
1

Two-Stage Programming Projects: Individual Work Followed by

Peer Collaboration
Apeksha Awasthi (aawasth@ncsu.edu), Lina Battestilli (lbattestilli@ncsu.edu)

ABSTRACT
In this work, we studied 2-stage projects in an introductory computer science course. In stage-1, the students

submitted their programming projects individually and then in stage-2 they were paired to work on the same

project in order to create an improved solution. We used isomorphic assessments before and after each stage of

the projects to gauge the students’ retention of the course materials. We also studied the students’ perceptions and

experiences with working in 2-stages and their confidence toward computing. We found that 2-stage projects

improved students’ understanding of the course material. Students liked working in 2-stages because it showed

them new ways to approach the same problem.

1 INTRODUCTION

In any discipline, providing constructive and detailed feedback on assignments is an essential part of the students’

learning. Feedback in introductory computer science courses, however, tends to be automated, minimal and thus

not very helpful. Typically, the students are provided a grade and feedback but don’t have a chance to address the

feedback before moving on to the next assignment. This is a problem because learning how to program is often

difficult for students and leads to high attrition rates in the first-year computer science courses [Watson 2014].

One approach to this problem is to use two-stage submissions where students turn in the assignment and receive

instructor’s feedback instead of a grade, then the students address the feedback, and resubmit the assignment for a

final grade [Szabo 2017]. Another approach is to allow students to first work alone and then in groups [Cao 2017,

Smith 2009]. In this study, we apply this idea to 2-stage submission of programming projects. For the first stage,

the students work alone on the projects and are given an individual grade and feedback. For the second stage, the

students address the feedback with an individual reflection, then peer review each other's code and re-submit a

pair-coded version of the project. The 2-stage project group submissions are graded again and potentially could

increase the students’ final grade for the project.

Often, when students are paired together, they just copy from each other instead of discussing the material and

together coming up with a solution [Porter 2011a]. To address this issue, we paired students with other students

who received a similar individual grade on the 1-stage of the project so that they had to work together to improve

the code of their projects. This technique worked well because students like when the instructor creates the pairs

rather than self-selection in team-based learning in computer science courses [Kirkpatrick 2017]. To assess

whether the students individually made learning gains after the 2-stage pair programming, we administered pre

and post assessments and developed isomorphic questions as described in [Kjolsing 2016].

In this study, we explore the effects of 2-stage programming projects in an introductory CS1 course. Our results

show that the 2-stage projects improved students’ understanding of the course material as it allowed them to

reflect on the instructor’s initial feedback and work together with a peer. We focused on the following research

questions:

RQ1. Can 2-stage programming projects improve students’ understanding of the course material?

RQ2. What are the students’ experiences and attitudes with 2-stage projects?

RQ3. What is the effect of 2-stage project participation on students’ attitudes and confidence towards

computing?

Two-Stage Programming Projects: Individual Work Followed by Peer Collaboration

2

2 BACKGROUND

Introductory programming courses can be difficult for students because many students come with the

preconception that learning how to program can be very hard. Students also fear poor performance in the course

due to lack of prior experience. In recent years, however, the interest in Computer Science has significantly

increased the number of students enrolling in CS1 courses. Unfortunately, this leads to large size classes where

the instructor’s individual feedback is often limited [Szabo 2017]. Pair programming and peer code review can

be used to provide students with extra feedback from their peers on programming assignments. Studies have

shown that the learning outcomes are greater when students have the opportunity to review other students’

assignments [Reily 2009, Li 2006]. Studies have shown that students who pair program are more likely to choose

Computer Science as their major [Williams 2003]. Students who pair program show higher rates of retention and

higher promise of succeeding in future courses in which they would have to work alone [Mcdowell 2006]. When

working in groups, the students become more confident in their work and find it more enjoyable. Students benefit

from communication with their peers and might even make new friends.

Metacognition is another way to help students benefit from grading feedback via individual reflections after each

programming assignment. Metacognition is the process of analyzing whether a goal has been met or what a

person could do to meet it [Livingston 1997]. Students that develop their metacognitive skills tend to have more

academic success [Coutinho 2007]. Exam wrappers have been used in multiple studies to encourage

metacognition by asking students to reflect on their study habits and what topics they still need to master [Craig

2016, Gezer-Templeton 2017]. Often, students get their grades for assignments but don’t even look at the

feedback to evaluate what they might have done wrong or what they could do to improve. Metacognition can also

help students’ develop Growth Mindset, the thinking that one’s intelligence level and ability to learn is not fixed

[Dweck 2008, Hochanadel 2015]. Students with a growth mindset are more likely to succeed than those with a

fixed mindset.

Two-stages are also used in Peer Instruction (PI), which is a student-centric pedagogy where the students move

from the role of passive listeners to active participants. Recently, there has been significant research regarding the

value of PI in computer science [Porter 2011b, Simon 2010, Porter 2013, Zingaro 2010]. In PI, in the first stage

the students answer each question individually. In the second stage, the students discuss the question with their

peers in a small group and come up with a group answer. Typically, clicker questions are used to engage students

in the two-stages of PI.

Cao et al. extends the PI concept to 2-Stage Exams where the students take some parts of a test individually and

other parts in small groups [Cao 2017]. They found that the group portion of the test improved students’

individual knowledge on the topic. The benefits of two-stage exams have been explored across other fields such

as physiology [Cortright 2003], physics [Singh 2005], and speech and language pathology [Dahlström 2012].

Our study builds upon PI, 2-stage exams, pair programming, code review and reflections. We extend the 2-stage

concept of working individually and then collaboratively to programming projects in an introductory computer

science course.

3 METHOD

Three sections of a CS1 Java course at a large public university participated in this study during spring 2017. At

our institution, this course is the first programming course that students take in the Computer Science major. The

course learning objectives are basic programming such as variables, data types, loops, conditionals, methods and

introductory object-oriented concepts. There was an experimental section and two control sections with a total

Two-Stage Programming Projects: Individual Work Followed by Peer Collaboration

3

enrollment of 87 students, 29 per section. There were two different instructors, one instructor taught the

experimental section and is the author of this paper and another instructor taught the two control sections.

The course has six large programming projects, two tests, a final exam, and other smaller assignments. In this

study, we focus on the programming projects which were the same across all three sections and were written by a

third instructor who is the overall course coordinator. The grading rubric and guidelines for the projects were

identical across all sections of the course.

The demographic data for the experimental section is shown in Figure 1. All students were undergraduates and

the section consisted of mostly males, STEM majors, who were freshmen and sophomores. The demographic data

for the control section was not collected but students are assigned to sections of the course randomly based on

their schedule. The size and demographics of the experimental section are typical for our institution.

Figure 1: Demographics of the students in the experimental section.

3.1 Experimental Design

Typically for this course, the students work on the programming projects and submit them individually. To

implement 2-stage projects, we add the components from Table 1 to the experimental section. The students in

control sections only did the pre-assessment component 𝑷𝑹𝑬𝑨 in order to evaluate their learning after they had

submitted their individually-coded projects, i.e. stage 1. This was needed to compare how the students did with

and without the 2-stage.

Table 1: Components of the experiment

Component Description

Stage 1 (S1)

Individually-coded Project

Students were assigned a project based on the recent course material. In this

first stage, the students were to complete and submit the project individually.

Stage 2 (S2)

Pair-coded Project

The second stage of the project was to be completed by students in pairs. This

stage was optional and the students chose to do it or not after they had

completed Stage 1 of each project. Students who signed up for the second stage

were assigned a partner based on their project grades of Stage 1. Students with

similar grades were paired together. This was done so they can work together to

Two-Stage Programming Projects: Individual Work Followed by Peer Collaboration

4

improve their grades. However, if a student got a failing grade then they were

paired with someone who got a high grade. The purpose for this is that the

student with the low grade can see a good solution for the project. The two

partners were to work on the project together and submit an improved pair-

coded version of the project together.

Pre Assessment (𝑷𝑹𝑬𝑨),

Post Assessments (𝑷𝑶𝑺𝑻𝑨)

These assessments measured the learning of the students after each stage. The

pre-assessment and post-assessment were short isomorphic quizzes that each

student had to take individually. The pre-assessment was given before the

second-stage and measured learning after Stage 1, i.e., individually working on

the project. The post-assessment was given after the second-stage and

measured learning after pair-coding and discussion with a partner. The

assessments had one to two questions based on the learning objectives of the

project. The pre-assessment was generally given the day after the first stage was

submitted and the post-assessment was generally given the day after the second

stage was submitted.

Reflection (RE): Students who had signed up for the second stage were also encouraged to

complete an individual reflection. The reflection consisted of a series of

question about why the students lost points in the first stage, how they could

improve for future projects, and how the second stage experience was for them.

As noted previously, stage-2 of the projects was not mandatory for the students in the experimental section. The

students were given the option to sign up for stage-2. For the students who participated in stage-2, a new grade

was calculated which replaced their stage-1 project grade only if it increased their grade. The final project grade

was calculated using the following formula:

𝐹𝑖𝑛𝑎𝑙 𝐺𝑟𝑎𝑑𝑒 = 𝑆1 + (𝑆2 − 𝑆1) ∗ 0.3 + 𝑅𝐸 ∗ 0.01 +
(𝑃𝑅𝐸𝐴 + 𝑃𝑂𝑆𝑇𝐴)

2
 ∗ 0.02

Figure 2 shows an example timeline of how the projects and assessments were assigned. There were six projects

in over the course of the semester and a project was due every two weeks. Because of the tight timeline, the

students were generally given about three days to work on Stage 2 before they had to start working individually

on the next project.

Figure 2: Project Submission Timeline

3.2 Projects

Six programming projects are typically assigned in this course. Each project has a set of learning objectives which

are based on what was recently taught in the course, see Table 2. For each project, the students submit source

files, structure diagrams, black box and white box tests. The project grading rubric takes into account

implementation, Javadoc documentation, correctness of structure diagram and teaching staff tests. The projects

are graded and feedback is provided to the students as to why they lost points if they did.

Two-Stage Programming Projects: Individual Work Followed by Peer Collaboration

5

Table 2: Descriptions of the six projects in the course.

Project Learning Objectives

Project 1 For loops and Java classes for text-based output to the Console Window

Project 2 Loops and Java classes for text-based inputs/outputs, selection logic with if/else statements, static

methods, Graphics/Basic Animation

Project 3 While Loops, Using Java classes for text based input/output, methods with multiple parameters

and return, White-Box Testing.

Project 4 Reading/Writing to files, Loops, writing methods and using Java classes

Project 5 Construct and use one and two dimensional arrays, Arrays of Objects

Project 6 Object-Oriented Design, Writing Classes that drive a GUI

3.3 Isomorphic Questions for Pre/Post Assessments

To test whether the students’ individual learning had improved due to the stage-2 of the projects, the pre-

assessment and post-assessment quizzes had to be isomorphic [Kjolsing 2016, Porter 2011a]. The questions were

created based on the learning outcomes for a project. Instructor experienced in teaching a CS1 course were

brought in to review the assessments for isomorphic equality.

Sample Assessment Questions
For example, Project 2’s main learning objectives were using Java Graphics objects and reading user input from

the Console Window. The first question in both the Pre/Post Assessments had to do with creating Graphics

objects and the second question pertained to reading from user input.

Pre-Assessment Post Assessment

SOLUTION

SOLUTION

Two-Stage Programming Projects: Individual Work Followed by Peer Collaboration

6

SOLUTION

SOLUTION

To gauge the learning gains, the questions were designed so that a student would have to have knowledge on the

subject and couldn’t answer the post-assessment simply based on the pre-assessment. These assessment questions

were given towards the beginning of the semester.

3.4 Reflections

Students completed individual reflections after stage-1 of the projects. They were asked to reflect on where they

had lost points, how they had managed the individual completion of stage-1 and about their experience of

working with a partner for stage-2. Most of the reflection consisted of open ended questions, except of the project

management part which consisted of 5-point Likert scale statements, shown in Figure 3. The reason for these

questions was to have the students reflect on their strategy of completing stage-1 of the project and to provide

ideas on how they can approach better the completion of the next project.

Figure 3: Management Questions in the Reflection

Two-Stage Programming Projects: Individual Work Followed by Peer Collaboration

7

3.5 End-of-Semester Survey and Focus Group

At the end of the semester the students were given a survey inquiring about their opinions on the course overall,

as well as their experiences with 2-stage projects. The survey also asked questions about confidence and attitude

toward computing which were pulled from existing surveying instruments [Wiebe 2003, Dorn 2015]. The

students who had participated in the stage-2 of the projects were asked what they did or didn’t like about the

second stage. The students who had not participated were asked why they had not chosen to participate in any of

the second stages of the projects.

After the final course grades were submitted, a small focus group was held with students from the experimental

section. The students were asked about how the 2-stage projects might have affected their attitudes and

confidence towards the course material and what they did and didn’t like.

4 RESULTS
The collected data, described in the previous sections, were analyzed in order to answer the three main research

questions.

4.1 RQ1 Understanding the Material
The pre/post assessments were used to determine if the 2-stage projects improved the students’ understanding of

the course material. Figure 4 shows an improvement from the pre-assessment to the post-assessment on all the

projects except for Project 4. The reason for this might be that the concepts of reading/writing to/from files from

Project are often too complex for novice Java programmers.

Figure 4: Average pre/post-assessment grades of the stage-2

participants from the experimental section

We also analyzed the same post-assessment grades for the two control sections. The control sections scored lower

on every topic in comparison to the students who participated in the 2-stage projects in the control section, see

Figure 5. Data was not collected for Project 3 for the control section due to scheduling issues.

Figure 5: Average post-assessment grades of the Control vs. the Experimental Section.

Two-Stage Programming Projects: Individual Work Followed by Peer Collaboration

8

We also examined which students chose to participate in the 2- stages of the projects based on their average test

grades. Tests were taken individually by students, thus those grades weren’t affected by external factors like extra

credit and were a good indicator of the students’ understanding of the course material. Figure 6 shows that mostly

A, B, and C students participated in the 2-stage. Therefore, it might be better to make the 2-stage of the projects

mandatory rather than optional and thus also help the learning of the lower grade students. The reason we made

stage-2 optional during our experiment is because we wanted the assigned partners to be both willing and eager to

work together and create a better pair-coded project solution.

Figure 6: Average Test Grades vs. the number of 2-stages that they chose to participate in

4.2 RQ2 Students Experiences

The End-of-Semester (EoS) survey asked students how they felt about the 2-stage projects. 77% of the students

had participated in at least one out of the five project second stages. The experience for these students is coded in

Table 3. Many of the students showed growth mindset and felt that working with a partner in stage-2 helped them

learn. However, there were also students who were simply focused on grades rather than learning. Many of the

students that chose to participate in stage-2 already had good grades on stage-1 and thus chose not to submit new

code for stage-2.

Table 3: 2-stage participants’ on why they did or didn’t like the 2-stage projects

Answer Number of students

Showed me a different perspective 6

Helped me understand what I missed 3

Helped me understand difficult material 3

Helped me improve my grade 6

Didn't help me 2

Helped the other person, but not me 1

My code didn't need improvement 2

Time was very limited 3

Didn't like being randomly paired 1

Partner wanted extra credit, but didn't want to talk about concepts 2

Didn't answer 3

Table 4 shows that students mainly chose not to participate in stage-2 because of the limited time allotted to work

with a partner. In our experiment, this tight schedule was necessary because there were 6 projects and the due

dates were approximately every two weeks.

Two-Stage Programming Projects: Individual Work Followed by Peer Collaboration

9

Table 4: Students on why they chose not to participate in stage-2.

Answer Number of students

Not enough time allotted 3

Didn't need to 1

Didn't know the grade for stage-1 1

Did not provide an answer 1

The individual reflections revealed that as the projects got harder, the time the students spent on stage-1 increased

from less than 3 hours to 8 or more hours, while the time that students spent on stage-2 stayed around 1-2 hours.

Also the reflections showed that the majority of the students felt that working with a partner in stage-2 was a good

experience, they received help, saw a different perspective and reviewed someone else’s code, see Figure 7. A

minority of the students felt that stage-2 didn’t help them because their grade was already good enough or their

partner didn’t respond.

Figure 7: Students’ responses on their overall experience of working with a partner for stage-2

In the focus group we asked questions pertaining to students experiences and attitudes towards two-stage projects/

The students’ answers reinforced some of the findings from the EoS Survey. Students expressed that the 2-stage

projects helped them see new ways to approach a problem. One student said the 2-stages helped them see more

efficient ways to solve the same problem. Students also enjoyed the 2-stage because it opened communication

amongst their peers in a class and sometimes it is difficult to connect and talk to peers in. The time-constraint

was their biggest challenge with the stage-2. Also, the students did not like the automated and limited feedback

from stage-1. If the paired students for stage-2 had failed the same exact teaching staff test case in stage-1, then

they did not know what the problem was and how to fix it.

4.3 RQ3 Attitudes and confidence towards computing

The EoS survey started with questions pertaining to how the students felt about computer science and

programming. Figure 8 shows that the 2-stage participants answered neutral to more of the questions. The

students who did not participate in stage-2 tend to have more confidence in their own abilities than students who

participated in stage-2. The reason behind this could be that students’ computing confidence and attitude drove

their decisions to participate and not to participate in stage-2. Students with less confidence towards the material

were more likely to participate in at least one 2-stage. Students who didn’t participate in stage-2 disagreed with

the statements concerning enjoying programming and being interested in computer science.

Two-Stage Programming Projects: Individual Work Followed by Peer Collaboration

10

Figure 8: The results of the questions that asked students about computer science and programming from

the EoS survey. The questions answered by non-participating in stage-2 students begin with [N].

In the focus group, we found that the students felt that their attitudes didn’t change very much throughout the

semester. They had started the semester with an open and conscientious attitude towards programming and the 2-

stage projects played no role in their attitudes. The students expressed that their confidence in the course material

had significantly improved because they either had no experience before the course or felt that the course

improved their understanding of the material. The students agreed that the 2-stage projects overall helped them

have more confidence in explaining their own code.

4.4 THREATS TO VALIDITY

The experimental group and control group were taught by two different instructors, which could affect the results

of the assessments. However, the learning gains before/after stage-2 for the control section alone indicate the

advantage of this intervention. Also, the demographic info of the control sections was unknown.

5 CONCLUSIONS AND FUTURE WORK
This study examined the effects of 2-stage programming projects on students’ understanding of the course

material and their attitude and confidence towards programming and computer science. Students showed

improvement in their learning and enjoyed working with a partner on the second stage. The two-stage projects,

however, had little effect on students’ attitudes or confidences toward computing. Further studies are needed to

determine the effects of longer timeline for the students to complete stage-2 and figure out how to provide more

detailed feedback to the students for stage-1. We recommend the stage-2 projects be made mandatory rather than

optional to encourage students to adapt to a growth mindset, review other’s code, and practice working with

partners.

ACKNOWLEDGMENTS
We would like to thank Dr. Paul Chao for discussions on 2-stage and for detailed review of the polymorphic

assessment questions. Also, we want to thank Dr. Jessica Schmidt who taught the two control sections.

REFERENCES

[Dorn 2015] B. Dorn and A. E. Tew. Empirical Validation and Application of the Computing Attitudes Survey.

Computer Science Education, 25(1):1-36, 2015

[Cao 2017] Cao, Yingjun, and Leo Porter. "Evaluating Student Learning from Collaborative Group Tests in

Introductory Computing." Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science

Education - SIGCSE '17 (2017): 99-104. ACM Digital Library. Web.

Two-Stage Programming Projects: Individual Work Followed by Peer Collaboration

11

[Szabo 2017] Claudia Szabo, and Nick Falkner (2017) Silence, Words, or Grades: The Effects of Lecturer

Feedback in Multi-Revision Assignments.

[Cortright 2003] Cortright, R. N., H. L. Collins, D. W. Rodenbaugh, and S. E. Dicarlo. "Student Retention Of

Course Content Is Improved By Collaborative-Group Testing." AJP: Advances in Physiology Education 27.3

(2003): 102-08. Web.

[Coutinho 2007] Coutinho, Savia A. "The Relationship between Goals, Metacognition, and Academic Success."

Educate - The Journal of Doctoral Research in Education 7.1 (2007): n. pag. Print.

[Craig 2016] Craig, Michelle, Diane Horton, Daniel Zingaro, and Danny Heap. "Introducing and Evaluating

Exam Wrappers in CS2." SIGCSE '16 Proceedings of the 47th ACM Technical Symposium on Computing Science

Education (2016)

[Dahlström 2012] Dahlström, Örjan. "Learning during a Collaborative Final Exam." Educational Research and

Evaluation 18.4 (2012): 321-32. Web.

[Gezer-Templeton 2017] Gezer-Templeton, P. Gizem, Emily J. Mayhew, Debra S. Korte, and Shelly J. Schmidt.

"Use of Exam Wrappers to Enhance Students’ Metacognitive Skills in a Large Introductory Food Science and

Human Nutrition Course." Journal of Food Science Education 16.1 (2017): 28-36. Web.

[Dweck 2008] Dweck, Carol S.. (2008) Mindset :the new psychology of success New York : Ballantine Books

[Hochanadel 2015] Hochanadel, Aaron, and Dora Finamore. "Fixed And Growth Mindset In Education And How

Grit Helps Students Persist In The Face Of Adversity." Journal of International Education Research (JIER) 11.1

(2015): 47. Web.

[Reily 2009] Ken Reily, Pam Ludford Finnerty, and Loren Terveen. "Two Peers Are Better Than One:

Aggregating Peer Reviews for Computing Assignments Is Surprisingly Accurate." Proceedings of the ACM 2009

International Conference on Supporting Group Work (2009): 115-24. ACM Digital Library. Web.

[Kirkpatrick 2016] Kirkpatrick, Michael S. "Student Perspectives of Team-Based Learning in a CS Course:

Summary of Qualitative Findings." Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education - SIGCSE '17 (2017): 327-33. ACM Digital Library. Web. 03 Aug. 2017.

[Kjolsing 2016] Kjolsing, Eric, and Lelli Van Den Einde. "Peer Instruction: Using Isomorphic Questions to

Document Learning Gains in a Small Statics Class." Journal of Professional Issues in Engineering Education and

Practice 142.4 (2016): 04016005. Web.

[Porter 2011a] Porter, Leo, Cynthia Bailey Lee, Beth Simon, and Daniel Zingaro. "Peer Instruction." Proceedings

of the Seventh International Workshop on Computing Education Research - ICER '11 (2011): 45-52. Web.

[Porter 2013] Porter, Leo, Cynthia Bailey Lee, and Beth Simon. "Halving Fail Rates Using Peer Instruction."

Proceeding of the 44th ACM Technical Symposium on Computer Science Education - SIGCSE '13 (2013): 177-82.

Web.

[Porter 2011b] Porter, Leo, Cynthia Bailey Lee, Beth Simon, Quintin Cutts, and Daniel Zingaro. "Experience

report: a multi-classroom report on the value of peer instruction." Proceedings of the 16th Annual Joint

Conference on Innovation and Technology in Computer Science Education - ITiCSE '11 (2011): 138-42. Web.

Two-Stage Programming Projects: Individual Work Followed by Peer Collaboration

12

[Li 2006] Li, Xiaosong. "Using Peer Review to Assess Coding Standards - A Case Study." Frontiers in Education

Conference, 36th Annual (2006): n. pag. Web.

[Livingston 2006] Livingston, Jennifer A. "Metacognition: An Overview." (1997): n. pag. Web.

[Mcdowell 2006] Mcdowell, Charlie, Linda Werner, Heather E. Bullock, and Julian Fernald. "Pair Programming

Improves Student Retention, Confidence, and Program Quality." Communications of the ACM 49.8 (2006): 90-95.

Web.

[Simon 2010] Simon, Beth, Michael Kohanfars, Jeff Lee, Karen Tamayo, and Quintin Cutts. "Experience Report:

Peer Instruction in Introductory Computing." Proceedings of the 41st ACM Technical Symposium on Computer

Science Education - SIGCSE '10 (2010): 341-45. Web.

[Singh 2005] Singh, Chandralekha. "Impact of Peer Interaction on Conceptual Test Performance." American

Journal of Physics (2005): 446-51. Web.

[Smith 2009] Smith, M. K., W. B. Wood, W. K. Adams, C. Wieman, J. K. Knight, N. Guild, and T. T. Su. "Why

Peer Discussion Improves Student Performance on In-Class Concept Questions." Science 323.5910 (2009): 122-

24. Web.

[Watson 2014] Watson, Christopher, and Frederick W.b. Li. "Failure Rates in Introductory Programming

Revisited." Proceedings of the 2014 Conference on Innovation & Technology in Computer Science Education -

ITiCSE '14 (2014): n. pag. Web.

[Wiebe 2003] Wiebe, E.N., Williams, L., Yang, K. and Miller, C. 2003. Computer Science Attitude Survey. North

Carolina State University Technical Report TR-2003-1. (2003).

[Williams 2003] Williams, L., C. Mcdowell, N. Nagappan, J. Fernald, and L. Werner. "Building Pair

Programming Knowledge through a Family of Experiments." 2003 International Symposium on Empirical

Software Engineering, 2003. ISESE 2003. Proceedings. (2003): 143-53. Web.

[Zingaro 2010] Zingaro, Daniel. "Experience Report: Peer Instruction in Remedial Computer Science."

Proceedings of the 22nd World Conference on Educational Multimedia, Hypermedia & Telecommunications

(2010): n. pag. Web.

