
A Just-In-Time Compiler for Intelligent Manufacturing ∗

C.A. Lakshman Naresh Xipeng Shen Binil Starly
North Carolina State University
{lcoimba,xshen5,bstarly}@ncsu.edu

Abstract
Conventional Computerized Numerical Control (CNC) machines
are operated using G-Code part programs. These machines require
constant monitoring and human interaction during machining pro-
cess to detect and rectify abnormalities. Making changes to the ma-
chining process is time consuming and a tedious task because the
CNC operator has to have prior knowledge of G-Code program-
ming language. G-Code is a low-level and machine specific pro-
gramming language. So, G-Code programs do not contain most of
the information from CAD/CAM phase of the manufacturing pro-
cess. And also a G-code program generated for a specific machine
cannot be used in a machine manufactured by a different CNC ven-
dor.

This work presents a framework that uses a machine indepen-
dent programming language as input, does not require CNC oper-
ators to have prior knowledge of G-Code programming language,
does not require human interaction during machining process, en-
ables real-time remote monitoring of the machining process, per-
forms optimization on the input to a CNC based on the results from
the previous runs, allows users to perform their exploration on his-
torical feedback data set, and allows users of the framework to write
third-party applications and optimization algorithms that perform
optimizations on the input.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords Just-In-Time Compiler, Manufacturing, G-code, STEP-
NC, CNC, Intelligent Machining, FDO, API

1. Introduction
The first wave of Industrial Revolution began in the late 18th cen-
tury. Currently, Industrial Revolution is in its fourth wave, char-
acterized by a range of new technologies that are integrating the
physical, digital and biological worlds, and impacting all disci-
plines, economies and industries. Fourth Industrial Revolution is
also known as an era of cyber-physical systems (CPS). A CPS is
a system composed of physical entities such as mechanisms con-
trolled or monitored by computer-based algorithms. Today, a pre-
cursor generation of cyber-physical systems can be found in areas

∗ This material is based upon work supported by the National Science
Foundation.

This work is based upon work supported by NSF 1547105. Any opinions,findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

as diverse as aerospace, automotive, chemical processes, civil in-
frastructure, energy, healthcare, manufacturing, entertainment, con-
sumer appliances, and transportation.

Cybermanufacturing is a concept derived from cyber-physical
systems. Basically, it refers to a modern manufacturing system that
offers an information-transparent environment to facilitate asset
management, provides reconfigurability, and maintains productiv-
ity. The back-bone of cybermanufacturing is claimed to be the intel-
ligent machines. The conventional approach to making a machine
cyber-enabled is to outfit the machine with an array of multi-modal
sensors which are then integrated to the network and enterprise
above it. This approach will make development work cumbersome.
Alternate approach is to use the feedback from the machines. Al-
most all industrial machine vendors have closed hardware and soft-
ware architecture which leads to development work remaining in-
house. Vendor lock-in mode makes it difficult for outside software
applications to be written to obtain the feedback data, potentially
limiting fast-paced innovation in the cyber-physical manufacturing
realm. Hence, this work presents a framework that acts as a middle-
ware between the manufacturing system and the user or operator.
This is similar to Android - a common middleware software plat-
form for many of the leading smart-phone manufacturers.

Most of today’s Computerized Numerical Control (CNC) ma-
chines are operated using G-code programming language because
G-code is supported by most of the CNC vendors. The controller in
the CNCs are closed; the internal operating method, current ma-
chine state, and sensor data are not exposed to the users of the
CNCs. Vendor specific controllers make G-code the universally ac-
cepted input for CNCs. And also these controllers do not allow
users to read the machine data or create their optimization model
based on their exploration, and hinder the ability to remotely mon-
itor the machining process, the sensor data, or the tool condition.

This paper presents a Just-In Time(JIT) Compiler for Intelli-
gent Manufacturing framework that overcomes the aforementioned
shortcomings of a controller in a vendor specific CNC. This sys-
tem accepts a high-level language as input and a guideline file that
specifies the optimizations to be performed on the input, uses an
open-source controller to drive a CNC, performs optimizations on
the input using the machining feedback data and sensor values from
the previous runs, and exposes application programming interfaces
(APIs) for machining feedback data, sensor values, and the guide-
line file. JIT Compiler for Intelligent Manufacturing framework en-
ables users to remotely monitor the machining process by writing
third-party applications using the APIs for the machining feedback
data and sensor values, optimize the input by writing third-party
optimization algorithms using the APIs for the guideline file, and
explore the historical feedback data set using the APIs for the ma-
chining feedback data and sensor values.

The remainder of the paper is organized as follows. Section 2
describes the background for this work. Section 3 presents the Just-
In-Time Compiler for Intelligent Manufacturing framework. Sec-
tion 4 describes the design and implementation of Just-In-Time

1

Compiler for Intelligent Manufacturing prototype. Section 5 de-
scribes the related work. Section 6 describes the evaluation of the
prototype. Section 7 presents our conclusion and possible future
work.

2. Background
2.1 CAD/CAM
CAD/CAM is a term which means computer-aided design and
computer-aided manufacturing. CAD involves creating computer
models defined by geometrical parameters. These models typically
appear on a computer monitor as a three-dimensional represen-
tation of a part or a system of parts, which can be readily al-
tered by changing relevant parameters [3]. CAD output typically
includes precise dimensions, tolerances, and even material require-
ments; CAD is frequently integrated with computer-aided engineer-
ing (CAE). Computer-aided manufacturing (CAM) is the use of
software to control machine tools and related ones in the manu-
facturing of workpieces. CAM may also refer to the use of a com-
puter to assist in all operations of a manufacturing plant, includ-
ing planning, management, transportation and storage. Its primary
purpose is to create a faster production process and components,
and tooling with more precise dimensions and material consistency,
which in some cases, uses only the required amount of raw ma-
terial (thus minimizing waste), while simultaneously reducing en-
ergy consumption. CAM is a subsequent computer-aided process
after CAD and sometimes CAE, as the model generated in CAD
and verified in CAE can be input into CAM software, which then
controls the machine tool[12].

2.2 CNC
Numerical control (NC) is the automation of machine tools that
are operated by precisely programmed commands encoded on a
storage medium, as opposed to controlled manually by hand wheels
or levers. Most NC today is computer (or computerized) numerical
control (CNC), in which computers play an integral part of the
control[13]. The CAD/CAM programs produce a computer file
that is interpreted to extract the commands needed to operate a
particular CNC by use of a post processor, and then loaded into the
CNCs for production. Post processor generates a variant of G-code
that is accepted by the CNC. Since any particular component in a
product might require the use of a number of different tools - drills,
saws, etc., modern machines often combine multiple tools into a
single ”cell”[13]. In a CNC, motion is controlled along multiple
axes, normally at least two (X and Y), and a tool spindle that
moves in the Z (depth). The position of the tool is driven by direct-
drive stepper motor or servo motors in order to provide highly
accurate movements, or in older designs, motors through a series
of step down gears. The workpiece, the cutting tool, or both rotate
rapidly, and the overall motion of the workpiece or the cutting
tool is precisely controlled by stepper motors or other servo-type
mechanisms, which are themselves controlled by the numerical
control commands or part program. A CNC has feedback devices
which updates the positional values and speed of the axes. This
help CNC to operate accurately. When the machine is running,
the Display Unit displays the present status such as the position
of the machine slide, the spindle RPM, the feed rate, the part
programs, etc. In an advanced CNC, the Display Unit can show the
graphics simulation of the tool path so that part programs can be
verified before the actual machining. Other important information
about the CNC system are also displayed for maintenance and
installation work such as machine parameters, logic diagram of the
programmer controller, error massages and diagnostic data [7].

2.3 G-code Programming Language
G-code programming language is the conventional programming
language of numerical controlled machine tools. ISO standard for
G-code is ISO 6938. These codes were developed more than 50
years ago with little, if any, intelligence. The initial design of the
codes was to hold a set of low-level data that are mostly step-by-
step instructions to drive the earliest models of machine tools. This
sequential programming language contains simple commands for
single movement and switching operations but cannot support more
complex geometries or logical structures. Since only limited con-
trol of the program execution is allowed during machining, it is
difficult to change the program on the shop-floor. Information flow
in G-codes was designed unidirectionally, i.e., from CAD to the
shop-floor, and does not enable feedback of know-how from the
shop-floor to the designer. As a result, this conventional way of
NC programming is considered a bottleneck for achieving an intel-
ligent machining environment[11]. There are several variations of
G-codes and they are specific to a CNC vendor. These variants are
generated by a CAM software using the specific post-processor for
the variant. G-code is a machine specific and low-level program-
ming language. G-code program generated for a specific CNC can-
not be used in a CNC manufactured by a different CNC vendor. G-
code has more than three thousand variations and post-processors.

2.4 Conventional Manufacturing Process

Figure 1: Conventional Manufacturing process.

Figure 1 depicts the conventional manufacturing process. A
product is designed in a CAD software and detailed in CAM soft-
ware. The output of the CAM software is sent to a post-processor
to generate G-code part program for a specific CNC. The gener-
ated G-code part program is sent as input to a CNC, which reads
the G-code part program and manufactures the product. The prob-
lem with this approach is that the G-code part programs have to
be generated for each different type of CNCs on the shop-floor. If
something were to go wrong during a manufacturing operation, the
machine has to be stopped and the G-code part program has to be
edited manually by the operator to reflect the correct manufacturing
operation. Since all the machines on the shop-floor are manufactur-
ing the same product and the G-codes are not the same for CNCs
manufactured by different CNC vendors, operators have to stop the
machines and manually edit the G-codes every time the product is
manufactured. This is a cumbersome work and it will increase the
production time. And also it requires the operators to have prior
knowledge of the G-code programming language and the specific
type of variants required for the CNCs on the shop-floor.

2.5 LinuxCNC
LinuxCNC is a free, open-source GNU/Linux software system
that implements numerical control capability using general pur-
pose computers to control CNCs. It can control up to 9 axes of
a CNC using G-code as input. It has several GUIs suited to spe-
cific kinds of usage (touch screen, interactive development). Due

2

to the need of fine grained, precise real time control of machines in
motion, LinuxCNC requires a platform with real-time computing
capabilities. It uses linux kernel with real time extensions (RTAI)
or with RT-PREEMPT kernel using LinuxCNC’s ’uspace’ flavor of
RTAPI[14].

2.5.1 LinuxCNC Architecture Overview
LinuxCNC consist of four components: a motion controller (EMC-
MOT), a discrete IO controller (EMCIO), a task executor which co-
ordinates them (EMCTASK) and several text-mode and graphical
User Interfaces. At the coarsest level, LinuxCNC is a hierarchy of
three controllers: the task level command handler and program in-
terpreter, the motion controller, and the discrete I/O controller. The
discrete I/O controller is implemented as a hierarchy of controllers
for spindle, coolant, and auxiliary (e.g., estop, lube) subsystems.
The task controller coordinates the actions of the motion and dis-
crete I/O controllers. Their actions are programmed in conventional
numerical control ”G and M code” programs, which are interpreted
by the task controller into Neutral Message Language (NML) mes-
sages and sent to either the motion or discrete I/O controllers at
the appropriate times. The motion controller receives commands
from user space modules via a shared memory buffer, and executes
those commands in real-time. The status of the controller is made
available to the user space modules through the same shared mem-
ory area. The motion controller interacts with the motors and other
hardware using the Hardware Abstraction Layer (HAL)[5].

2.6 STEP-NC
STEP-NC (Standard for the Exchange of Product data for Numer-
ical Control) is an ISO standard machine tool control language.
It provides an opportunity to overcome the obstacles of G-code
especially in realizing intelligent machining operations. The main
characteristic of STEP-NC is its high-level and object-oriented data
structure. Unlike G-code where a part program is written to de-
scribe simple tool movements and functions, the STEP-NC inter-
face is able to work with rich information such as manufacturing
features, multiple operations such as finishing and roughing pro-
cesses, machine tool capability, motor drive power, mechanical effi-
ciency, machining strategy, cutting tool information, and workpiece
properties. Since STEP-NC data model describes rich information,
quality knowledge and data can be utilized on the shop-floor, which
enables advanced optimization analysis to be conducted. Modifica-
tions on the shop-floor are possible and machining know-how can
be preserved for designers and process planners, thus improving
the communication link between design and manufacturing depart-
ments. By providing a complete and structured data model, no in-
formation is lost. Post-processors for machine-specific adaptations
of NC programs are no longer needed. In addition, this rich in-
formation content results in higher flexibility enabling last-minute
changes or the correction of technological values within the part
program [11].

2.6.1 STEP-NC Formats
STEP-NC has two standards that cover the field of STEP-NC: ISO
14649 and ISO 10303-238. Each of them covers its own portion
of data exchange between different steps in product development
and manufacturing. ISO 14649 is intended for applications where
CAM software has total access to all the data from the production,
whereas ISO 10303-238 is intended for total integration of CAD,
CAM and manufacturing [4].

ISO 14649 describe working process with different working
steps that represent higher level geometry elements combined with
all the process parameters needed in order to manufacture the prod-
uct instead of tool movement trajectory. NC controller is responsi-
ble for translating these working steps into actual tool movement.

This data structure also allows using the same STEP-NC program
on any type of machine without the use of post-processors. ISO
10303-238 data model is also know as AP238 data model. The main
difference in ISO 10303-238 when compared to ISO 14649 is that
this data model also includes a 3D CAD model of the product. It is
basically an upgrade of an ISO 14649 standard. A large portion of
AP238’s data structure implementation was copied from previously
released ISO 14649 [4].

2.7 ISO14649 toolkit
ISO14649 toolkit is built at NIST for programming with ISO 14649
Parts 10, 11, and 111. These parts are data models to be used for
controlling a machining center. The ISO14649 toolkit has a com-
piler for 3-axis machining. It reads STEP Part 21 files correspond-
ing to the data model described in Parts 10, 11 and 111 of ISO
14649 and uses a Lex-Yacc parser to generate a parse tree. Later
this parse tree is loaded in an internal data structure that repre-
sents the contents of the STEP-NC file. It uses the information
from the data structure to determine the working steps, geometry
of a working step, and operations to be performed for a working
step. It uses an internal data structure to monitor the current tool
and its dimension, tool position based on the previous commands
generated, coolant status, spindle speed, feed-rate, etc.,. Finally, the
toolkit generates canonical machining commands using the infor-
mation from these data structures. The compiler implements only
a modest portion of Parts 10, 11, and 111. The compiler includes
tool-path generators for rough and finish plane milling, rough and
finish rectangular pocket milling, drilling, multistep drilling, ream-
ing, center drilling, countersinking, and counterboring [8].

The object-oriented representation of machining process and
the geometry of the working steps in a STEP-NC file enables
the ISO14649 toolkit to optimize the tool-path during runtime of
the framework. The authors of the ISO14649 toolkit describe it
as an interpreter but it actually is a compiler because the toolkit
generates an IR, provides the opportunity to optimize the input
during runtime, and does not execute the input program instead
it generates a different form of representation of the program.
The canonical machining commands are atomic commands. Each
command produces a single tool motion or a single logical action.
There is no standard for canonical machining commands and it
might vary based on the implementation. LinuxCNC internally uses
canonical machining commands to communicate the operation to
be performed in the CNC [9].

3. Design and Implementation
3.1 Just-In-Time Compiler for Intelligent Manufacturing

Framework
Today’s CNCs have closed source in-house controllers and use G-
code part programs as input. These limitations restrict the users of
CNCs to use G-code part programs as input. And also the users
can not use the feedback data from a vendor specific CNC. Just-
In-Time Compiler for Intelligent Manufacturing framework is de-
signed to overcome these drawbacks of CNCs. Figure 2 shows the
JIT Compiler for Intelligent Manufacturing framework. The input
to the framework is a high-level language program that contains
most of the product information from CAD/CAM software, enables
optimization on the input, does not require post-processor, and al-
lows users to use the same program across CNCs manufactured by
different CNC vendors. Controller is an open-source software that
acts as an interface between the user and a CNC. Controller ac-
cepts the input, performs optimizations on the input based on the
optimization information from either the optimization module or
a third-party application, simulates tool-path or controls a CNC,
reads the sensor values, stores the feedback machining data and

3

sensor values in a database, and generates optimized input file that
can be used in the subsequent runs of the same product in the same
or different CNC. Optimization module reads the machining feed-
back data and sensor values, determines the optimization to be per-
formed on the input, and sends this information to the controller.
Application Programming Interfaces (APIs) enable users to write
their applications which use the machining feedback data and sen-
sor data to remotely monitor the machining process, to build an
optimization module that sends the optimization information to the
controller, and to perform exploration on the historical feedback
data set.

Figure 2: JIT Compiler for Intelligent Manufacturing Framework.

3.2 Prototype Design
This paper presents a prototype of the Just-In-Time Compiler for
Intelligent Manufacturing framework. Major parts of the proposed
JIT Compiler for Intelligent Manufacturing framework are de-
signed and implemented in the prototype. Figure 3 depicts the sys-
tem architecture of the prototype. The product to be manufactured
is designed in a CAD. The output of the CAD software is passed
as input to a CAM software. The output of the CAM software is
exported as a STEP-NC file, which is the input to the framework.
The input is fed to the ISO14649 toolkit along with a guideline
file and a tools file by the user. The guideline file is specific to
a product and a machine; each product machined in a CNC will
have its guideline file specific for that machine. The guideline file
contains optimization information for the product from either the
optimization module or a third-party application. ISO14649 toolkit
[8] processes the STEP-NC file, guideline file, and tools file to gen-
erate appropriate canonical machining commands. The canonical
machining commands file is loaded in to LinuxCNC [6] by the user.
LinuxCNC reads the canonical machining commands file one line
at a time and executes the commands. The output of the execution
is displayed in the simulation window of the LinuxCNC software
or is used to drive a CNC. The ISO14649 toolkit and LinuxCNC
together acts as the controller of the framework.

LinuxCNC generates a lot of real-time machining feedback data
that provide real-time information about the machining operation
currently being performed. These data are captured by a python
script that maps the feedback data and sensor values to a work-
ing step and stores the data in real-time in a database. Thus the
feedback from the CNC is store in a database in real-time. The
prototype exposes application programming interfaces (APIs) that
enable users to query the feedback data during machining process
and after the product has been manufactured. These APIs provide
the opportunity to remotely monitor the machining process in real-
time and to perform exploration on the historical feedback data set.

Figure 3: System architecture of JIT Compiler for Intelligent Man-
ufacturing prototype.

And also the prototype has a built-in optimization module that up-
dates the guideline file with optimization information and has APIs
to access the guideline file. User can use the built-in optimization
module to perform optimizations on the STEP-NC file. This re-
quires the user to input the sensor values and working step infor-
mation to the built-in optimization module. The optimization mod-
ule executes an optimization algorithm on the input and updates the
guideline file with optimization information for the working step.
User can also build a third-party optimization module, which reads
the feedback data using the APIs exposed for the feedback data,
executes an optimization algorithm, and updates the guideline file
using the APIs exposed to access the guideline file. In both the
cases, the guideline file is updated with optimization information.
Thus optimization information either from the optimization module
or from a third-party application is communicated to the controller
via the guideline file. This file is used in the subsequent executions
of the same product by the ISO14649 toolkit to generate optimized
canonical machining commands.

3.3 Prototype Implementation
3.3.1 Controller
ISO14649 toolkit ISO14649 toolkit [8] cannot perform optimiza-
tion on the input file. So, ISO14649 toolkit is modified to read
a guideline file that specifies the optimizations and perform opti-
mization on the input based on this optimization information. The
guideline file can be empty or can contain the below structure(s).
The structure is defined one per working step and specifies the opti-
mization to be performed for a working step. The structure has two
fields, first field is an id field that specifies the working step id and
second field is a reduce by field that represents the value by which
the existing depth of cut should be divided. Depth of cut is the depth
by which a tool cuts the work piece. Working steps will have differ-
ent depth of cuts and they are defined in the CAD/CAM phase of
the product manufacturing. The actual depth of a working step is a
multiple of the depth of cut for the working step. During a pass the
tool removes the material in the specified tool path at a given depth
of cut. So, the number of passes required to complete the work-
ing step is the multiplier by which depth of cut is multiplied to get
the actual depth of the working step. For instance, if the reduce by
value is 2 for a working step, the existing depth of cut for the work-
ing step will be reduced by half. A working step has one or more
operations and an operation has multiple passes. If the depth of cut
is reduced by half, the number of passes for the operation increases
by 100%, the number of passes for the working step increases by
100% and the number of canonical machining commands for the
working step increases to reflect the number of passes. Thus the

4

amount of material removed in a single pass is reduced by half, the
force exerted on the tool is reduced, and the production time is in-
creased. ISO14649 toolkit is modified to change the depth of cut
for working steps based on the optimization information from the
guideline file. So, the number of canonical machining commands
generated for a working step varies based on the reduce by value
for the working step in the guideline file.

AXIAL CUTTER DEPTH REDUCTION
{

i d = ” ”
r e d u c e b y = 2

}

The canonical machining commands file generated by ISO14649
toolkit does not contain working step information. These informa-
tion are useful to map a line in the canonical machining commands
file to a working step. So, ISO14649 toolkit is modified to gener-
ate working step information along with the canonical machining
commands. These information provide details about where a work-
ing step begins. They are generated as comments in the canonical
machining commands file because LinuxCNC does not require the
working step information and it ignores comments. But these com-
ments are read by a python script to map feedback data to a working
step id.

LinuxCNC LinuxCNC [6] accepts only G-code part programs.
But internally LinuxCNC converts a G-code into a canonical ma-
chining command to simulate tool-path or control a CNC. And also
it has a module called canterp that allows the user to load canoni-
cal machining command program for a 9-axis CNC. However, this
module is not fully developed to simulate tool-path or control a
CNC. But the canonical machining command program generated
by ISO14649 is for a 2.5-axis CNC. To enable LinuxCNC to ac-
cept canonical machining command program for a 2.5-axis CNC
and simulate tool-path or control a CNC, the canterp module is
modified.

3.3.2 Database
LinuxCNC has python APIs to read the machining feedback data
generated in real-time during a machining operation. These data
provide information about the machining operation currently being
performed. Python script module in the prototype uses these APIs
to fetch the machining feedback data at specific time intervals and
uses arduino APIs to read the sensor values from the sensors at-
tached to the system. And also it reads the working step informa-
tion from the canonical machining commands file generated by the
ISO14649 toolkit and uses these information to map a line number
in the canonical machining commands file to a working step. The
machining feedback data from LinuxCNC contains the current line
number being executed. Using the working step and line number
mapping from the canonical machining commands file and the line
number information from the machining feedback data, the python
script module maps the machining feedback data and current sen-
sor value to a working step. This mapping is useful for working
step specific optimizations. The data collected by the python script
module at specific time intervals are stored in a database on a server.
Thus the current machining feedback data and sensor values are
stored in the database in real-time. At the end of the machining
process, the python script module generates a new summary record
or updates the existing summary record for the product with the
information from the current machining process.

3.3.3 Optimization Module
Just-In-Time Compiler for Intelligent Manufacturing prototype has
a built-in optimization module that enables users to perform opti-

mization on the input. User has to input the sensor values and the
working step information to the built-in optimization module. For
each working step in a product the optimization module is executed
once. Optimization module calculates the required change in depth
of cut based on the sensor values and the working step information,
and updates the guideline file with the reduce by value for a work-
ing step. Optimization module has two optimization models, one
for finish milling operation and the other for rough milling opera-
tion. Optimization modules reads a configuration file that contains
the details about the working steps in a product. The optimization
model for the finish milling operation uses a multiple linear re-
gression model [15] to predict the surface roughness of the feature
based on average resultant peak force, cutting speed, and feed-rate.
The multiple linear regression coefficients are specific to a working
step and are specified in the configuration file for a product. If the
predicted surface roughness is not the same as the expected surface
roughness, the required percentage of change in the average resul-
tant peak force to match the expected surface roughness is calcu-
lated and is used to calculate the reduce by value for the working
step. The calculated reduce by value for the working step is up-
dated in the guideline file. The optimization model for the rough
milling operation calculates the change in depth of cut based on
the average sensor value of the vibration sensor. The chatter thresh-
old for the working step is specified in the configuration file. If the
average vibration sensor value for a working step is greater than
the chatter threshold, the reduce by value for the working step is
calculated based on the required percentage of decrease in the av-
erage vibration sensor value. The calculated reduce by value for
the working step is updated in the guideline file.

Other Optimizations The prototype supports only depth of cut
optimization but the framework is capable of supporting other
optimizations. Following are some sample optimizations that can
be performed using the framework: coolant usage optimization,
change of tool if the current tool is predicted to break or the re-
quired tool is not available on the shop-floor, and feed-rate/spindle
speed override. Coolant plays a major role in machining because
it helps to clear chips, lubricate materials that are sticky, and carry
heat away from the cut [2]. Based on the machine condition coolant
can be switched on/off by inserting commands at appropriate lo-
cations in the generated canonical machining command program.
Change of tool optimization can be performed in two scenarios.
First scenario is when a tool is not available on the shop-floor, the
framework can use a different tool to achieve the same operation
by generating a new tool-path using a tool-path generation module
similar to the one implemented in the research work SPAIM [10].
This avoids the need to change the tool-path manually outside the
framework prior to machining. And also avoids the production de-
lay caused by the unavailability of the tool. The framework should
be capable of validating the geometry of the product without human
intervention. This can be achieved by developing a module to com-
pare the geometry of the new tool-path and the original tool-path.
This validation is required to check for any violation of the product
geometry. Next scenario is when an optimization algorithm predicts
tool breakage after few runs of the product, the module to change
the tool and tool-path can be used to change the current tool with a
new tool. The prototype can be extended to perform optimizations
on feed-rate and spindle speed in real-time because LinuxCNC is
capable of overriding feed-rate and spindle speed in real-time. So,
third-party optimization modules can use these variables to control
the cutting parameters of the tool.

3.3.4 Application Programming Interface
JIT Compiler for Intelligent Manufacturing prototype exposes APIs
that enable users to read feedback data and to access the guide-
line file. These APIs can be used by third-party applications to re-

5

motely monitor the machining process, explore historical feedback
data set, or perform optimization using the feedback data and up-
date the guideline file. The APIs are written in C++ and compiled
as a library. This library can be exported to any remote machine
along with the .cshrc file that contains the path to the guideline
file and the connection details to the database server. Third-party
applications that monitor the feedback data or access the histori-
cal feedback data set can use this library from any remote machine.
But third-party applications that access the guideline file to perform
optimization have to reside in the local machine because the guide-
line file cannot be accessed over the network. A sample third-party
application is implemented to access the exposed APIs and fetch
the feedback data. And also the third-party application updates the
guideline file with optimized reduce by value for working steps in
a product. The APIs exposed by the prototype are provided in the
appendix for reference.

4. Evaluation
Just-In-Time Compiler for Intelligent Manufacturing prototype was
tested in an Intel Core i7-4510U platform. Unoptimized and op-
timized tool-paths are simulated in LinuxCNC and compared to
demonstrate the optimization performed by the prototype using the
optimization module and a third-party application. Benefits of the
framework are discussed based on the results from the evaluation.

4.1 Simulation
Two sample STEP-NC files are used to simulate the tool-path
in LinuxCNC. One of the sample files is used to evaluate the
optimization performed using the built-in optimization module and
the other is used to evaluate the optimization performed using
a third-party application. The sample STEP-NC files used in the
evaluation of the prototype are ex1 comment.stp and face1.stp.

face1.stp file is used in the first experimentation. face1.stp file,
a tools file and a guideline file are loaded in the ISO14649 toolkit
by the user. The tools file is specific to a CNC and is the same for
all the products manufactured in a CNC until a tool is removed or
added to the CNC. The guideline file for the product face1 and is
empty for the first run of the product, and the output file contains
the generated canonical machining commands. At the end of the
execution of ISO14649 toolkit, the output file contains the gener-
ated canonical machining commands for the product face1. This
file is loaded in LinuxCNC [6] by the user. Figure 4 shows the user
interface of LinuxCNC loaded with the canonical machining com-
mands file generated for the product face1. The preview window on
the right in the figure shows the tool-path to be simulated using the
canonical machining command program. The manual control win-
dow allows the user to change xyz axis settings of the tool before
the machining process. Once the user starts the machining process
by clicking the ”begin executing current file” button, the tool in the
simulation window will trace its path along the tool-path specified
by the canonical machining commands. Figure 4 shows the final
tool-path simulated for the product face1. This is the unoptimized
tool-path generated for the product.

The second experimentation is carried out with ex1 comment
product. The STEP-NC file and guideline file of ex1 comment
product are loaded in ISO14649 toolkit [8] by the user. The
ISO14649 toolkit reads the STEP-NC file, guideline file and tools
file, and generates canonical machining command program. The
canonical machining commands generated for ex1 comment prod-
uct is loaded in LinuxCNC [6] by the user and the simulation starts
when the user clicks the ”begin executing current file” button. Lin-
uxCNC simulation output for ex1 comment product is shown in
the figure 5.

Figure 4: Simulation of face1 product in LinuxCNC.

Figure 5: Simulation of ex1 comment product in LinuxCNC.

4.2 Optimization module
Just-In-Time Compiler for Intelligent Manufacturing framework
supports a built-in optimization module that accepts the sensor val-
ues and updates the guideline file with the optimization information
by executing an optimization algorithm on the sensor values. The
built-in optimization module has two optimization models; one op-
timization model is for finish milling [15] and the other optimiza-
tion model is for rough milling. These two optimization models are
experimented using the values from a random number generation
function. They are used to demonstrate the functionality of the op-
timization module.

The product ex1 comment has three working steps those have
depth of cut parameter in their machining operation. These work-
ing steps are FINISH PLANAR FACE1, FINISH POCKET1,
and ROUGH POCKET1. FINISH PLANAR FACE1 and FINISH
POCKET1 working steps are finish milling working steps. They are
optimized using the finish milling optimization model. This model
uses the cutting speed, feed rate, and average resultant peak force to
calculate the change in depth of cut. User inputs these values along
with the working step id and the path to the configuration file. The
optimization module calculates the change in depth of cut for the
working step and updates the guideline file with the optimization
information for the working step. ROUGH POCKET1 working step
is a rough milling working step and is optimized using the rough
milling optimization model. This model uses the average vibration
sensor value for the working step to calculate the required change
in depth of cut for the working step. The updated guideline file is
shown in the figure 6. The value of the reduce by field for the work-
ing step FINISH PLANAR FACE1 is 2.078747. This reduces the
depth of cut for the working step by half. So, the number of passes

6

Canonical machining command program Number of lines

Unoptimized 542
Optimized 504

Table 1: Number of canonical machining commands in the unop-
timized and optimized canonical machining command program of
the product ex1 comment.

for the working step increases by 100%. The number of passes for
the working step ROUGH POCKET1 increases by 80% because
the value of the reduce by field is 1.875001. But for the work-
ing step FINISH POCKET1, the number of passes is decreased by
53.33% because the reduce by field has a value of 0.418156, which
increases the depth of cut by 114.29%.

Figure 6: Updated guideline file with the optimization details for
ex1 comment product.

The updated guideline file and the STEP-NC file for the product
ex1 comment is used to generate the canonical machining com-
mands for the next run of the product. The ISO14649 toolkit [8]
generates the optimized canonical machining commands. The num-
ber of canonical machining commands in the unoptimized canoni-
cal machining command program and optimized canonical machin-
ing command program is shown in the table 1. The decrease in
the number of passes in the working step FINISH POCKET1 has
significant impact on the decrease in the number of canonical ma-
chining commands than the increase in the number of passes in the
working steps FINISH PLANAR FACE1 and ROUGH POCKET1.
This is because the number of commands required to change the
tool direction in the working step FINISH POCKET1 is higher than
that of other two working steps. The generated optimized canonical
machining commands file is loaded and simulated in LinuxCNC [6]
by the user. Figure 7 shows the simulated optimized tool-path for
the product ex1 comment.

Figure 7: Simulation of optimized tool-path for ex1 comment prod-
uct.

Figure 8, 9, and 10 shows the tool-paths generated for the
unoptimized and optimized canonical machining command pro-
grams for the working steps FINISH PLANAR FACE1, FINISH
POCKET1, and ROUGH POCKET1. It is clear from these figures
that the number of passes for the working steps FINISH PLANAR
FACE1 and ROUGH POCKET1 have increased, and the number of
passes for the working step FINISH POCKET1 has decreased.

The percentage of increase in the number of passes for the
working steps FINISH PLANAR FACE1 and ROUGH POCKET1
are 100% and 80% respectively and the percentage of decrease
in the number of passes for working step FINISH POCKET1 is
53.33%. The percentage change in the number of passes for these
working steps have significant impact on the machining time of
these working steps. The time taken for machining the working
steps FINISH PLANAR FACE1 and ROUGH POCKET1 have
increased by 126.24% and 67.433% respectively and the time taken
for machining the working step FINISH POCKET1 has decreased
by 49.333%. These details are shown in the tables 4 and 6.

Table 2 shows the time taken for generation of canonical ma-
chining commands and total machining time for unoptimized and
optimized versions of the product ex1 comment. The time taken for
generation of canonical machining commands and total machin-
ing time has increased by 4.894% and 16.316% respectively. The
time taken for generation of canonical machining commands is in
the magnitude of microseconds and the overhead in the generation
time is 4.894%. This does not have significant impact on the pro-
duction time. The increase in the total machining time is attributed
to the increase in the number of passes for the working steps FIN-
ISH PLANAR FACE1 and ROUGH POCKET1. The increase in
the time taken for machining these working steps has less impact
on the increase in the total machining time because these working
steps contribute only 20.34% and 24.06% respectively towards the
total unoptimized machining time of the product ex1 comment. But
the working step FINISH POCKET1 has a contribution of 52.35%.
So, the decrease in the machining time caused by this working step
has compensated certain percentage of increase in the production
time by the other two working steps. Thus the overhead caused by
the framework is very less when compared to the time taken to
machine the working steps. And also the increase in the machin-
ing time of the working steps is proportional to the increase in the
number of canonical machining commands for the working steps.
The machining time specified in the evaluation are not actual time
taken to machine the part. But they are the time taken to simulate
the part in LinuxCNC.

(a) (b)

Figure 8: Unoptimized (a) and Optimized (b) tool-path for the
working step FINISH PLANAR FACE1

4.3 Third-Party application
A sample third-party application is implemented to experiment the
functionalities of the APIs. This application uses the APIs to fetch
all the products that has been simulated by the LinuxCNC, fetch
all the working steps of the product ex1 comment, fetch all the
sensors used in manufacturing the product ex1 comment, get the
manufacturing summary of the product ex1 comment, fetch the

7

(a) (b)

Figure 9: Unoptimized (a) and Optimized (b) tool-path for the
working step FINISH POCKET1

(a) (b)

Figure 10: Unoptimized (a) and Optimized (b) tool-path for the
working step ROUGH POCKET1

Version CMC generation time Machining Time

Unoptimized 2350µs 403.015s

Optimized 2465µs 468.771s

Table 2: Time taken for generating canonical machining commands
(CMC) and machining the product ex1 comment.

Version FINISH PLANAR
FACE1

ROUGH
POCKET1

FINISH
POCKET1

Unoptimized 82.483s 97.84s 211.928s

Optimized 186.126s 163.817s 107.378s

Table 3: Time taken for each working step during unoptimized and
optimized machining of the product ex1 comment.

FINISH PLANAR
FACE1

ROUGH
POCKET1

FINISH
POCKET1

Percentage
Change

100% Increase 80%
Increase

53.33%
Decrease

Table 4: Percentage change in the number of passes for each work-
ing step in the product ex1 comment.

CMC generation time Machining Time

Percentage Increase 4.894% 16.316%

Table 5: Percentage increase in time taken for optimized Canonical
Machining Commands generation, optimized Machining Time of
the product ex1 comment.

FINISH PLANAR
FACE1

ROUGH
POCKET1

FINISH
POCKET1

Percentage
Change

126.24% Increase 67.433%
Increase

49.333%
Decrease

Table 6: Percentage change in time taken for each working step in
the product ex1 comment during optimized machining.

sensor 1 values for the working step FINISH PLANAR FACE1
during the first run of the product ex1 comment, fetch the sensor
2 values during the first run of the product ex1 comment, and
access the guideline file to update the value of the reduce by field
for the working step FINISH PLANAR FACE1 of the product
face1. Figure 11 shows the output of the third party application
and the figure 12 shows the updated guideline file. The value of the
reduce by field for the working step FINISH PLANAR FACE1 is
2.000000. So, the depth of cut for the working step is reduced by
half and the number of passes for the working step is doubled.

Figure 11: Output of the third party application.

Figure 12: Updated guideline file of the product face1.

The updated guideline file is used by the ISO14649 toolkit [8]
in the next run of the product face1. Table 7 shows the number of
canonical machining commands in the unoptimized and optimized
canonical machining command programs. The number of canon-
ical machining commands in the optimized canonical machining
command program is greater than that of unoptimized canonical
machining command program because the number of passes in the
product face1 has doubled. The updated guideline file is loaded in
LinuxCNC to simulate the optimized tool-path. Figure 13 shows
the optimized tool-path simulated in LinuxCNC [6]. Figure 4 and
13 show that the number of passes in the optimized tool-path has
increased because of the optimization performed by the ISO14649

8

Canonical machining commands file Number of lines

Unoptimized file 80
Optimized file 143

Table 7: Number of canonical machining commands in the unop-
timized and optimized canonical machining commands file of the
product face1.

Version CMC genera-
tion time

Total Ma-
chining Time

FINISH PLA-
NAR FACE1
Machining Time

Unoptimized1419µs 156.280s 156.277s

Optimized 1497µs 307.0824s 306.877s

Table 8: Time taken for generating canonical machining com-
mands, total machining time, and FINISH PLANAR FACE1 ma-
chining time of the product face1.

toolkit using the guideline file. The percentage of increase in the
number of passes for the working step FINISH PLANAR FACE1
in the optimized tool-path is 100% and it has a significant impact
on the machining time of the working step. The machining time of
the working step has increased by 96.36%. The increase in the ma-
chining time of the working step has increased the total machining
time of the product by 96.49%. Thus the increase in the number
of passes for the working step FINISH PLANAR FACE1 has sig-
nificant impact on the total machining time of the product face1.
The overhead caused by the generation of optimized canonical ma-
chining commands for the product face1 is 5.49%. The canonical
machining commands generation time is in the magnitude of mi-
croseconds and the percentage change in the canonical machining
commands generation time does not have significant impact on the
production time of the product face1. Thus the overhead caused
by the framework is very less when compared to the time taken
to machine the working step. And also the increase in the machin-
ing time of the working step is proportional to the increase in the
number of canonical machining commands for the working step.
The machining time specified in the evaluation are not actual time
taken to machine the part. But they are the time taken to simulate
the part in LinuxCNC.

Figure 13: Simulation of optimized tool-path for face1 product.

CMC genera-
tion time

Total Ma-
chining Time

FINISH PLA-
NAR FACE1
Machining Time

Percentage
Increase

5.49% 96.49% 96.36%

Table 9: Percentage increase in Canonical Machining Commands
generation time, Total Machining Time, and FINISH PLANAR
FACE1 machining time of the product face1.

4.4 Benefits of the framework
JIT Compiler for Intelligent Manufacturing framework can be used
on the shop floor to monitor the machining process remotely, ex-
plore historical feedback data set and build customized optimiza-
tion algorithms to optimize the machining process on the fly. This
section presents three scenarios in which the JIT Compiler for In-
telligent Manufacturing framework can be used on the shop-floor.

4.4.1 Scenario A
If the CNCs or the cutting tools used in the CNCs on the shop-floor
are newer than expected and the depth of cut is optimized to an
old tool, the framework can detect this using the surface roughness
based optimization model. The surface roughness of the product is
predicted to be very less than the desired surface roughness and the
model suggests an increase in the depth of cut such that the surface
roughness is slightly less than the desired surface roughness. The
increase in depth of cut decreases the number of passes required
to complete a working step. As shown in the evaluation of the
optimization module, the decrease in the number of passes has
significant impact on the production time of the product. If there
are several working steps in a product and all of them use the same
tool, the optimization model decreases the number of passes for all
these working steps.

If a product has m working steps and the time taken to machine
each working step is y minutes, the total time taken to machine the
product is represented as

x = y ×m (1)

minutes. If n out of m working steps use a relatively new tool and
the framework reduces the number of passes for the n working steps
by z%, the total time taken to machine the product using optimized
depth of cut is

x′ = y × n× (1− z

100
) + y × (m− n) (2)

minutes and the percentage of decrease in the machining time is

%ofdecrease =
(y ×m)− (y × n× (1− z

100
) + y × (m− n))

y ×m
×100

(3)
If there are 10 working steps in a product and each working step

takes 15 minutes to complete, the total time taken to machine the
product is 2 hours and 30 minutes. If 7 out of 10 working steps use a
relatively new tool and the percentage of decrease in the number of
passes for these working step is 60%, the time taken to machine the
optimized tool-path is 1 hour and 27 minutes. The production time
is decreased by 42%. If there are 100 machines with a relatively
new tool and all these machines manufacture the same product,
the production time saved is 105 hours, which allows the shop
floor to manufacture 72 more pieces of the same product. Users
of the framework can build optimization algorithms customized to
the tool condition, tool-path and workpiece material to efficiently

9

detect working steps whose depth of cut can be increased. This will
lead to a much more efficient production of the product.

4.4.2 Scenario B
The optimization module in the framework detects tool wear by
monitoring the chatter level and surface roughness. If the tool used
in a CNC is old and is wearing off, the finish of the surface is
defective. The optimization module detects this and suggests a
decrease in the depth of cut for the working steps those use the old
tool. The decrease in depth of cut decreases the force exerted on the
tool. So, the number of defective pieces manufactured is decreased.
But this increases the number of passes for the working steps.

If the defective pieces are manually identified on the shop floor
after n cycles of manufacturing a product and there are m machines
with an old tool manufacturing the same product,

n×m (4)

defective pieces of the product are manufactured. If each machine
takes x minutes to manufacture the product and requires y minutes
to change the cutting parameters manually, there is a production
delay of

(x× n×m) + (m× y) (5)
minutes. But if the framework is used to detect the tool wear by
monitoring the surface roughness and chatter levels, the depth of
cut is decreased in the next cycle. So, the force exerted on the
material and tool is reduced and there is no damage to the finish
of the part. The number of defective pieces manufactured, if the
framework is used is

1×m (6)
pieces. The production delay caused is

(x×m) (7)

minutes. The percentage of decrease in the number of defective
parts manufactured is

%ofdecrease =
(n×m)− (1×m)

n×m
× 100 =

n− 1

n
× 100

(8)
and the percentage of decrease in the production delay is

%ofdecrease =
(x× n×m) + (m× y)− (x×m)

(x× n×m) + (m× y)
× 100

(9)
If 10 machines manufacture the same product and the defective

pieces are detected after 3 cycles of manufacturing the product, 30
defective pieces are manufactured. If the time taken to manufac-
ture a piece of the product is 1 hour and the average time taken to
modify the cutting parameters in a machine is 5 minutes, there is a
production delay of 30 hours and 50 minutes. If the framework is
used to detect the tool condition and modify the depth of cut, the
production delay is reduced to 10 hours and the number of defective
pieces manufactured is reduced to 10. The percentage of decrease
in the production delay and number of defective pieces manufac-
tured are 67.5% and 66.7% respectively. Users of the framework
can build an optimization algorithm that predicts the tool wear and
changes the cutting parameters even before the production of first
cycle of defective products. This would avoid production of defec-
tive products and the production delay caused due to manufacturing
defective products.

4.4.3 Scenario C
The material of the workpiece plays a major role in deciding the
correct cutting parameters. The cutting parameters are feed-rate,
spindle speed, and depth of cut. If the material of the workpiece
were to change during a manufacturing process, the optimized cut-
ting parameters have to be fed in to the machine by the operator.

Operator can control only the feed-rate and spindle speed because
a change in depth of cut causes the tool-path to change and it is
not possible to edit the tool-path during machining process. And
also there is a delay in the production process caused due to human
intervention because the operator has to identify the optimal cut-
ting parameters either by trial and error mechanism or using prior
knowledge about the workpiece material. If the hardness of the
workpiece material is stored in the database of the framework and
historical data sets for the cutting parameters and hardness combi-
nations are available, an algorithm can be devised to identify the
optimal cutting parameters based on the hardness of the workpiece
material. These parameters can be used to generate canonical ma-
chining commands for optimized machining of the product. This
does not require the operator to have prior knowledge about the
workpiece material and does not require human intervention dur-
ing manufacturing the product. Thus the production delay caused
due to human intervention is avoided.

5. Relevant Work
5.1 Traditional Just-In-Time Compiler in JVM
The Just-In-Time Compiler for Java Virtual Machine aims to re-
duce the execution time by performing feedback-directed optimiza-
tion at runtime and limiting the overhead of runtime optimization.
There are two types of feedback-directed optimizations: online and
offline feedback-directed optimization. Offline feedback-directed
optimizations are optimizations in which the application behavior
is captured from a prior execution of the program. This approach
fails in scenarios where 1) it is impractical to collect a profile prior
to execution, or 2) the application’s behavior differs from its be-
havior during the profiling run[1]. Online feedback-directed opti-
mization avoids the drawbacks of offline profiling by performing
optimizations based on the profiles collected during runtime. JIT
Compiler for JVM achieves this by compiling a java source code
into byte-codes using a java compiler and then interprets the byte-
code to machine instructions at runtime. The bytecode provides the
opportunity to perform optimizations during runtime because byte-
code contains high-level information that can be used to perform
optimizations.

Optimizations performed on a java program are much more
complex than the optimizations performed on a STEP-NC file be-
cause java programs have branches, loops, different control flows,
and data flows. The control path taken by a java program varies
based on the input to the program so the offline profile collected
for a java program might not provide the tailored optimization for
the subsequent execution environment. In case of STEP-NC pro-
grams, the execution environment varies as the machining condi-
tions varies. So the offline profile collected from an execution is
valid for the subsequent run in the same machine until the tool
wears off or the workpiece material changes. The online feedback-
directed optimization of a STEP-NC program is the real-time op-
timization of the machining operation and it has to be done quick
enough to propagate the changes before the next set of machin-
ing instructions are executed. So, it has a hard deadline on the
optimization time. The type of optimizations performed on a java
program varies from the optimizations performed on a STEP-NC
program. The optimizations performed on a java program aims to
reduce the execution time and space. But the optimizations per-
formed on a STEP-NC program focuses to minimize machining
time (Time-Critical) or optimize surface quality (Quality-Critical).
Time-Critical machining operations are often for roughing pur-
poses whereby increasing the material removal rate is one of the
main goals and Quality-Critical machining operations are often
used for finishing purposes where surface quality is of the main
concern[11].

10

5.2 STEP-NC enabled controller for CNC
Over the past years several research works have been carried out
to use STEP-NC to drive CNCs, perform online inspection, and
optimize the machining parameters. The authors of the research
work [11] propose a STEP-NC enabled Machine Condition Mon-
itoring (MCM) system that accepts a STEP-NC ISO 14649 data
model file as input, performs initial feed-rate optimization, converts
the STEP-NC program in to a Canonical Machining Commands
(CMC) part program using an interpreter that is capable of handling
optimization data, drives a CNC using a customized machine tool
controller that accepts the CMC part program, monitors and records
the machining parameters over the network using MTConnect, vi-
sualizes and evaluates the machining parameters to obtain another
set of optimum parameters, calculates appropriate feed-rates using
the optimum parameters for subsequent machining operations, and
updates the STEP-NC file with the calculated feed-rate value. This
research work proposes a system that is capable of optimizing only
the feed-rate based on the evaluation proposed by the work. This
system requires human intervention during the machining process
and does not allow users to remotely monitor the machining pro-
cess, perform profiling, or build third-party optimization algorithms
customized to the manufactured product.

The work [10] developed and implemented a NC controller that
estimates online process data and optimizes machining parameters
and tool-paths to eliminate or compensate the results of tool deflec-
tion, machine tool and spindle vibrations, geometric errors, thermal
effects, chatters, control errors, etc., by enabling users to change
the tool if the corresponding tool is not available on the shop floor,
generate the modified tool-path automatically on the shop floor, and
validate it before machining. This work focuses on optimization of
the tool-path based on the tools available in a machine before ma-
chining to avoid tracking errors or tool deflection. This approach
requires human intervention to validate the generated tool-path.
Thus the process is not entirely automated and has production delay
whenever the tool has to be changed.

6. Conclusion and Future Work
Evaluation of the JIT Compiler for Intelligent Manufacturing pro-
totype shows that the overhead of the framework is less and has
opened the possibility of using the framework on the shop-floor for
efficient production. The hypothesis stands valid as the prototype
accepts STEP-NC ISO 14649 data model as input, uses an open-
source controller as the CNC controller, stores the feedback data
in real-time in a database, performs optimizations on the input, ex-
poses APIs to read feedback data and to suggest optimization infor-
mation to the controller, and enables users to remotely monitor the
machining process, build third-party optimization algorithms and
explore historical dataset. The STEP-NC ISO 14649 data model
contains high-level machining information that allows optimization
of the machining process and can be used across CNCs manufac-
tured by different CNC vendors. The framework is flexible enough
to replace the input with the latest STEP-NC ISO data model and
to control CNCs that are compatible with LinuxCNC. And also
the framework allows users to efficiently machine a product using
customized third-party optimization algorithms customized for the
product.

JIT Compiler for Intelligent Manufacturing prototype performs
optimization on the input between runs; optimization is performed
based on the feedback from the previous runs. The next step is to
modify the prototype to enable real-time optimization of the ma-
chining process. The feedback data from the machining process can
be used to build a real-time visualization tool that displays the real-
time tool-path, tool position, and operation performed in a CNC.
The prototype supports only optimization based on depth of cut. It

can be extended to support different optimizations such as coolant
usage based on the machining condition, change of tool based on
the tool condition and tool availability, change in feed-rate, and
change in spindle speed. Product geometry validation module can
be build to check for any violation of the product geometry after
optimization of the input to the framework. The ISO14649 toolkit
in the prototype should be replaced with a compiler that accepts
the latest STEP-NC data model or AP238 data model and con-
verts it into an intermediate representation that can be used to drive
LinuxCNC. The new compiler can be easily modified to perform
optimizations on a STEP-NC file because STEP-NC data models
have an object oriented representation of the machining process
and the geometry of the product. These modifications will enable
the framework to accept STEP-NC data model generated by any
CAD/CAM software. And also the framework can be used on the
shop-floor and the users can utilize the full potential of the frame-
work.

References
[1] M. Arnold, M. Hind, and B. G. Ryder. Online Feedback-Directed

Optimization of Java. OOPSLA ’02 Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, 37(11):111–129, 2002.

[2] I. CNCCookbook. Coolant and Chip Clearing, 2016. URL http://
www.cnccookbook.com/CCCNCMillFeedsSpeedsCoolant.htm.

[3] Inc.com. Computer-Aided Design (CAD) and
Computer-Aided Manufacturing (CAM), 2013.
URL http://www.inc.com/encyclopedia/
computer-aided-design-cad-and-computer-aided-cam.
html.

[4] A. Kržič, and. P Stoic and J. Kopač. STEP-NC: A New Programming
Code for the CNC Machines. Strojniški vestnik - Journal of Mechani-
cal Engineering, 55(6):406–417, 2009.

[5] linuxcnc.org. LinuxCNC Developer Documentation, 2016. URL
http://www.linuxcnc.org/docs/2.5/html/code/Code_
Notes.html.

[6] linuxcnc.org. Linuxcnc sourcecode. git://git.linuxcnc.org/
git/linuxcnc.git, 2016.

[7] S. Mohsen. Reading Materials for IC Training Modules, Computer
Numerical Control. INDUSTRIAL CENTRE, THE HONG KONG
POLYTECHNIC UNIVERSITY, 2009.

[8] NIST. A toolkit for iso 14649 data model. https://github.com/
ArcEye/iso-14649-toolkit, 2009.

[9] F. Proctor, T. Karmer, and J. michaloski. Canonical Machining Com-
mands, 1997. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.14.9814&rep=rep1&type=pdf.

[10] M. Rauch, R. Laguionie, J. Hascoet, and S. Suh. An advanced STEP-
NC controller for intelligent machining processes. Robotics and
Computer-Integrated Manufacturing, 28:375–384, 2012.

[11] F. Ridwan and X. Xu. Advanced CNC system with in-process feed-
rate optimisation. Robotics and Computer-Integrated Manufacturing,
29:12–20, 2013.

[12] wikipedia.org. Computer-aided manufacturing, 2016. URL https://
en.wikipedia.org/wiki/Computer-aided_manufacturing.

[13] wikipedia.org. Numerical control, 2016. URL https://en.
wikipedia.org/wiki/Numerical_control.

[14] wikipedia.org. LinuxCNC, 2016. URL https://en.wikipedia.
org/wiki/LinuxCNC.

[15] J. Z. Zhang and J. C. Chen. The development of an in-process surface
roughness adaptive control system in end milling operations. The
International Journal of Advanced Manufacturing Technology, 31:
877–887, 2007.

11

