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Today’s rapidly growing document volumes pose pressing challenges to modern document analytics, in both space usage and processing time.
In this work, we propose the concept of compression-based direct processing to alleviate issues in both dimensions. The main idea is to enable
direct document analytics on compressed data. We present how the concept can be materialized on Sequitur, a compression method that
produces hierarchical grammar-like representations. We discuss the major complexities in applying the idea to various document analytics
tasks, and reveal a set of guidelines and also assistant software modules for developers to effectively apply compression-based direct processing.
Experiments show that the method saves 90.8% storage space and 87.9% memory usage, while speeding up data processing significantly (on
average, 1.6X on sequential systems, and 2.2X on distributed clusters).
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1 INTRODUCTION

Document analytics refers to the class of data analytics that derives certain statistics, patterns, insights or knowledge from
some textual documents, including textual contents of web pages, system log files, phone or email records. Document analytics
plays an essential role in many applications, ranging from web search to system diagnosis, security, and so on.

Document analytic applications are time-consuming, especially as the data to process keeps growing rapidly. At the same
time, they often need a large amount of space, both in storage and memory.

A common approach to mitigate the space concern is data compression. By compressing the data on disk, it often reduces the
storage usage by several factors. That however does not alleviate, but actually worsens, the time concern. In current document
analytics frameworks, compressed document sets have to be decompressed before being processed. The decompression step
even lengthens the end-to-end processing time.

This work investigates the feasibility of efficient data analytics on compressed data without decompressing it. Its motivation
is two-fold. First, it could avoid the decompression time. Second, more importantly, it could save some processings. Space
savings by compression fundamentally stem from repetitions in the data. So if the analytics algorithms could leverage the
repetitions that the compression algorithm already uncovers, it could avoid some unnecessary repeated processings, and
hence shorten the processing time significantly. Compression takes time. But many datasets (e.g., government document
archives, electronic book collections, historical Wikipedia datasets [1]) are used for various analytics tasks by many users
repeatedly. For them, the compression time is well justified by the repeated usage of the compression results.

This paper presents our systematic explorations of that idea. We base our study on a specific compression algorithm named
Sequitur [25] for the hierarchical structure of its compression results (detailed in Section 2).

We first introduce the concept of compression-based direct processing, and then analyze the complexities of document
analytics to achieve a high efficiency on compressed data (Section 4).

Through in-depth studies on a set of core algorithms used in document analytics, we come up with a set of solutions and
insights on tackling those challenges. These insights range from algorithm designs, to data structure selections, scalable
implementations, and adaptations to problems and datasets. We draw on several common document analytics problems as
examples to provide some concrete explanations of those insights, providing the essential guidelines and some techniques for
fully exerting the potential of compression-based document analytics (Section 5).

In addition to the insights and guidelines, this work yields an immediate usable artifact, the CompressDirect library. It offers
a set of modules to ease the applications of the guidelines. At the same time, it provides highly performant implementations
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of six frequently used algorithms in document analytics, in sequential, parallel, and distributed versions; they can be directly
plugged into existing applications to generate some immediate benefits.

Our evaluation validates the efficacy of the proposed techniques for saving both space and time. Compared to data analytics
on the original uncompressed datasets, our techniques reduce storage usage by 90.8% and memory usage by 87.9%. At the
same time, they speed up the analytics by 1.6X for sequential runs, and 2.2X for Spark-based distributed runs.

To our knowledge, this work is the first that enables high performance complex document analytics directly on compressed
data. Succinct [2] offers a way to enable queries on compressed data, but it is designed to support only simple search and
random access queries, rather than the complex functionalities usually required for sophisticated document analytics. Data
deduplication [21] saves storage space, but does not save repeated processing of the data.

Overall, this work makes the following major contributions:

o It presents the first method for enabling high performance complex document analytics directly on compressed data,
and details the realizations on Sequitur.

o It unveils the complexities of conducting compression-based document analytics and reveals a set of solutions and
insights, which provide the essential guidelines for applying the method to high performance document analytics on
compressed data.

o It validates the efficacy of the proposed techniques, demonstrates their significant benefits in both space and time
savings on large datasets, and offers a high performant library for some common operations in document analytics.

2 PREMISES AND BACKGROUND

There are many compression algorithms for documents, such as LZ77 [36], suffix array [23], and their variants. Our study
focuses on Sequitur [25] for the natural fit of its compression results for direct processing.

Sequitur is a recursive algorithm that infers a hierarchical structure from a sequence of discrete symbols. For a given
sequence of symbols, it derives a context-free grammar (CFG), with each rule in the CFG reducing a repeatedly appearing
string into a single rule ID. By referencing the original string with the rule ID in the CFG, Sequitur makes it output CFG more
compact than the original dataset.

Figure 1 illustrates the compression results of Sequitur on an input string. Figure 1(a) shows the original input, and
Figure 1(b) shows the output of Sequitur in form of a CFG. The CFG uncovers the repetitions in the input string as well as the
hierarchical structure of the string. It uses RO to represent the entire string, which consists of substrings represented by R1
and R2. The two instances of R1 in RO reflect the repetition of “a b ¢ a b d” in the input string. Similarly, the two instances of
R2 in R1 reflect the repetition of “a b” in the substring of R1. The output of Sequitur is often visualized with a directed acyclic
graph (DAG) as Figure 1(c) shows. The edges indicate the hierarchical relations among the rules.
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Fig. 1. A compression example with Sequitur.
As a common technique to reduce space and time, dictionary encoding is used to represent each word with a unique

non-negative integer, and a dictionary is created to store the mapping between the integers and the words. We represent
each rule ID with a unique integer greater than N, where N is the total number of unique words contained in the dataset.



Figure 1(d) gives the numeric representations of the words and rules in Figures 1(a,b), while Figure 1(e) shows the CFG in the
numerical IDs.

A limitation of Sequitur is that its compression is relatively slow. However, it is important to note that our technique is
designed for datasets that are repeatedly used by many users. For them, the compression time is not a main concern as the
compression results can be used for many times by different users for various analytic tasks again and again. These datasets
are common, ranging from electronic book collections to historical Wikipedia pages [1], government document archives, law
firm archived collections, historical news collections, and so on. On the other hand, Sequitur has several properties that make
it appealing for our use. First, the CFG structure in its results makes it easy to find repetitions in input strings. Second, its
output consists of the direct (sequences of) input symbols rather than other indirect coding of the input (e.g., the distance
used in LZ77 [36] and suffix array [23]). These properties make Sequitur a relatively easy fit for materializing the idea of
compression-based document analytics. With these said, we do not rule out the possible feasibility on other compression
algorithms. The insights attained in this work hopefully could give some enlightenments when other compression algorithms
are explored in the future.

3 TYPICAL DOCUMENT ANALYTICS

Before presenting the proposed technique, we first describe three commonly performed document analytics tasks. They each
feature some different complexities that are typical to many document analytics, offering examples later sections use for our
discussions.

3.1 Word Count

Word count [3, 4, 29] is a basic algorithm in document analytics, which is widely used in applications of document classification,
clustering, and theme identification. It counts the total appearances of every word in a given dataset, which may consist of a
number of files.

e Input: {filel, file2, file3, file4, file5, ...}

e Output: <word1, countl>, <word2, count2>, ...

3.2 Inverted Index

Inverted index [3, 9, 33] builds word-to-file indices for a document dataset. It is widely used in search engines. The input of
inverted index is a set of files, and the output is the mappings between words and files. Unlike word count, inverted index
distinguishes between one file and another.

o Input: {filel, file2, file3, file4, file5, ...}
e Output: <wordl, <filel, file3>>, <word2, <file13>>, ...

3.3 Sequence Count

Sequence count [3, 18, 35] counts the number of appearances of every [-word sequence in each file, where [ is an integer
greater than 1. In this work, we use /=3 as an example. Sequence count is very useful in semantic, expression, and sequence
analysis. Compared to word count and inverted index, sequence count needs to not only distinguish between different files, but
also discern the orders of consecutive words, which poses more complexities for processing (Section 4).

o Input: {filel, file2, file3, file4, file5, ...}

e Output: <wordl_word2_word3, filel, count1>, ...

4 COMPRESSION-BASED DIRECT PROCESSING AND CHALLENGES

In this section, we present the concept of compression-based direct processing, including its basic algorithms and the challenges
for materializing it effectively.

4.1 Compression-based Direct Processing

The basic concept of compression-based document analytics is to leverage the compression results for direct processing,
during which, try to avoid unnecessary repeated processings of repeated content in the original data.



The results from Sequitur make this basic idea easy to materialize. Consider a task which is to count word frequencies in
some input documents. We can do that directly on the DAG from Sequitur compression through a postorder (children before
parents) traversal of the graph as shown in Figure 2. After the DAG is loaded into memory, the traversal starts. At each node,
it counts the frequency of each word that the node directly contains and calculates the frequencies of other words it indirectly
contains—that is, contained in its child nodes. For instance, when node R1 in Figure 2 is processed, direct appearances of “c”
and “d” on its right-hand-side (rhs) are counted, while, the frequencies of words “a” and “b” are calculated by multiple their
frequencies in R2 by two—the number of times R2 appears on its rhs. When the traversal reaches the root R0, the algorithm

produces the final answer.
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Fig. 2. A DAG from Sequitur compression for abcabdabcabdaba” and how a postorder traversal of the DAG counts frequencies of
all words efficiently (details in Sec 4.1).

Note that because the processing leverages the compression results, it naturally avoids repeated processings of repeated
contents. For instance, even though the substring “a b” appears five times in the original string, the processing only counts its
word frequencies once. It is counted when the algorithm processes R2; the results are reused for the two appearances of R2
when R1 is processed; similarly, R1’s results (and also R2’s) are reused when RO is processed.

The example illustrates the essence of the general algorithm of our compression-based direct processing:

Let G be the graph representing Sequitur compression results.

Conduct a traversal of G, during which, at each node, do the following:
Process local info;
Integrate the local info with results passed to this node during the traversal;
Pass the integrated info to other nodes while continuing the traversal.

In this algorithm, document analytics is converted into a graph traversal process. Its core operations are (1) local processing,
which processes the info directly contained in the rhs of the rule, (2) data propagation, which passes computation results from
one node (which corresponds to a segment of input) to another, and (3) data integration, which integrates the propagated data
and local data together. Such a traversal process leverages the structure of the input documents captured by Sequitur, and
embodies information reuse to avoid repeated processing of repeated content.

4.2 Complexities

To effectively materialize the concept of compression-based direct processing on document analytics, there are a number of
complexities. As Figure 3 shows, they center around the tension between cross-node reuses of results and the overhead in
saving and propagating results. Reuse saves repeated processings of repeated content, but at the same time, requires the
computation results to be saved in memory and propagated throughout the graph. The key for applying compression-based
direct processing is to maximize the reuse while minimizing the overhead.
The problem is complicated by the complexities from the various analytics problems, the datasets, and the demands for
scalable performance. We summarize the most common complexities as follows:
o Unit sensitivity. Word count regards the entire input dataset as a whole bag of words. But in many other document
analytics tasks, the input dataset are regarded as a collection of some units—the most common type of units is file. For
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Fig. 3. Overview of the complexities and solutions.

instance, both inverted index and sequence count try to get some statistics in each file. The default Sequitur compression

does not discern among files. How to support unit sensitivity without losing much reuse benefit is a question needed

to be answered.
o Order sensitivity. The way results are propagated in the example of word count in Figure 2 neglects the appearing
order of words in the input documents. It is okey when the analytics tasks are oblivious to the order. But how to
accommodate the order for applications (e.g., sequence count) that are sensitive to the order? It is especially tricky
when a sequence of words span across the boundaries of multiple nodes (e.g., the ending substring “a b a” in Figure 1
spans across nodes R2 and RO).
Data attributes. The attributes of input datasets may sometimes substantially affect the overhead and benefits of a
particular design of the compression-based direct processing algorithm. For instance, when solving inverted index, one
method is to propagate through the graph the list of files in which a word appears. It could work if there are a modest
number of files, but would incur large propagation overhead when the number of files is large as the list to propagate
could get very large. So datasets of different properties could demand a different design in what to propagate and the
overall traversal algorithm.
Parallelism barriers. For large input datasets, parallel or distributed processing is essential for a scalable performance.
The compression-based direct processing, however, introduces some dependencies that could form barriers for parallel
processing. In Figure 2, for instance, because the processings of nodes R1 and R0 need to reuse the results from R2, it is
difficult for them to happen concurrently with the processing of R2. One strategy is to split the graph into multiple
partitions and let each thread process one partition. This method would need to find good partitions to minimize the
dependencies among partitions, and at the same time, to keep a good workload balance among threads and minimize
required synchronizations and result merging cost.

5 GUIDELINES AND TECHNIQUES FOR EFFICIENCY

This section presents a list of guidelines, techniques, and software modules for easing programmers’ jobs in implementing
efficient compression-based direct processing. By following these guidelines and leveraging the techniques and software modules,
one can avoid some pitfalls, and effectively address the aforementioned complexities in applications of compression-based
direct processing to document analytic problems.

5.1 Solution Overview

The part outside the complexity circle in Figure 3 gives an overview of the solutions to the complexities. They are on seven
aspects. Because of the close interplays of the various complexities, each of the solution techniques simultaneously relates
with multiple complexities. They all contribute to the central goal: maximizing reuse while minimizing overhead.

The first solution technique is about the design of the graph traversal algorithm, emphasizing the selection of the traversal
order and the information to propagate to adapt to different problems and datasets. The second is about data structure
designs, which is especially useful for addressing unit sensitivity. The third is on overcoming the parallelism barriers through



coarse-grained parallel algorithm design and automatic data partition. The fourth addresses order sensitivity. The other
three are some general optimizations to be applied at compression time and graph loading time, useful for both reducing the
processing overhead and maximizing the compression rate. For these techniques, we have developed some software modules
to assist programmers in applying those techniques.

In the rest of this section, we describe each of the techniques along with the corresponding software modules.

5.2 Adaptive Traversal Order

The first fold of important insights we learned through our explorations is that graph traversal order significantly affects the
efficiency of compression-based direct processing. Its influence couples with the information that the algorithm propagates
through the graph during the processing. The appropriate choice depends on the characteristics of both the problems and the
datasets.

In this part of paper, we first draw on word count and inverted index as two examples to explain this insight, and then
present the derived guideline and a corresponding software module to assist developers. Through the way, we will also
explain some basic operations needed to handle unit sensitivity of document analytics.

An Alternative Algorithm for Word Count

Figure 2 has already shown how word count can be done through a postorder traversal of the CFG. It can yield a quite
decent speedup by saving lots of computations (e.g., 1.4X on a 2.1GB Wikipedia dataset [1], which is dataset E in Section 7.1).
However, we find that if we change the traversal to preorder (parents before children), the speedups could almost double.

1) RO propagates the frequency of R1 (which is 2) to R1,
and the frequency of R2 (which is 1) to R2.
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multiplied by its weight as the final result.

Fig. 4. Illustration of a preorder traversal algorithm for word count on the same string as Figure 2 deals with. The weights on an edge
between two nodes (say, nodex to nodey) indicate the total appearances of nodey’s rule incurred due to all appearances of nodex’s rule.

Figure 4 illustrates this alternative design. It consists of two main steps. The first step calculates the total frequencies that
each rule appears in the entire dataset (@ to @ in Figure 4). This step is done through a preorder traversal of the graph:
Parent nodes pass their total frequencies to their children, from which, the children nodes can calculate their total frequencies.
Let f(r) be the computed frequency of rule r. With this step done, the second step (@ in Figure 4) just needs to enumerate
all the rules once. No graph traversal is needed. When it processes rule r, it calculates f,-(w) = c¢(w) * f(r), where, c(w) is the
directly observable frequency of the word w in the right-hand side of rule r (i.e., without considering the subrules of r), and
f1(w) is the total directly observable frequency of w due to all the occurrences of rule r. The algorithm adds f,-(w) into f(w),
the accumulated frequency of w. So when the enumeration of all rules is done, the total count of every word is produced.

This alternative algorithm achieves a much larger speedup (2.0X versus 1.4X on dataset E of Wikipedia in Section 7.1) than
the postorder algorithm does. The reason is that it needs to propagate only an integer—its frequency—from a node to its
children, while the postorder algorithm in Figure 2 needs to propagate the frequencies of all the words it and its successors



contain. This example illustrates the importance of traversal order and the information to propagate for the efficiency of
compression-based direct processing.

Traversals for Inverted Index

The appropriate traversal order depends on both the analytic tasks and datasets. This part illustrates this point by describing
two alternative traversal algorithms designed for inverted index.

Recall that the goal of inverted index is to build up a mapping from each word to the list of files in which it appears. Before
we discuss the different traversal orders, it is worth noting that the objective of this analytics task suggests that it needs to
discern one file from another. Therefore, in the Sequitur compression results, file boundaries should be marked. To do that,
we introduce a preprocessing step, which inserts some special markers at file boundaries in the original input dataset. As
these markers are all distinctive and differ from the original data, in the Sequitur compressed data, they become part of the
root rule, separating the different files, as the “spt1” and “spt2” in Figure 5 illustrate. (This usage of special markers offers a
general way to handle unit sensitivity.)
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Fig. 5. Compression result with file separators (“spt1” and “spt2” are two file separators).

We next explain both preorder and postorder designs for this task. They are similar to the two algorithms for word count
except for the information to propagate and to integrate.

Specifically, in the preorder design, its first step propagates the set of the IDs of the files that contain the string represented
by the node, instead of the frequencies of rules. For instance, in Figure 5, the fileSet of rule R2 is {file0,file1}, and {file2} for rule
R3; because the two rules both have rule R4 as one of their subrules, during the preorder graph traversal, the fileSet of rule R4
is updated to the union of their fileSets as {file0,file1,file2}. So, after the first step, every rule’s fileSet shall consist of the IDs of
all the files containing the string represented by that rule. The second step goes through each rule and builds the inverted
indices by outputting the fileSet of each word that appears on the right-hand side of that rule.

The postorder design recursively folds the set of words covered by a node into the word sets of their parent node. The
folding follows a postorder traversal of the graph and stops at the immediate children of the root node (called level-2 nodes.)
The result is that every level-2 node has a wordSet consisting of all the words contained by the string represented by that
node. From the root node, it is easy to label every level-2 node with a fileSet—that is the set of files that contain the node
(and hence each word in its wordSet). Going through all the level-2 nodes, the algorithm can then easily output the list of
containing files for each word, and hence yield the inverted indices.

Unlike for word count, for inverted indexing, preorder is not always the winner. In fact, for a dataset with many small files,
it runs much slower than the postorder version (e.g., 1.2X versus 1.9X on NSF Research Award Abstracts dataset [19], which is
dataset D in Section 7.1). The reason is that the file sets it propagates could get very large.

Guideline and Software Module
The discussions lead to the following two guidelines for implementing compression-based direct processing.
Guideline I: Try to minimize the footprint size of the data propagated across the graph during the processing.
Guideline II: Traversal order is essential for the efficiency; it should be selected to suit both the analytics task and the
input datasets.



These guidelines serve as some principles for developers to follow during their implementations of the solutions for their
specific analytics tasks. To further ease the burden in making the solutions adaptive to datasets, we develop a software module,
orderSelector. It helps the developers build a decision tree for adaptive version selections.

Specifically, for a given analytics problem, the developer may create multiple versions of the solution (e.g., of different
traversal orders). The developer can then specify these versions in the configuration file of orderSelector as candidates, and
specify a list of inputs, with each brings the Sequitur DAGs of an input dataset to the analytics problem. They may also specify
some (currently Python) scripts for collecting certain features of a dataset that are potentially relevant to the selection of the
versions. This step is optional as orderSelector has already predefined a set of data feature collection procedures, including, for
instance, the total size of its CFG from Sequitur, and the number of files. These features are some meta data at the beginning of
the Sequitur compressed data, taking virtually no time to read. With the configuration specified, orderSelector invokes all the
versions on each of the datasets to collect their performance data (i.e., running time) and dataset features. It then invokes an
off-the-shelf decision tree construction tool (scikit-learn [28]) on the data to construct a decision tree for the version selection.
The decision tree will then be used in the production mode of orderSelector to invoke the appropriate version for a given
compressed dataset.

5.3 Coarse-Grained Parallelism and Data Partition

To get scalable performance, it is important for compression-based direct processing to effectively leverage parallel and
distributed computing resources. As Section 4 mentions, some dependencies are introduced among the processing steps in
either preorder or postorder traversals of CFGs, which cause extra complexities of the parallel implementation.

We have explored two ways to treat the dependencies to parallelize the processing. The first is fine-grained partitioning,
which distributes the nodes of the DAG to different threads, and inserts fine-grained communications and synchronizations
among the threads to interchange necessary data and results. The second is a coarse-grained partitioning method. At the
compression time, this method partitions the original input into a number of segments, then applies the compression and the
analytics to each segment in parallel, and finally assembles the results together if necessary.

The coarse-grained method may miss some compression opportunities existing across the segments (e.g., one substring
appears in two segments). However, its coarse-grained partitioning helps avoid frequent synchronizations among threads.
Our experimental results show that on datasets of a non-trivial size, the coarse-grained method significantly outperforms
the fine-grained method in performance and scalability. It is also easier to implement, for both parallel and distributed
environments. For a parallel system, the segments are distributed to all cores evenly. For a distributed system, they are
distributed to all nodes evenly, and then distributed to the cores within each node.

Load balance among threads or processes is essential for the overall parallel or distributed performance. For the coarse-
grained method, it translates to the requirement for balanced partitioning of input datasets among threads or processes. The
partition can be at file level, but sometimes also needs to happen inside a file such that a large file can be split into several
sections, with each section assigned to a thread or process.

Guideline and Software Module

The discussions lead to the following guideline.

Guideline III: Coarse-grained parallel or distributed implementation should be preferred when the input dataset is large,
and the partitions of workload should be kept balanced among threads and processes.

The partition step could be tedious. For applications that require additional file or word sequence information, the
partitioning needs to record some extra information, such as which file a section belongs to, the sequence number of the
section in the file, and so on. These information is necessary for a thread to know which section of which file it is processing,
which is useful for later results merging.

To assist the process, we developed a software module. When the module is invoked with the input dataset (a collection
of files) and the intended number of worker threads, it returns a set of partitions and a meta data structure. The meta data
structure records the mapping relations among RDDs, files, and file sections. The module ensures that the returned partitions
are of similar sizes such that when each gets assigned to a worker thread, load balance can be achieved. Meanwhile, the
module avoids generating small fragments of a file by tolerating some disparity (e.g., 10%) in the partition sizes.



5.4 Treatment to Order Sensitivity

As Section 4 mentions, tasks that are sensitive to the appearing order of words pose some special challenges to compression-
based direct processing. Sequence count, for instance, requires the processing to consider the sequences which may span across
multiple Sequitur rules (i.e., nodes in the DAG), and also the orders of words covered by different rules. The complexity calls
for certain constraints on the visiting order of the rules in the Sequitur grammar, and also demands some data structures to
facilitate the considerations of sequences across rules.

In our explorations, we found that the complexity can be addressed through a two-level table design with a depth-first graph
traversal. The depth-first traversal of the graph ensures that the processing of the data observes the appearing order of words
in the original dataset. During the traversal, it uses a global table to store the results that require cross-node examinations,
and it uses a local table to record the results directly attainable from the right hand side of the rule in a node. Such a design
allows the visibility of results across nodes, and at the same time, permits reuses of local results if a rule appears many times
in the dataset.

For sequence count, for instance, the local table stores the counts of the sequences composed of the consecutive words
appearing on the right hand side of a rule; that can help avoid repeatedly counting those sequences if that rule appears
multiple times in the dataset. The global table stores the counts of the sequences spanning across rules. The final sequence
counts are attained by merging the local and global counts together. Algorithm 1 shows the pseudo-code.

Algorithm 1 SequenceCount: Count I-word Sequences in Each File

1: G = LoadData(I) > load compressed data I; each rule has an empty locT bl and a false boolean locTbIReady
2: allocate glbThl and an Il-element long buffer
3: for each file f do

4: s = segment(f, G.root) > Get a segment of the right-hand side of the root rule covering file f
5 seqCount(s)
6: calfq(s) > calculate the frequency fq of each rule in s
7: cmb(s) > integrate into glbTbl the locTbl (times fq) of each rule subsumed by s
8: output glbTbl and reset it and buffer
9: end for

10: function seqCount(rule)

11: for each element e in rule rule do

12: if e is a word then

13: process(e, rule)

14: else

15: seqCount(e)

16: end if

17: end for

18: rule.locTblReady = true
19: end function
20: function process(e, r)

21: buffer.pushin(e) > evict the oldest if full
22: return if buffer is not full

23: if words in buffer are from multiple rules then

24: glbTbl[buffer] + +

25: else

26: if 'r.locTbIReady then > update only if not ready
27: r.locThl[buffer] + +

28: end if

29: end if

30: end function

Figure 6 demonstrates how Algorithm 1 works on an input word sequence whose DAG has been shown in Figure 5. The
words in the first 3-word sequence correspond to two different rules in the DAG, R1 and R4; it is a cross-node sequence and
the algorithm stores its count into a global table. The next 3-word sequence correspond to a single R4, and is hence counted



input sequence: w5 w6 w7 w8 w6 w7 w8 w5 wl

w5 | wb | w7

rule#: R1'R4'R4
pattern:  from two different rules
action:  store count into global table

w6 | w7 | w8

rule#: R4 ' R4 ' R4
pattern: from same rule instance
action: store count into local table
w7, w8 , wé
rule#: R4 ' R4 ' R4
pattern: from different rule instances
action: store count into global table
w8 | wb | w7
rule#: R4 'E' R4
pattern: from different rule instances
action: store count into global table
w6 | w7, w8
rule#: R4 'R4'R4
pattern: from same rule instance

action: reuse without recounting

Fig. 6. lllustration of how Algorithm 1 processes an input sequence (DAG in Figure 5) for counting 3-word long sequences.

in a local table. The next two sequences both correspond to two instances of R4, and are both cross-node sequences; they are
counted in the global table. The bottom sequence in Figure 6 is the same as the second sequence, coming also from a single
R4; the algorithm does not recount this sequence, but directly reuses the entry in the local table of R4.

Guideline

The discussions lead to the following guideline.

Guideline IV: For order-sensitive tasks, consider the use of depth-first traversal and a two-level table design; the former
helps conform to the word appearing order, while the latter helps with results reuse.

The tables can be easily implemented through some existing template-based data structures in C++ and other languages.
There is hence no specific software module created for the application of this guideline. However, it is worth noting that the
coarsening module described next gives some important performance benefits to the applications of this guideline.

5.5 Other Implementation-Level Optimizations

This part introduces three extra optimizations. Although they are mostly implementation-level features, we find them quite
useful for deploying compression-based direct processing efficiently.

Double-layered bitmap. As Guideline I says, minimizing footprint in data propagation is essential. In our study, we find
that when dealing with unit-sensitive analytics (e.g., file sensitivity of inverted indexing and sequence count), a double-layered
bitmap is often a helpful data structure for reducing the footprint.

Double-layered bitmap is a kind of data structure that has been used in many tasks. Our contribution is at recognizing its
connections with compression-based direct processing.

Recall that in the preorder design of inverted indexing in Section 5.2, we need to propagate file sets across nodes. One
possible design of data structure is that each node uses a set structure to store file IDs, but frequent querying and insertions to
the set limit the performance of graph traversal. An alternative is that each node uses a bit-vector, with each bit corresponding
to a file: 1 for file presence, 0 otherwise. Although it can help replace the slow set operations with fast bit operations, it incurs
large space overhead when there are many files, as every node needs such a vector, and the length of the vector needs to be
the same as the total number of files.

We find a double-layered bitmap effective in addressing the problem. As Figure 7 illustrates, level two contains a number
of N-bit vectors (where N is a configurable parameter) while level one contains a pointer array and a level-1 bit vector.
The pointer array stores the starting address of the level-2 bit vectors, while the level-1 bit vector is used for fast checks to



determine which bit vector in level 2 contains the bit corresponding to the file in querying. If a rule is contained in only a
subset of files, whose bits correspond to some bits in several level-2 vectors, then the level two of the bitmap associated with
that rule would contain only those several vectors, and most elements in its pointer array would be null. The number of
elements in the first level arrays and vectors of the double-layered map is only 1/N of the number of files. In comparison, in
the aforementioned one-level bit vector method, every rule would need to have a bit vector as long as the number of files in
the total dataset. For a dataset containing 134,631 files (dataset D in Section 7.1), the double-layered bitmap saves 99.4% of the
space a one-level bit vector would use.

I Level 1:

Bitarray | bito | bitt | bit2 | bit3 | bita [ bits [ bits [ bz [ ]

Pointerarray [ po | p1 [ Nutt] p3 | pa [ ps [mu] p7 [ ]

1 1
1 bit0 bit0 bit0 bit0 bit0 bit0 :
1

1 bitl bitl bitl bitl bitl bitl . !
| N bits =1
1 o !
1 1
1 bitN-1 || bit N-1 bit N-1 bit N-1 || bit N-1 bit N-1 !
| 1

Fig. 7. A double-layered bitmap for footprint minimization and access efficiency.

Time-wise, the double-layered bitmap carries most of the efficiency benefits of the one-level bit vector compared to the use
of sets. Even though it incurs one possible extra pointer access and one extra bit operation compared to the use of one-level bit
vectors, its total memory footprint is much smaller, which contributes to better cache and TLB performance. Our experiments
(reported in Section 7) show that, in general, the double-layered bitmap gets the best of both worlds, brings significant benefits
in both space and time.

It is easy to see that the double-layered bitmap is a technique workable for general unit sensitivity rather than just file
sensitivity. If the unit is a class of articles, for instance, one just needs to change the semantic of a bit to represent the class.

Double compression. Double compression is an optimization we find helpful for the compression step. Compared to some
other compression algorithms, Sequitur is based on words and does not always get the highest compression rates. A method
we found effective to complement it is to first compress the original dataset with Sequitur and then run “gzip” (or other
methods with high compression rates) on the output of Sequitur. The result is often even more compact than “gzip” results
on the original dataset. When using the data, one only needs to decompress the “gzip” result to recover the Sequitur result.
Because Sequitur result is usually much smaller than the original dataset, it takes much less time to recover than the original
dataset does. The decompression of “gzip” result adds only marginal overhead as shown later.

Coarsening. The third optimization relates with data loading time. It is called coarsening, a transformation to the Sequitur
DAG. Through it, the nodes or edges in the graph can represent the accumulated information of a set of nodes or edges.
Specifically, we have explored two coarsening methods: edge merging and node coarsening. Edge merging merges the edges
between two nodes in the DAG into one, and uses a weight of the edge to indicate the number of original edges. The merging
loses the order of words, but helps reduce the size of the graph and hence the number of memory accesses in the graph
traversal. It is helpful to analytics tasks that are insensitive to word order (e.g., word count and inverted index). Node coarsening
inlines the content of some small rules (which represent short strings) into their parent rules; those small nodes can then be
removed from the graph. It reduces the size of the graph, and at the same time, reduces the number of substrings spanning
across nodes, which is a benefit especially important for analytics on word sequences (e.g., sequence count). Coarsening adds
some extra operations, but the time overhead is negligible if it is performed during the loading process of the DAG. On the
other hand, it can save memory usage and graph traversal time as reported in the next section.

Guideline and Software Module



The discussions lead to the following guidelines.

Guideline V: When dealing with analytics problems with unit sensitivity, consider the use of double-layered bitmap if
unit information needs to be passed across the CFG.

To simplify developers’ job, we created a collection of double-layered bitmap implementation in several commonly used
languages (Java, C++, C). Developers can reuse them by simply including the corresponding header files in their application.

Guideline VI: When the dataset to process is of non-trivial size, try to employ double compression and coarsening, which
help with space and time efficiency.

We create two software modules to assist developers in applying this guideline. One module is a library function that
takes an original dataset as input, and conducts Sequitur compression to it, during which, it applies dictionary encoding and
double compression automatically. In our implementation, this module and the partition module mentioned in Section 5.3
are combined into one compression module such that the input dataset first gets integer indexed, then partitioned, and
finally compressed. The combination ensures that a single indexing dictionary is produced for the entire dataset; the common
dictionary for all partitions simplifies the results merging process.

The other module is a data loading module. When it is invoked with coarsening parameters (e.g., node or/and edge
coarsening, the minimum length of a string a node can hold), it loads the input CFG with coarsening automatically applied.

5.6 Recap

The six guidelines described in this section capture the most important insights we have learned for unleashing the power of
compression-based direct processing. They provide the solutions to all the major complexities listed in Section 4.2: Guideline V
addresses unit sensitivity, Guideline VI order sensitivity, Guideline II data attributes complexity, Guideline III parallelism
barriers, while Guidelines I and VI provide general insights and common techniques on maximizing the efficiency. The
described software modules are developed to simplify the applications of the guidelines. They form part of the CompressDirect
library described next.

6 COMPRESSDIRECT LIBRARY

We create a library named CompressDirect for two purposes. The first is to ease programmers’ job in applying the six
guidelines when developing compression-based direct processing for an analytics problem. To that end, the first part of
CompressDirect is the collection of the software modules described in the previous section. The second purpose is to provide
a collection of highly performant implementations of some frequently performed document analytics tasks, which can directly
help many existing applications.

Specifically, the second part of CompressDirect consists of six highly performant modules. Word count [3] counts the
number of each word for input documents. Sort [14] sorts all the words of input documents in lexicographic order. Inverted
index [3] generates a word-to-document index showing the list of files containing each word. Term vector [3] finds the
most frequent words in a set of documents. Sequence count [3] calculates the frequencies of each three-word sequence in
each file. Ranked inverted index [3] produces a list of word sequences in decreasing order of their occurrences in each
document.

These modules are essential for many text analysis applications. For example, word count is important in lexical analysis;
it is the basic step for computing text similarities, which are the key metric for document classifications and clustering.
Similarly, the other modules are frequently used in various text analysis tasks.

For each of these modules, we implement three versions: sequential, parallel, and distributed versions. The first two versions
are written in C/C++ (with Pthreads [27] for parallelization), and the third is in Scalar on Spark [34]. The implementation
leverages the functions contained in the first part of the library. We next report the performance.

7 EVALUATION

Using the six algorithms listed at the end of the previous section, we evaluate the efficacy of the proposed Sequitur-based
document analytics for both space and time savings. The baseline implementation of the six algorithms came from existing
public benchmark suites, Sort from HiBench [14] and the rest from Puma [3]. We report the performance in sequential and
distributed environments. For a fair comparison, the original and optimized versions are all ported to C++ for the sequential
experiments and to Spark for the distributed experiments.



The benefits of compression-based direct processing are significant in both space savings and time savings. Compared to the
default direct data processing with no compression, the method speeds up the data processing by more than a factor of two
in most cases, and at the same time, saves the storage and memory space by a factor of 6 to 13. Next, after explaining the
methodology of the experiments, we report the overall time and space savings, and then describe the benefits from each of
the major guidelines we have described earlier in the paper.

7.1 Methodology

Versions to Compare Our comparisons are on three versions. Version “baseline” processes the dataset directly, as explained
at the beginning of this section. Version “CD” is our version using compression-based direct processing. The input to
"CD" is the compressed data by our double compression (i.e., first by Sequitur then by Gzip). "CD" first recovers the Sequitur
compression result by undoing the Gzip compression, and then processes the data on the Sequitur compression result directly.
The measured "CD" time covers all the operations. Version “gzip” represents existing decompression-based methods. It uses
Gzip to compress the data, and at the processing time, it recovers the original data by decompression and then runs the default
data processing.

Datasets We use five datasets to evaluate the performance of our compression-based method as shown in Table 1. The
first three datasets, A, B, C, are three large datasets from Wikipedia database [1], used for testing the performance of the
techniques on clusters; the other two are relatively smaller, used for conducting detailed time breakdown studies for analyzing
the performance. These datasets consist of a large range of real-world documents of varying lengths, structures and content.
For instance, dataset D is NSF Research Award Abstracts (NSFRAA) from UCI Machine Learning Repository [19], consisting
of a large number (134,631) of small files. On the other hand, Dataset E, a collection of web documents downloaded from
Wikipedia database [1], consists of four large files.

Table 1. Tested Datasets. The size is for the original datasets.

Dataset  Size File# Rule# VocabularySize
dataset A 50GB 109 57,394,616 99,239,057
dataset B 150GB 309 160,891,324 102,552,660
dataset C  300GB 618 321,935,239 102,552,660
dataset D 580MB 134,631 2,771,880 1,864,902
datasetE  2.1GB 4 2,095,573 6,370,437

The sizes shown in Table 1 are the original dataset sizes; they become about half as large after dictionary encoding (i.e.,

encoding each word with a unique integer as mentioned in Section 2). As such a representation is helpful for all versions, it is
used for all experiments, including those of the baseline version.
Platforms The configurations of experimental platforms are listed in Table 2. We use Spark Cluster, a 10-node cluster
on Amazon EC2, and the three large datasets for the distributed experiments. The cluster is built with an HDFS storage
system [5]. The Spark version is 2.0.0 while the Hadoop version is 2.7.0. We use a single node machine and the two smaller
datasets for detailed time breakdown studies.

Table 2. Platform Configurations.

Platform Spark Cluster Single Node
(0N Ubuntu 16.04.1  Ubuntu 14.04.2
GCC 5.4.0 4.8.2

Node# 10 1

CPU Intel E5-2676v3  Intel i7-4790
Cores/Machine 2 4

Frequency 2.40GHz 3.60GHz

MemorySize/Machine 8GB 16GB




7.2 Speedups

7.2.1 Speedups of Distributed Versions on Spark Clusters. Figure 8 reports the speedups that the different versions have
achieved compared to the default version on the three large datasets A, B, C. All versions are written in Spark and run on a
10-node cluster.

The size of a file in these datasets, in most cases, ranges from 200MB to 1GB. In the implementations of all versions, each
file’s data form a processing unit (an RDD in Spark), resulting in coarse-grained parallelism. In both the baseline and CD
versions, each machine in the cluster automatically grabs the to-be-processed RDDs one after one, processes them, and finally
merges the results together. The two versions differ in whether an RDD is formed on the uncompressed or compressed data,
and how an RDD is processed. Because the total size of the uncompressed dataset B and C exceed the aggregate memory of
the cluster, the later loaded RDD reuses the memory of the RDD that has already been processed.

Word count and sort use the preorder traversal, inverted index and term vector use the postorder traversal, and
sequence count and ranked inverted index take the depth-first traversal and the two-level table design of Guideline
IV in Section 5.4. Because the three datasets all consists of some large files, the data-sensitivity of order selection does
not manifest on them. Section 7.4 will show the sensitivity on the other two datasets, D and E. All the programs use the
coarse-grained parallelization. For the coarsening optimization, word count, sort, inverted index, and term vector take
the edge merging, because they do not need to keep the order of words. Sequence count and ranked inverted index use
the node coarsening, because node coarsening can reduce the number of substrings spanning across nodes that increases the
reuse of local data. We empirically set 100 as the threshold for node coarsening; the rule in each leaf node contains at least
100 items (subrules and words) after coarsening.
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Fig. 8. Performance on large datasets running on Spark clusters, normalized by the performance of the baseline version.

The average speedups from CD are 2.08X, 2.12X, and 2.59X on the datasets. Programs inverted index and term vector
show the largest speedups. These two programs are both unit sensitive, producing some analytics results for each file. CD is
able to create an RDD partition (the main data structure used in Spark) for the compressed results of each file, but the default
version cannot because some of the original files exceed the size limit of an RDD partition in Spark—the further partitioning
of the files into segments and merging the results incur some large overhead. Programs word count and sort are not unit
sensitive or order sensitive. But sort has some extra code irrelevant to the CD optimizations, and hence shows a smaller
overall speedup. Programs sequence count and ranked inverted index are both about word sequences in each file; the
amount of redundant computations to save is the smallest among all the programs.

In comparison, the gzip version gives 1-14% slowdown due to the added decompression time. The decompression time could
be partially hided if a background thread does the decompression while the main thread processes the already decompressed
parts. However, the version cannot outperform the original version as it does not save any operations in the original version.



Table 3. Time breakdown (seconds) and memory savings of the gzip version and the CD version of sequential executions.

Memory Saving (%) I/O Time Initialization Time Compute Time Total Time
Benchmark CD gzip CD |gzip CD gzip CD gzip CD
wordCount 89.83 4.01 2.60 | 1410 4.51 0.38 0.31 18.49 7.42
sort 89.83 4.01 2.60 | 1495 6.05 0.39 0.29 19.35 8.94
dataset D invertedIndex 86.06 4.01 2.60 | 13.42 4.00 11.09  6.20 28.52 12.80
termVector 86.06 4.01 2.60 | 13.29 7.36 4.08 3.28 21.38 13.24
sequenceCount 84.13 4.01 2.60 | 13.76 4.05 50.37 58.30 | 68.14  64.95
rankedInvertedIndex 84.13 4.01 2.60 | 13.85 4.39 138.73 141.45 | 156.60 148.44
wordCount 90.75 13.48 3.01 | 20.13 7.03 0.38 0.22 33.99 10.26
sort 90.75 13.48 3.01 | 26.67 13.53 0.38 0.22 40.53 16.76
dataset E invertedIndex 84.29 13.48 3.01 | 20.93 10.01 0.84 0.24 35.24 13.26
termVector 84.29 13.48 3.01 | 20.34 9.71 1.90 1.01 35.71 13.73
sequenceCount 92.14 13.48 3.01 | 21.61 7.36 110.73  76.38 145.81 86.75
rankedInvertedIndex 92.14 13.48 3.01 | 21.90 7.27 138.81 87.60 174.19 97.88

7.2.2  Sequential Performance with Time Breakdowns. For a detailed analysis, we present the memory savings and time
breakdowns in Table 3 by the gzip version and CD version. They are based on measurements on their sequential executions,
which allow a clear separation of the times of each individual step. The two smaller datasets, D and E, are used as the large
ones exceed the capacity of a single machine.

Because CD loads and processes much less data, it reduces memory usage by 87.9%. This benefit is valuable considering the
large pressure modern analytics pose to the memory space of modern machines. The smaller memory footprint also helps
reduce memory access time for CD.

The other columns in Table 3 show the time breakdowns of gzip and CD. Figure 9 reports the overall speedups on the two
datasets. The time breakdown shows that CD takes a much shorter I/O time than gzip does. It is because CD needs to load
only the compressed data into memory while the gzip version needs to load the decompressed data.
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Fig. 9. Performance normalized to the baseline version on a single machine.



However, it is worth noting that even if I/O time is not counted, CD still outperforms the gzip version substantially, reflected
by its shorter times in all the other parts of the time breakdowns. For instance, its initialization step takes about 1/3 to 1/2 of
that of the gzip version. It is because its initialization includes recovering the Sequitur compressed results from the double
compressed results, while the initial step of the gzip version consists of the time to produce the completely decompressed
data.

In most cases, the actual data processing part of CD (the “compute time” column in Table 3) is also much shorter than
that of the gzip version, thanks to its avoidance of the repeated processings of content that appears multiple times in the
input datasets. (The processing time in the gzip version is the same as in the baseline version since they both process
the decompressed data.) The only exceptions are sequence count and ranked inverted index on dataset D. These two
programs are both unit and order sensitive, related with word sequences. Dataset D, which consists of many small files, does
not have many repeated word sequences. However, even for these two extreme cases, the overall time of CD is still shorter
than that of gzip because of its substantial savings in the I/O and initialization steps.

7.3 Space Savings

Table 4 reports the compression rates, which is defined as size(original)/size(compressed). In all the compressed versions, the
datasets are already dictionary encoded, the compression methods apply to both the datasets and the dictionary. The CD- row
shows the compression rates from Sequitur alone. They are 2.3-3.8, considerably smaller than the rates from Gzip. However,
with the double compression technique applied, the rates of CD get boosted to 6.5-14.1, even much greater than the Gzip rates.
Gzip results cannot be used for direct data processing, but Sequitur results can, which makes CD able to bring significant time
savings as well, as reported in the previous subsection.

Table 4. Compression rates.

Dataset
Version | A B C D E avg
default | 1.0 1.0 1.0 1.0 1.0 1.0
gzip 93 89 85 59 89 |83
CD 141 133 131 6.5 119 | 11.8
CD- 3.1 3.2 3.8 23 28 3.0

CD-: Sequitur without double compression.

7.4 More Detailed Benefits

In this part, we briefly report the benefits from each of the major guidelines described in Section 5.

The benefits of adaptive traversal order are most prominent on benchmarks inverted index and term vector. With it,
the CD version selects postorder traversal when processing dataset D and preorder on datasets A, B, C, E. We show the
performance of both preorder and postorder for inverted index and term vector in Figure 10. Using a simple decision tree
on the number of unique words and the number of files (e.g., a question it asks is whether the ratio of the number of unique
words over the number of files exceeds 100), CD successfully selects the better traversal order for each of the datasets. For
instance, on inverted index, CD picks postorder on dataset D, which outperforms preorder by 1.6X, and it picks preorder on
dataset E, which outperforms postorder by 1.3X.

Double compression brings some substantial space benefits as we have discussed in the previous subsection. As it needs to
recover the Sequitur results from the compressed data before processing, it incurs some overhead. Our experiments show that
the overhead is outweighed by the overall time benefits by CD.

We tried to implement a fine-grained parallel version of CD for benchmark word count. It partitions the CFG into a number
of partitions and uses multiple threads to process them in parallel. Despite that it took us several times of the efforts that we
spent on the coarse-grained parallel version, the performance is substantially worse (e.g., 50% slower on dataset D).

Finally, coarsening shows clear benefits for CD on benchmarks ranked inverted index and sequence count. For instance,
compared to no coarsening, it helps CD-based ranked inverted index program get 5% extra performance improvement on
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Fig. 10. Performance of preorder and postorder for inverted index and term vector.

dataset E. The benefits of other guidelines (integer indexing, double-layered bitmap) have been reported in Section 5 and are
hence omitted here.

7.5 Compression Time and Applicability

The time to compress the datasets through sequential Sequitur ranges from 10 minutes to over 20 hours. Using parallel or
distributed Sequitur with accelerators can potentially shorten the time substantially. We emphasize that our technique is
designed for datasets that are repeatedly used by many users. For them, the compression time is not a main concern as the
compression results can be used for many times by different users for various analytic tasks again and again. These datasets
are common, ranging from electronic book collections to historical Wikipedia pages [1], government documents archives, law
firm archived collections, news archives, and so on. The technique is not intended to apply to data that change frequently or
are used only several times (e.g., some streaming data).

Our discussion has focused on applications that normally require scanning the entire dataset. In general, the technique
applies if the text analytics problem can be turned into a DAG traversal-based problem, as illustrated by the six analytics
problems used in our evaluation. Another type of common tasks involve queries that require random accesses to some
locations in the dataset. They are much simpler to support; adding some appropriate index to the Sequitur results could do
the job. Such tasks can already be supported by other recent techniques (e.g., Succinct [2]), and are hence not included in the
focus of this paper.

8 RELATED WORK

The work closest to CompressDirect is Succinct [2], which enables efficient queries on compressed data in database. Succinct
is based on index and suffix array [23], and many works [2, 6, 10-12] use similar methods. CompressDirect and these previous
studies differ in both applicability and main techniques. Firstly, Succinct is mainly for database domain while CompressDirect
is for general document analytics. Succinct is designed only for searching and random accessing of a specific query, while
CompressDirect supports much more complex document analytics tasks. For example, none of the six analytics problems
used in our experiments are amenable for efficient support by Succinct, as they involve complex algorithms and operations
beyond search or random access. Secondly, they use different compression methods and employ different inner storage
structures. Succinct compresses data in a flat manner, while CompressDirect uses Sequitur to create a DAG-like storage
structure. The DAG-like structure allows CompressDirect to perform complex computations for all items in the documents
efficiently, even in the presence of the complexities from files or word sequences.



There is some work trying to enable query processing over encrypted data [31] to help avoid some security vulnerabilities.
Unlike analytics over compressed data, these techniques do not detect or avoid processing repeated elements in documents. In
storage systems, deduplication is a technique used for minimizing the storage of repeated contents [13, 21, 22]. As a technique
working only at the storage level, it does not help document analytics to avoid repeatedly processing the content. For space
savings, CompressDirect and deduplication work at two different computing layers, and are hence complementary to each
other, applicable together. When multiple data sources need to be integrated (e.g., in data warehouses), data cleaning may
detect and remove some redundant data represented in different sources [30]. However, it does not compress data or support
analytics on compressed data.

With the development of Sequitur by Nevill-Manning and others [24-26], it has been applied to various tasks. Lau and
others [16] used Sequitur in code analysis to search some program patterns. Chilimbi [7] used Sequitur as a representation to
quantify and exploit data reference locality for program optimization. Larus [15] proposed an approach called whole program
paths (WPP) through leveraging Sequitur to capture and represent dynamic executed control flow. Law and others [17]
proposed a whole program path-based dynamic impact analysis and related compression based on Sequitur. Chilimbi
and others [8] used Sequitur for fast detection of hot data stream. Walkinshaw and others [32] applied Sequitur to the
comprehension of program traces at varying levels of abstraction. Lin and others [20] extended Sequitur as a new XML
compression scheme for supporting query processing. We are not aware of prior usage of Sequitur for supporting direct
document analytics on compressed data.

9 CONCLUSION

This paper proposes a method, compression-based direct processing, to enable high performance document analytics on
compressed data. By enabling efficient direct processing on compressed data, the method saves 90.8% storage space and 87.9%
memory usage, while on average, speeding up the analytics by 1.6X on sequential systems, and 2.2X on distributed clusters.
The paper presents how the concept can be materialized on Sequitur, a compression method that produces hierarchical
grammar-like representations. It discusses the major complexities in applying the idea to various document analytics tasks,
and provides a set of guidelines for developers to avoid potential pitfalls in applying the method. In addition, it produces a
library named CompressDirect to help further ease the required development efforts. Results demonstrate the promise of the
proposed techniques in various computing environments, ranging from sequential to parallel and distributed systems.
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