
Noname manuscript No.
(will be inserted by the editor)

Categorizing Defects in Infrastructure as Code

Akond Rahman · Sarah Elder · Faysal
Hossain Shezan · Vanessa Frost ·
Jonathan Stallings · Laurie Williams

Received: date / Accepted: date

Abstract Infrastructure as code (IaC) scripts are used to automate the main-
tenance and configuration of software development and deployment infrastruc-
ture. IaC scripts can be complex in nature and can contain hundreds of lines
of code, leading to defects that can be difficult to debug and to wide-scale
system discrepancies, such as service outages. The use of IaC scripts is getting
increasingly popular, yet the nature of defects that occur in these scripts have
not been systematically categorized. The goal of this paper is to help software
practitioners improve their development process of infrastructure as code (IaC)
scripts by analyzing the defect categories in IaC scripts based upon a quali-
tative analysis of commit messages and issue report descriptions. We collect
12,875 commits that map to 2,424 IaC scripts from four organizations, namely
Mirantis, Mozilla, Openstack, and Wikimedia Commons. With 89 raters, we
apply the defect type attribute of the orthogonal defect classification (ODC)

Akond Rahman
Department of Computer Science, North Carolina State University, Raleigh, NC, USA
E-mail: aarahman@ncsu.edu

Sarah Elder
Department of Computer Science, North Carolina State University, Raleigh, NC, USA
E-mail: seelder@ncsu.edu

Faysal Hossain Shezan
Department of Computer Science, University of Virginia, Charlottsville, VA, USA
E-mail: faysalhossain2007@gmail.com

Vanessa Frost
Department of Computer Science, University of Florida, Gainesville, FL, USA
E-mail: nyxciardha@gmail.com

Jonathan Stallings
Department of Statistics, North Carolina State University, Raleigh, NC, USA
E-mail: jwstalli@ncsu.edu

Laurie Williams
Department of Computer Science, North Carolina State University, Raleigh, NC, USA
E-mail: williams@cs.ncsu.edu

2 Akond Rahman et al.

methodology to categorize the defects. We also review prior literature that has
used ODC to categorize defects in non-IaC software systems, and compare the
defect category distribution of IaC scripts with 26 non-IaC software systems.
From our analysis, we observe the dominant defect category to be ‘assignment’,
which includes defects related to syntax and configuration errors. Accordingly,
the ODC process improvement guidelines recommend the teams allocate more
code inspection, static analysis, and unit testing effort for IaC scripts. We also
observe defects categorized as assignment to be more prevalent amongst IaC
scripts compared to the 26 non-IaC software systems.

Keywords continuous deployment · defect categorization · devops · empirical
study · infrastructure as code · puppet · orthogonal defect classification

1 Introduction

Continuous deployment (CD) is the process of rapidly deploying software or
services automatically to end-users (Rahman et al, 2015). The use of infras-
tructure as code (IaC) scripts is essential to implement an automated deploy-
ment pipeline, which facilitates continuous deployment (Humble and Farley,
2010). Companies such as Netflix 1, Ambit Energy 2, and Wikimedia Com-
mons 3, use IaC scripts to automatically manage their software dependencies
and construct automated deployment pipelines (Parnin et al, 2017) (Puppet,
2018). The use of IaC scripts helps organizations to increase their deploy-
ment frequency. For example, Ambit Energy uses IaC scripts to increase their
deployment frequency by a factor of 1,200 (Puppet, 2018).

Defects in IaC scripts can have serious consequences as companies, such as
Wikimedia, use these scripts to provision their servers and ensure availability
of services 4. IaC scripts are susceptible to human errors (Parnin et al, 2017)
and bad coding practices (Cito et al, 2015), which make scripts susceptible to
defects (Jiang and Adams, 2015) (Parnin et al, 2017). Any defect in a script
can propagate at scale, leading to wide-scale service discrepencies. For example
in January 2017, execution of a defective IaC script erased home directories of
around 270 users in cloud instances maintained by Wikimedia 5. Prior research
studies (Jiang and Adams, 2015) (Parnin et al, 2017) and the above-mentioned
Wikimedia incident motivate us to systematically study the defects that occur
in IaC scripts.

Categorization of defects can guide organizations on how to improve their
development process. Chillarege et al. (Chillarege et al, 1992) proposed the
orthogonal defect classification (ODC) technique which included a set of defect
categories. According to Chillarege et al. (Chillarege et al, 1992), each of these

1 https://www.netflix.com/
2 https://www.ambitenergy.com/
3 https://commons.wikimedia.org/wiki/Main Page
4 https://blog.wikimedia.org/2011/09/19/ever-wondered-how-the-wikimedia-servers-are-

configured/
5 https://wikitech.wikimedia.org/wiki/Incident documentation/20170118-Labs

Categorizing Defects in Infrastructure as Code 3

defect categories map to a certain activity of the development process which
can be improved. Since the introduction of ODC in 1992, companies such
as IBM (Butcher et al, 2002), Cisco 6, and Comverse (Levy and Chillarege,
2003) have successfully used ODC to categorize defects. Such categorization
of defects help practitioners to identify process improvement opportunities for
software development. For example, upon adoption of ODC practitioners from
IBM (Butcher et al, 2002) reported “The teams have been able to look at their
own data objectively and quickly identify actions to improve their processes and
ultimately their product. The actions taken have been reasonable, not requiring
huge investments in time, money, or effort”. A systematic categorization of
defects in IaC scripts can help in understanding the nature of IaC defects and
in providing actionable recommendations for practitioners to mitigate defects
in IaC scripts.

The goal of this paper is to help practitioners improve their development
process of infrastructure as code (IaC) scripts by categorizing the defects in
IaC scripts based upon a qualitative analysis of commit messages and issue
report descriptions.

We investigate the following research questions:

RQ1: How frequently do defects occur in infrastructure as code
scripts?
RQ2: By categorizing defects using the defect type attribute of
orthogonal defect classification, what process improvement recom-
mendations can we make for infrastructure as code development?
RQ3: What are the differences between infrastructure as code (IaC)
and non-IaC software process improvement activities, as deter-
mined by their defect category distribution reported in the litera-
ture?

We use open source datasets from four organizations, Mirantis, Mozilla,
Openstack, and Wikimedia Commons, to answer the three research questions.
We collect 20, 2, 61, and 11 repositories respectively from Mirantis, Mozilla,
Openstack, and Wikimedia Commons. We use 1021, 3074, 7808, and 972 com-
mits that map to 165, 580, 1383, and 296 IaC scripts, collected from Mirantis,
Mozilla, Openstack, and Wikimedia Commons, respectively. With the help of
89 raters, we apply qualitative analysis to categorize the defects that occur in
the IaC scripts using the defect type attribute of ODC (Chillarege et al, 1992).
We compare the distribution of defect categories found in the IaC scripts with
the categories for 26 non-IaC software systems, as reported in prior research
studies, which used the defect type attribute of ODC and were collected from
IEEEXplore 7, ACM Digital Library 8, ScienceDirect 9, and SpringerLink 10.

We list our contributions as following:

6 https://www.stickyminds.com/sites/default/files/presentation/file/2013/t12.pdf
7 https://ieeexplore.ieee.org/Xplore/home.jsp
8 https://dl.acm.org/
9 https://www.sciencedirect.com/

10 https://link.springer.com/

4 Akond Rahman et al.

– A categorization of defects that occur in IaC scripts;
– A comparison of the distribution of IaC defect categories to that of non-IaC

software found in prior academic literature; and
– A set of curated datasets where a mapping of defect categories and IaC

scripts are provided.

We organize the rest of the paper as following: Section 2 provides back-
ground information and prior research work relevant to our paper. Section 3
describes our methodology conducted for this paper. We use Section 4 to
describe our datasets. We present our findings in Section 5. We discuss our
findings in Section 6. We list the limitations of our paper in Section 7. Finally,
we conclude the paper in Section 8.

2 Background and Related Work

In this section, we provide background on IaC scripts and briefly describe
related academic research.

2.1 Background

IaC is the practice of automatically defining and managing network and system
configurations, and infrastructure through source code (Humble and Farley,
2010). Companies widely use commercial tools such as Puppet, to implement
the practice of IaC (Humble and Farley, 2010) (Jiang and Adams, 2015) (Sham-
baugh et al, 2016). We use Puppet scripts to construct our dataset because
Puppet is considered one of the most popular tools for configuration manage-
ment (Jiang and Adams, 2015) (Shambaugh et al, 2016), and has been used
by companies since 2005 (McCune and Jeffrey, 2011). Typical entities of Pup-
pet include modules and manifests (Labs, 2017). A module is a collection of
manifests. Manifests are written as scripts that use a .pp extension.

Puppet provides the utility ‘class’ that can be used as a placeholder for
the specified variables and attributes, which are used to specify configura-
tion values. For attributes, configuration values are specified using the ‘=>’
sign. For variables, configuration values are provided using the ‘=’ sign. Simi-
lar to general purpose programming languages, code constructs such as func-
tions/methods, comments, and conditional statements are also available for
Puppet scripts. For better understanding, we provide a sample Puppet script
with annotations in Figure 1.

2.2 Related Work

Our paper is related to empirical studies that have focused on IaC technolo-
gies. Sharma et al. (Sharma et al, 2016) investigated smells in IaC scripts and
proposed 13 implementation and 11 design configuration smells. Hanappi et

Categorizing Defects in Infrastructure as Code 5

1 #This is an example Puppet script
2 class (`example'
3){
4 token => ‘XXXYYYZZZ’
5
6 $os_name = ‘Windows’
7
8 case $os_name {
9 'Solaris': { auth_protocol => `http' }

10 'CentOS': { auth_protocol => getAuth() }
11 default: { auth_protocol => `https' }
12 }
13 } �

Comment

Attribute ‘token’

Variable ‘$os_name’

Case conditional Calling function
‘getAuth()’

1

Fig. 1: Annotation of an example Puppet script.

al. (Hanappi et al, 2016) investigated how convergence of Puppet scripts can
be automatically tested, and proposed an automated model-based test frame-
work. Jiang and Adams (Jiang and Adams, 2015) investigated the co-evolution
of IaC scripts and other software artifacts, such as build files and source code.
They reported IaC scripts to experience frequent churn. In a recent work,
Rahman and Williams (Rahman and Williams, 2018) characterized defective
IaC scripts using text mining and created prediction models using text fea-
ture metrics. Bent et al. (van der Bent et al, 2018) proposed and validated
nine metrics to detect maintainability issues in IaC scripts. In another work,
Rahman et al. (Rahman et al, 2018) investigated the questions that practi-
tioners ask on Stack Overflow to identify the potential challenges practitioners
face while working with Puppet. We analyze the defects that occur in Puppet
scripts and categorize them using the defect type attribute of ODC for the
purpose of providing suggestions for process improvement.

Our paper is also related to prior research studies that have categorized
defects of software systems using ODC and non-ODC techniques. Chillarege
et al. (Chillarege et al, 1992) introduced the ODC technique in 1992. They
proposed eight orthogonal ‘defect type attributes’. Since then, researchers and
practitioners have used the defect type attribute of ODC to categorize defects
that occur in software. Duraes and Madeira (Duraes and Madeira, 2006) stud-
ied 668 faults from 12 software systems and reported that 43.4% of the 668 de-
fects were algorithm defects, and 21.9% of the defects were assignment-related
defects. Fonseca et al. (Fonseca and Vieira, 2008) used ODC to categorize
security defects that appear in web applications. They collected 655 security
defects from six PHP web applications and reported 85.3% of the security de-
fects belong to the algorithm category. Zheng et al. (Zheng et al, 2006) applied
ODC on telecom-based software systems and observed an average of 35.4% of
defects belong to the algorithm category. Lutz and Mikluski (Lutz and Mikul-
ski, 2004) studied defect reports from seven missions of NASA and observed
functional defects to be the most frequent category of 199 reported defects.
Christmasson and Chillarege (Christmansson and Chillarege, 1996) studied

6 Akond Rahman et al.

408 IBM OS faults extracted and reported 37.7% and 19.1% of these faults
to belong to the algorithm and assignment categories, respectively. Basso et
al. (Basso et al, 2009) studied defects from six Java-based software namely,
Azureus, FreeMind, Jedit, Phex, Struts, and Tomcat, and observed the most
frequent category to be algorithm defects. Cinque et al. (Cinque et al, 2014)
analyzed logs from an industrial system that belong to the air traffic con-
trol system and reported that 58.9% of the 3,159 defects were classified as
algorithm defects.

The above-mentioned studies highlight the research community’s interest
in systematically categorizing the defects in different software systems. These
studies focus on non-IaC software which highlights the lack of studies that
investigate defect categories in IaC, and motivate us further to investigate
defect categories of IaC scripts. Categorization of IaC-related defects can help
practitioners provide actionable recommendations on how to mitigate IaC-
related defects and improve the quality of their developed IaC scripts.

3 Categorization Methodology

In this section, we first provide definitions related to our research study and
then provide the details of the methodology we used to categorize the IaC
defects.

– Defect: An imperfection that needs to be replaced or repaired (IEEE,
2010).

– Defect-related commit: A commit whose message indicates that an ac-
tion was taken related to a defect.

– Defective script: An IaC script which is listed in a defect-related commit.
– Neutral script: An IaC script which is not listed in any defect-related

commit.

3.1 Dataset Construction

Our methodology of dataset construction involves two steps: repository collec-
tion (Section 3.1.1) and commit message processing (Section 3.1.2).

3.1.1 Repository Collection

We use open source repositories to construct our datasets. An open source
repository contains valuable information about the development process of an
open source project, but the frequency of commits might be small indicating
the repository’s dormant status (Munaiah et al, 2017). This observation mo-
tivates us to apply the following selection criteria to identify repositories for
mining:

– Criteria-1: The repository must be available for download.

Categorizing Defects in Infrastructure as Code 7

– Criteria-2: At least 11% of the files belonging to the repository must
be IaC scripts. Jiang and Adams (Jiang and Adams, 2015) reported that
in open source repositories IaC scripts co-exist with other types of files,
such as source code and Makefiles files. They observed a median of 11%
of the files to be IaC scripts. By using a cutoff of 11%, we collect a set of
repositories that contains a sufficient amount of IaC scripts for analysis.

– Criteria-3: The repository must have at least two commits per month.
Munaiah et al. (Munaiah et al, 2017) used the threshold of at least two
commits per month to identify repositories which include a lower amount
of development activity.

3.1.2 Commit Message Processing

We use two artifacts from version control systems of the selected repositories
from Section 3.1.1, to construct our datasets: (i) commits that indicate modi-
fication of IaC scripts; and (ii) issue reports that are linked with the commits.
We use commits because commits contain information on how and why a file
was changed. Commits can also include links to issue reports. We use issue
report summaries because they can give us more insights on why IaC scripts
were changed to supplement what is found in commit messages. We collect
commits and other relevant information in the following manner:

– First, we extract commits that were used to modify at least one IaC script.
A commit lists the changes made on one or multiple files (Alali et al, 2008).

– Second, we extract the message of the commit identified from the previous
step. A commit includes a message, commonly referred to as a commit
message. The commit messages indicate why the changes were made to
the corresponding files (Alali et al, 2008).

– Third, if the commit message included a unique identifier that maps the
commit to an issue in the issue tracking system, we extract the identifier
and use that identifier to extract the summary of the issue. We use regular
expressions to extract the issue identifier. We use the corresponding issue
tracking API to extract the summary of the issue; and

– Fourth, we combine the commit message with any existing issue summary
to construct the message for analysis. We refer to the combined message as
‘extended commit message (XCM)’ throughout the rest of the paper. We
use the extracted XCMs to categorize defects, as described in Section 3.2.

3.2 Categorization of Infrastructure as Code (IaC) Script Defects

We use the defect type attribute of ODC to categorize defects. We select
the ODC defect type attribute because ODC uses semantic information col-
lected from the software system to categorize defects (Chillarege et al, 1992).
According to the ODC defect type attribute, a defect can belong to one of
the eight categories: algorithm (AL), assignment (AS), build/package/merge

8 Akond Rahman et al.

(B), checking (C), documentation (D), function (F), interface (I), and tim-
ing/serialization (T).

The collected XCMs derived from commits and issue report descriptions
might correspond to feature enhancement or performing maintenance tasks,
which are not related to defects. As an XCM might not correspond to a defect,
we added a ‘No defect (N)’ category. An example XCM that belongs to the
‘No defect’ category is “add example for cobbler”, as shown in Table 2. Fur-
thermore, a XCM might not to belong to any of the eight categories included
in the ODC defect type attribute. Hence, we introduced the ‘Other (O)’ cate-
gory. An example XCM that belongs to the ‘Other’ category is “minor fixes”,
as shown in Table 2.

We categorize the XCMs into one of 10 categories. In the case of the eight
ODC categories, we follow the criteria provided by Chillarege et al. (Chillarege
et al, 1992) and used two of our own criteria for categories ‘No defect’, and
‘Other’. The criteria for each of the 10 categories are described in Table 1.

In Table 1, the ‘Process Improvement Activity Suggested By ODC’ col-
umn corresponds to one or more software development activities which can be
improved based on the defect categories determined by ODC. For example,
according to ODC, algorithm-related defects can be reduced by increasing ac-
tivities that are related to coding, code inspection, unit testing, and function
testing.

We perform qualitative analysis on the collected XCMs to determine the
category to which a commit belongs. We had raters with software engineering
experience apply the 10 categories stated in Table 1 on the collected XCMs.
We record the amount of time they took to perform the categorization. Af-
ter applying qualitative analysis based on the 10 defect categories, we find a
mapping between each XCM and a category. We list an example XCM that
belongs to each of the 10 defect categories in Table 2.

We conduct the qualitative analysis in the following manner:

– Categorization Phase: We randomly distribute the XCMs so that each
XCM is reviewed by at least two raters to mitigate the subjectivity intro-
duced by a single rater. Each rater determines the category of an XCM
using the 10 categories presented in Table 1. We provide raters with an
electronic handbook on IaC (Labs, 2017), the IEEE Anomaly Classifica-
tion publication (IEEE, 2010), and the ODC publication (Chillarege et al,
1992). We do not provide any time constraint for the raters to categorize
the defects. We record the agreement level amongst raters using two tech-
niques: (a) by counting the XCMs for which the raters had the same rating;
and (b) by computing the Cohen’s Kappa score (Cohen, 1960).

– Resolution Phase: When raters disagree on the identified category, we
use a resolver’s opinion to resolve the disagreements. The first author of
the paper is the resolver and is not involved in the categorization phase.

– Practitioner Agreement: To evaluate the ratings in the categorization
and the resolution phase, we randomly select 50 XCMs for each dataset.
We contact practitioners who authored the commit message via e-mails.

Categorizing Defects in Infrastructure as Code 9

Table 1: Determining Defect Categories Based on ODC adapted
from (Chillarege et al, 1992)

Category Definition Process Improve-
ment Activity

Algorithm (AL) Indicates efficiency or correctness
problems that affect task and can be
fixed by re-implementing an algorithm
or local data structure.

Coding, Code Inspec-
tion, Unit Testing,
Function Testing

Assignment (AS) Indicates changes in a few lines of code. Code Inspection,
Unit Testing

Build/Package/Merge
(B)

Indicates defects due to mistakes in
change management, library systems,
or version control system.

Coding, Low Level
Design

Checking (C) Indicates defects related to data vali-
dation and value checking.

Coding, Code Inspec-
tion, Unit Testing

Documentation (D) Indicates defects that affect publica-
tions and maintenance notes.

Coding, Publication

Function (F) Indicates defects that affect significant
capabilities.

Design, High Level
Design Inspection,
Function Testing

Interface (I) Indicates defects in interacting with
other components, modules, or control
blocks.

Coding, System Test-
ing

No Defect (N) Indicates no defects. Not Applicable
Other (O) Indicates a defect that do not belong

to the categories: AL, AS, B, C, D, F,
I, N, and T.

Not Applicable

Timing/Serialization
(T)

Indicates errors that involve real time
resources and shared resources.

Low Level Design,
Low Level Design
Inspection, System
Testing

We ask the practitioners if they agree to our categorization of XCMs. High
agreement between the raters’ categorization and practitioner’s feedback
is an indication of how well the raters performed. The percentage of XCMs
to which practitioners agreed upon are recorded and the Cohen’s Kappa
score is computed.

From the qualitative analysis we determine which commits are defect-
related. We use the defect-related commits to identify defective scripts.

3.3 RQ1: How frequently do defects occur in infrastructure as code
scripts?

We answer RQ1 by quantifying defect density and defects per month. We cal-
culate defect density by counting defects that appear per 1000 lines (KLOC)
of IaC script, similar to prior work (Battin et al, 2001) (Mohagheghi et al,
2004) (Hatton, 1997). We use Equation 1 to calculate defect density (DDKLOC).
DDKLOC gives an assessment of how frequently defects occur in IaC scripts.
We select this measure of defect density, as this measure has been used as an

10 Akond Rahman et al.

Table 2: Example of Extended Commit Messages (XCMs) for Defect Cate-
gories

Category Mirantis Mozilla Openstack Wikimedia

Algorithm fixing deeper hash
merging for fire-
wall

bug 869897: make
watch devices.sh
logs no longer
infinitely growing;
my thought is
logrotate.d but
open to other
choices here

fix middleware
order of proxy
pipeline and add
missing modules
this patch fixes the
order of the mid-
dlewares defined
in the swift proxy
server pipeline

nginx service
should be stopped
and disabled when
nginx is absent

Assignment fix syntax errors
this commit re-
moves a couple of
extraneous com-
mand introduced
by copy/past
errors

bug 867593 use
correct regex
syntax

resolved syntax er-
ror in collection

fix missing slash in
puppet file url

Build/
Package/
Merge

params should
have been im-
ported; it was only
working in tests by
accident

bug 774638-
concat::setup
should depend on
diffutils

fix db sync de-
pendencies: this
patch adds depen-
dencies between
the cinder-api
and cinder-backup
services to ensure
that db sync is run
before the services
are up. change-id:
i7005

fix varnish apt
dependencies these
are required for
the build it does.
also; remove un-
necessary package
requires that
are covered by
require package

Checking ensure we have
iso/ directory in
jenkins workspace
we share iso folder
for storing fuel isos
which are used for
fuel-library tests

bug 1118354: en-
sure deploystudio
user uid is >500

fix check on
threads

fix hadoop-hdfs-
zkfc-init exec
unless condition
$zookeeper hosts str
was improp-
erly set; since
it was created
using a non-
existent local var
’@zoookeeper hosts’

Documentation fixed comments on
pull.

bug 1253309 - fol-
lowup fix to review
comments

fix up doc string
for workers vari-
able change-
id:ie886

fix hadoop.pp doc-
umentation default

Function fix for jenkins
swarm slave vari-
ables

bug 1292523-
puppet fails to set
root password on
buildduty-tools
server

make class rally
work class rally is
created initially by
tool

fix ve restbase re-
verse proxy config
move the restbase
domain and ‘v1’
url routing bits
into the apache
config rather than
the ve config.

Interface fix for iso build
broken dependen-
cies

bug 859799-
puppetagain
buildbot masters
won’t reconfig
because of missing
sftp subsystem

update all missing
parameters in all
manifests

fix file location for
interfaces

No Defect added readme merge bug 1178324
from default

add example for
cobbler

new packages for
the server

Other fuel-stats nginx fix summary: bug
797946: minor fix-
ups; r=dividehex

minor fixes fix nginx config-
packageservice or-
dering

Timing/
Serialization

fix /etc/timezone
file add newline
at end of file
/etc/timezone

bug 838203-
test alerts.html
times out on
ubuntu 12.04 vm

fix minimal avail-
able memory check
change-id:iaad0

fix hhvm library
usage race con-
dition ensure
that the hhvm
lib ‘current’ sym-
link is created
before setting
usrbinphp to point
to usrbinhhvm
instead of
usrbinphp5. previ-
ously there was a
potential for race
conditions due to
resource ordering
rules

Categorizing Defects in Infrastructure as Code 11

industry standard to (i) establish a baseline for defect frequency; and (ii) helps
to assess the quality of the software (Harlan, 1987) (McConnell, 2004).

DDKLOC =

number of defects for all IaC scripts(
count of lines for all IaC scripts

1000

) (1)

Defects per month provides an overview on how frequently defects appear
with the evolution of time. We compute the proportion of defects that occur
every month to calculate defects per month. We use the metric ‘Defects per
Month’ and calculate this metric using Equation 2:

Defects per Month (m) =

number of defects in month m

total commits in month m
× 100

(2)

To observe the trends for defects per month, we apply the Cox-Stuart
test (Cox and Stuart, 1955). The Cox Stuart test is a statistical test that
compares the earlier data points to the later data points in a time series to
determine whether or not the trend observant from the time series data is
increasing or decreasing with statistical significance. We apply the following
steps:

– if Cox-Stuart test output shows an increasing trend with a p-value < 0.05,
we determine the temporal trend to be ‘increasing’.

– if Cox-Stuart test output shows a decreasing trend with a p-value < 0.05,
we determine the temporal trend to be ‘increasing’.

– if we cannot determine if the temporal trend as ‘increasing’ or ‘decreasing’,
then we determine the temporal trend to be ‘consistent’.

3.4 RQ2: By categorizing defects using the defect type attribute of
orthogonal defect classification, what process improvement
recommendations can we make for infrastructure as code
development?

We answer RQ2 using the categorization achieved through qualitative analysis
and by reporting the count of defects that belong to each defect category. We
use the metric Defect Count for Category x (DCC) calculated using Equa-
tion 3.

Defect Count for Category x (DCC) =(
count of defects that belong to category x

total count of defects

)
×100

(3)

12 Akond Rahman et al.

Answers to RQ2 will give us an overview on the distribution of defect cat-
egories for IaC scripts, which we use to determine what process improvement
opportunities can be recommended for IaC development. In Table 1 we have
provided a mapping between defect categorization and the corresponding pro-
cess improvement activity, as suggested by Chillarege et al. (Chillarege et al,
1992).

3.5 RQ3: What are the differences between infrastructure as code
(IaC) and non-IaC software process improvement activities, as
determined by their defect category distribution reported in the
literature?

We answer RQ3 by identifying prior research that have used the defect type
attribute of ODC to categorize defects in other systems such as safety critical
systems (Lutz and Mikulski, 2004), and operating systems (Christmansson
and Chillarege, 1996). We collect necessary publications based on the following
selection criteria:

– Step-1: The publication must cite Chillarege et al. (Chillarege et al, 1992)’s
ODC publication, be indexed by ACM Digital Library or IEEE Xplore or
SpringerLink or ScienceDirect, and have been published on or after the year
2000. By selecting publications on or after the year 2000 we assume to ob-
tain defect categories of software systems that are relevant and comparable
against modern software systems such as IaC.

– Step-2: The publication must use the defect type attribute of ODC in
its original form to categorize defects of a software system. We exclude
publications that cite Chillarege et al. (Chillarege et al, 1992)’s paper as
related work and not use the ODC defect type attribute for categorization.
We also exclude publications that modify the ODC defect type attribute
to form more defect categories, and use the modified version of ODC to
categorize defects.

– Step-3: The publication must explicitly report the software systems they
studied with a distribution of defects across the ODC defect type categories
and the total count of bugs/defects/faults for each software system. Along
with defects, we consider bugs and faults, as in prior work researchers have
used the terms bugs (Thung et al, 2012) and faults interchangeably with
defects (Pecchia and Russo, 2012).

Our answer to RQ3 provides a list of software systems with distribution
of defects categorized using the defect type attribute of ODC. For each soft-
ware system, we report the main programming language it was built and the
reference publication.

Categorizing Defects in Infrastructure as Code 13

Table 3: Filtering Criteria to Construct Defect Datasets

Criteria Dataset
Mirantis Mozilla Openstack Wikimedia

Criteria-1 26 1,594 1,253 1,638
Criteria-2 20 2 61 11
Criteria-3 20 2 61 11
Final 20 2 61 11

4 Datasets

We construct datasets using Puppet scripts from open source repositories
maintained by four organizations: Mirantis, Mozilla, Openstack, and Wiki-
media Commons. We select Puppet because it is considered as one of the
most popular tools to implement IaC (Jiang and Adams, 2015) (Shambaugh
et al, 2016), and has been used by organizations since 2005 (McCune and
Jeffrey, 2011). Mirantis is an organization that focuses on the development
and support of cloud services such as OpenStack 11. Mozilla is an open source
software community that develops, uses, and supports Mozilla products such
as Mozilla Firefox 12. Openstack foundation is an open-source software plat-
form for cloud computing where virtual servers and other resources are made
available to customers 13. Wikimedia Foundation is a non-profit organization
that develops and distributes free educational content 14.

4.1 Repository Collection

We apply the three selection criteria presented in Section 3.1.1 to identify the
repositories that we use for analysis. We describe how many of the repositories
satisfied each of the three criteria in Table 3. Each row corresponds to the
count of repositories that satisfy each criteria. For example, 26 repositories
satisfy Criteria-1, for Mirantis. Altogether, we obtain 94 repositories to extract
Puppet scripts from.

4.2 Commit Message Processing

We report summary statistics on the collected repositories in Table 4. Ac-
cording to Table 4, for Mirantis we collect 165 Puppet scripts that map to
1,021 commits. Of these 1,021 commits, 82 commits include identifiers for bug
reports. The number of lines of code for these 165 Puppet scripts is 17,564.

11 https://www.mirantis.com/
12 https://www.mozilla.org/en-US/
13 https://www.openstack.org/
14 https://wikimediafoundation.org/

14 Akond Rahman et al.

Table 4: Summary Attributes of Defect Datasets

Properties Dataset
Mirantis Mozilla Openstack Wikimedia

Puppet Scripts 165 580 1,383 296
Puppet Code Size
(LOC)

17,564 30,272 122,083 17,439

Defective Puppet
Scripts

91 of 165,
55.1%

259 of 580,
44.6%

810 of 1383,
58.5%

161 of 296,
54.4%

Commits with
Puppet Scripts

1,021 3,074 7,808 972

Commits with
Report IDs

82 of 1021,
8.0%

2764 of 3074,
89.9%

2252 of 7808,
28.8%

210 of 972,
21.6%

Defect-related
Commits

344 of 1021,
33.7%

558 of 3074,
18.1%

1987 of 7808,
25.4%

298 of 972,
30.6%

4.3 Determining Categories of Defects

We use 89 raters to categorize the XCMs, using the following phases:

– Categorization Phase:
– Mirantis: We recruit students in a graduate course related to soft-

ware engineering via e-mail. The number of students in the class was
58, and 32 students agreed to participate. We follow Internal Review
Board (IRB) protocol, IRB#12130, in recruitment of students and as-
signment of defect categorization tasks. We randomly distribute the
1,021 XCMs amongst the students such that each XCM is rated by
at least two students. The average professional experience of the 32
students in software engineering is 1.9 years. On average, each student
took 2.1 hours.

– Mozilla: The second and third author of the paper, separately ap-
ply qualitative analysis on 3,074 XCMs. The second and third author,
respectively, have a professional experience of three and two years in
software engineering. The second and third author, respectively, took
37.0 and 51.2 hours to complete the categorization.

– Openstack: The third and fourth author of the paper, separately, ap-
ply qualitative analysis on 7,808 XCMs from Openstack repositories.
The third and fourth author, respectively, have a professional experi-
ence of two and one years in software engineering. The third and fourth
author completed the categorization of the 7,808 XCMs respectively, in
80.0 and 130.0 hours.

– Wikimedia: 54 graduate students recruited from the ‘Software Se-
curity’ course are the raters. We randomly distribute the 972 XCMs
amongst the students such that each XCM is rated by at least two stu-
dents. According to our distribution, 140 XCMs are assigned to each
student. The average professional experience of the 54 students in soft-
ware engineering is 2.3 years. On average, each student took 2.1 hours
to categorize the 140 XCMs.

Categorizing Defects in Infrastructure as Code 15

– Resolution Phase:
– Mirantis: Of the 1,021 XCMs, we observe agreement for 509 XCMs

and disagreement for 512 XCMs, with a Cohen’s Kappa score of 0.21.
Based on Cohen’s Kappa score, the agreement level is ‘fair’ (Landis and
Koch, 1977).

– Mozilla: Of the 3,074 XCMs, we observe agreement for 1,308 XCMs
and disagreement for 1,766 XCMs, with a Cohen’s Kappa score of 0.22.
Based on Cohen’s Kappa score, the agreement level is ‘fair’ (Landis and
Koch, 1977).

– Openstack: Of the 7,808 XCMs, we observe agreement for 3,188 XCMs,
and disagreements for 4,620 XCMs. The Cohen’s Kappa score was 0.21.
Based on Cohen’s Kappa score, the agreement level is ‘fair’ (Landis and
Koch, 1977).

– Wikimedia: Of the 972 XCMs, we observe agreement for 415 XCMs,
and disagreements for 557 XCMs, with a Cohen’s Kappa score of 0.23.
Based on Cohen’s Kappa score, the agreement level is ‘fair’ (Landis and
Koch, 1977).

The first author of the paper was the resolver, and resolved disagreements
for all four datasets. In case of disagreements the resolver’s categorization
is considered as final.
We observe that the raters agreement level to be ‘fair’ for all four datasets.
One possible explanation can be that the raters agreed on whether an
XCM is defect-related, but disagreed on which of the 10 defect category of
the defect is related to. For defect categorization, fair or poor agreement
amongst raters however, is not uncommon. Henningsson et al. (Hennings-
son and Wohlin, 2004) also reported a low agreement amongst raters.
Practitioner Agreement: We report the agreement level between the
raters’ and the practitioners’ categorization for randomly selected 50 XCMs
as following:
– Mirantis: We contact three practitioners and all of them respond. We

observe a 89.0% agreement with a Cohen’s Kappa score of 0.8. Based
on Cohen’s Kappa score, the agreement level is ‘substantial’ (Landis
and Koch, 1977).

– Mozilla: We contact six practitioners and all of them respond. We
observe a 94.0% agreement with a Cohen’s Kappa score of 0.9. Based
on Cohen’s Kappa score, the agreement level is ‘almost perfect’ (Landis
and Koch, 1977).

– Openstack: We contact 10 practitioners and all of them respond. We
observe a 92.0% agreement with a Cohen’s Kappa score of 0.8. Based
on Cohen’s Kappa score, the agreement level is ‘substantial’ (Landis
and Koch, 1977).

– Wikimedia: We contact seven practitioners and all of them respond.
We observe a 98.0% agreement with a Cohen’s Kappa score of 0.9. Based
on Cohen’s Kappa score, the agreement level is ‘almost perfect’ (Landis
and Koch, 1977).

16 Akond Rahman et al.

We observe that the agreement between ours and the practitioners’ cate-
gorization varies from 0.8 to 0.9, which is higher than that of the agreement
between the raters in the Categorization Phase. One possible explanation can
be related to how the resolver resolved the disagreements. The first author of
the paper has industry experience in writing IaC scripts, which may help to
determine categorizations that are consistent with practitioners. Another pos-
sible explanation can be related to the sample provided to the practitioners.
The provided sample, even though randomly selected, may include commit
messages whose categorization are relatively easy to agree upon.

Dataset Availability: The constructed datasets used for empirical anal-
ysis are available as online 15.

5 Results

In this section, we provide empirical findings by answering the three research
questions:

5.1 RQ1: How frequently do defects occur in infrastructure as code
scripts?

The defect density, measured in DDKLOC is respectively, 27.6, 18.4, 16.2,
and 17.1 per 1000 LOC, respectively, for Mirantis, Mozilla, Openstack, and
Wikimedia. We observe defect densities to vary from organization to another,
which is consistent with prior research. For example, for a Fortran-based satel-
lite planning software system, Basili and Perricone (Basili and Perricone, 1984)
have reported defect density to vary from 6.4 to 16.0, for every 1000 LOC. Mo-
hagheghi et al. (Mohagheghi et al, 2004) have reported defect density to vary
between 0.7 and 3.7 per KLOC for a telecom software system written in C,
Erlang, and Java.

We report the defects per month values for the four datasets in Figure 2. In
Figure 2, we apply smoothing to obtain visual trends. The x-axis and y-axis,
respectively, presents the months and the defects per month values. According
to our Cox-Stuart test results, as shown in Table 5, all trends are consistent.
The p-values obtained from the Cox-Stuart test output for Mirantis, Mozilla,
Openstack, and Wikimedia are respectively, 0.22, 0.23, 0.42, and 0.13. Our
findings indicate that overall, frequency of defects do not significantly change
across time for IaC scripts.

We use our findings related to defects per month to draw parallels with
hardware and non-IaC software systems. For hardware systems researchers
have reported the ‘bathtub curve’ trend, which states when initially hardware
systems are put into service, the frequency of defects is high (Smith, 1993). As
time progresses, defect frequency decreases and remains constant during the
‘adult period’. However, after the adult period, defect frequency becomes high

15 https://doi.org/10.6084/m9.figshare.6465215

Categorizing Defects in Infrastructure as Code 17

●

● ● ● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

● ●

●

●

● ●

●0

25

50

75

100

20
10

−0
5

20
11

−0
6

20
12

−0
3

20
12

−0
8

20
13

−0
8

20
14

−0
2

20
14

−0
7

20
14

−1
2

20
15

−0
5

20
15

−1
0

20
16

−0
3

20
16

−0
9

Month

D
ef

ec
ts

 p
er

 M
on

th

MIRANTIS

a

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ● ●

●

●

●

● ●
●

●

●

●

●

●

●

● ● ● ● ● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●0

25

50

75

100

20
11

−0
8

20
12

−0
4

20
12

−0
9

20
13

−0
2

20
13

−0
7

20
13

−1
2

20
14

−0
5

20
14

−1
0

20
15

−0
3

20
15

−0
8

20
16

−0
1

20
16

−0
6

Month

D
ef

ec
ts

 p
er

 M
on

th

MOZILLA

b

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

● ● ● ●
●

● ●

● ●

● ●

●

● ● ●
●

●

●

0

25

50

75

100

20
11

−0
5

20
12

−0
3

20
12

−0
8

20
13

−0
1

20
13

−0
6

20
13

−1
1

20
14

−0
4

20
14

−0
9

20
15

−0
2

20
15

−0
7

20
15

−1
2

20
16

−0
5

Month

D
ef

ec
ts

 p
er

 M
on

th

OPENSTACK

c

●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●0

25

50

75

100

20
06

−1
0

20
08

−1
0

20
09

−0
8

20
12

−1
2

20
13

−0
7

20
13

−1
2

20
14

−0
5

20
14

−1
0

20
15

−0
3

20
15

−0
8

20
16

−0
1

20
16

−0
6

Month

D
ef

ec
ts

 p
er

 M
on

th

WIKIMEDIA

d

Fig. 2: Defects per month for all four datasets. Figures 2a, 2b, 2c, and 2d
respectively presents defects per month for Mirantis, Mozilla, Openstack, and
Wikimedia with smoothing. Overall, defect-related commits exhibit consistent
trends over time.

18 Akond Rahman et al.

Table 5: Cox-Stuart Test Results for Defects per Month

Output Mirantis Mozilla Openstack Wikimedia
Trend Increasing Decreasing Decreasing Decreasing

p− value 0.22 0.23 0.42 0.13

again, as hardware systems enter the ‘wear out period’ (Smith, 1993). For IaC
defects we do not observe such temporal trend.

In non-IaC software systems, initially defect frequency is high, which grad-
ually decreases, and eventually becomes low as time progresses (Hartz et al,
1996). Eventually, all software systems enter the ‘obsolescence period’ where
defect frequency remains consistent, as no significant upgrades or changes to
the software is made (Hartz et al, 1996). For Wikimedia, we observe a similar
trend to that of non-IaC software systems: initially defect frequency remains
high, but decreases as time progresses. However, this observation does not
generalize for the other three datasets. Also, according to the Cox-Stuart test,
the visible trends are not statistically validated. One possible explanation can
be attributed to how organizations resolve existing defects. For example, while
fixing a certain set of defects, practitioners may be inadvertently introducing
a new set of defects, which results in an overall constant trend.

The defect density is 27.6, 18.4, 16.2, and 17.1 defects per KLOC respectively
for Mirantis, Mozilla, Openstack, and Wikimedia. For all four datasets, we
observe IaC defects to follow a consistent temporal trend.

5.2 RQ2: By categorizing defects using the defect type attribute of
orthogonal defect classification, what process improvement
recommendations can we make for infrastructure as code
development?

We answer RQ2 by first presenting the values for defect count per category
(DCC) that belong to each defect category mentioned in Table 1. In Figure 3,
we report the DCC values for the four datasets. In Figure 3, the x-axis presents
the nine defect categories, whereas, the y-axis presents DCC values for each
category. We observe the dominant defect category to be assignment. As shown
in Figure 3, Assignment-related defects account for 49.3%, 36.5%, 57.6%, and
62.7% of the defects, for Mirantis, Mozilla, Openstack, and Wikimedia, respec-
tively.

One possible explanation can be related to how practitioners utilize IaC
scripts. IaC scripts are used to manage configurations and deployment infras-
tructure automatically (Humble and Farley, 2010). For example, practitioners
use IaC to provision cloud instances, such as Amazon Web Services (Cito et al,
2015), or manage dependencies of software (Humble and Farley, 2010). When
assigning configurations of library dependencies or provisioning cloud instances

Categorizing Defects in Infrastructure as Code 19

0

20

40

60

AL AS B C D F I O T

Category

D
C

C
Mirantis Mozilla Openstack Wikimedia

Fig. 3: Defect count per category (DCC) that belong to each defect cate-
gory Algorithm (AL), Assignment (AS), Build/Package/Merge (B), Checking
(C), Documentation (D), Function (F), Interface (I), Other (O), and Tim-
ing/Serialization (T). Defects categorized as ‘Assignment’ is the dominant
category.

practitioners might be inadvertently introducing defects. Fixing these defects
involve few lines of code in IaC scripts, and these defects fall in the assign-
ment category. Correcting syntax issues also involve a few lines of code and
also belongs to the assignment category. Another possible explanation can be
related to the declarative nature of Puppet scripts. Puppet provides syntax to
declare and assign configurations. While assigning these configuration values
practitioners may be inadvertently introducing defects.

As shown in Figure 3, for category Other, defect count per category is
12.5%, 9.4%, 6.7%, and 0.8%, for Mirantis, Mozilla, Openstack, and Wikime-
dia, respectively. This category includes XCMs that correspond to a defect
but the rater was not able to identify the category of the defect. One possible
explanation can be attributed to the lack of information content provided in
the messages. Practitioners may not strictly adhere to the practice of writ-
ing detailed commit messages, which eventually leads to commit messages
that do not provide enough information for defect categorization. For exam-
ple, the commit message ‘minor puppetagain fixes’, implies that a practitioner
performed a fix-related action on an IaC script, but what category of defect
was fixed remains unknown. We observe organization-based guidelines to exist
on how to write better commit messages for Mozilla 16, Openstack 17, and
Wikimedia 18. Another possible explanation can be attributed to the lack of
context inherent in commit messages. The commit messages provide a sum-
mary of the changes being made, but that might not be enough to determine
the defect category. Let us consider two examples in this regard, provided in
Figures 4a and 4b. Figures 4a and 4b respectively presents two XCMs cat-

16 https://developer.mozilla.org/en-US/docs/Mozilla/Developer guide/
17 https://wiki.openstack.org/wiki/GitCommitMessages
18 https://www.mediawiki.org/wiki/Gerrit/Commit message guidelines

20 Akond Rahman et al.

- content => inline_template("This is <%= fqdn %> (<%= ipaddress %>)");
+ content => inline_template("This is <%= fqdn %> (<%= ipaddress %>)\n");

1

a

- stdlib::safe_package[$nova_title] -> service[$nova_title]
- stdlib::safe_package[$nova_title] ∼> service[$nova_title]
+ package[$nova_title] -> service[$nova_title]
+ package[$nova_title] ∼> service[$nova_title]

1

b

Fig. 4: Code changes in commits categorized as the ‘Other’ category. Figures 4a
and 4b respectively presents the code changes for two commits marked as
‘Other’ obtained from Mozilla and Openstack.

egorized as ‘Other’, and obtained respectively from Mozilla and Openstack.
In Figure 4b, we observe that in the commit, a newline is being added for
printing purposes, which is not captured in the commit message ‘summary:
bug 746824: minor fixes’. From Figure 4b, we observe that in the commit, the
‘stdlib::safe package’ is being replaced by the ‘package’ syntax, which is not
captured by the corresponding commit message ‘minor fixes’.

Recommendations for IaC Development: Our findings indicate that
assignment-related defects are the most dominant category of defects. Accord-
ing to Chillarege et al. (Chillarege et al, 1992), if assignment-related defects
are not discovered with code inspection and unit tests earlier, these defects
can continue to grow at latter stages of development. Based on our findings,
we recommend organizations to allocate more code inspection and unit testing
efforts.

Assignment is the most frequently occurring defect category for all four
datasets: Mirantis, Mozilla, Openstack, and Wikimedia. For Mirantis, Mozilla,
Openstack, and Wikimedia, respectively 49.3%, 36.5%, 57.6%, and 62.7%, of
the defects belong to the category, assignment. Based on our findings, we rec-
ommend practitioners to allocate more efforts on code inspection and unit
testing.

5.3 RQ3: What are the differences between infrastructure as code
(IaC) and non-IaC software process improvement activities, as
determined by their defect category distribution reported in the
literature?

We identify 26 software systems using the three steps outlined in Section 3.5:

– Step-1: As of August 11, 2018, 818 publications indexed by ACM Digital
Library or IEEE Xplore or SpringerLink or ScienceDirect, cited the original

Categorizing Defects in Infrastructure as Code 21

ODC publication (Chillarege et al, 1992). Of the 818 publications, 674
publications were published on or after 2000.

– Step-2: Of these 674 publications, 16 applied the defect type attribute of
ODC in its original form to categorize defects for software systems.

– Step-3: Of these 16 publications, 7 publications explicitly mentioned the
total count of defects and provided a distribution of defect categories. We
use these seven publications to determine the defect categorization of 26
software systems.

In Table 6, we present the categorization of defects for these 26 software
systems. The ‘System’ column reports the studied software system followed
by the publication reference in which the findings were reported. The ‘Count’
column reports the total count of defects that were studied for the software
system. The ‘Lang.’ column presents the programming language using which
the system is developed. The dominant defect category for each software sys-
tem is highlighted in bold.

From Table 6, we observe that for four of the 26 software systems, 40% or
more of the defect categories belonged to the assignment category. For 15 of the
26 software systems, algorithm-related defects are dominant. We also observe
documentation and timing-related defects to rarely occur in the previously-
studied software systems. In contrast to IaC scripts, assignment-related defects
are not prevalent: assignment-related defects were the dominant category for
3 of the 26 software systems. We observe IaC scripts to have a different defect
category distribution than non-IaC software system written in general purpose
programming languages.

The differences in defect category distribution may yield different set of
guidelines for software process improvement. For the 15 software systems
where algorithm-related defects are dominant, based on ODC, software pro-
cess improvement efforts can be focused on the following activities: coding,
code inspection, unit testing, and functional testing. In case of IaC scripts, as
previously discussed, software process improvement efforts can be focused on
code inspection and unit testing.

Defects categorized as assignment are more prevalent amongst IaC scripts
compared to that of non-IaC systems. Our findings suggest that process im-
provement activities will be different for IaC development compared to that
of non-IaC software development.

6 Discussion

In this section, we discuss our findings with possible implications:

22 Akond Rahman et al.

Table 6: Defect Categories of Previously Studied Software Systems. Columns
AL, AS, B, C, D, F, I, and T respectively correspond to the categories

Algorithm, Assignment, Build/Package/Merge, Checking, Documentation,
Function, Interface, and Timing/serialization.

System Lang. Count AL(%) AS(%) B(%) C(%) D(%) F(%) I(%) T(%)

Bourne Again Shell
(BASH) (Cotroneo
et al, 2013)

C 2 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0

ZSNES-Emulator for
x86 (Cotroneo et al,
2013)

C,
C++

3 33.3 66.7 0.0 0.0 0.0 0.0 0.0 0.0

Pdftohtml-Pdf
to html con-
verter (Cotroneo
et al, 2013)

Java 20 40.0 55.0 0.0 5.0 0.0 0.0 0.0 0.0

Firebird-Relational
DBMS (Cotroneo
et al, 2013)

C++ 2 0.0 50.0 0.0 50.0 0.0 0.0 0.0 0.0

Air flight applica-
tion (Lyu et al, 2003)

C 426 19.0 31.9 0.0 14.0 0.0 33.8 1.1 0.0

Apache web
server (Pecchia
and Russo, 2012)

C 1,101 47.6 26.4 0.0 12.8 0.0 0.0 12.9 0.0

Joe-Tex edi-
tor (Cotroneo et al,
2013)

C 78 15.3 25.6 0.0 44.8 0.0 0.0 14.1 0.0

Middleware system
for air traffic con-
trol (Cinque et al,
2014)

C 3,159 58.9 24.5 0.0 1.7 0.0 0.0 14.8 0.0

ScummVM-
Interpreter for
adventure en-
gines (Cotroneo
et al, 2013)

C++ 74 56.7 24.3 0.0 8.1 0.0 6.7 4.0 0.0

Linux kernel (Cotro-
neo et al, 2013)

C 93 33.3 22.5 0.0 25.8 0.0 12.9 5.3 0.0

Vim-Linux edi-
tor (Cotroneo et al,
2013)

C 249 44.5 21.2 0.0 22.4 0.0 5.2 6.4 0.0

MySQL DBMS (Pec-
chia and Russo,
2012)

C,
C++

15,102 52.9 20.5 0.0 15.3 0.0 0.0 11.2 0.0

CDEX-CD digital
audio data extrac-
tor (Cotroneo et al,
2013)

C,
C++,
Python

11 9.0 18.1 0.0 18.1 0.0 0.0 54.5 0.0

Struts (Basso et al,
2009)

Java 99 48.4 18.1 0.0 9.0 0.0 4.0 20.2 0.0

Safety critical sys-
tem for NASA
spacecraft (Lutz and
Mikulski, 2004)

Java 199 17.0 15.5 2.0 0.0 2.5 29.1 5.0 10.5

Azureus (Basso et al,
2009)

Java 125 36.8 15.2 0.0 11.2 0.0 28.8 8.0 0.0

Phex (Basso et al,
2009)

Java 20 60.0 15.0 0.0 5.0 0.0 10.0 10.0 0.0

TAO Open
DDS (Pecchia and
Russo, 2012)

Java 1,184 61.4 14.4 0.0 11.7 0.0 0.0 12.4 0.0

JEdit (Basso et al,
2009)

Java 71 36.6 14.0 0.0 11.2 0.0 25.3 12.6 0.0

Tomcat (Basso et al,
2009)

Java 169 57.9 12.4 0.0 13.6 0.0 2.3 13.6 0.0

FreeCvi-Strategy
game (Cotroneo
et al, 2013)

Java 53 52.8 11.3 0.0 13.2 0.0 15.0 7.5 0.0

FreeMind (Basso
et al, 2009)

Java 90 46.6 11.1 0.0 2.2 0.0 28.8 11.1 0.0

MinGW-Minimalist
GNU for Win-
dows (Cotroneo
et al, 2013)

C 60 46.6 10.0 0.0 38.3 0.0 0.0 5.0 0.0

Java Enterprise
Framework (Gupta
et al, 2009)

Java 223 3.1 16.7 36.0 3.1 0.0 21.2 19.9 0.0

Digital Cargo
Files (Gupta et al,
2009)

Java 438 3.3 12.4 31.0 10.4 0.5 31.3 9.9 1.2

Shipment and Allo-
cation (Gupta et al,
2009)

Java 649 22.8 6.7 18.7 10.9 0.5 29.8 9.3 1.6

Mirantis [This pa-
per]

Puppet 344 6.5 49.3 6.7 1.9 7.5 6.4 12.5 2.6

Mozilla [This paper] Puppet 558 7.7 36.5 6.4 17.0 2.3 10.0 1.9 8.4

Openstack [This pa-
per]

Puppet 1987 5.9 57.5 8.6 6.7 2.6 2.4 2.9 6.5

Wikimedia [This pa-
per]

Puppet 298 3.3 62.7 4.7 12.0 4.3 4.3 2.6 5.1

Categorizing Defects in Infrastructure as Code 23

6.1 Implications for Process Improvement

One finding our paper is the prevalence of assignment-related defects in IaC
scripts. Software teams can use this finding to improve their process in two
possible ways: first, they can use the practice of code review for developing
IaC scripts. Code reviews can be conducted using automated tools and/or
team members’ manual reviews. For example, through code reviews software
teams can pinpoint the correct value of configurations at development stage.
Automated code review tools such as linters can also help in detecting and
fixing syntax issues of IaC scripts at the development stage. Typically, IaC
scripts are used by organizations that have implemented CD, and for these
organizations, Kim et al. (Kim et al, 2016) recommends manual peer review
methods such as pair programming to improve code quality.

Second, software teams might benefit from unit testing of IaC scripts to
reduce defects related to configuration assignment. We have observed from
Section 5.2 that IaC-related defects are mostly related to the assignment cat-
egory which includes improper assignment of configuration values and syntax
errors. Practitioners can test if correct configuration values are assigned by
writing unit tests for components of IaC scripts. In this manner, instead of
catching defects at run-time that might lead to real-world consequences e.g.
the problem reported by Wikimedia Commons 19, software teams might be
able to catch defects in IaC scripts at the development stages with the help of
testing.

6.2 Future Research

Our findings have the potential to facilitate further research in the area of IaC
defects. In Section 5 we have observed the process differences that occur be-
tween organizations, and future research can systematically investigate if there
are process differences in IaC development and why they exist. We have ap-
plied a qualitative process to categorize defects using the defect type attribute
of ODC. We acknowledge that our process is manual and labor-intensive. We
advocate for future research that can look into how the process of ODC can be
automated. In future researchers can also investigate why the observed defects
occur, and provide a causal analysis of IaC defects.

7 Threats To Validity

We describe the threats to validity of our paper as following:

– Conclusion Validity: Our approach is based on qualitative analysis,
where raters categorized XCMs, and assigned defect categories. We ac-
knowledge that the process is susceptible human judgment, and the raters’

19 https://wikitech.wikimedia.org/wiki/Incident documentation/20170118-Labs

24 Akond Rahman et al.

experience can bias the categories assigned. The accompanying human sub-
jectivity can influence the distribution of the defect category for IaC scripts
of interest. We mitigated this threat by assigning multiple raters for the
same set of XCMs. Next, we used a resolver, who resolved the disagree-
ments. Further, we cross-checked our categorization with practitioners who
authored the XCMs, and observed ‘substantial’ to ‘almost perfect’ agree-
ment.

– Internal Validity: We have used a combination of commit messages and
issue report descriptions to determine if an IaC script is associated with
a defect. We acknowledge that these messages might not have given the
full context for the raters. Other sources of information such as practitioner
input, and code changes that take place in each commit could have provided
the raters better context to categorize the XCMs.
In our paper, we have used a defect-related commit message as a defect.
We acknowledge that in a defect-related commit message more than one
defects can be fixed, but may not be expressed in the commit message
and/or accompanied issue report description.
We acknowledge that we have not used the trigger attribute of ODC, as
our data sources do not include any information from which we can infer
trigger attributes of ODC such as, ‘design conformance’, ‘side effects’, and
‘concurrency’.

– Construct validity: Our process of using human raters to determine de-
fect categories can be limiting, as the process is susceptible to mono-method
bias, where subjective judgment of raters can influence the findings. We
mitigated this threat by using multiple raters.
Also, for Mirantis and Wikimedia, we used graduate students who per-
formed the categorization as part of their class work. Students who par-
ticipated in the categorization process can be subject to evaluation appre-
hension, i.e. consciously or sub-consciously relating their performance with
the grades they would achieve for the course. We mitigated this threat by
clearly explaining to the students that their performance in the categoriza-
tion process would not affect their grades.
The raters involved in the categorization process had professional experi-
ence in software engineering for at two years on average. Their experience
in software engineering may make the raters curious about the expected
outcomes of the categorization process, which may effect the distribution of
the categorization process. Furthermore, the resolver also has professional
experience in software engineering and IaC script development, which could
influence the outcome of the defect category distribution.

– External Validity: Our scripts are collected from the OSS domain, and
not from proprietary sources. Our findings are subject to external validity,
as our findings may not be generalizable.
We construct our datasets using Puppet, which is a declarative language.
Our findings may not generalize for IaC scripts that use an imperative form
of language. We hope to mitigate this limitation by analyzing IaC scripts
written using imperative form of languages.

Categorizing Defects in Infrastructure as Code 25

8 Conclusion

Use of IaC scripts is crucial for the automated maintenance of software delivery
and deployment infrastructure. Similar to software source code, IaC scripts
churn frequently, and can include defects which can have serious consequences.
IaC defect categorization can help organizations to identify opportunities to
improve IaC development. We have conducted an empirical analysis using four
datasets from four organizations namely, Mirantis, Mozilla, Openstack, and
Wikimedia Commons. With 89 raters, we apply the defect type attribute of the
orthogonal defect classification (ODC) methodology to categorize the defects.
For all four datasets, we have observed that majority of the defects are related
to assignment i.e. defects related to syntax errors and erroneous configuration
assignments. We have observed compared to IaC scripts, assignment-related
defects occur less frequently in non-IaC software. We also have observed the
defect density is 27.6, 18.4, 16.2, and 17.1 defects per KLOC respectively for
Mirantis, Mozilla, Openstack, and Wikimedia. For all four datasets, we observe
IaC defects to follow a consistent temporal trend. We hope our findings will
facilitate further research in IaC defect analysis.

Acknowledgements The Science of Security Lablet at the North Carolina State University
supported this research study. We thank the Realsearch research group members for their
useful feedback. We also thank the practitioners who answered our questions.

References

Alali A, Kagdi H, Maletic JI (2008) What’s a typical commit? a charac-
terization of open source software repositories. In: 2008 16th IEEE In-
ternational Conference on Program Comprehension, pp 182–191, DOI
10.1109/ICPC.2008.24

Basili VR, Perricone BT (1984) Software errors and complexity: An empirical
investigation0. Commun ACM 27(1):42–52, DOI 10.1145/69605.2085, URL
http://doi.acm.org/10.1145/69605.2085

Basso T, Moraes R, Sanches BP, Jino M (2009) An investigation of java faults
operators derived from a field data study on java software faults. In: Work-
shop de Testes e Tolerância a Falhas, pp 1–13

Battin RD, Crocker R, Kreidler J, Subramanian K (2001) Leveraging re-
sources in global software development. IEEE Software 18(2):70–77, DOI
10.1109/52.914750

van der Bent E, Hage J, Visser J, Gousios G (2018) How good is your puppet?
an empirically defined and validated quality model for puppet. In: 2018
IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp 164–174, DOI 10.1109/SANER.2018.8330206

Butcher M, Munro H, Kratschmer T (2002) Improving software testing
via odc: Three case studies. IBM Systems Journal 41(1):31–44, DOI
10.1147/sj.411.0031

26 Akond Rahman et al.

Chillarege R, Bhandari IS, Chaar JK, Halliday MJ, Moebus DS, Ray BK,
Wong MY (1992) Orthogonal defect classification-a concept for in-process
measurements. IEEE Transactions on Software Engineering 18(11):943–956,
DOI 10.1109/32.177364

Christmansson J, Chillarege R (1996) Generation of an error set that emulates
software faults based on field data. In: Proceedings of Annual Symposium
on Fault Tolerant Computing, pp 304–313, DOI 10.1109/FTCS.1996.534615

Cinque M, Cotroneo D, Corte RD, Pecchia A (2014) Assessing direct moni-
toring techniques to analyze failures of critical industrial systems. In: 2014
IEEE 25th International Symposium on Software Reliability Engineering,
pp 212–222, DOI 10.1109/ISSRE.2014.30

Cito J, Leitner P, Fritz T, Gall HC (2015) The making of cloud ap-
plications: An empirical study on software development for the
cloud. In: Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering, ACM, New York, NY, USA,
ESEC/FSE 2015, pp 393–403, DOI 10.1145/2786805.2786826, URL
http://doi.acm.org/10.1145/2786805.2786826

Cohen J (1960) A coefficient of agreement for nom-
inal scales. Educational and Psychological Measure-
ment 20(1):37–46, DOI 10.1177/001316446002000104,
URL http://dx.doi.org/10.1177/001316446002000104,
http://dx.doi.org/10.1177/001316446002000104

Cotroneo D, Pietrantuono R, Russo S (2013) Testing techniques
selection based on odc fault types and software metrics. J
Syst Softw 86(6):1613–1637, DOI 10.1016/j.jss.2013.02.020, URL
http://dx.doi.org/10.1016/j.jss.2013.02.020

Cox DR, Stuart A (1955) Some quick sign tests for trend in location and disper-
sion. Biometrika 42(1/2):80–95, URL http://www.jstor.org/stable/2333424

Duraes JA, Madeira HS (2006) Emulation of software faults: A field data
study and a practical approach. IEEE Trans Softw Eng 32(11):849–867,
DOI 10.1109/TSE.2006.113, URL http://dx.doi.org/10.1109/TSE.2006.113

Fonseca J, Vieira M (2008) Mapping software faults with web security vul-
nerabilities. In: 2008 IEEE International Conference on Dependable Sys-
tems and Networks With FTCS and DCC (DSN), pp 257–266, DOI
10.1109/DSN.2008.4630094

Gupta A, Li J, Conradi R, Rønneberg H, Landre E (2009) A case study com-
paring defect profiles of a reused framework and of applications reusing it.
Empirical Softw Engg 14(2):227–255, DOI 10.1007/s10664-008-9081-9, URL
http://dx.doi.org/10.1007/s10664-008-9081-9

Hanappi O, Hummer W, Dustdar S (2016) Asserting reli-
able convergence for configuration management scripts. SIG-
PLAN Not 51(10):328–343, DOI 10.1145/3022671.2984000, URL
http://doi.acm.org/10.1145/3022671.2984000

Harlan D (1987) Cleanroom software engineering
Hartz MA, Walker EL, Mahar D (1996) Introduction to software reliability:

A state of the art review. The Center

Categorizing Defects in Infrastructure as Code 27

Hatton L (1997) Reexamining the fault density-component size con-
nection. IEEE Softw 14(2):89–97, DOI 10.1109/52.582978, URL
http://dx.doi.org/10.1109/52.582978

Henningsson K, Wohlin C (2004) Assuring fault classification agreement ”
an empirical evaluation. In: Proceedings of the 2004 International Sympo-
sium on Empirical Software Engineering, IEEE Computer Society, Washing-
ton, DC, USA, ISESE ’04, pp 95–104, DOI 10.1109/ISESE.2004.13, URL
http://dx.doi.org/10.1109/ISESE.2004.13

Humble J, Farley D (2010) Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation, 1st edn. Addison-
Wesley Professional

IEEE (2010) Ieee standard classification for software anomalies. IEEE
Std 1044-2009 (Revision of IEEE Std 1044-1993) pp 1–23, DOI
10.1109/IEEESTD.2010.5399061

Jiang Y, Adams B (2015) Co-evolution of infrastructure and source code: An
empirical study. In: Proceedings of the 12th Working Conference on Mining
Software Repositories, IEEE Press, Piscataway, NJ, USA, MSR ’15, pp 45–
55, URL http://dl.acm.org/citation.cfm?id=2820518.2820527

Kim G, Debois P, Willis J, Humble J (2016) The DevOps Handbook: How to
Create World-Class Agility, Reliability, and Security in Technology Organi-
zations. IT Revolution Press

Labs P (2017) Puppet Documentation. https://docs.puppet.com/, [Online;
accessed 19-July-2017]

Landis JR, Koch GG (1977) The measurement of observer agree-
ment for categorical data. Biometrics 33(1):159–174, URL
http://www.jstor.org/stable/2529310

Levy D, Chillarege R (2003) Early warning of failures through alarm analysis a
case study in telecom voice mail systems. In: 14th International Symposium
on Software Reliability Engineering, 2003. ISSRE 2003., pp 271–280, DOI
10.1109/ISSRE.2003.1251049

Lutz RR, Mikulski IC (2004) Empirical analysis of safety-critical anomalies
during operations. IEEE Transactions on Software Engineering 30(3):172–
180, DOI 10.1109/TSE.2004.1271171

Lyu MR, Huang Z, Sze SKS, Cai X (2003) An empirical study on testing and
fault tolerance for software reliability engineering. In: 14th International
Symposium on Software Reliability Engineering, 2003. ISSRE 2003., pp 119–
130, DOI 10.1109/ISSRE.2003.1251036

McConnell S (2004) Code complete - a practical handbook of software con-
struction, 2nd edition

McCune JT, Jeffrey (2011) Pro Puppet, 1st edn. Apress, DOI 10.1007/978-1-
4302-3058-8, URL https://www.springer.com/gp/book/9781430230571

Mohagheghi P, Conradi R, Killi OM, Schwarz H (2004) An empirical
study of software reuse vs. defect-density and stability. In: Proceed-
ings of the 26th International Conference on Software Engineering, IEEE
Computer Society, Washington, DC, USA, ICSE ’04, pp 282–292, URL
http://dl.acm.org/citation.cfm?id=998675.999433

28 Akond Rahman et al.

Munaiah N, Kroh S, Cabrey C, Nagappan M (2017) Curating github for
engineered software projects. Empirical Software Engineering pp 1–35,
DOI 10.1007/s10664-017-9512-6, URL http://dx.doi.org/10.1007/s10664-
017-9512-6

Parnin C, Helms E, Atlee C, Boughton H, Ghattas M, Glover A, Holman J,
Micco J, Murphy B, Savor T, Stumm M, Whitaker S, Williams L (2017)
The top 10 adages in continuous deployment. IEEE Software 34(3):86–95,
DOI 10.1109/MS.2017.86

Pecchia A, Russo S (2012) Detection of software failures through event logs:
An experimental study. In: 2012 IEEE 23rd International Symposium on
Software Reliability Engineering, pp 31–40, DOI 10.1109/ISSRE.2012.24

Puppet (2018) Ambit energy’s competitive advantage? it’s re-
ally a devops software company. Tech. rep., Puppet, URL
https://puppet.com/resources/case-study/ambit-energy

Rahman A, Williams L (2018) Characterizing defective configuration scripts
used for continuous deployment. In: 2018 IEEE 11th International Confer-
ence on Software Testing, Verification and Validation (ICST), pp 34–45,
DOI 10.1109/ICST.2018.00014

Rahman A, Partho A, Morrison P, Williams L (2018) What questions do
programmers ask about configuration as code? In: Proceedings of the 4th
International Workshop on Rapid Continuous Software Engineering, ACM,
New York, NY, USA, RCoSE ’18, pp 16–22, DOI 10.1145/3194760.3194769,
URL http://doi.acm.org/10.1145/3194760.3194769

Rahman AAU, Helms E, Williams L, Parnin C (2015) Synthesizing con-
tinuous deployment practices used in software development. In: Proceed-
ings of the 2015 Agile Conference, IEEE Computer Society, Washing-
ton, DC, USA, AGILE ’15, pp 1–10, DOI 10.1109/Agile.2015.12, URL
http://dx.doi.org/10.1109/Agile.2015.12

Shambaugh R, Weiss A, Guha A (2016) Rehearsal: A
configuration verification tool for puppet. SIGPLAN
Not 51(6):416–430, DOI 10.1145/2980983.2908083, URL
http://doi.acm.org/10.1145/2980983.2908083

Sharma T, Fragkoulis M, Spinellis D (2016) Does your configura-
tion code smell? In: Proceedings of the 13th International Con-
ference on Mining Software Repositories, ACM, New York, NY,
USA, MSR ’16, pp 189–200, DOI 10.1145/2901739.2901761, URL
http://doi.acm.org/10.1145/2901739.2901761

Smith AM (1993) Reliability-centered maintenance, vol 83. McGraw-Hill New
York

Thung F, Wang S, Lo D, Jiang L (2012) An empirical study of bugs in machine
learning systems. In: 2012 IEEE 23rd International Symposium on Software
Reliability Engineering, pp 271–280, DOI 10.1109/ISSRE.2012.22

Zheng J, Williams L, Nagappan N, Snipes W, Hudepohl JP, Vouk MA (2006)
On the value of static analysis for fault detection in software. IEEE Trans-
actions on Software Engineering 32(4):240–253, DOI 10.1109/TSE.2006.38

