
Efficient Algorithms for Finding 2-Medians of a Tree

Aissa Oudjit and Matthias F. Stallmann?

North Carolina State University

Abstract. The p-median problem on general networks has been studied since the 1960s. Kariv

and Hakimi [10] showed that this problem is NP-hard even if the network is a planar graph of

maximum degree 3. In the case of tree networks the p-median problem is solvable in polynomial

time. Kariv and Hakimi [10] developed an algorithm that computes a solution in O(p2n2) time.

The running time was improved to O(pn2) by Tamir [16] and later to O(n lgp+2 n) by Benkoczi

and Bhattacharya [2].

Better bounds are known for the special cases (on trees) where p = 1 or 2. Goldman [6] gave

an O(n) algorithm for the 1-median problem on trees. The 2-median problem was studied

by Mirchandani and Oudjit [11], whose localization properties were later used to improve the

O(n2) bound (derived from the general tree case) to O(n lgn) – see papers by Hämäläinen [9]

and Gavish and Sridhar [5].

We present a framework for solving the 2-median problem on trees, building on earlier work.

Our framework leads to several algorithms with o(n lgn) runtime, i.e., better than the current

best-known O(n lgn) runtime, in common special cases. The time bounds are:

(i) O(n lgwmax/ lgn), where wmax is the largest largest node weight, which is linear when node

weights are bounded by a polynomial in n;

(ii) O(n lgnL), where nL is the number of leaves in in the tree;

(iii) O(ndmax), where dmax is the maximum edge length, which is linear when edge lengths are

bounded by a constant;

and (iv) O(n lg `), where ` is the number of nodes on the trunk, an easily identified path that

is guaranteed to contain at least one of the two medians.

1 Introduction

Since its formulation by Hakimi [7,8], the p-median problem on networks continues to be an area of

active research. The problem is to find the locations of p facilities on a network so as to minimize

the transportation costs from each demand point (node) to its nearest facility. Hakimi [8] showed

that the optimal facility locations for a general network exist at the nodes of the network, leading

to the following combinatorial definition. Given a network G = (V,E), where each node i ∈ V has a

non-negative weight (demand) wi and each (undirected) edge ij ∈ E has a positive length (distance)

dij , find m1, . . . ,mp such that the total weighted distance

∑
i∈V

(
min

1≤k≤p
d[i,mk]

)
· wi

is minimized, where d[i,mk] is the length of a shortest path from i to mk, the sum of the edge

distances along that path. The mk are not necessarily unique; where they are not, we can choose

them arbitrarily without affecting the validity of any theoretical results to follow.

? mfms@ncsu.edu



2

The combinatorial nature of the p-median problem led some researchers to formulate it as an integer

linear program [14]. While such formulation made the problem more manageable, standard solution

techniques such as branch and bound and dynamic programming (see [13]) lead to prohibitive run-

times and various heuristics (see [12]) are unsatisfactory because solution quality suffers. Significant

improvements for general networks are unlikely since the problem is NP-hard, even for degree-3 pla-

nar graphs with unit edge lengths [10]. Consequently, much of the research on the p-median problem

in the past decades has focused on special classes of graphs, most notably trees [2,4,10,16].

Goldman [6] derived a linear time algorithm for finding the 1-median of a tree with arbitrary edge

lengths and node weights. Using Goldman’s algorithm, Dearing, Frances, and Low [4] gave efficient

algorithms for solving, in tree networks, a variety of problems having convexity properties. Kariv

and Hakimi [10] gave an O(p2n2) algorithm for the p-median problem on general trees. This was

later improved to O(pn2) by Tamir [16] and O(n lgp+2 n) by Benkoczi and Bhattacharya [2]. The

latter, which uses a spine decomposition of the tree, is an improvement over the prior quadratic time

bounds if p is fixed.

Mirchandani and Oudjit [11] were the first to study the 2-median problem on trees in detail. They

derived several localization properties for the positions of the 2-medians relative to the 1-median

and proposed an O(n2) algorithm based on improved link deletion. While this time bound is not an

improvement over the previously known quadratic one, the theory leading to it is the basis for later

O(n lg n) algorithms by Hämäläinen [9], by Gavish and Sridhar [5], and for the sub-n lg n special

cases reported here. An independent, more general, O(n lg n) algorithm was reported by Breton [3].

The remainder of the paper is organized as follows.

• Section 2 presents some notation for the p-median problem on trees and lays the groundwork

for our 2-median algorithms.

• Section 3 presents results relevant to our approach to the 2-median problem with useful defini-

tions and notation.

• Section 4 gives an algorithm for computing one of the two medians in linear time.

• Sections 5–7 give three algorithms that yield o(n lg n) – better than O(n lg n) – time bounds in

common special cases.

• Section 8 summarizes our results.

• The appendix illustrates our algorithms on three examples.

2 Preliminaries

The input to the p-median problem consists of a tree T and (i) for each node i of T , a non-negative

weight wi; (ii) for each edge ij of T , a positive distance (or length) dij . We define w(S), where S is

any subtree1 of T to be the total weight of nodes in S, the sum of all wi for i ∈ S; and d[x, y] to be

the total distance between x and y, i.e., the sum of djk for all edges jk on the unique path between

x and y. For any subtree S, let cost(S, x) be the total cost, i.e., weighted distance, of S with respect

to x: ∑
i∈S

d[i, x]wi

1 Throughout, a subtree is treated as a set of nodes; induced edges are implicitly included.



3

So when S = T , a 1-median m of T is a node that minimizes cost(T,m).

Some general notation. Each node j in T has deg(j) = the degree of j, the number of edges

incident on j. A node j is a leaf if deg(j) = 1. Knowing that, for any two nodes i and j, there

is a unique path between them, we use interval notation for paths: [i, j] to include both i and j;

half-open intervals (i, j] and [i, j) if i, respectively j is not included; and (i, j) if neither endpoint is

included. The (half-)open intervals represent empty paths if i = j.

Suppose m1, . . . ,mp are p medians of T . and let S1, . . . , Sp partition the nodes of T so that node

x ∈ Si has d[x,mi] < d[x,mj ] for all j 6= i, and, if d[x,mi] = d[x,mj ], let x be in Si, where i < j,

i.e., put x into the set with smaller index if there is a tie. If node x is in Si we say that mi serves x

or that x is served by mi.

Fig. 1. The set of nodes closest to a given median mi is not a forest.

Lemma 1. If Si is the set of nodes served by mi then Si is a sub-tree of T .

Proof. Suppose that Si is a forest instead of a tree, and that node x is in a tree of Si different

from the one containing mi. Path [mi, x] in T therefore includes node z ∈ Sj 6= Si and either

d[z,mj ] < d[z,mi] or d[z,mj ] = d[z,mi] and j < i. Now d[x,mi] = d[x, z] + d[z,mi] and d[x,mi] =

d[x, z] + d[z,mi]. So either d[x,mj ] < d[x,mi] or d[x,mj ] = d[x,mi] and j < i. This implies that

x ∈ Sj rather than in Si, a contradiction. See Fig. 1. 2

For the special case of the 2-median problem we have the following. Define the midpoint x of path

[i, j] to be such that d[i, x] = d[x, j]. In general x is not a node – it may lie along an edge.

Lemma 2. The midpoint on the path [m1,m2], where m1 and m2 are 2-medians of T , lies either

along the edge that separates S1 from S2 or on one of its endpoints.

Proof. Let x1x2 with xi ∈ Si be the edge that separates S1 from S2 and suppose that the midpoint

between m1 and m2 is along some other edge yz. Without loss of generality both y and z are in S2

and neither y nor z is one of the xi’s. Furthermore assume, again without loss of generality, that

d[y,m1] ≤ d[z,m1]. Then either y is closer to m1 than it is to m2 or it is equidistant from them. In

either case, it should be in S1, a contradiction. 2



4

The cut edge xy separates S from T \ S. The wavy

line shows the path [x, j] from x to node j ∈ S; since

k1, k2 6∈ [x, j] they are children of j and their subtrees,

T[k1] and T[k2] are subtrees of T[j] induced by removal

of edges jk1 and jk2, respectively.

Fig. 2. A subtree S, induced by edge xy.

3 Theoretical Results

Let xy be any edge of T and let S and T \ S be the subtrees induced when cut edge xy is removed.

Suppose x ∈ S. In the context of the 2-median problem it is useful to treat x as the root of subtree

S and define the following for any node j ∈ S.

• k is a child of j if k is adjacent to j but not on the path [x, j];

• the subtree rooted at k, where k is a child of j, denoted T[k], is the subtree formed when cut

edge jk is removed; in the special case where k is the root of S, T[k] = S.

Fig. 2 illustrates these concepts.

3.1 Basic concepts

We begin with a fundamental lemma by Goldman [6]; both lemma and proof are restated here.

Lemma 3. If w(S) ≥ w(T \ S) then at least one 1-median of T is in S. Conversely, if m is a

1-median of T and w(S) ≥ w(T \ S) then m must be in S.



5

Proof. Let z be any node in T \S. For the first part it suffices to prove cost(T, z) ≥ cost(T, x), where

xy is the edge separating S from T \ S and x ∈ S.

cost(T, z) = cost(S, z) + cost(T \ S, z)
= [w(S) · d[z, x] + cost(S, x)] + cost(T \ S, z) difference between having median

of S at z versus x

≥ w(T \ S) · d[z, x] + cost(S, x) + cost(T \ S, z) by assumption (*)

= cost(S, x) + [w(T \ S)d[z, x] + cost(T \ S, z)] regrouping

= cost(S, x) +
∑

j∈T\S wj · [d[x, z] + d[j, z]] definition of cost

≥ cost(S, x) +
∑

j∈T\S wj · d[x, j] triangle inequality (equality holds

if no backtracking on the path)

= cost(S, x) + cost(T \ S, x) by definition of cost

= cost(T, x)

For the second, the contrapositive is: if w(S) < w(T \ S) then S does not contain a 1-median of T .

This follows by symmetry: switch the roles of S and T \ S and change the ≥ in the line marked (*)

to >. 2

Corollary 1. T has two 1-medians if and only if there exists S ⊂ T with w(S) = w(T )/2. And,

unless there is a path of degree-2 weight-0 nodes between two subtrees, T cannot have more than two

1-medians.2

Corollary 2. If j is not a 1-median of T[j], then there is a 1-median of j in T[k] for some k with

w(T[k]) ≥ w(T[j])/2.

Corollary 2 motivates the following definition.

Definition 1. The extended trunk of subtree T[j] is denoted by et(j) and defined recursively as

follows:

(i) et(j) = j if T[j] = {j}, i.e., j is a leaf

(ii) et(j) = j followed by et(k∗), where w(T[k∗]) ≥ w(T[k]) for any child k of j.

Ties can be broken arbitrarily in (ii). Put more directly, the extended trunk is derived by following

a path from j and repeatedly moving to a largest weight subtree until we reach a leaf. Corollary 2

tells us that a the 1-median of any subtree has to be on its extended trunk. This is a much weaker

statement than the corollary – it says nothing about the weight having to be at least half, but it

helps us localize the median of a subtree in the algorithms.

3.2 Locating each median

After making appropriate arbitrary choices to define et(j), we can specifically pinpoint a canonical

1-median of T[j].

Definition 2. The canonical 1-median of T[j], denoted m(j), is the last node k on et(j) (node

farthest from j) with w(T[k]) ≥ w(T[j])/2.

2 Such a path can be collapsed into a single edge without changing the nature of the problem.



6

Lemma 4. The canonical 1-median of T[j] is on the path [j,m(k∗)], where k∗ is the child of j on

et(j).

Proof. Suppose, for the sake of contradiction, that m(j) = k for some k 6∈ [j,m(k∗)], i.e., k is farther

from j than m(k∗) on et(j). This means, by Definition 2, that w(T[k]) < w(T[j])/2. But Lemma 2

implies that any subtree containing a 1-median of T[j] must have weight at least half that of T[j];

so we have a contradiction. 2

Lemma 5. If T[j] contains m, a 1-median of T , then m(j) is on the path [m,m(T[m∗])], where m∗

is the child of m on et(j).

Proof. The fact that m(j) cannot come after m(m∗) follows a fortiori from Lemma 4. Lemma 3

implies that w(T[m]) ≥ w(T )/2. Since T[j] is a strict subset of T , we know w(T[m]) ≥ w(T[j])/2.

So, applying Corollary 2, m(j) must be in T[m], i.e., not before m on the extended trunk. 2

The following helps us further restrict the location of the median in the subtree containing m. It is

used by one of our algorithms.

Lemma 6. Let S and S′ be two subtrees, both containing m, and suppose w(S) ≤ w(S′). Then

m(S′) is on the path [m,m(S)].

Proof. We know m(S) is on path P = [m,m(m∗)], and, more precisely, it is the last node on P

with w(T[m(S)]) ≥ w(S)/2. Any predecessor k of m(S) on P , including m(S) itself, has w(T[k]) ≥
w(S)/2 ≥ w(S′)/2. So the last node k′ on P with w(T[k′]) ≥ w(S′)/2 must be a successor of m(S).

2

Note that in this case S does not have to be a subtree of S′.

We use the following definitions as a basis for locating medians in the two subtrees of interest, one

containing m, the 1-median of T , the other not.

Definition 3. Let v1, . . . , vd be the nodes adjacent to m and let T1, . . . , Td be the subtrees resulting

from removal of edges mv1, . . . ,mvd, respectively. Choose T1 and T2 so that w(T1) ≥ w(T2) ≥ w(Ti)

for i > 2. The trunk of T is the path [m(T1),m(T2)] passing through m, or stopping at m if T2 does

not exist.

The following is a direct consequence of Lemma 5.

Theorem 1. Suppose m1,m2 are 2-medians of T . Then one of the following holds: (i) m1 ∈ T1 and

m2 ∈ [m,m(T2)]; or (ii) m1 ∈ T \ T1 \m and m2 ∈ [m,m(T1)].

Proof. In case (i) T2 plays the role of T[m∗] in Lemma 5: T[j] = T \T1 includes m and T2 and, with

T1 not in contention, et(m) descends into T2. In case (ii) T[j] is T1 ∪m and et(m) descends into T1.

2

So one of the 2-medians is known to be on the trunk, specifically the one that serves m.

Definition 4. If T[j] does not contain the median m of T we refer to m(j) as the near median of

j. The near median serves j but not m and is referred to as m1 in Theorem 1.



7

Definition 5. If T[k] does contain the median m of T and j is the node adjacent to k that is not a

child of k in T[k], then m(k) is the far median of j. The far median serves m and k but not j and

is referred to as m2 in Theorem 1. Henceforth, we use the notation m′(j) for the far median.

Lemma 5 tells us that, if j is in T1 then the far median of j, i.e., m(T \ T[j]), is on the segment of

the trunk between m and m(T2). Conversely, if j 6∈ T1, then the far median of j is between m and

m(T1).

The algorithms are more easily described if we direct all edges toward m, from child to parent.

Definition 6. If edge jk separates T into S and T \S, where j ∈ S and k,m ∈ T \S, then we refer

to k as the parent of j, denoted pj.

Fig. 3. A tree T after the 1-median has been identified. Node numbers are inside the circles – node 0 is the

1-median.

The concepts just described are illustrated in Fig. 3. The top numbers outside the circles are the

node weights, the bottom numbers are the subtree weights w(T[j]) for each j 6= m and w(T ) for

j = m. Arrows indicate edge direction from j to pj . Here v1, v2, and v3 are nodes 1, 2, and 11,

respectively. T1 and T2 are outlined with dashed lines. The median of T1 is node 6 because w(T[6]) =

14 ≥ w(T1)/2 = 28/2 and the median of T2 is node 5 with weight 15 ≥ w(T2)/2 = 27/2. When

near medians are in T1 = {1, 6, 7, 8, 9, 10}, the far medians are on the path [0, 5]. When they are in

T[v2] ∪ T[v3] = (T \ T1) \m = {2, 3, 4, 5, 11, 12}, they are on the path [0, 6]

An example of Lemma 6 arises when S = T \T[6] and S′ = T \T[8]. Here w(S) = 58− 14 = 44 and

w(S′) = 58 − 6 = 52. Note that S \ S′ = {8, 9, 10} and S′ \ S = {6}, so neither is contained in the

other. Here m(S) is node 4 with w(T[4]) = 22 while m(S′) is node 3 with w(T[3]) = 26. Put another

way, the far median of node 6 is farther from m than that of node 8.

Now we have a context for describing the algorithms. To find the 2-medians of T we need only find

the j such that

cost(T[j],m(j)) + cost(T \ T[j],m(T \ T[j]))

is minimized. While doing so we also identify a cut edge jpj that induces subtrees T[j] and T \T[j].

We locate the near and far median of j for each j ∈ T and compute the costs. The latter is done

incrementally, based on Lemmas 7 and 8 in Section 3.4 below.



8

(a) 1-median on the left (b) the 2-medians for (a)

(c) 1-median on the right (d) the 2-medians for (c)

Fig. 4. A tree with two 1-medians.

3.3 Special cases

Fig. 4 illustrates a situation where there are two 1-medians as a result of having two equal-weight

subtrees. The choice of 1-median is arbitrary in all of our definitions and algorithms. In Fig. 4(a) the

1-median (blue) is node 0 on the left, T1 is the subtree {1, 4, 5} on the right, and T2 consists of single

node 2. The trunk goes from node 2 to node 1, the other 1-median. Fig. 4(b) shows the optimum

2-median solution corresponding to (a): for cut edge 0,1 (red) in T1 the near median in is node 1

(green) and far median is node 2 (red); total cost is 9. In Fig. 4(c) the 1-median is node 1 on the

right, T1 is the subtree {0, 2, 3} and T2 consists of single node 4. The trunk now includes one more

node, node 4. However, it has weight less than that of the 1-median, so it is essentially a degenerate

T2 and its inclusion is a technicality. Now the near median for cut edge 2,0 in T1 is node 2 and the

far median (purple) is node 1, same as the 1-median. The medians are the same; only the cut edge

differs. And this is only because the algorithm locating these medians started with near medians

in T1.

(a) the median with no T2 (b) the 2-medians for (a)

Fig. 5. A tree with only one subtree after removal of the 1-median, i.e., no T2.

Fig. 5 shows a tree that has a T1 but no T2 with respect to the 1-median, node 0. In this case one

of the medians will always be the 1-median and the other will be the 1-median of T1.



9

(a) the 1-median and weights of all subtrees (b) the 2-medians and the cut edge

Fig. 6. A tree whose 2-medians are not both on the trunk.

Lest the reader think that both 2-medians will always be on the trunk, the example in Fig. 6

illustrates a simple tree T where this is not the case. All edge lengths are 1. The trunk of T consists

of nodes 0, 1, and 2 across the top of the illustration. Fig. 6(a) shows all the subtree weights assuming

m (node 1) is the root. In this case T1 and T2 are interchangeable: they both consist of the single

nodes of weight 5 (nodes 0 and 2). But, as shown in Fig. 6(b), the optimal solution has one of the

medians in T3, which consists of nodes 3, 4, and 5.

Any choice of 2-medians on the trunk includes either both 0 and 2 or m = 1 and one of 0 and 2. In

the former case (using node 0 as the node closest to nodes 1, 3, 4, and 5), the cost is

1 · d[0, 1] + 1 · d[0, 3] + 1 · d[0, 4] + 2 · d[0, 5] = 1 + 2 + 3 + 8 = 14

in the latter (using node 0 as the median other than m) it is

5 · d[m, 2] + 1 · d[m, 3] + 1 · d[m, 4] + 2 · d[m, 5] = 5 + 1 + 2 + 6 = 14

The optimum solution shown in Fig. 6(b) has cost

5 · d[m, 0] + 5 · d[m, 2] + 1 · d[4, 3] + 2 · d[4, 5] = 5 + 5 + 1 + 2 = 13

3.4 Updating costs

We turn now to the facts that allow us to update costs incrementally as we traverse the tree to

locate the medians.

The following gives the incremental cost when a cut edge is moved up toward m while keeping a

near median candidate m∗ the same. For now we assume the far median candidate stays at m, a

feature of the algorithm described later.

Lemma 7. If k is any child of j and m∗ is in T[k] then

cost(T[j],m∗) + cost(T \ T[j],m)

− (cost(T[k],m∗) + cost(T \ T[k],m))

= (d[m∗, j]− d[m, j]) · (w(T[j])− w(T[k]))

Proof. As shown in Fig. 7, w(T[j])−w(T[k]) is the total weight of the nodes that switch sides, whose

median is now m∗ instead of m, while d[m∗, j] − d[m, j] is the distance of those nodes from their

new median minus that from their original one. 2

Now consider the incremental cost of moving a median candidate closer to the root m; moving away

from the root has the opposite effect.



10

T[k]

T[j]
j

k

m

dist(m, j)

m*

dist(m*, j)

Fig. 7. Difference in cost as the cut edge moves closer to the root m.

T[x]
S

x

dx,px

px

Fig. 8. Difference in cost as a median candidate moves closer to or farther from the root m.



11

Lemma 8. If x, px ∈ S for some subtree S of T , then

cost(S, px)− cost(S, x) = dx,px(2w(T[x])− w(T[S]))

Proof. Note that nodes in T[x] move dj,pj
farther away from the candidate median while nodes in

S \ T[x] move closer by the same amount. So the difference is

dx,pxw(T[x])− dx,px(w(S)− w(T[x])) = dx,px(2w(T[x])− w(S))

See Fig. 8. 2

The concepts of near and far median, by different names, and the cost updates also appear in

Breton’s thesis [3].

4 Linear-Time Computation of Near Medians

Before we introduce the algorithm for computing near medians, we define some notation specific to

our algorithms.

After m, a 1-median of T , has been identified we can, as pointed out earlier, use it as the root of T

and use it define a parent pj for each node j; if j = m then pj is undefined. Other definitions follow

naturally.

• an ancestor of j is any node on the path [j,m].

• if i is pj , then j is a child of i;

• T[j] is the subtree of T rooted at j; it can be defined recursively by j ∈ T[j] and, if pk ∈ T[j],

then k ∈ T[j];

• for convenience we use m(j) to denote m(T[j]) and m′(j) to denote m(T \ T[j]), the near and

far medians of j, respectively;

• we use cost[j] to denote cost(T[j],m(j)) + cost(T \ T[j],m′(j)), the cost of a solution based on

use of jpj as cut edge and the medians of T[j] and T \ T[j].

Goldman [6] proved that the one-median m can be computed in linear time, i.e., O(n), where n is

the number of tree nodes. It is also easy to compute in linear time, for each node j, the quantities

w(T[j]) and d[j,m], the former bottom up (and implicitly during Goldman’s algorithm), the latter

top down recursively: d[m,m] = 0, and, for j 6= m, d[j,m] = dj,pj + d[pj ,m]. Computing cost(T,m)

follows directly. Identifying T1 and T2 (if it exists) is easy; and, using Goldman’s algorithm again,

we can compute m(T ′) for T ′ = T1 and T ′ = T2.

The linear time algorithm for near medians is outlined in Fig. 9. The algorithms described in Sec-

tions 5–7 differ only in their approach to computing the far median (candidates), as encapsulated

by the getFarMedian function in line 10.

An easy way to ensure that node j is processed only after all its children have been processed –

line 1, is to use a queue Q. Initially Q contains the leaves in T̂ . We keep track of the residual degree

of each node k, i.e., the number of children that have not been processed, initially deg(k)− 1. When

this reaches 0 we add k to Q.

The algorithm does incremental cost updates using Lemmas 7 and 8.



12

procedure computeNearMedians is

T̂ is either T1 or (T \ T1) \m
Computes m(j) and the corresponding cost:

costm[j] = cost(T[j],m(T[j])) + cost(T \ T[j],m)

for every j in T̂ .

This means every possible cut edge (j, pj) is explored.

bestCost is initially ∞ and updated every execution of line 10.

do until all nodes j ∈ T̂ have been processed

(1) let j be a node all of whose children have been processed

. processing j; the edge (j, pj) is being considered as a cut edge

if deg(j) = 1 then . j is a leaf and the only node in its subtree

(2) m(j)← j

(3) cost ← cost(T,m)− d[j,m] · wj

else

(4) let k∗ be the child of j with maximum w(T[k∗])

(5) find m(j) on the path [m(k∗), j]

(6) cost ← costm[k∗]

. update cost using Lemmas 7 and 8

(7) cost ← cost + (d[m(k∗), j]− d[m, j]) · (w(T[j])− w(T[k∗]))

for each edge (x, px) on the path [m(k∗),m(j)] do

(8) cost ← dx,px(2w(T[x])− w(T[j]))

end do

(9) costm[j]← cost

(10) bestCost ← updateCost(j,getFarMedian(j), bestCost)

endif

end do . until all nodes have been processed

end ComputeMedians

Fig. 9. Linear time algorithm for computing all near medians.

procedure computeDeltas is

. assumes w(T[j]) has been computed for all j ∈ P ∗,

. where P ∗ is a segment of the trunk starting at m

for node current on path P ∗ (starting with m) do

if current = m then ∆(current)← 0

else ∆(current)← ∆(pcurrent) + d[current , pcurrent ] · (w(T )− w(T[current ])) endif

end do

end computeDeltas

Fig. 10. Algorithm for computing ∆ values along path P ∗.



13

function updateCost(j,m′, c) is

Assumes costm[j] and w(T[j]) have been computed for all j ∈ T̂ , and that ∆(i) has

been computed for i ∈ P ∗. Computes

totalCost = cost(T[j],m(j)) + cost(T \ T[j],m′)

returns totalCost if totalCost < c and c otherwise.

totalCost ← costm[j] +∆(m′)− d[m′,m] · w(T[j])

if totalCost < c then return totalCost else return c endif

end updateCost

Fig. 11. Algorithm for computing total cost given a far median candidate.

By Lemma 4, the nodes on the path [m(k∗), j) are never accessed again after an execution of line 5

for node j. Future searches for m(i), where i is an ancestor of j, will begin at m(j) or one of its

ancestors. Thus, each node except for m(j) is accessed once in line 5, and m(j) is accessed once for

each j. The total number of accesses to nodes in lines 5 and 8 is therefore O(n).

For each node j 6= m we keep track of costm[j] = cost(T[j],m(j)) + cost(T \ T[j],m). The far

median m(T \ T[j]) will not necessarily be m, but we use this as a place holder until the correct

far median is computed. The appropriate adjustment is made using ∆(m(T \ T[j])), defined below

and in procedure computeDeltas – see Fig. 10. Because all children of j are processed before j,

we already know costm[k∗], where k∗ is the child whose subtree has maximum weight – see line 4.

Lemmas 7 and 8 are then used to update the cost from costm[k∗] to costm[j] – lines 6, 7, and 8.

Note that d[k∗, j] = d[m, k∗]−d[m, j] in line 7 can be computed directly using precomputed distances

from m.

To compute the cost of using a specific far median candidatem′, i.e., cost(T \T[j],m′), we precompute

∆(m′) = cost(T,m) − cost(T,m′) for each m′ on the trunk. Starting with ∆(m,m) = 0 we use

Lemma 8:

∆(m′), when m′ 6= m

= ∆(pm′) + dm′,pm′ (w(T )− 2w(T[m′]))

These values can be computed top down starting with the two m′ candidates that have pm′ = m.

When a far median candidate m′(j) is identified, we can compute cost[j] from costm[j] as follows.

First observe that

cost[j] = costm[j] + cost(T \ T[j],m′(j))− cost(T \ T[j],m)

Then, the difference between previously computed cost and true cost is

cost(T \ T[j],m′(j))− cost(T \ T[j],m)

= (cost(T,m′(j))− d[j,m′(j)] · w(T[j]))− (cost(T,m)− d[j,m] · w(T[j]))

= (cost(T,m′(j))− cost(T,m)) + (d[j,m]− d[j,m′(j)]) · w(T[j])

= ∆(m′(j))− d[m′(j),m] · w(T[j])

The algorithms in Figs. 10 and 11 summarize the computation of ∆ values and the use of these when

a far median candidate has been identified, respectively.



14

5 An Algorithm Based on Sorting by Subtree Weights

One approach, originally proposed by Hämäläinen [9], takes advantage of Lemma 6. If nodes j

are processed (line 1) in order of nondecreasing subtree weight w(T[j]), consider two nodes k and

j, processed in two consecutive iterations of the main loop. Lemma 6 says that m′(k) is on the

path [m,m′(j)], meaning that nodes on the path [m,m′(k)) need no longer be considered in future

iterations and the starting point in the search for m′(j) is m′(k). The time bound analysis for finding

all the far medians is analogous to that for line 5 in the near median algorithm – Fig. 9. To identify

m′(j), i.e., implement getFarMedian, do the following:

while x ∈ [m′(k),m(T ′)] (moving in the implied direction)

and w(T[x]) ≥ (w(T )− w(T[j]))/2 do

last ← x

end do

return last

We can modify the near-median algorithm so that nodes j are processed in monotonic nondecreasing

values of w(T[j]) in line 1. If all wj are positive, simply sort the nodes by increasing subtree weight

w(T[j]) and process them in sorted order. If some node weights are 0,3 break ties by putting nodes

that are farther away from m (the path has more edges) earlier in the order.

The sort takes O(n lg n) using a standard sorting algorithm. Radix sort yields a time bound of

O(n lgwmax/ lg n), where wmax is the largest subtree weight, an improvement to linear time if the

subtree weights are polynomial in n.4

Another alternative is to use a priority queue Q in place of the ordinary queue proposed earlier,

adding a node j to Q when all of its children have been processed and using w(T[j]) as its key.

Initially the leaves of T̂ are added to Q. The next node to be processed in the main loop is one

with minimum w(T[j]). The time for this implementation is O(n lg nL), where nL is the number of

leaves in the tree, a bound on the number of nodes that can be in the queue at any given time, an

improvement if the tree consists of a small number of long paths.5

6 An Algorithm using Binary Search

An algorithm proposed by Gavish and Sridhar [5] locates each far median using binary search. See

Fig. 12. After each iteration of the while loop, the number of edges on the path [near , far ] is cut

in half. If it is originally odd, say `, the new length is either (` − 1)/2 or (` + 1)/2. This means

that the number of comparisons between w(T[m′]), where m′ is a candidate for the far median, and

(w(T )− w(T[j]))/2 is O(lg nP), where nP is the number of edges on the path being searched.

This algorithm therefore has a runtime of O(n lg(max(`1, `2))), where `1, `2 are the numbers of edges

in paths [m,m(T1)] and [m,m(T2)], respectively. Recall that these paths form the trunk, defined

earlier in Section 3, and note that they are easy to identify after the 1-median has been computed,

T1 and T2 have been identified, and their medians computed – the preliminary steps of the near

3 If wpj = 0 then w(T[pj ]) = w(T[j]).
4 Breton [3] points out that the 2-medians can be found in linear time if node weights can be sorted in

linear time.
5 A recent MS Thesis by Acharyya [1] achieves the same result using techniques of computational geometry.



15

function BinarySearch(j) is

. returns the median of T \ T[j], as specified in Lemma 5.

. assumes that the nodes on path [m,m(T ′)] are stored in an array

. at any stage path is a subpath of [m,m(T ′)]

path ← [near , far ], where near = m and far = m(T ′)]

. Invariant: [near , far ] contains a node k for which

. w(T[k]) ≥ (w(T )− w(T[j]))/2, and,

. for every x ∈ (k, far ], w(T[x]) < (w(T )− w(T[j]))/2

while path has more than one node do

mid ← midpoint of path, closer to far if there’s a tie

if w(T[mid ]) ≥ (w(T )− w(T[j]))/2 then

path ← [mid , far ]

else

path ← [near ,mid)

endif

end do

return near

end BinarySearch

Fig. 12. Binary search to locate m(T \ T[j]) on the path [m,m(T ′)], where T ′ is one of T1 or T2.

median algorithm. This means that a short trunk will be recognized before a decision is made about

which of our algorithms to run.

7 An Algorithm Based on Distances

From Lemma 2 we know that, if jpj is the cut edge for an optimum solution, then one of the following

holds:

d[m(j), j] = d[j,m′(j)] the midpoint between the near and far medians is at j

d[m(j),pj ] = d[pj ,m
′(j)] the midpoint is at pj

d[m(j), j] + δ = d[pj ,m
′(j)] where δ < dj,pj

, i.e., the midpoint lies somewhere on the edge jpj

Each of the three cases identifies a candidate location x for m′(j). If x is not the true far median,

it does not matter. In that case

cost(T[j],m(j)) + cost(T \ T[j], x)

≥ cost(T[j],m(j)) + cost(T \ T[j],m′(j))

= cost[j] ≥ cost[j∗] (the optimum)

We can go ahead and compute the total cost using x as a candidate far median without fear of

incorrectly identifying the optimum solution. We say that cut edge jpj is dominated if it can be

ruled out as a cut edge for the true 2-medians m1 and m2.

Suppose that all edge lengths di,j = 1. Then the only possible value for δ in the last case is 1/2,

which implies that d[m(j), j] = d[pj ,m
′(j)]. So only three candidate locations need to be considered.



16

The algorithm for each T̂ , where T̂ = T1 or T̂ = (T \ T1) \m is straightforward. Here T ′ is either T2

or T1, respectively, making [m,T ′] the relevant segment of the trunk.

1. put nodes m′ ∈ [m,m(T ′)] consecutively into an array A[0] = m, . . . , A[`] = m(T ′), where

` = d[m,m(T ′)].

2. for each node j ∈ T̂ , compute three quantities:

(a) d1 = d[m(j),pj ]− d[pj ,m]

(b) d2 = d[m(j), j]− d[pj ,m]

(c) d3 = d[m(j), j]− d[j,m]

for i = 1, 2, 3 do

if 0 ≤ di ≤ ` then bestCost ← updateCost(bestCost , costm[j], A[di])

So, effectively, line 10 of the near median algorithm is expanded into three options. 6

This idea can be generalized to arbitrary integer edge lengths to obtain an algorithm with O(ndmax)

runtime, where dmax is the maximum length of an edge. With integer edge lengths, Lemma 2 tells

us that the midpoint between the near and far median will always be at a position that is an integer

multiple of 1
2 . So for the cut edge (j,pj) with length dj,pj

, the midpoint between a near and far

median (if that cut edge is not dominated) could be any j, pj , or any distance δ with 0 < δ < dj,pj

from j, where 2δ is an integer. That leads to 2dj,pj + 1 options.

Not all options correspond to actual nodes along the path. So we need to initialize the array A as

follows.

• create A so that it has entries A[0], . . . , A[d′], where d′ = d[m,m(T ′)]

• initialize all of these entries to null.

• for each node x on the path [m,m(T ′)], let A[d[m,x]] = x

The array A will have some gaps. The total number of entries is bounded by ndmax, where dmax is

the maximum length of any edge.

The more general algorithm for finding far median candidates and updating costs, for each cut edge

(j,pj), is as follows.

for δ ← 0 to dj,pj , by steps of 1
2 do

let d = d[m(j), j]− d[j,m] + 2δ

if 0 ≤ d ≤ d′ and A[d] 6= null then

bestCost ← updateCost(bestCost , costm[j], A[d])

endif

end do

Since d′ is known in advance of the execution of the loop, we need only iterate over δ values ranging

from (d[j,m]− d[m(j), j])/2 to the minimum of (d[j,m]− d[m(j), j] + d′)/2 and dj,pj
.

In the above-described algorithm for unit edge lengths,

d1 = d[m(j),pj ]− d[pj ,m] = (d[m(j), j] + 1)− (d[j,m]− 1)

= d[m(j), j]− d[j,m] + 2 so δ = 1

d2 = d[m(j), j]− d[pj ,m] = d[m(j), j]− (d[j,m]− 1) = d[m(j), j]− d[j,m] + 1 so δ = 1
2

d3 = d[m(j), j]− d[pj ,m] so δ = 0

6 Breton [3] reports a similar linear time algorithm for the case of unit edge lengths.



17

8 Conclusions

The algorithms we have considered all rely on the fact that near medians can be computed in linear

time. The ones based on sorting by subtree weights and on binary search correctly identify far

medians along the way. In the first case, sorting by weights, this is achieved using Lemma 6 to

guarantee that there is no backtracking as we search along the trunk. In the second, binary search

is used to find the far median.

The algorithm based on distances uses Lemma 2 to rule out far median candidates that are domi-

nated, i.e., they either cannot be correct far medians for the cut edge jpj or the cut edge is not one

corresponding to an optimal solution. In the process, the algorithm may explore candidates that are

not correct far medians and compute their costs.

Based on the algorithms described here, the runtime for finding the two-medians of a tree can be

improved to better than O(n lg n) in four situations, all of which can be detected initially or after

the one-median is computed:

1. When the node weights are small, runtime for an algorithm that sorts by subtree weight (see

Section 5) is O(n lgwmax

lgn ), where wmax is the largest node weight, which is linear if node weights

are polynomial.

2. When T has only a small number nL of leaves, runtime for the subtree-weight algorithm using

a priority queue is O(n lg nL).

3. When the lengths (number of edges) of paths [m,m(T1)] and [m,m(T2)] are both small, runtime

for an algorithm that uses binary search to locate the far medians is O(n lg `), where ` is the

length of the longer of these two paths.

4. When all edge lengths are ≤ dmax, runtime is O(ndmax), which is linear if edge lengths are

bounded by a constant. In this case dmax is a bound on the number of far median candidates

that need to be considered for each cut edge.

Our near median algorithm acts as a framework for all of these improvements. Future algorithms

can either improve the efficiency of searches for far median candidates during their execution or

compute the optimal solution after all near medians are known. The algorithms reported here run

in linear time, i.e., O(n), when

1. node weights are polynomial in n;

2. the number of leaves in T is bounded by a constant;

3. the number of nodes on the path between medians of the two largest subtrees with respect to m

is bounded by a constant; or

4. the edge lengths are bounded by a constant;

Fig 13 illustrates a situation where our improvements do not reduce the time bound. The figure

shows only T1 but T2 is identical; here n = 4k + 1.



18

11 1 1
2ik ... ...

21–122–12 i –12k

1 111

1 m

Fig. 13. An example for which none of our improvements apply. Only one of two subtrees is shown. Node

weights are next to the nodes. Edge lengths are in the squares along the edges.

1. Node weights range from 1 to wmax = 2k, which is exponential in n, so the first improvement

does not apply.

2. There are 2k leaves, so the second improvement fails as well.

3. The node farthest from m in each subtree is the median of that subtree: the total weight of the

subtree is
∑

1≤i≤k 2i + 1 = 2k+1 and the weight of the last node is half of that. The third case

is therefore also ruled out.

4. Edge lengths range from 1 to dmax = k, ruling out the third case. Even if we are careful to

restrict δ values as suggested in Section 7, there are still too many nodes with a non-constant

number of options. Consider, for example, the k/2 nodes in the top row closest to m; refer to

them as nodes j = 1, . . . , k/2, moving away from m (right to left). For each j we have

d[m(j), j]− d[j,m]

= (
∑

1≤i≤k+1

i−
∑

1≤i≤j

i)−
∑

1≤i≤j

i

=
∑

1≤i≤k+1

i− 2 ·
∑

1≤i≤j

i

≈ k2/2− j2

So, for each such j, δ can range from 0 to roughly (2k2 − j2)/2. Summing these up leads to

Ω(k2) total options considered, which is Ω(n2).

References

1. R. Acharyya, 2-median problems in tree networks, Master’s thesis, Simon Frazier University, March

2017. http://summit.sfu.ca/item/17232. 14

2. R. Benkoczi and B. Bhattacharya, A new template for solving p-median problems for trees in sub-

quadratic time, in Proc. European Symposium on Algorithms, no. 3669 in Lecture Notes in Computer

Science, 2005, pp. 271–282. 1, 2

3. D. Breton, Facility location problems in trees, Master’s thesis, Simon Frazier University, November

2002. 2, 11, 14, 16

4. P. M. Dearing, R. L. Francis, and T. J. Lowe, Convex location problems in tree networks, Opera-

tions Research, 24 (1976), pp. 628–642. 2

5. B. Gavish and S. Sridhar, Computing the 2-median on tree networks in O(n logn) time, Networks,

26 (1995), pp. 305–317. 1, 2, 14

6. A. J. Goldman, Optimal center location in simple networks, Transportation Science, 5 (1971), pp. 212–

221. 1, 2, 4, 11

http://summit.sfu.ca/item/17232


19

7. S. L. Hakimi, Optimum locations of switching centers and the absolute centers and medians of a graph.,

Operations Research, 12 (1964), pp. 450–459. https://doi.org/10.1287/opre.12.3.450. 1

8. , Optimum distribution of switching centers in a communication network and some related graph

theoretic problems, Operations Research, 13 (1965), pp. 462–475. https://doi.org/10.1287/opre.13.

3.462. 1

9. P. Hämäläinen, An O(n logn) implementation of the edge deletion method to find a 2-median in a tree

network. unpublished, 1988. 1, 2, 14

10. O. Kariv and S. L. Hakimi, An algorithmic approach to network location problems. II: the p-medians,

SIAM J. Appl. Math., 37 (1979), pp. 539–560. 1, 2

11. P. Mirchandani and A. Oudjit, Localizing 2-medians on probabilistic and deterministic tree networks,

Networks, 10 (1980), pp. 329–350. 1, 2

12. N. Mladenovic, J. Brimberg, P. Hansen, and J. A. Moreno-Perez, The p-median problem: A

survey of metaheuristic approaches, European Journal of Operational Research, 179 (2007), pp. 927–939.

2

13. J. Reese, Solution methods for the p-median problem: An annotated bibliography, Networks, 48 (2006),

pp. 125–142. 2

14. C. S. ReVelle and R. W. Swain, Central facilities location, Geographical Analysis, 2 (1970), pp. 30–

42. 2

15. M. Stallmann, Algorithm animation with Galant, IEEE Computer Graphics and Applications, 37

(2017), pp. 8–14. 20

16. A. Tamir, An O(pn2) algorithm for the p-median and related problems on tree graphs, Operations

Research Letters, 19 (1996), pp. 59–64. 1, 2

https://doi.org/10.1287/opre.12.3.450
https://doi.org/10.1287/opre.13.3.462
https://doi.org/10.1287/opre.13.3.462


20

Appendix

We now examine the behavior of the algorithms on two examples with unit-length edges and one

more example with edges of arbitrary length.7 In each case, we first show the computation of the near

medians m(j) and costm[j] as described in the near median algorithm. We also show the computation

of the ∆ values. Finally, we describe the identification of far medians (or candidate far medians in

the case of the distance-based algorithm) and the computations of cost[j] for each j (keeping track

of bestCost as we go).

A Algorithms on the Example of Fig. 3

After we compute the one-median m = 0, the distance d[j,m] is simply the number of edges on the

path from j to m. The subtree weights, shown in Fig. 14, are computed by Goldman’s algorithm.

We also precompute cost(T,m) = 153. Furthermore we compute m(T ′) for T ′ = T1 and T2: in this

case m(1) is node 6 and m(2) is node 5.

Next we compute ∆ values for nodes along the paths (0, 6] and (0, 5]

∆(1) = ∆(0) + w(T )− 2w(T[1]) = 0 + 58− 56 = 2

∆(6) = ∆(1) + w(T )− 2w(T[6]) = 2 + 58− 28 = 32

∆(2) = ∆(0) + w(T )− 2w(T[2]) = 0 + 58− 54 = 4

∆(3) = ∆(2) + w(T )− 2w(T[3]) = 4 + 58− 52 = 10

∆(4) = ∆(3) + w(T )− 2w(T[4]) = 10 + 58− 44 = 24

∆(5) = ∆(4) + w(T )− 2w(T[5]) = 24 + 58− 30 = 52

The near median and costm[j] computations are shown in Tables 1 and 2.

Table 1. Calculation of costm[j] for j ∈ T1 in the example of Fig. 14.

j pj k∗ w(T[j]) d[m(k∗), j]− d[m, j] w(T[j])− w(T[k∗]) costm[j]

10 8 N/A 1 d[j,m] = 4 153− 4 · 1 = 149

9 8 N/A 2 d[j,m] = 4 153− 4 · 2 = 145

14 1 N/A 14 d[j,m] = 2 153− 2 · 14 = 125

8 7 9 6 1− 3 = −2 6− 2 = 4 −8 . . .

. . . (median moves to 8) d[k∗, j] · (2w(T[k∗])− w(T[j])) = 1 · (4− 6) = −2 145− 8− 2 = 135

7 1 8 9 1− 2 = −1 9− 6 = 3 135− 1 · 3 = 132

1 0 6 28 1− 1 = 0 28− 14 = 14 125− 0 · 14 = 125

7 The pictures in the figures were generated using an animation of the subtree weight sorting algorithm.

The animation was created using Galant [15], a general purpose graph algorithm animation tool. Source

code for this specific animation and source files for the examples are available on request. The animation

tool itself is at https://github.com/mfms-ncsu/galant.

https://github.com/mfms-ncsu/galant


21

Table 2. Calculation of costm[j] for j ∈ (T \ T1) \m in the example of Fig. 14.

j pj k∗ w(T[j]) d[m(k∗), j]− d[m, j] w(T[j])− w(T[k∗]) costm[j]

12 11 N/A 1 d[j,m] = 2 153− 2 · 1 = 151

5 4 N/A 15 d[j,m] = 4 153− 4 · 15 = 93

11 0 12 2 1− 1 = 0 2− 1 = 1 151 + 0 · 1 = 151

4 3 5 22 1− 3 = −2 22− 15 = 7 93− 2 · 7 = 79

3 2 5 26 2− 2 = 0 26− 22 = 4 79 + 0 · 4 = 79

2 0 5 27 3− 1 = 2 27− 26 = 1 79 + 2 · 1 = 81

Sorting by weights on the example of Fig. 3

Figs. 15 through 21 show most of the steps steps taken during an algorithm based on sorting by

subtree weights.

The nodes are sorted by nondecreasing subtree weights, so the order, with weights in parentheses is

10(1), 9(2), 8(6), 7(9), 6(14), 1(28)

Fig. 15 shows the state of affairs when node 10 is processed. Since w(T ) − w(T[10]) = 57 and

w(T[2]) = 27 < 57/2, m′(10) = 0.

cost[10] = costm[10] = 149

When node 9 is processed (not shown), w(T )− w(T[9]) = 56 and w(T[2]) = 27 < 56/2, so m′(9) is

still 0 and

cost[9] = costm[9] = 145

Node 8 is next, see Fig. 16. Here w(T )−w(T[8]) = 52; w(T[2]) = 27 and w(T[3]) = 26, both ≥ 52/2;

but w(T[4]) = 22 < 52/2; so m′(8) = 3.

cost[8] = costm[8] +∆(3)− d[3,m] · w(T[8]) = 135 + 10− 2 · 6 = 133

Node 7 (not shown) is next: the near median stays at node 8. For the far median, w(T )−w(T[7]) =

58− 9 = 49 and w(T[4]) = 22 < 49/2 so m′(7) stays at node 3.

cost[7] = costm[7] +∆(3)− d[3,m] · w(T[7]) = 132 + 10− 2 · 9 = 124

Node 6 causes the far median to move again, to node 4 – see Fig. 17.

cost[6] = costm[6] +∆(4)− d[4,m] · w(T[6]) = 125 + 24− 3 · 14 = 107

Node 1 is the last to be added for T̂ = T1 – see Fig. 18. The far median moves to node 5.

cost[1] = costm[1] +∆(5)− d[5,m] · w(T[1]) = 125 + 52− 4 · 28 = 65

The cut edge (1,0) with near median 6 and far median 5 yields the best solution so far.



22

Now we apply the algorithm again with T̂ = (T \ T1) \m. The nodes, in sorted order, with subtree

weights in parentheses, are

12(1), 11(2), 5(15), 4(22), 3(26), 2(27)

Fig. 19 shows the consideration of node 12 with cut edge (12,11). The far median is m = 0 and

cost[12] = costm[12] = 151

Node 11 is next, see Fig 20. Here the far median moves to node 1.

cost[11] = costm[11] +∆(1)− d[1,m] · w(T[11]) = 151 + 2− 1 · 2 = 151

The far median stays at node 1 for the remaining iterations. Fig. 21 shows the cut edge giving

minimum cost. The remaining cost computations are as follows.

cost[5] = costm[5] +∆(1)− d[1,m] · w(T[5]) = 93 + 2− 1 · 15 = 80

cost[4] = costm[4] +∆(1)− d[1,m] · w(T[4]) = 79 + 2− 1 · 22 = 59

cost[3] = costm[3] +∆(1)− d[1,m] · w(T[3]) = 79 + 2− 1 · 26 = 55

cost[2] = costm[2] +∆(1)− d[1,m] · w(T[2]) = 81 + 2− 1 · 27 = 56

Thus, node 3 with cut edge (3,2) with near and far medians at nodes 5 and 1, respectively gives the

optimum solution.

Using distances on the example of Fig. 3

Table 3 illustrates the use of distances to identify far-median candidates and compute the corre-

sponding costs. The column labeled m′ gives the far-median candidate and the cost column gives

cost(T[j],m(j)) + cost(T \ T[j],m′), which may differ from cost[j], the cost using the correct far

median. In fact, there are only three cut edges where one of the far median candidates matches the

correct far median (and cost[j] is computed correctly). One of these is the optimum solution.

Using binary search on the example of Fig. 3

Fig. 22 shows the binary search for m′(6). Cost computations are identical to those of the algorithm

that sorts by weights.

B Another example with unit-length edges: a simple path

The example in Fig 23 is a simple path. Here the one-median m = node 0 and the cost cost(T,m) =

211. There are two subtrees of equal weight with respect to m and two optimal solutions, shown in

Fig. 24.

Tables 4 and 5 show the near median and associated cost computations for T̂ = T1 and T̂ =

(T \ T1) \m, respectively. On the T1 side the near median moves only once, from node 4 to node 3.



23

Fig. 14. Fig. 3 redrawn.

Fig. 15. Cut edge (10,8), m(T[10]) is 10, and m′(10) = 0.

Fig. 16. Cut edge (8,7), m(T[8]) is 8, and m′(8) = 3;

Fig. 17. Node 6 causes the far median to move again, to node 4 – the weight of T \T[6] is 44 and w(T[4]) = 22,

just half.

Fig. 18. Node 1 is removed with cut edge (1,0); w(T ) − w(T[1]) = 30 and w(T[5]) is half that, so the far

median moves to node 5.

Fig. 19. Node 12 is considered with cut edge (12,11); w(T ) − w(T[12]) = 57 and w(T[1]) is less than half

that, so the far median stays at m.



24

Fig. 20. Node 11 and cut edge (11,m) are considered; w(T )− w(T[11]) = 54 and w(T[1]) is 28, more than

half that, but w(T[6]) = 14, so the far median is node 1.

Fig. 21. The cut edge (3, 2) with minimum cost. Near median is node 5, far median is node 1 and cost[3] = 55.

(a) Seaching path [0, 5], mid = 3, w(T[mid ]) = 26 ≥ (w(T )− w(T[j]))/2 = 21.

(b) Seaching path [3, 5], mid = 4, w(T[mid ]) = 22 ≥ (w(T )− w(T[j]))/2.

(c) Seaching path [4, 5], mid = 5, w(T[mid ]) = 15 < (w(T )− w(T[j]))/2.

(c) Seaching path [4, 5) = [4, 4]; only one node left, so m(T \ T[j]) is node 4.

Fig. 22. The example of Fig. 3, illustrating the binary search when j is node 6.



25

Table 3. Using distances to find far-median candidates in the example of Fig. 3. Correct far medians are

marked with *.

far median candidates for T̂ = T1

j pj m(j) di m′ costm[j] ∆(m′) cost

10 8 10 d1 = 1− 3 = −2 ignore

9 8 9 d1 = 1− 3 = −2 ignore

8 7 8 d1 = 1− 2 = −1 ignore

7 1 8 d1 = 2− 1 = 1 2 132 4 132 + 4− 1 · w(T[7]) = 127

d2 = 1− 1 = 0 0 – 0 132

d3 = 1− 2 = −1 ignore

6 1 6 d1 = 1− 1 = 0 0 125 0 125

d2 = 0− 1 = −1 ignore

1 0 6 d1 = 2− 0 = 2 3 125 10 125 + 10− 2 · w(T[1]) = 79

d2 = 1− 0 = 1 2 – 4 125 + 4− 1 · w(T[1]) = 101

d3 = 0− 0 = 0 0 – 0 125

far median candidates for T̂ = (T \ T1) \m
j pj m(j) di m′ costm[j] ∆(m′) cost

12 11 12 d1 = 1− 1 = 0 0* 151 0 151

d2 = 0− 1 = −1 ignore

11 0 12 d1 = 2− 0 = 2 6 151 32 151 + 32− 2 · w(T[11]) = 179

d2 = 1− 0 = 1 1* – 10 151 + 2− 1 · w(T[11]) = 151

d3 = 0− 0 = 0 0 – 0 151

5 4 5 d1 = 1− 3 = −2 ignore

4 3 5 d1 = 2− 2 = 0 0 79 0 79

d2 = 1− 2 = −1 ignore

3 2 5 d1 = 3− 1 = 2 6 79 32 79 + 32− 2 · w(T[3]) = 59

d2 = 2− 1 = 2 1* – 2 79 + 2− 1 · w(T[3]) = 55

d3 = 2− 2 = 0 0 – 0 79

2 0 5 d1 = 4− 0 = 4 ignore (out of range)

d2 = 3− 0 = 3 ignore (out of range)

d3 = 3− 1 = 2 6 81 32 81 + 32− 2 · w(T[2]) = 59

This is because w(T[4]) = 13 > w(T1)/2 = 12. The near median does not move at all on the other

side: w(T[12]) = 15 and w(T2) = 24.

The ∆ values are as follows. Edge distance multipliers are omitted since all distances are 1. Since

the median of T1 is node 3 we consider nodes on the path [1, 3]:

∆(1) = ∆(0) + (w(T )− 2w(T[1])) = 0 + 51− 2 · 24 = 3

∆(3) = ∆(1) + (w(T )− 2w(T[3])) = 3 + 51− 2 · 13 = 28

On the T2 side the median is node 12, so we must compute ∆ for every node on the path [2, 12]

∆(2) = ∆(0) + (w(T )− 2w(T[2])) = 0 + 51− 2 · 24 = 3

∆(5) = ∆(2) + (w(T )− 2w(T[5])) = 3 + 51− 2 · 23 = 8



26

Table 4. Calculation of costm[j] for j ∈ T1 in the example of Fig. 23.

j pj k∗ w(T[j]) d[m(k∗), j]− d[m, j] w(T[j])− w(T[k∗]) costm[j]

4 3 N/A 1 d[j,m] = 3 211− 3 · 1 = 208

3 1 4 13 1− 2 = −1 13− 1 = 12 −12 . . .

. . . (median moves to 3) d[k∗, j] · (2w(T[k∗])− w(T[j])) = 1 · (2− 13) = −11 208− 12− 11 = 185

1 0 3 24 1− 1 = 0 24− 13 = 11 185− 0 · 11 = 185

Table 5. Calculation of costm[j] for j ∈ (T \ T1) \m in the example of Fig. 23.

j pj k∗ w(T[j]) d[m(k∗), j]− d[m, j] w(T[j])− w(T[k∗]) costm[j]

12 11 N/A 15 d[j,m] = 9 211− 9 · 15 = 76

11 10 12 16 1− 8 = −7 16− 15 = 1 76− 7 · 1 = 69

10 9 11 17 2− 7 = −5 17− 16 = 1 69− 5 · 1 = 64

9 8 10 18 3− 6 = −3 18− 17 = 1 64− 3 · 1 = 61

8 7 9 19 4− 5 = −1 18− 17 = 1 61− 1 · 1 = 60

7 6 8 20 5− 4 = 1 20− 19 = 1 60 + 1 · 1 = 61

6 5 7 21 6− 3 = 3 21− 20 = 1 61 + 3 · 1 = 64

5 2 6 23 7− 2 = 5 23− 21 = 2 64 + 5 · 2 = 74

2 0 5 24 8− 1 = 7 24− 23 = 1 74 + 7 · 1 = 81

∆(6) = ∆(5) + (w(T )− 2w(T[6])) = 8 + 51− 2 · 21 = 17

∆(7) = ∆(6) + (w(T )− 2w(T[7])) = 17 + 51− 2 · 20 = 28

∆(8) = ∆(7) + (w(T )− 2w(T[8])) = 28 + 51− 2 · 19 = 41

∆(9) = ∆(8) + (w(T )− 2w(T[9])) = 41 + 51− 2 · 18 = 56

∆(10) = ∆(9) + (w(T )− 2w(T[10])) = 56 + 51− 2 · 17 = 63

∆(11) = ∆(10) + (w(T )− 2w(T[11])) = 63 + 51− 2 · 16 = 82

∆(12) = ∆(11) + (w(T )− 2w(T[12])) = 82 + 51− 2 · 15 = 103

Fig. 23. The tree T , m is node 0, T1 could be either the subtree rooted at node 1, i.e., the path [4,1], or the

one rooted at node 2, the path [2,12]. The former is chosen arbitrarily so T2 is the latter. The algorithms

are run with T̂ = T1 and again with T̂ = T2.

Binary search on the example of Fig 23

This example was designed primarily to illustrate the actions of the binary search algorithm.

Fig. 25(b)–(e) shows the binary search for m′(j) when j is node 4. Since the far median is m,

cost[4] = costm[4] = 208.



27

Fig. 24. Two optimal solutions for the example in Fig. 23.

(a) Start with j = node 4. Searching path [0, 12], mid = 8, w(T[8]) = 19 < (w(T )−w(T[j]))/2 = 50/2 = 25.

(b) Searching path [0, 8) = [0, 7], mid = 5, w(T[5]) = 23 < (w(T )− w(T[j]))/2.

(c) Searching path [0, 5) = [0, 4], mid = 2, w(T[2]) = 24 < (w(T )− w(T[j]))/2.

(d) Searching path [0, 2) = [0, 0]; only one node left, so m(T \ T[j]) is node 0.

Fig. 25. Binary search for the far median of node 4, cut edge (4,3), in the tree of Fig. 23.

(a) Start with j = node 3. Searching path [0, 12], mid = 8,

w(T[8]) = 19 ≥ (w(T )− w(T[j]))/2 = (51− 13)/2 = 19.

(c) Searching path [8, 12], mid = 10, w(T[10]) = 17 < (w(T )− w(T[j]))/2.

(d) Searching path [8, 10) = [8, 9], mid = 9, w(T[9]) = 18 < (w(T )− w(T[j]))/2.

(e) Searching path [8, 9) = [8, 8]; only one node left, so m(T \ T[j]) is node 8.

Fig. 26. Binary search for the far median of node 3, cut edge (3,1), in the tree of Fig. 23.



28

Fig. 26 shows the search when j is node 3. Now the far median is node 8, so

cost[3] = costm[3] +∆(8)− d[8,m] · w(T[3]) = 185 + 41− 5 · 13 = 161

The search for m(1), the next j to be considered, is not shown. We are looking for the last m∗ on

the path [0, 12] such that w(T[m∗]) ≥ (w(T ) − w(T[1]))/2 = (51 − 24)/2 = 13.5. The search starts

like the others, with mid = 8, then continues with path [8, 12] and mid = 10; path [10, 12] with

mid = 11; and path [11, 12] with mid = 12; since w(T[12]) = 15 ≥ 13.5, the search is reduced to a

single node, node 12.

cost[1] = costm[1] +∆(12)− d[12,m] · w(T[1]) = 185 + 103− 9 · 24 = 82

Steps of the algorithm with T̂ = T2 are summarized as follows. The far median is always at node 1

because w(T[1]) = 24 > (w(T )−w(T[12]))/2 = 18 and w(T[3]) = 13 < (w(T )−w(T[2]))/2) = 13.5.

cost[12] = costm[12] +∆(1)− d[1,m] · w(T[12]) = 76 + 3− 15 = 64

cost[11] = costm[11] +∆(1)− d[1,m] · w(T[11]) = 69 + 3− 16 = 56

cost[10] = costm[10] +∆(1)− d[1,m] · w(T[10]) = 64 + 3− 17 = 50

cost[9] = costm[9] +∆(1)− d[1,m] · w(T[9]) = 61 + 3− 18 = 46

cost[8] = costm[8] +∆(1)− d[1,m] · w(T[8]) = 60 + 3− 19 = 44 (optimum)

cost[7] = costm[7] +∆(1)− d[1,m] · w(T[7]) = 61 + 3− 20 = 44 (also optimum)

cost[6] = costm[6] +∆(1)− d[1,m] · w(T[6]) = 64 + 3− 21 = 46

cost[5] = costm[5] +∆(1)− d[1,m] · w(T[5]) = 74 + 3− 23 = 54

cost[2] = costm[2] +∆(1)− d[1,m] · w(T[2]) = 81 + 3− 24 = 60

Sorting by weights on the example of Fig 23

The algorithm based on sorting by weights – Section 5 – does not need to sort. If a priority queue is

used it never contains more than one element. The procedure is trivial and follows the near median

algorithm along with the cost calculations shown above.

Distance based algorithm on the example of Fig 23

The computations of the distance-based algorithm are shown in Table 6. The first thing to notice is

that, for j ∈ T1, none of the correct far medians are identified and the costs are much larger than

the correct ones. This does not matter, of course, because the two optimum solutions involve j and

corresponding cut edges in T2. On the T2 side, the only (two) correctly identified far medians lead

to optimum solutions.



29

Table 6. Using distances to find far-median candidates for the example in Fig. 23. Correct far medians are

marked with *.

far median candidates for T̂ = T1

j pj m(j) di m′ costm[j] ∆(m′) cost

4 3 4 d1 = 1− 2 = −1 ignore

3 1 3 d1 = 1− 1 = 0 0 185 0 185

d2 = 0− 1 = −1 ignore

1 0 3 d1 = 2− 0 = 2 5 185 8 185 + 8− 2 · 24 = 145

d2 = 1− 0 = 1 2 – 3 185 + 3− 1 · 24 = 164

d3 = 1− 1 = 0 0 – 0 185

far median candidates for T̂ = (T \ T1) \m = T2

j pj m(j) di m′ costm[j] ∆(m′) cost

12 11 12 d1 = 1− 8 = −7 ignore

11 10 12 d1 = 2− 7 = −5 ignore

10 9 12 d1 = 3− 6 = −3 ignore

9 8 12 d1 = 4− 5 = −1 ignore

8 7 12 d1 = 5− 4 = 1 1* 60 3 60 + 3− 1 · w(T[8]) = 44

d2 = 4− 4 = 0 0 – 0 60

d3 = 4− 5 = −1 ignore

7 6 12 d1 = 6− 3 = 3 ignore: node 4 6∈ [0, 1]

d2 = 5− 3 = 2 ignore: node 3 6∈ [0, 1]

d3 = 5− 4 = 1 1* 61 3 61 + 3− 1 · w(T[7]) = 44

6 5 12 d3 = 6− 3 = 3 ignore: node 4 6∈ [0, 1]

d1 > d2 > d3 so no point considering

5 2 12 d3 = 7− 2 = 5 ignore: all di out of range

2 0 12 d3 = 8− 1 = 7 ignore: all di out of range

C An Example with Non-Unit Edge Lengths

The example shown in Fig. 27 illustrates the more complex calculations involved when edge lengths

are not = 1. It also illustrates a situation where the near median jumps more than one position, i.e.,

m(j) is more than one edge away from m(k∗), resulting in more than one iteration of line 8 in the

algorithm of Fig. 9. See Fig. 28.

The one-median m is node 0, T1 and T2 are rooted at nodes 1 and 2, respectively, and have medians

at nodes 7 and 2. The cost of the whole tree with respect to the one-median, cost(T,m) = 264.

Tables 7 and 8 show the steps taken by the near median algorithm, Fig. 9, on the example.

Leaf nodes 3, 4, and 5 are processed first. Here we use the (non-unit) edge lengths to compute

costm[j] = d[j,m] · w(T[j]).

The near median stays at node 5 when node 6 is considered: w(T[5]) = 5 ≥ w(T[6])/2 = 4.

However, as shown in Fig. 28, it moves to node 7 when that node is processed: w(T[7])/2 = 8.5.

This is greater than w(T[6]) = 8 and certainly greater than w(T[5]). The cost updates in the two

iterations of the loop at line 8 are shown in the table.

The near median m(1) is still at node 7: w(T[7]) = 17 ≥ w(T[1])/2 = 11.



30

45
T1 T2

Fig. 27. A tree with non-unit edge lengths. The edge lengths are shown in the boxes near the midpoints of

the edges.

Fig. 28. A jump from m(6) = 5 to m(7) = 7.

Table 7. Calculation of costm[j] for j ∈ T1 in the example of Fig. 27.

j pj k∗ w(T[j]) d[m(k∗), j]− d[m, j] w(T[j])− w(T[k∗]) costm[j]

3 6 N/A 1 d[j,m] = 6 + 2 + 3 + 4 = 15 264− 15 · 1 = 249

4 1 N/A 4 d[j,m] = 5 + 4 = 9 264− 9 · 4 = 228

5 6 N/A 5 d[j,m] = 4 + 2 + 3 + 4 = 13 264− 13 · 5 = 199

6 7 5 8 4− 9 = −5 8− 5 = 3 199− 5 · 3 = 184

7 1 6a 17 6− 7 = −1 17− 8 = 9 184− 9 = 175 . . .

. . .x = 5, px = 6 d[x,px] · (2w(T[x])− w(T[j])) = 4 · (2 · 5− 17) = −28 . . .− 28 = 147 . . .

. . .x = 6, px = 7 d[x, px] · (2w(T[x])− w(T[j])) = 2 · (2 · 8− 17) = −2 . . .− 2 = 145

1 0 7 22 3− 4 = −1 22− 17 = 5 145− 1 · 5 = 140

a m(k∗) is node 5.

Table 8. Calculation of costm[j] for j ∈ (T \ T1) \m = T2 in the example of Fig. 27.

j pj k∗ w(T[j]) d[m(k∗), j]− d[m, j] w(T[j])− w(T[k∗]) costm[j]

8 2 N/A 8 d[j,m] = 3 + 1 = 15 264− 4 · 8 = 232

9 2 N/A 9 d[j,m] = 2 + 1 = 3 264− 3 · 9 = 237

2 0 9 21 2− 1 = 1 21− 9 = 12 237 + 12 = 249 . . .

. . .x = 9, px = 2 d[x, px] · (2w(T[x])− w(T[j])) = 2 · (2 · 9− 21) = −6 . . .− 6 = 243



31

On the T2 side, the leaves are nodes 8 and 9. The only other node, node 2, is its own near median

and the relevant cost updates are as indicated.

Delta values are as follows. First in T1, along the path [1, 7].

∆(1) = ∆(0) + d1,0 · (w(T )− 2w(T[1])) = 0 + 4 · (45− 2 · 22) = 4

∆(7) = ∆(1) + d7,1 · (w(T )− 2w(T[7])) = 4 + 3 · (45− 2 · 17) = 37

Then the T2, along the path [2, 2].

∆(2) = ∆(0) + d2,0 · (w(T )− 2w(T[2])) = 0 + 1 · (45− 2 · 21) = 3

We omit the trace of the binary search algorithm on this example: the lengths of the paths being

searched are two on the T1 side and only one on the T2 side. This means that most of the work is done

by the near median algorithm. The trace of sorting by weights focuses mainly on cost computations,

while that of the distance-based algorithm focuses on the limited number of far median candidates

under consideration.

Sorting by weights on the example of Fig 27

The nodes of T1, in increasing subtree weight order, are: 3, 4, 5, 6, 7, 1; they are listed in that same

order in Table 7. Far medians progress as follows:

node 3: w(T )− w(T[3]) = 44; w(T[2]) = 21 < 44/2 m′(3) = m = 0

node 4: w(T )− w(T[4]) = 41; w(T[2]) = 21 ≥ 41/2 m′(4) = node 2

The remaining far medians are at node 2; that is as far as they can travel because m(T2) = node 2.

Nodes of T2 also appear in their increasing subtree weight order in Table 8: 8, 9, 2.

Far medians are as follows:

node 8: w(T )− w(T[8]) = 37; w(T[1]) = 22 > 37/2, w(T[7]) = 17 < 37/2 m′(8) = node 1

node 9: w(T )− w(T[9]) = 36; w(T[7]) = 17 < 37/2 m′(9) stays at node 1

node 2: w(T )− w(T[2]) = 24; w(T[7]) = 17 ≥ 24/2 and node 7 is m(T1) m′(2) = node 7

Cost computation based on ∆ values are straightforward. On the T1 side:

cost[3] = costm[3] (no adjustment, m′(3) is m) = 249

cost[4] = costm[4] +∆(2)− d[2,m] · w(T[4]) = 228 + 3− 1 · 4 = 227

cost[5] = costm[5] +∆(2)− d[2,m] · w(T[5]) = 199 + 3− 1 · 5 = 197

cost[6] = costm[6] +∆(2)− d[2,m] · w(T[6]) = 184 + 3− 1 · 8 = 179

cost[7] = costm[7] +∆(2)− d[2,m] · w(T[7]) = 145 + 3− 1 · 17 = 131

cost[1] = costm[1] +∆(2)− d[2,m] · w(T[1]) = 140 + 3− 1 · 22 = 121

And on the T2 side:

cost[3] = costm[3] (no adjustment, m′(3) is m) = 249

cost[8] = costm[8] +∆(1)− d[1,m] · w(T[8]) = 232 + 4− 4 · 8 = 204

cost[9] = costm[9] +∆(1)− d[1,m] · w(T[9]) = 237 + 4− 4 · 9 = 205

cost[2] = costm[2] +∆(7)− d[7,m] · w(T[2]) = 243 + 37− 7 · 21 = 133



32

Using distances on the tree of Fig. 27

The first step in the distance-based algorithm is to create, for each side, the array A that stores the

nodes based on their distance from m. On the T1 side, the non-null entries are

A[0] = m = node 0

A[4] = node 1

A[7] = node 7

On the T2 side they are

A[0] = m = node 0

A[1] = node 2

Most of the d values for each j will be out of range. In what follows, we show only the ones that

range from 0 to 1 when we process T1 and from 0 to 7 when we process T2. The trace is shown in

Table 9. In other cases we give the delta value that puts d out of range, with the implication that

all smaller/larger values will be out of range as well. The null values for A[d] when j ∈ T2 reflect

the fact that the location of the other median, in order for the midpoint to as advertised, would be

somewhere along the edge (1,0) rather than either of its endpoints.



33

Table 9. Using distances to find far-median candidates for the example in Fig. 27. Correct far medians are

marked with *.

far median candidates for T̂ = T1

j pj m(j) d[m(j), j]− d[j,m] δ d A[d] costm[j] cost

3 6 3 0− 15 = −15 −15 + 2 · 6 < 0 ignore

4 1 4 0− 9 = −9 δ ranges from 4.5 to 5

4.5 −9 + 2 · 4.5 = 0 0 228 228

5 −9 + 2 · 5 = 1 2* 228 227

5 6 5 0− 13 = −13 0− 13 + 2 · 4 < 0 ignore

6 7 5 4− 9 = −5 δ ranges from 2.5 to 3

2.5 −5 + 2 · 2.5 = 0 0 184 184

3 −5 + 2 · 3 = 1 2* 184 161

7 1 7 0− 7 = −7 −7 + 2 · 3 < 0 ignore

1 0 7 3− 4 = −1 δ ranges from 0.5 to 1

0.5 −1 + 2 · 0.5 = 0 0 140 140

1 −1 + 2 · 1 = 1 2* 140 121

far median candidates for T̂ = (T \ T1) \m = T2

j pj m(j) d[m(j), j]− d[j,m] δ d A[d] costm[j] cost

8 2 8 0− 4 = −4 δ ranges from 2 to 3

2 −4 + 2 · 2 = 0 0 232 232

2.5 −4 + 2 · 2.5 = 1 null

3 −4 + 2 · 3 = 2 null

9 2 9 0− 3 = −3 δ ranges from 1.5 to 2

1.5 −3 + 2 · 1.5 = 0 0 237 237

2 −3 + 2 · 2 = 1 null

2 0 2 0− 1 = −1 δ ranges from 0.5 to 1

0.5 −1 + 2 · 0.5 = 0 0 243 243

2 −1 + 2 · 1 = 1 null


	Efficient Algorithms for Finding 2-Medians of a Tree

