 149031 81.57
80.sk_2_48 653 54440 83.37
77.sk_3_44 245 33858 138.20
35.sk_3_52 258 193920 751.63

We note that such an argument is orthogonal to the goals of this
paper. Our goal is to suggest that SE tasks that use propositional
theorem provers can bene�t from phenomena reported in the AI
literature; i.e. the backdoor e�ect. As evidence of that bene�t, we
point to (1) the brevity of S���’s tests; (2) the speed with which they
can be generated and fully veri�ed, and (3) their similar diversity.

6 THREATS TO VALIDITY
One threat to the validity of this work is the baseline bias. Indeed,
there are many other sampling techniques, or solvers, that S���
might be compared to. However, our goal here was to compare
S��� to a recent state-of-the-art result from ICSE’18. In further
work, we will compare S��� to other methods.

A second threat to validity is internal bias that raises from the sto-
chastic nature of sampling techniques. S��� requires many random
operations. To mitigate the threats, we repeated the experiments
for 30 times and reported the medium or IQR of those results.

A third threat is themeasurement bias. To determine the diversity
of a test suite, in the experiment, we use normalized compression
distance (NCD). Prior research has argued for the value of that mea-
sure [18]. However, there exist many other diversity measurements
for the theorem proving problem, such as [10], and changing the
diversity measurement might lead to a change of the results. That
said, in one research report, it is impossible to explore all options.

Figure 7: RQ4 results: Normalized compression distance
(NCD) f or when QuickSampler and S��� terminated on
the same case studies. Median results over 30 runs (and
small black lines show the 75th-25th variations). Same color
scheme as Table 2.

For the convenient of further exploration, we have released the
source code of S��� in the hope that other researchers will assist
us by evaluating S��� on a broader range of measures.

Another threat is hyperparameter bias. The hyperparameter is
the set of con�gurations for the algorithm. There now exists a range
of mature hyperparameter optimizers [21, 37, 43] which might be
useful for �nding better settings for S���. This is a clear direction
for future work.

Finally, as to construct validity, this paper argued for the bene�t
of backdoors by analyzing the di�erence between two algorithms:
S��� and QuickSampler. For that purpose, we used QuickSampler
exactly as it was described in its ICSE’18 paper. Note that a case
could be made to “tinker” with QuickSampler in order to, say, use
a di�erent termination condition. We did not do that since there
are many ways we could tinker with QuickSampler using di�erent
parts of Figure 2. For example, tinkering could add delta mutation,
or clustering, or our repair algorithm– at which point we would not
be compared against the QuickSampler algorithm of ICSE’18 but
some other algorithm of our own invention. For future work, we
are exploring many of those “tinkerings”. But for this paper, which
is a baseline result commenting on the bene�t of backdoor-based
reasoning, our current approach is more justi�able.
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7 CONCLUSION
Exploring propositional formula is a core computational process
with many areas of application. Here, we explore the use of such
formula for test suite generation. SAT solvers are a promising tech-
nology for �nding settings that satisfy propositional formula. The
current generation of SAT solvers is challenged by the size of the
formula seen in the recent SE testing literature.

One tactic for taming the computational complexity of SAT solv-
ing is the backdoor e�ect. AI researchers report that when propo-
sitional formula share many settings, then fast solutions can be
generated by �rst setting just a few of those variables. The goal of
this paper was to test the e�cacy of such backdoor-based reasoning.
To the best of our knowledge, this is the �rst paper to �nd, and
successfully exploit, backdoor e�ects in SE testing.

The S��� algorithm was an experiment to apply backdoors to
software testing. We reasoned that the common settings seen in
a smallM sample of valid tests may also be the common settings
in a large N � M sample. If so, then test case generation could be
made faster by sampling around the average values seen in a few
randomly selected valid tests.

Experiments with S��� are strongly supportive of the bene�ts
of backdoors for SE tasks. On experimentation, we found that when
this tactic was applied to 27 real-world test case studies, S��� ran
10 to 3000 times faster (median to max) than a prior report (reported
at ICSE’18). While that prior work found tests that were 70% valid,
SNAP’s generated 100% valid tests. Another important result was
the size of the test set generated via backdoor-reasoning. There is
an economic imperative to run fewer tests when companies have
to pay money to run each test, and when developers have to spend
time studying the failed test. In that context, it is interesting to note
that SNAP’s tests are 10 to 750 times smaller (median to max) than
those from prior work.

In future work, we want to see if backdoors help other SE tasks
that use propositional formula. For example, all the formula here
have yes, no answers. Another kind of task are optimizers that
explore satis�cing trade-o�s between competing constraints. To
that end, we are currently working on applying backdoors to the
vZ [6] optimizing theorem prover.
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