
Inside-Out: Reliable Performance Prediction for

Distributed Storage Systems in the Cloud

Chin-Jung Hsu

⇤
, Rajesh K Panta

†
, Moo-Ryong Ra

†
and Vincent W. Freeh

⇤
⇤
Department of Computer Science, North Carolina State University

†
AT&T Labs Research

Email: chsu6@ncsu.edu, rpanta@research.att.com, mra@research.att.com, vwfreeh@ncsu.edu

Abstract—Many storage systems are undergoing a significant
shift from dedicated appliance-based model to software-defined
storage (SDS) because the latter is flexible, scalable and cost-
effective for modern workloads. However, it is challenging to
provide a reliable guarantee of end-to-end performance in SDS
due to complex software stack, time-varying workload and
performance interference among tenants. Therefore, modeling
and monitoring the performance of storage systems is critical
for ensuring reliable QoS guarantees. Existing approaches such
as performance benchmarking and analytical modeling are
inadequate because they are not efficient in exploring large
configuration space, and cannot support elastic operations and
diverse storage services in SDS.

This paper presents Inside-Out, an automatic model building
tool that creates accurate performance models for distributed
storage services. Inside-Out is a black-box approach. It builds
high-level performance models by applying machine learning
techniques to low-level system performance metrics collected
from individual components of the distributed SDS system.
Inside-Out uses a two-level learning method that combines two
machine learning models to automatically filter irrelevant fea-
tures, boost prediction accuracy and yield consistent prediction.
Our in-depth evaluation shows that Inside-Out is a robust
solution that enables SDS to predict end-to-end performance
even in challenging conditions, e.g., changes in workload, storage
configuration, available cloud resources, size of the distributed
storage service, and amount of interference due to multi-tenants.
Our experiments show that Inside-Out can predict end-to-end
performance with 91.1% accuracy on average. Its prediction
accuracy is consistent across diverse storage environments.

Index Terms—software-defined storage; performance predic-
tion; storage; performance modeling;

I. INTRODUCTION

Many storage systems are moving away from dedicated

appliance-based storage model to software-defined storage

(SDS), which separates software that provisions and manages

storage from the hardware that provides raw physical storage.

This trend is partly driven by the tremendous growth of data

and the emergence of cloud applications that operate in a

multi-tenant environment with diverse workload characteristics

[1], [2], [3]. As a result, the rigid appliance-based model with

tightly-coupled hardware and software features is no longer

cost-effective, lacks flexibility and does not scale well. SDS

systems are increasingly abandoning centralized storage ser-

vices in favor of distributed systems like Ceph, HDFS, Swift

[4], [5], [6], etc. Distributed storage systems are attractive

because they scale well, allowing storage services to grow or

shrink, based on storage demands. They are also better suited

to handle diverse multi-tenant workloads.

Providing reliable quality of service (QoS) to storage ap-

plications is critical in an SDS environment shared by mul-

tiple applications with diverse usage patterns. However, in a

distributed storage environment, it is challenging to provide

storage QoS in a consistent and reliable manner. Practical

deployments of modern distributed storage systems like Ceph

are composed of a larger number of individual storage com-

ponents that can interact in a complex manner. Diverse and

time-varying storage workloads and performance interference

in a multi-tenant environment further complicate the reliable

assurance of storage QoS. Reliable and accurate monitoring

of high-level storage performance metrics (e.g. throughput and

IOPS) is critical for providing storage QoS guarantees. How-

ever, monitoring end-to-end storage performance is difficult in

a distributed storage service. Instrumenting user applications to

measure storage performance is not always practical. Perform-

ing benchmark tests in production systems also has practical

limitations since they interfere with storage application work-

load. Furthermore, running exhaustive benchmark experiments

to cover diverse application workloads, deployment topologies,

and large configuration parameter space is time-consuming

and impractical in many cases. Building accurate analytical

performance models, on the other hand, is also difficult for

the reasons mentioned above.

This paper proposes the idea of using low-level system

metrics (e.g., CPU usage, RAM usage and network I/O) as

a proxy for measuring high-level performance (e.g., end-to-

end IOPS and throughput) of distributed storage applications.

We design, implement and evaluate a practical tool, called
“Inside-Out”, that applies machine learning techniques to the
low-level metrics collected from individual components of a
distributed storage system to accurately estimate high-level
storage performance metrics—like throughput and IOPS—
of the entire distributed storage system. We believe that a

tool like Inside-Out can serve as an important component

of the overall SDS architecture. Inside-Out takes a black-box

modeling approach, which does not require knowledge about

distributed storage system protocol, workload characteristics,

and deployment topology. Inside-Out relies upon machine

learning techniques to automatically derive an accurate end-to-

end performance model. We explore several well-known ma-

chine learning algorithms including linear regression, decision

1

This appeared in SRDS 2016

tree learning, and ensemble methods [7], [8], and conclude

that there does not exist an one-size-fits-all algorithm that

can work in all prediction cases. Hyperparameter tuning [9],

[8], model selection [10] and feature selection [11], [12]

all turn out to be too complicated for optimizing prediction

accuracy. In contrast, Inside-Out uses a two-level learning

method that automatically selects important features, boosts

prediction accuracy, and achieves consistent prediction. This

two-level learning method pipelines two supervised learning

algorithms to eliminate irrelevant features while avoiding

overfitting problems.

1

Inside-Out offers several key benefits. Unlike traditional

analytic performance modeling approach, Inside-Out is more

generic, and therefore can be more easily applied to different

storage services. Different from previous work [14], [15], [7],

[16], [17], [8], [18], Inside-Out does not require information

about system configuration and application workload. Due to

the self-learning property, its performance prediction accuracy

increases with more data, and it can adapt to changes in the

system by continuously learning the system behavior.

We evaluate Inside-Out using Ceph [4] running on an

OpenStack-based SDS platform. The low-level performance

metrics are collected from participant virtual machines run-

ning various components of a Ceph storage service.

2

Our

in-depth evaluation shows that Inside-Out generates end-to-

end performance models with 91.1% prediction accuracy on

average. More importantly, as discussed above, Inside-Out is

generic in nature as it captures the behavior of the storage

system by analyzing low-level system metrics (that are proto-

col and application agnostic). Furthermore, we demonstrate

that Inside-Out can provide reliable hints for performance

monitoring tasks even in the presence of evolving workload

characteristics, changing storage configuration and interfering

tenants. We also show that Inside-Out is reliable in estimating

end-to-end performance even when the storage system expands

or shrinks—in our evaluation, we find that Inside-Out provides

reliable performance prediction even when the storage system

is up to four times larger than the one used for building

machine learning models during the training phase. Lastly,

Inside-Out is able to learn new storage behavior over time

(Section V-E).

II. BACKGROUND

In this section, we provide a brief overview of the SDS

system that we are building. We present how Inside-Out fits

in the overall SDS architecture. As shown in Figure 1, users

specify high-level storage requirements to the SDS Planner

component. These requirements include storage capacity, ex-

pected reliability (e.g., five 9s of storage reliability), expected

throughput and IOPS, read/write workload specification, etc.

1

Overfitting describes the situation when a model captures the relation-

ship of noisy data but not the underlying relationship [13]. Overfitting becomes

more prominent in the presence of high dimensional data, which is the case

in this work.

2

Our approach is not limited to VM-based environments. It can be

applied to container-based and bare-metal storage servers as well.

SLA	
Requirements SDS	Planner SDS	

Orchestrator
Resource	Control
and	Allocation

SDS	Service	
InstanceLow-level	system	metric	

monitor

High-level	performance	
predictor

In
si
de
-O
ut

Ceph
MON

Ceph
OSD

Ceph
OSD

…

Ceph
OSD Storage pool

Example Ceph instance

Disk Disk DiskDisk DiskDiskDiskDisk Disk

Fig. 1: SDS architecture. Inside-Out provides performance

feedback to SDS Planner to continuously meet storage QoS

requirements.

The SDS Planner is the brain of SDS. It takes requirements

from users and creates a detail implementation plan that is

expected to meet those requirements. We have developed

some components of the SDS Planner and are in the process

of developing others. We avoid details of the SDS Planner

since that is not the focus of this paper. The SDS planner

hands the generated plan to an SDS Orchestrator, which is

responsible for creating an SDS storage service instance. In

our current implementation, the SDS Orchestrator generates

the OpenStack Heat template automatically based on the plan

generated by the SDS Planner. The SDS Orchestrator uses

the “Resource Control and Allocation” component to allocate

the right amount of cloud resources (e.g. network bandwidth,

storage IO bandwidth, etc.) to various components of the SDS

storage service instance. The Resource Control and Allocation

component also manages the placement of VMs, volumes

and other cloud resources properly in the underlying cloud

infrastructure to maximize resource usage. Again, we omit the

details of this component since they are out of scope for this

paper. Finally, the SDS Orchestrator creates the SDS instance.

The Inside-Out component monitors the low-level system

metrics of the generated instance and develops performance

models for predicting high-level storage performance metrics

like throughput and IOPS. The output of Inside-Out is used

iteratively by the SDS Planner to ensure that the user-specified

performance requirements are met.

III. MAPPING FROM LOW TO HIGH

This section discusses the guiding principles and challenges

in using low-level performance metrics to build accurate end-

to-end performance models for a distributed storage system.

A. Important Considerations
1) General low-level metrics: Since our goal is to provide

a tool for estimating the end-to-end performance of a diverse

set of storage systems, the inputs to our model need to be

generic in nature, i.e. they need to be independent of storage

application or the distributed protocols used by such appli-

cations. An SDS provider should be able to obtain the input

metrics without instrumenting storage application or requiring

domain knowledge about the storage application. Low-level

2

Storage Node (S1) Storage Node (S2) Storage Node (S3)

MEAN = 10

STD = 8.5

5% = 80

10 Metric A

20 Metric B

10 Metric C

10 Metric D SUM = 60

Feature Transformation

11 Metric A

35 Metric B

80 Metric C

20 Metric D

9 Metric A

15 Metric B

15 Metric C

30 Metric D

Fig. 2: Four statistical features used in Inside-Out to capture

load and internal status of a distributed storage system. The

numbers and metrics represent low-level performance data

collected from storage nodes.

system metrics (e.g. CPU utilization, memory usage, network

IO, etc.) satisfy these requirements. DeepDive [19] uses low-

level metrics to identify performance anomaly for a running

VM . To the best of our knowledge, this paper presents the

first study that maps low-level system metrics to high-level

end-to-end performance of a distributed storage service.

2) Capture important features of a distributed storage
system: A distributed storage system can expand or shrink

on demand based on dynamic storage requirements. The

performance model should be able to capture the current

scale of the deployment, the bottlenecks, and the average

and variance in performance of individual components of

the distributed system. For each low-level system metric

collected from various components of the distributed system,

we use four statistical variables to characterize the behavior

of a distributed system (see Fig. 2). The statistical variable

mean and std describe whether the impact of the workload

is evenly distributed among storage components. The sum
variable represents the scale of the deployment, while the

variable 5% (top 5 percentile) captures the hot spot situations.

The feature transformation from raw system metrics to these

four statistical values also allows Inside-Out to apply the

uniform input format for developing performance models for

distributed systems at different scales.

B. Feature Selection
In this work, we collect 32 low-level performance metrics,

using dstat, from two components of Ceph namely monitor

(MON) and Object Storage Daemons (OSD). These measure-

ments are then transformed using the process described in Fig.

2 (refer to Section IV-A for more details).

Selecting the “right” features is a challenging task [11],

[12]. Furthermore, for our case, the right feature set is not

deterministic. Table I shows the model accuracy of different

learning methods when modeling read throughput. We see

that all learning methods achieve high model accuracy even

though they choose different features. The model accuracy

was obtained using k-fold cross validation (k=10), a common

technique for assessing model accuracy. The training data is

partitioned into k disjoint sets. A single data partition is used

for validation purpose and the remaining k � 1 partitions

are used for training data. Although all models yield good

model accuracy, they perform poorly and inconsistently when

the storage environment changes. In Fig. 3, we show the

prediction accuracy under three types of changes in the storage

environment—increase in the size of the distributed storage

system, read workload and individual storage IO request size.

These algorithms (discussed later in Section IV-B) do not

yield consistent prediction accuracy any more. For example,

Lasso can still predict well when workload has changed

but Decision Tree cannot. On the contrary, Decision Tree

performs better than Lasso when the size of the storage system

increases. We suspect this is caused by the large feature space,

which leads to the overfitting problem [13], [20]. Next, we

manually remove most features and select only a few with

a trial-and-error strategy. As shown in Figure 3, we see

significant improvement in some cases, but not all. Since an

SDS environment can change over time, it is important for

our model to provide consistent prediction accuracy in the

presence of such changes.

Although Hyperparameter tuning [9], [8], model selection

[10] and feature selection [11], [12] have been proposed as

potential solutions, it is challenging to use them in practice,

not to mention the complexity of automating this task. PCA

(Principle Component Analysis) is another potential solution

[21]. PCA transforms original data into a lower dimension

while keeping high fidelity. However, PCA has several limi-

tations. First, PCA is not scale invariant. Not all performance

metrics are comparable and therefore, there is no standard way

to scale these metrics. Second, PCA assumes Gaussian distri-

bution in data points; however, many storage workloads have

Pareto distribution [22]. Third, determining a good number of

components is also a challenging task. In our case, PCA does

not address the problems. In fact, Fig. 3 shows that it can

further degrade prediction accuracy.

C. A Two-Level Approach

Instead of performing feature selection or dimension reduc-

tion, we propose a generic two-step approach that can improve

the consistency of prediction accuracy. In the first step, we use

some heuristic methods to filter out irrelevant features. Then,

in the second step, we apply machine learning algorithms to

build performance models with the reduced feature set. The

intuition behind this idea is that it is difficult to determine the

most important performance features but it is relatively easy

to eliminate unimportant features. For example, the features

which are not in the top 100 list after step one can be labeled

as unimportant features.

IV. THE INSIDE-OUT DESIGN

In this section, we present the design of Inside-Out. We also

discuss the trade-offs among a set of representative machine

learning algorithms and propose a two-step learning technique

for mitigating overfitting problems.

A. Collecting and Pre-Processing Low-Level Metrics

Inside-Out collects general low-level system metrics from

individual machines running the distributed storage service.

However, the raw collected data suffers from various problems

due to inefficiency of data collectors, system clock skews,

incomparable data formats, workload outliers, bursty system

3

TABLE I: Important features selected by different algorithms are not deterministic

Lasso Ridge Elastic Net Decision Tree Random Forest
osd network.send sum osd network.recv mean osd network.send sum osd disk.read sum osd disk.read sum

osd disk.writ sum osd disk.read 5% osd disk.writ sum osd network.send sum osd network.send sum

osd cpu.sys sum osd load.15m std osd disk.read sum osd network.recv sum osd disk.writ sum

osd io.read sum osd network.send sum osd cpu.sys sum osd disk.writ sum osd network.recv sum
osd vm.minpf mean osd tcp.tim std osd tcp.lis sum mon memory.buff mean osd memory.cach sum

mon memory.used 5% osd network.recv std osd io.read std osd cpu.sys sum osd memory.buff mean

mon memory.cach 5% osd load.5m std osd io.read sum osd vm.alloc sum osd memory.buff 5%

osd tcp.lis sum osd cpu.idl sum osd vm.minpf mean osd vm.minpf 5% mon io.writ sum

osd io.read std osd cpu.wai sum osd io.writ mean mon cpu.idl std osd memory.buff sum

osd io.writ mean osd cpu.sys sum mon memory.used sum mon memory.cach sum mon vm.free sum

96.20% 96.60% 96.18% 96.78% 96.94%

Fig. 3: Prediction accuracy is inconsistent due to the large feature space. Learning methods fail to select the right features in

some cases. Dimension reduction (PCA with 10 components) does not help in this case. In the trial-and-error case, we select

a subset of metrics, e.g. mean(disk.read), sum(network.recv) and std(cpu.usr).

anomalies, etc. The noisy data can lead to unstable and

inaccurate performance models. Inside-Out performs a series

of data pre-processing functions to address these issues.

1) Monitoring storage components: We collect low level

system metrics of the underlying operating system to capture

resource utilization (e.g. cpu, memory, disk, network usage,

etc.). The low-level performance metrics are sampled with

one-second granularity. Such data can be collected from lib-
virt, Ganglia, instrumented hypervisors [23] and Ceilometer in

OpenStack. We use dstat monitoring tool (with option: -tcly

-mg –vm -dr -n –tcp –float) to collect these data.

2) Data smoothing: Building a performance model with

data collected at one second granularity is challenging because

system data can exhibit high variance at small time scales, e.g.

due to dynamic/bursty workloads and interference among co-

located tenants. Furthermore, the storage IO operation needs

to pass through a series of software layers between the storage

client and the back-end raw physical storage device. The long

storage IO path can introduce high variability in resource uti-

lization at smaller time scales. For example, HDFS and Ceph

both replicate data blocks across storage nodes distributed

in physically disjoint servers, racks or even datacenters. To

address the uncertainties due to complex IO path spanning

several software layers, we compute the moving average of

the collected performance data. We have empirically found

that an one-minute window for processing the moving average

is sufficient to eliminate outliers from the raw data.

3) Timestamp alignment: Proper time synchronization

among participating servers is essential to correlate data col-

lected from those servers. We use NTP for time synchroniza-

tion. The average timestamp of all nodes is taken as the basis

for time alignment.

4) Feature transformation for a distributed storage system:
As mentioned earlier, elasticity is an important feature of SDS,

since it needs to adjust its size based on storage demand.

Thus our model should be able to accurately predict end-to-

end performance at arbitrary deployment scales. However,

the data collected from different scales may have different

dimensions. For instance, Ceph with 10 Object Storage Servers

(OSDs) generates 10 copies of low-level performance metrics,

while Ceph with 5 OSDs generates less number of data points.

This makes it hard to train and build a unified model. As

mentioned in Section III-A, we use mean, sum, std, and
5% statistical variables to capture load-balanced, non-load-
balanced, hotspot, and aggregate workload situations.

In summary, Inside-Out collects 32 raw low-level system

metrics with one-second granularity. Inside-Out applies proper

time alignment and moving average with one-minute windows

for stabilizing performance data. Then it calculates mean, std,

sum and 5% of individual metrics collected from multiple

machines. This ensures that our performance model can accept

input data for systems with varying scales of deployment,

while preserving important characteristics of a distributed

storage system. For training and validation purposes, we

4

measure end-to-end performance metrics (IOPS, throughput,

and latency) every 5 seconds using COSbench [24], and take

average over the one-minute window. Next, we describe how

we build end-to-end performance models in order to capture

the relationship between low-level system metrics and end-to-

end throughput and IOPS.

B. Exploring Learning Methods

Our goal is to build a model that accurately predicts end-

to-end throughput and IOPS by analyzing only the low-

level metrics of a distributed storage system. We explore

several algorithms, including statistical regression [25], [20],

decision tree learning and random forests learning [20], [7].

For statistical regression, we mainly focus on linear regression

techniques, which can be extended to support non-linear

regression by expanding features that simulate, for example,

quadratic terms [26]. We did not find this necessary in our

application and exclude the discussion in this paper.

Lasso is a least square linear regression technique with

L1-norm regularization. The L1 penalty function leads to a

sparse solution, which has an effect of restricting the number

of selected variables. This property is useful for figuring out

important features, especially when the number of variables or

features is large. Ridge is similar to Lasso but instead uses L2-

norm regularization, which has the effect of group selection

of variables. This property does not restrict the number of

variables selected by the prediction model and therefore, the

prediction accuracy might degrade and become inconsistent

when the number of input features to the training model is

large. Elastic Net combines both advantages—it does group

selection while enforcing sparsity. Based on our data set, Lasso

and Elastic Net have similar prediction performance, and

Ridge shows larger variance. The Decision Tree (DT) learning

uses a top-down approach and recursively partitions data to

fit target values. The tree-based model is easy to interpret

and scales well to large datasets. Random Forests (RF) is an

ensemble method that uses multiple decision trees [20]. RF

improves a single decision tree in many ways, e.g., accuracy,

efficiency, and robustness.

To summarize, linear regression models assume a linear

relationship and might oversimplify the storage behavior.

Nonetheless, it has the potential to exhibit better generalization

for extrapolating performance prediction for the unknown

behavior case (the pattern not included in the training dataset).

On the other hand, the tree-based learning can achieve good

model accuracy (perfectly fits the training data), but it can

easily lead to overfitting problems. Its prediction accuracy

decreases, for example, under different storage workloads, as

shown in Fig. 3.

C. Two-level Training

The fundamental challenge in building an effective pre-

diction model from a large set of features is the overfitting

problem. One way to address this problem is to perform man-

ual feature selection. However, this approach is problematic

because the right set of features depend on application types,

deployment topology, resource constraint, etc.

Instead, we propose a two-level training process that filters

out irrelevant features at the first step and then builds models

by using the reduced set of features in the second step.

To this end, Inside-Out pipelines Ridge and Lasso together,

where Ridge filters features in coarse-granularity and then

Lasso builds the prediction model. We choose Ridge as the

filtering algorithm because it is not a sparse solution and

considers all features. We then apply exhaustive grid search

to find the optimized score for important features. We use ↵⇥
median(coefficients) derived from Ridge as the threshold.

For comparison, we consider Decision Tree with Lasso

(Auto-DTL) and RandomForest with Lasso (Auto-RFL). Our

evaluation shows Inside-Out outperforms consistently across

all prediction cases, and boosts prediction accuracy in several

scenarios, where the linear regression models fail to generalize

the behavior of a distributed storage system. We also experi-

mented by using Lasso and Elastic Net as the filter algorithm

but did not find comparable performance with Inside-Out.

Inside-Out uses the following pseudo code to generate an

end-to-end performance model.

Algorithm 1 Inside-Out Model Building

Input: low-level performance metrics from distributed nodes

Output: an end-to-end performance model

Initialisation
1: thresholds = {↵1, ...,↵N}
2: m1 = filtering algorithm ! Ridge
3: m2 = model algorithm ! Lasso
4: k = k-fold cross validation

5: score = 0
Data preprocessing (refer to Section IV-A)

6: alignment of input data

7: calculate moving average across metrics

8: feature transformation for the distributed scenario

Grid Search
9: for all t 2 thresholds do

10: features = execute m1 with threshold t
11: score,m =max(crossvalidation(k, m2, features))

12: end for
13: return m with maximum score

V. EVALUATION

In this section, we present a comprehensive evaluation of

Inside-Out. We demonstrate that Inside-Out can accurately

predict end-to-end performance, i.e., throughput and IOPS,

using low-level system metrics and is applicable to a wide

range of realistic scenarios.

A. Setup
We choose Ceph [4] as a target distributed storage service

for our evaluation and use COSBench [24] to generate various

types of storage workloads. COSBench supports several object

storage protocols, including librados for Ceph, and provides

5

a set of knobs to change storage traffic pattern. Table III lists

Ceph and COSBench configurations used in our experiments.

We collected benchmarking data from an OpenStack-based

SDS platform. The cluster has 16 machines, and each machine

has 16 cores, 24GB memory and 250GB disk space. Each

machine has 1Gbps network interface connected to a 10Gbps

switch. The dataset is collected from about 5300 benchmark

runs. The total dataset is composed of about 15.2 million

records, each of which is a vector of 32 low-level performance

data. The end-to-end performance data collected from COS-

Bench contains 3 million records. The combined dataset is

about 24GB, collected over two weeks.

B. The Comparison Method
Our goal is to find a function f(Xt) that predicts the end-

to-end performance, where Xt is a vector that describes the

internal status at time t of a distributed storage service. We say

a model is accurate if f(Xt) = ŷt ' yt, where yt is the ground

truth (measured at the client side) and ŷt is the predicted

values. To interpret performance models, we are interested

in four indicators: 1) the overall prediction accuracy, 2) the

goodness-of-fit, 3) the consistency across diverse scenarios and

4) the consistency across prediction instances.

First, we use mean absolute percentage error (MAPE) to

compute prediction accuracy as

max(1�
Pn

t=1 |
yt�ŷt

yt
|

n
, 0) (1)

where n is the length of the observation period. We restrict

the scope of prediction accuracy between 0 to 1 because the

prediction accuracy can be negative (e.g. when yt is small).

Second, we use the coefficient of determination R2
to

interpret Goodness-of-Fit, which is less than or equal to one

[8]. Third, we examine whether a performance model can

present consistent prediction in various SDS scenarios. Last,

we further analyze the probability density function of predic-

tion decisions for different categories of prediction scenarios.

We consider prediction of throughput and IOPS for both

read and write operations, and use the following terms TPr,

TPw, OPr and OPw for read throughput, write throughput,

read IOPS and write IOPS, respectively.

C. Baseline: Prediction Performance on Static Deployment
We evaluate prediction accuracy of Inside-Out under a

variety of scenarios with different storage workloads and

configurations (Table II). In this subsection, we focus on a

static deployment scenario with one storage tenant running

on a distributed Ceph storage service that does not expand or

shrink in terms of number of VMs used for running Ceph.

Later, we evaluate more challenging scenarios in which the

Ceph cluster expands or shrinks based on user demand, and

storage traffic of multiple tenants interfere with each other.

1) Can Inside-Out handle diverse workloads?: An SDS

application needs to handle various request volumes, ob-

ject/file sizes and different ratios of read/write workloads.

First we examine whether Inside-Out can achieve accurate and

consistent predictions when workload changes.

Fig. 4: Analysis of performance models with diverse work-

loads. Each bar is the average prediction accuracy. The top

row is the probability density function of prediction accuracy

for each performance model.

Changing user behavior. We increase the number of

concurrent clients to stress the Ceph cluster. The “increasing

users” scenario changes the number of COSBench clients and

the “complex usage” scenario increases the worker threads of

each client. As shown in Fig. 4, all prediction models perform

well. The linear regression technique performs slightly better

than the tree-based learning. The linearly increasing load

is well captured by linear models because of proportional

change in low-level metrics. When we switch to the “complex

request” scenario, the variable request size slightly changes

the behavior of Ceph, affecting prefetching and caching. We

observe that the linear regression methods (Lasso, Ridge and

Elastic Net) show drops in accuracy, e.g. 20% in the OPr

case; however, Inside-Out maintains good accuracy. The tree-

based learning shows comparable predictions (5-10% lower)

with Inside-Out in these settings.

Varying I/O pattern. Next, we consider workloads with

different read/write ratios. Fig. 4 shows that varying workload

poses a big challenge to performance models. The linear re-

gression methods (Lasso, Ridge and Elastic Net) present better

prediction accuracy than tree-based models (DT, RL). In ad-

dition, we observe that several models make poor predictions

of TPr and TPr. The reason is that read behavior is largely

affected by cache, and large read variance contributes to low

prediction accuracy. Inside-Out performs consistently well,

6

TABLE II: Common scenarios that storage behavior can change in a software-define storage environment

Scenario Training Dataset Prediction Dataset Explanation
C

ha
ng

in
g

W
or

kl
oa

d
Increasing users {1, 2} {4} The number of client virtual machines running COSBench.

Complex usage {1, 2, 4, 8} {16, 32} The number of threads for all benchmark clients.

Complex request 512KB 1-1024KB The request size (either static or variable) of the workload,

configured in COSBench.

Write intensive {50, 75, 100} {25, 0}
The percentage of read operations specified in the

workload generation. The read and write percentages are

100 in total.

Read intensive {0, 25, 50} {75, 100}
Medium write intensive {0, 50, 100} {25}
Medium read intensive {0, 50, 100} {75}

R
ec

on
fig

ur
at

io
n Reconfigure Ceph {1} {2} The number of Ceph monitor daemons.

Scale-up instances m1.small m1.medium The instance type of the virtual machines running Ceph is

upgraded to a powerful one. A m1.small instance has one

core and 2GB memory and m1.medium has two cores and

4GB memory. Note that in this setting, the configuration

of disk I/O remains the same.

Medium network SLO unrestricted 500 Mbps The network bandwidth of virtual machines is limited at

500 Mbps. We use the Linux tool tc for network throttling

Low network SLO unrestricted 250 Mbps Network bandwidth is limited at 250 Mbps.

El
as

tic
ity Scale out to n {4, 6, 8, 10} {20, 30, 40} The total number of Ceph OSDs. Note that each OSD is

running in a virtual machine and different OSDs can run

on the same physical servers (10 servers in total).

Shrink in to n {20, 30, 40} {4, 6, 8, 10} Similar to the above, but the cluster size is decreased.

TABLE III: Ceph and COSBench settings for data collection.

Parameters Values
Ceph version 9.2 (Infernalis)

of physical nodes 16

Storage back end Logic Volume (iSCSI)

of storage nodes {4, 6, 8, 10, 20, 30, 40}
of drivers {1, 2, 4}
of workers {1, 2, 4, 8}
Request size {512KB, 1-1024KB}
Duration 180 sec

of containers {64}
of objects {1024}
read/write ratio {100/0, 75/25, 50/50, 25/75, 0/100}

whereas the three linear regression techniques show accuracy

drops. One exception is the OPr prediction in the write-
intensive scenario even though TPr prediction is accurate.

As we will show later in Section V-E, “over- and under-

predictions” cause such behavior. The self-learning property

of Inside-Out improves its prediction accuracy as it keeps

learning the new storage behavior.

Summary. The linear regression models achieve high pre-

diction accuracy, great goodness-of-fit (> 0.98) and consis-

tency in prediction for many instances (see the distribution

of prediction accuracy in Fig. 4), but they are not consistent

across all prediction scenarios. Inside-Out achieves good pre-

diction accuracy across all cases consistently because the two-

level approach filters out many irrelevant features in the first

step, thereby presenting a smaller relevant feature space to the

second step. The tree-based learning methods (DT and RF) do

not show consistent prediction across all scenarios. Auto-DT

and Auto-RFL, which use DT and RF as the filter algorithms,

are not as consistent as Inside-Out.

2) Can Inside-Out handle different system configurations?:
We study whether low-level metrics can capture the storage

behavior when it is reconfigured by tenants. The results are

reported in Fig. 5.

Fig. 5: Comparison of performance models when the storage

service is reconfigured: Ceph, VMs and network SLOs

Reconfiguring Ceph. The first change is to add one extra

Ceph monitor daemon. Ridge and Elastic Net fail to generate

consistent predictions, but Lasso is able to achieve around

80% to 90% prediction accuracy. DT, RF and Inside-Out have

very close prediction accuracies, but Auto-DRL and Auto-RFL

perform slightly worse in predicting TPr and OPr.

Scale-up instances. Increasing CPU and memory allocation

to Ceph VM instances improves Ceph’s ability to handle

more requests. In this test, we change the instance type from

m1.small (1 vCPU, 2GB memory) to m1.medium (2 vCPUs,

4GB memory). The linear models are unable to predict TPr

and OPr, but Inside-Out’s two-level learning performs well

by avoiding the overfitting problem.

Network SLOs. Here we consider the case where the

amount of network bandwidth allocated to Ceph VMs is

7

Fig. 6: Comparison of model performance in the on-demand

scaling scenario. In the scale-out scenario, a performance

model trained with 10 Ceph nodes is used to predict the

performance of Ceph cluster with 20, 30 and 40 nodes.

limited. We use Linux network throttling tool tc to limit

network bandwidth at 500 Mbps and 250 Mbps for medium

and low bandwidth SLOs, respectively. We observe that linear

models without the two-level method do not show compa-

rable prediction accuracy across both throughput and IOPS

predictions. The tree-based learning models, on the other hand,

achieve 80% to 90% accuracy, comparable to Inside-Out.

Summary. Tree-based learning (DT, RF) models demon-

strate promising prediction in terms of prediction accuracy and

consistency. Lasso, Ridge and Elastic Net show inconsistent

behavior in the above four scenarios. Inside-Out, on the other

hand, provides consistent predictions and improves Lasso,

from 23.9% to 87.6% in the extreme case.

D. Prediction Performance in a Multi-tenant Cloud

1) Elastic Storage (On-demand Scaling): A storage service

needs to grow or shrink its capacity on demand. We evaluate

Inside-Out’s ability to capture the storage behavior at different

system scales. As shown in Fig. 6, we use training data

collected from 4, 6, 8, and 10 nodes, and then predict the

performance of 20, 30, and 40 nodes. We also evaluate

prediction accuracy in the “shrink-in” scenario. For both read

and write throughput predictions, the linear models exhibit

high variance. In the OPr and OPw cases, the prediction

results are not even comparable to the other methods. Inside-

Fig. 7: Prediction accuracy in a multi-tenancy scenario. Tenant

A-1 is co-located with Tenant B-2. Tenant A-1 is throttled

at 250Mbps. Tenant B-1 and B-2 are co-located without any

traffic throttling.

Out, on the other hand, helps mitigate this issue, and achieves

more than 90% accuracy. With increasing sizes of the stor-

age, the prediction accuracy decreases because the prediction

target becomes increasingly different from the training data.

Running a benchmark test against a very large system is time-

consuming. Here we demonstrate that Inside-Out can predict

performance for systems that are four times larger than the

system for which training data was collected.

2) Multi-Tenancy: Next we evaluate Inside-Out’s ability to

adapt to performance interference among storage tenants.

We consider two cases for this evaluation. Each tenant runs

a Ceph cluster with 10 OSDs separately, but tenants share

the same 10 physical machines. In the first case, we restrict

the bandwidth of only the first tenant at 250Mbps. In the

second case, we run two concurrent Ceph clusters but without

network throttling. Fig. 7 shows that most prediction models

are able to achieve more than 80% accuracy. The linear models

like Ridge and Elasticnet yield lower prediction accuracies in

some cases; however, Inside-Out performs well consistently.

Performance interference is challenging for a performance

model designed for an isolated environment. This evaluation

demonstrates that the low-level performance metrics are good

proxies for measuring the end-to-end storage performance,

even in a shared SDS environment.

E. Online Self-Learning
Next we create several synthetic workloads with mixed

read/write ratios. This synthetic workload spans 12 hours with

720 stages. Each stage is 60-second long on average, with

a standard deviation of 20 seconds. We run four COSBench

virtual machines for benchmarking and up to eight threads

per COSBench client, with 10 Ceph OSDs and one monitor

daemon. We use Inside-Out to build an initial performance

model with the training dataset described in Section V. Fig.

8

Fig. 8: Application of Inside-Out to real time prediction of read throughput on a 10-node Ceph cluster. Inside-Out starts from

a simple prediction model trained by our collected benchmarking data. Inside-Out keeps learning the storage behavior while

improving prediction accuracy over time.

Fig. 9: Kernel density function of prediction accuracy from

Fig. 4 to Fig. 7. Each colored line represents the density

function of a modeling approach. Inside-Out is more consistent

and accurate across almost every prediction case.

8 shows the prediction result for read throughput. We can

observe that the generated model can capture the overall

trend, but suffers from over and under predictions. This is

because our training dataset is generated from a relatively

clean environment, i.e. the OS memory is flushed before

any benchmarking process. However, in the online prediction

setting, cache is continuously consumed by non-stop client

requests, which causes the real time storage behavior to be

different from the training dataset. With continuous monitoring

of the performance of the storage service, we use Inside-Out

to generate a new performance model at the sixth hour. Fig. 8

shows that Inside-Out learns the new storage behavior and

therefore, the over- and under-prediction issues are greatly

mitigated. By continuously learning the storage behavior, SDS

can accurately capture performance changes and therefore is

able to provide reliable storage service.

F. Discussion
We have shown that low-level performance metrics are use-

ful to predict end-to-end throughput and IOPS. Our evaluation

has shown that low-level performance metrics are good indica-

tors of end-to-end throughput and IOPS. Most existing perfor-

mance models exhibit an inconsistent prediction behavior in

the presence of diverse storage scenarios, such as changing

workload, storage reconfigurations, growing/shrinking stor-

age and multi-tenancy environments. Our proposed two-level

learning method can greatly improve prediction accuracy and

yield consistent behavior. Machine learning provides powerful

tools, but they need to be used intelligently to achieve the best

prediction accuracy. Fig. 9 shows the kernel density function

of prediction accuracy across all prediction scenarios. Inside-

Out is a clear winner in terms of accuracy and consistency.

More importantly, Inside-Out is able to learn new storage

behavior, thereby enabling the performance model to adapt

to the complex SDS environment.

VI. RELATED WORK

Storage performance modeling has been extensively ex-

plored in many prior works. Three common modeling tech-

niques are analytical, simulation and data-driven approaches

[15], [16], [18]. The analytical (mathematical) model requires

domain knowledge to manually identify the factors that affect

performance[15], [16]. Kelly et al. use a probability model

to predict response time for an enterprise storage array.

Ruemmler et al. found that a disk is too complex to model

with analytical methods and designed a disk simulator to

characterize storage behavior [14]. However, the simulation

approach becomes inefficient when searching a large design

space [16].

The data-driven or the measurement-based approach uses

measurement data to derive a prediction model. Wang et al.

[7] adopt classification-and-regression-tree (CART) to predict

the response time of a single disk and a disk array. The

authors propose request-level and workload-level device mod-

els for different prediction granularities. Yin et al. also use

the regression tree to predict storage throughput and latency

[17]. Their work mainly focuses on multiple workloads, and

proposes a scalable model, by combining related workload

features. Noorshams et al. extensively analyze four different

types of algorithms (including linear regression and CART

models) and apply to IBM storage servers [8]. They also

propose an optimization technique to search for parameters

that can improve prediction accuracy. Their proposed pa-

rameter optimization complements our work for improving

prediction accuracy. To sum up, Inside-Out uses only low-level

9

performance metrics and does not require workload profiles

and storage configurations. Unlike these studies, Inside-Out is

primarily designed for diverse storage services that need to be

reconfigured frequently to meet users’ demand.

Mesnier et al. [27] propose a novel black-box approach that

can describe the performance difference between two storage

devices. It may be possible to borrow this idea and apply it

to the unseen configuration scenarios as described in Section

V-C2. With this approach, we can study the performance

difference between two configurations and create a combined

model with better prediction accuracy. Bodik et al. propose

an exploration policy for quick collection of essential data

required to train a performance model [28]. This policy can

reduce the time required for offline and online model training.

Chen et al. propose SLA decomposition that combines

profiling and queuing model to derive resource thresholds for

meeting application SLA [29]. Machine learning has also been

applied to performance modeling for virtual machines (VMs).

DeepDive uses the classification technique to detect perfor-

mance anomaly among VMs [19]. In [26], the authors apply

regression and artificial neural network to model performance

of a single VM. Our work focuses on performance prediction

of a distributed storage system that includes multiple software

and hardware entities.

VII. CONCLUSION

Ensuring end-to-end performance in software-defined stor-

age (SDS) requires accurate performance models. This paper

presents Inside-Out, a tool that provides reliable and consistent

prediction of end-to-end performance of distributed storage

systems using low-level system metrics. Our evaluation in-

dicates that Inside-Out is able to generate accurate prediction

models even when the storage environment differs significantly

from the training phase. Inside-Out is generic in nature be-

cause it does not use application or protocol specific data for

building performance models. Although we used Ceph as an

example distributed storage service to evaluate Inside-Out, we

believe it should be applicable to other storage systems as well

with minor modifications.

REFERENCES

[1] Software-Defined Storage. http://www.research.att.com/articles/

featured stories/2015 09/software-defined-storage.html

[2] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,

T. Talpey, R. Black, and T. Zhu, “IOFlow: A Software-Defined Storage

Architecture,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles (SOSP’13), Farmington, Pennsylvania,

USA, November 2013, pp. 182–196.

[3] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,

“Bridging the tenant-provider gap in cloud services,” in Proceedings of
the Third ACM Symposium on Cloud Computing (SoCC 2012), San Jose,

CA, USA, October 2012, pp. 1–14.

[4] Ceph. http://ceph.com

[5] Apache Hadoop. http://hadoop.apache.org/

[6] OpenStack. http://www.openstack.org

[7] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and

G. Ganger, “Storage device performance prediction with CART models,”

in Proceedings of the joint international conference on Measurement and
modeling of computer systems (SIGMETRICS’04/Performance’04), New

York, NY, USA, June 2004, pp. 588–595.

[8] Q. Noorshams, D. Bruhn, S. Kounev, and R. Reussner, “Predictive

performance modeling of virtualized storage systems using optimized

statistical regression techniques,” in Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering (ICPE 2013),
Prague, Czech Republic, April 2013, pp. 283–294.

[9] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, “Choosing

multiple parameters for support vector machines,” Machine Learning,

vol. 46, no. 1-3, pp. 131–159, 2002.

[10] R. Kohavi, “A study of cross-validation and bootstrap for accuracy

estimation and model selection,” International Joint Conference on
Artificial Intelligence, vol. 14, pp. 1137–1143, 1995.

[11] I. Guyon and A. Elisseeff, “An introduction to variable and feature

selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–

1182, 2003.

[12] Y. Saeys1, I. Inza2, and P. Larra˜naga2, “A review of feature selection

techniques in bioinformatics,” Bioinformatics, vol. 23, pp. 2507–2517,

2007.

[13] P. Domingos, “A few useful things to know about machine learning,”

Communications of the ACM, vol. 55, no. 10, pp. 78–87, Oct. 2012.

[14] C. Ruemmler and J. Wilkes, “Introduction to disk drive modeling,”

Computer, vol. 27, no. 3, pp. 17–28, mar 1994.

[15] E. Shriver, A. Merchant, and J. Wilkes, “An analytic behavior model

for disk drives with readahead caches and request reordering,” in Pro-
ceedings of the 1998 ACM SIGMETRICS joint international conference
on Measurement and modeling of computer systems (SIGMETRICS
’98/PERFORMANCE ’98), Madison, WI, USA, June 1998, pp. 182–

191.

[16] T. Kelly, I. Cohen, M. Goldszmidt, and K. Keeton, “Inducing Models

of Black-Box Storage Arrays Inducing Models of Black-Box Storage

Arrays,” HP Laboratories, Tech. Rep., 2004.

[17] L. Y. L. Yin, S. Uttamchandani, and R. Katz, “An Empirical Exploration

of Black-Box Performance Models for Storage Systems,” in Proceedings
of the 14th IEEE International Symposium on Modeling, Analysis, and
Simulation (MASCOTS 2006), Monterey, CA, USA, September 2006,

pp. 433–440.

[18] D. Ardagna, G. Casale, M. Ciavotta, J. F. P´erez, and W. Wang,

“Quality-of-service in cloud computing: modeling techniques and their

applications,” Journal of Internet Services and Applications, vol. 5, no. 1,

p. 11, September 2014.

[19] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, and R. Bianchini,

“DeepDive: Transparently Identifying and Managing Performance In-

terference in Virtualized Environments,” in Proceedings of the 2013
USENIX Annual Technical Conference (USENIX ATC’13), San Jose, CA,

USA, June 2013, pp. 219–230.

[20] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, “The elements

of statistical learning: data mining, inference and prediction,” The
Mathematical Intelligencer, vol. 27, no. 2, pp. 83–85, 2005.

[21] J. Shlens, “A tutorial on principal component analysis: derivation,

discussion and singular value decomposition,” pp. 1–16, March 2003.

[22] Y. Kim, R. Gunasekaran, G. M. Shipman, D. A. Dillow, Z. Zhang,

and B. W. Settlemyer, “Workload characterization of a leadership class

storage cluster,” in PDSW’10, 2010.

[23] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An

analysis of performance interference effects in virtual environments,” in

ISPASS 2007, San Jose, CA, USA, April 2007, pp. 200–209.

[24] COSBench. https://github.com/intel-cloud/cosbench

[25] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al., “Least angle

regression,” The Annals of statistics, vol. 32, no. 2, pp. 407–499, 2004.

[26] S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao, “Application

performance modeling in a virtualized environment,” in HPCA). IEEE,

2010, pp. 1–10.

[27] M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. X. Zheng, and G. R.

Ganger, “Modeling the relative fitness of storage,” in Proceedings of
the 2007 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems (SIGMETRICS 2007), San Diego,

CA, USA, June 2007, pp. 37–48.

[28] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. a.

Patterson, “Automatic Exploration of Datacenter Performance Regimes,”

in Proceedings of the 1st workshop on Automated control for datacenters
and clouds (ACDC’09), Barcelona, Spain, June 2009, pp. 1–6.

[29] Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai, “SLA decompo-

sition: Translating service level objectives to system level thresholds,”

in Fourth International Conference on Autonomic Computing, ICAC’07,

Jacksonville, FL, USA, June 2007.

10

