
FlipSphere: A Software-based DRAM Error Detection and Correction Library for HPC

David Fiala and Frank Mueller
Dept. of Computer Science

North Carolina State University
Email: mueller@cs.ncsu.edu

Kurt B. Ferreira
Scalable System Software

Sandia National Laboratories
Email: kbferre@sandia.gov

Abstract—Proposed exascale systems will present consider-
able resiliency challenges. In particular, DRAM soft-errors, or
bit-flips, are expected to greatly increase due to much higher
memory density of these systems. Current hardware-based
fault-tolerance methods cannot cope by itself with the expected
soft error frequency rate. As a result, additional software is
needed to address this challenge.

We introduce FlipSphere, a tunable, transparent silent data
corruption detection and correction library for HPC applica-
tions that is first in its class to use hardware accelerators such
as the Intel Xeon Phi MIC to increase application resiliency.
FlipSphere provides comprehensive silent data corruption pro-
tection for application memory by implementing on-demand
page integrity verification coupled with software-based error
correcting codes that allow for automatic error recovery in
the event of memory failures. We investigate the trade-off of
hardware resources for resilience and find that up to 90%
of memory may be guarded with error detection at a 40%
performance overhead.

I. INTRODUCTION

With the increased density and power concerns in modern
computing chips, components are shrinking, heat is increas-
ing, and hardware sensitivity to outside events is growing.
These variables, combined with the extreme number of
components expected to make their way into computing
centers as our computational demands expand, are posing
a significant challenge to the design and implementation
of future extreme-scale systems. Of particular interest are
soft errors in memory (spontaneous bit flips) that manifest
themselves as silent data corruption (SDC). SDC is of great
importance to the reliability of these systems due to its
ability to render results invalid in scientific applications
without detection of such corruption.

Silent data corruption can occur in many components
of a computer system including the processor, cache, and
memory due to radiation, faulty hardware, and/or lower
hardware tolerances. While cosmic particles are one source
of concern, another growing issue resides within the cir-
cuits themselves, due to miniaturization of components. As

This work was supported in part by a subcontract from Sandia National
Laboratories and NSF grants CNS-1058779, CNS-0958311. Sandia Na-
tional Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

components shrink, heat becomes a design concern, which
in turn leads to lower voltages in order to sustain the
growing chip density. Lower component voltages result in a
lower safety threshold for the bits that they contain, which
increases the likelihood of an SDC occurring. Further, as
densities continue to grow, any event that upsets chips (i.e.,
radiation) is more likely to flip bits.

Current systems use memory with hardware-based ECC
that is capable of correcting single bit errors and detecting
double bit errors [1] within a region of memory (typically a
cache line). Errors in current systems that result in three or
more bit flips will produce undefined results including silent
data corruption, which may produce invalid results without
warning. While the frequency of single and double bit errors
is known (8% of systems will incur correctable errors while
2%-4% of will incur uncorrectable errors [2]), the frequency
of higher bit errors is still an open research question, and
GPUs are known to be more prone to them [3]. While
chipkill can detect and correct more errors than ECC [4], it
cannot do so for all memory errors and SDCs outside DRAM
may not be detected at all, and such SDCs are routinely
observed at scale [5]. The overall occurrence of bit flips is
expected to increase as chip densities increase and feature
sizes decrease.

While hardware vendors will address silent data corrup-
tion for the consumer and enterprise markets via more so-
phisticated detection and correction hardware logic, this will
come at a price of increased memory overheads, latencies,
and power. More importantly, it is not clear that these vendor
solutions will be sufficient given the unprecedented scale and
failure rates of future extreme-scale systems [6].

To address this SDC issue, we introduce FlipSphere,
a software-based, generic memory protection library that
increases application resilience by protecting data at the
page level using an application transparent, tunable, and
on-demand verification system with the following contribu-
tions:

• It introduces FlipSphere, which provides transparent pro-
tection against SDC for all applications without any
program modifications.

• This is, to the best of our knowledge, the first published
class of software-based resilience that harnesses hardware
accelerators such as Xeon Phis to harden applications.

Further, this work evaluates the feasibility of full or shared
co-execution for resilience on accelerators.

• We introduce two levels of protection and analyze their
costs independently: Bit flip detection and bit flip de-
tection plus automatic correction, thereby reducing the
number of SDCs.

• FlipSphere provides a view into an application’s memory
access patterns as part of its functionality. In fact, using
this feature, its operation is agnostic by tuning to the data
access patterns of an application directly.

• It is extensible with new features, e.g., custom hashing
algorithms or further strengthened ECC techniques.

II. DESIGN

This paper introduces FlipSphere, a transparent,
application-agnostic library that is capable of detecting
and optionally correcting silent data corruption (SDC) in
the memory of an executing process. FlipSphere works
alongside traditional hardware ECC as an additional
layer of defense against SDCs that exceed the limitations
of hardware protection or it can independently provide
protection on systems that lack hardware ECC altogether.
Our SDC detection techniques are based on the ability to
verify the correctness of memory residing in RAM that
has not been accessed (relatively) recently. Specifically,
we are most interested in ensuring that memory has not
become perturbed by an SDC event before the application
is allowed to read a region of memory. When FlipSphere
guards memory accesses and verifies them before use, it is
possible to ensure that memory read by a process has not
been changed due to any external events, such as memory
corruption.1

Fault Model: We assume that SDCs occur as random
stochastic events uniformly distributed in DRAM due to ra-
diation from space and fabrication miniaturization resulting
in ever smaller differences between supply and threshold
voltages. ECC may detect and correct some of these faults
during memory scrubbing or when accessed, but not all
as related work shows [2], [3], [4], [7], i.e., our method
complements hardware scrubbing.

Error Model: FlipSphere currently protects an applica-
tion’s heap, BSS, and data sections but not that of the
operating system. Although the FlipSphere methodology
applies to all process sections, we protect neither the stack
nor code (instructions) in the implementation. Not all faults
result in errors, i.e., no error occurs when bit-flipped data
is never referenced. We focus on HPC application that
commonly operate on large data referenced in its entirety.

1An external event is defined as any occurrence that involves direct mem-
ory modification without FlipSphere’s knowledge. For instance, FlipSphere
must be made aware of DMA transfers before/after they occur, as they may
bypass the CPU and thus FlipSphere.

A. Memory Access Tracking

The underlying tenant of FlipSphere is that an applica-
tion’s working-set of pages, which is the subset of virtual
memory pages read or written to over a given period of time,
is considerably smaller than the entire set of pages an ap-
plication’s data resides in. Further, FlipSphere assumes that
SDC is likely to occur in memory that has not been accessed
recently. We assume that the SDCs we are guarding against
are more likely to occur in memory not recently accessed by
the processor. In particular, FlipSphere is designed to protect
memory in DRAM, as opposed to processor faults.

Next, we define two terms that relate to an application’s
data within FlipSphere: (1) locked memory, which has
not been accessed recently, resides in RAM, and must be
verified by FlipSphere before the application may read it,
and (2) unlocked memory, which has been recently accessed
and has undergone verification by FlipSphere to ensure its
integrity before being read/used by the application. While
the verification process will be explained later, the transition
between locked and unlocked must be considered first. Let
us assume that when an application is launched with 3
pages of data, all pages of its memory start in a locked
state. Let us also assume an access pattern of P1, P3, P3,
P2. Upon the first memory access to read memory in P1,
FlipSphere will interrupt execution to verify P1 since it is
locked. FlipSphere verifies that P1 is free from SDC (correct)
via verification, marks it as unlocked, and returns control to
the application. Next, P3 is accessed by the application, but
since it is locked, the same aforementioned process occurs
for P3 before control is returned to the application. When
P3 is accessed a second time, no interruption occurs since
it has already been marked as unlocked to indicate it was
verified. Upon access of P2, the verification and transition to
unlocked occurs again. At this point, all memory is marked
as unlocked, and no further interruptions from FlipSphere
occur since all pages are in this state.

FlipSphere strives to both minimize and ensure that the
only pages allowed in an unlocked state are pages that have
been recently accessed. A simple way to conceptualize this
is to define a fixed-length least recently used (LRU) table of
pages. Whenever a page is accessed, it will be added to the
LRU table, and once the table is full, the oldest page entry in
the table would be evicted to make room for the most recent
page accessed. The eviction would require that FlipSphere
transition the evicted page from an unlocked to a locked
state, and simultaneously store some correctness metadata
on the page so that it may later verify the page when it is
accessed again in the future. As maintaining a LRU table
and performing high frequency evictions/lookups would be
prohibitively expensive in an HPC context, FlipSphere trades
off the accuracy of an LRU table for the performance of a
timer-based approach, wherein a relock interval is used to
periodically transition all unlocked pages into a locked state.

Listing 1. ”bench” example code
int* mem = malloc(sizeof(int) * outerloopmax * innerloopmax);
for(i=0..outerloopmax)

for(BusyWorkLoop=0..100)
for(j=0..innerloopmax)
mem[i][j] += 1; //touch memory

Listing 2. ”bench-rand” example code
int* mem = malloc(sizeof(int) * outerloopmax * innerloopmax);
for(i=0..outerloopmax)

v = rand() % outerloopmax;
for(BusyWorkLoop=0..100)
for(j=0..innerloopmax)
mem[v][j] += 1; //touch memory

This approach allows for an unbounded number of pages to
be accessed between each relock interval before all become
relocked; however, in practice we tune the relock interval to
a value that correlates to a target percent of memory being
in the unlocked state. For example, in some applications, a
relock interval of 0.1 seconds may correlate to no more than
10% of memory being unlocked on average.

Listing 1 demonstrates a sample application, henceforth
“bench”, that allocates a large array of memory and then
proceeds to touch all memory in several iterations over
the i loop. Using bench with FlipSphere, we can visualize
the memory access patterns by utilizing FlipSphere’s page
access tracking functionality.

(a) f 10/83 (b) f 30/83 (c) f 50/83 (d) f 70/83
Figure 1. Memory access patterns of bench: relock interval 0.2 secs,
frames 10,30,50,70 out of 83, blue=pages accessed in each frame, lower
left corner=memory offset 0 with increasing addresses left to right and
bottom to top.

(a) f 12/93 (b) f 42/93
Figure 2. Memory access patterns of bench-rand: relock interval=0.2 sec.

In Fig. 1 we see four individual snapshots of the memory
access pattern of bench during execution. To generate these
graphs, we ran FlipSphere with bench while setting its
relock interval to 0.2 seconds. At each interval, FlipSphere
captured the status of every page’s status. For instance, from
Figures 1(a) to 1(b) we see that the blue unlocked pages
have moved from lower addresses to higher addresses. In the
example, an uninstrumented run of bench completed in 0.34
seconds, whereas the tracked execution in Fig. 1 was 100
times slower. Although the runtime overhead was severe, the
amount of memory in the unlocked state stayed on average
at approximately 0.1%.

To counter the high overhead of page-level tracking, we
next introduce the optimization parameter unlock ahead.
unlock ahead specifies a number of additional pages to
unlock linearly ahead of the current page accessed. E.g.,
if unlock ahead is 3 while P10 is accessed, then pages P10,
P11, P12, and P13 would all be unlocked at the same time.

This reduces the number of interruptions an application will
receive during execution, at the trade-off of a speculative
memory access pattern. Tuning unlock ahead depends on the
application’s characteristics. For bench, memory is scanned
from low addresses to high addresses without many jumps,
so higher unlock ahead values will directly correlate to both
an increase in performance and in the number of pages
unlocked on average (see Fig. 3(a)). Listing 2/Fig. 2 show
an application that reads 512KB chunks at random memory
locations.

 0

 5

 10

 15

 20

 25

 30

 35

Bas
el
in

e

UH=
0

(0
.1

%
 u

nl
oc

ke
d)

UH=
2

(0
.4

%
 u

nl
oc

ke
d)

UH=
4

(0
.7

%
 u

nl
oc

ke
d)

UH=
8

(1
.3

%
 u

nl
oc

ke
d)

UH=
16

 (2
.4

%
 u

nl
oc

ke
d)

UH=
32

 (4
.6

%
 u

nl
oc

ke
d)

UH=
64

 (8
.9

%
 u

nl
oc

ke
d)

UH=
12

8
(1

7.
2%

 u
nl

oc
ke

d)

C
o
m

p
le

ti
o
n
 t

im
e
 i
n
 s

e
co

n
d

s

bench runtime

(a) bench: relock interval=0.2 secs

 0

 2

 4

 6

 8

 10

Bas
el
in

e

UH=
16

 (0
.1

%
 u

nl
oc

ke
d)

UH=
32

 (0
.3

%
 u

nl
oc

ke
d)

UH=
64

 (0
.5

%
 u

nl
oc

ke
d)

UH=
12

8
(1

.0
%

 u
nl

oc
ke

d)

UH=
25

6
(2

.0
%

 u
nl

oc
ke

d)

UH=
51

2
(4

.0
%

 u
nl

oc
ke

d)

UH=
10

24
 (8

.0
%

 u
nl

oc
ke

d)

C
o
m

p
le

ti
o
n
 t

im
e
 i
n
 s

e
co

n
d
s

benchrand runtime

(b) benchrand: relock interval= 0.01 secs
Figure 3. Runtimes of benchmarks: UH=unlock ahead value, “% un-
locked”=avg. % pages unlocked between each relock interval.

Fig. 3(b) demonstrates optimal performance (in terms of
execution time) first at unlock ahead=128, since 128 * 4KB
(VM Page Size) = 512KB. We also see that increasing
the unlock ahead value beyond the working-set size of an
application will increase the amount of memory unlocked
without increasing performance. Specifically, we see that as
we move from an unlock ahead of 128 to 256, 512, or 1024
that the only notable difference is a significant increase in
the unlocked pages from 1% to 8% with no runtime effect.
This effect underscores the importance of proper tuning
since we do not want to speculatively unlock pages that
will not actually be used by an application in the relatively
near future.

B. Error Detection (Memory Verification)

By assuming the model for the previous section wherein
memory accesses are efficiently tracked by FlipSphere, we
next move to begin protecting memory from silent data
corruption. In network communications and many file sys-
tems, cyclic redundancy check (CRC) codes are used to

Listing 3. Unlocking and Relocking (Detection only)
#define PAGE_SIZE 4096 /*Typical 4KB page size*/

int StoredCRCValues[TOTAL_PAGES]; /* 32bit int per page */
char* MemoryStart; /* Protected memory */

//Called upon page access. Transitions page from locked->unlocked.
void UnlockPage(int page) {

void *address = MemoryStart + (page * PAGE_SIZE);
if(GenerateCRC32(address, PAGE_SIZE) != StoredCRCValues[page])
ERROR(SDC_DETECTED, "Page %d had an SDC\n", page);

MarkPageAsUnlocked(page);
}
//Called by a timer at relock-interval. Transitions ALL pages to locked.
void RelockAllPages() {

for(int page = 0; page < TOTAL_PAGES; page++) {
if(PageIsUnlocked(page)) {
void *address = MemoryStart + (page * PAGE_SIZE);
StoredCRCValues[page] = GenerateCRC32(address, PAGE_SIZE);
MarkPageAsLocked(page);

} } }

guard against changes to raw data. CRC codes are one-way
hashes that are particularly well suited to detect corruption
of data as they are designed to be computationally cheap,
fast to compute since they are used for verification instead
of security. In FlipSphere we use the CRC32 hash, which
requires only 32bits of storage per hash generated.

We can now extend the infrastructure provided by Flip-
Sphere’s page tracking concepts to define a means of mem-
ory verification that occurs during the transition between
unlocked and locked states. First let us assume that for every
page tracked by FlipSphere, we store additional metadata
that contains both the state (unlocked or locked) and the
CRC. If a page is in the locked state, then it is assumed to
have a corresponding CRC saved in metadata that holds the
CRC32 value of that page at the time when it previously
transitioned from unlocked to locked. Further, when a page
is accessed at the transition from locked to unlocked, we
generate a new CRC32 of the page being accessed while
FlipSphere interrupts the execution (Listing 3). The new
CRC32 is compared against the previously stored CRC32.
If they match then FlipSphere marks the page as unlocked
and returns control to the application. However, if they do
not match then the only conclusion is that the data was
modified while it resided in RAM, which may indicate that
an SDC has occurred. If we only perform CRC verifica-
tion, FlipSphere may notify the user and/or process, and
optionally terminate it immediately as to not perform further
computations on invalid data. A rollback to a previously
known good checkpoint may be desired, if checkpointing is
available. However, we will later introduce automatic error
correction provided by FlipSphere (in Section II-C).

Recall that after a page transitions to an unlocked state,
there are no further interruptions from FlipSphere until it is
returned to the locked state during the next relock interval.
Since the CRC value stored by FlipSphere is immediately
outdated once a page has been written to, FlipSphere must
calculate and store a new CRC value every time the page
transitions back to a locked state, as shown in Listing 3. This
process occurs indefinitely throughout the execution of any
application protected by FlipSphere.

Listing 4. Error Detection and Correction
#define PAGE_SIZE 4096 /*Typical 4KB page size*/

/* 72/64 Hamming stores 1 byte of ECC per 8 bytes of data */
#define ECC_GROUPS_PER_PAGE (PAGE_SIZE/8)
char StoredECCValues[TOTAL_PAGES][ECC_GROUPS_PER_PAGE];

int StoredCRCValues[TOTAL_PAGES]; /* 32bit int per page */
char* MemoryStart; /* Protected memory */

//Called upon page access. Transitions page from unlocked->locked.
void UnlockPage(int page) {
void *address = MemoryStart + (page * PAGE_SIZE);
if(GenerateCRC32(address, PAGE_SIZE) != StoredCRCValues[page]) {
PerformECCRecovery(address, StoredECCValues[page]);
/* See if ECC was successful after attempted recovery */
if(GenerateCRC32(address, PAGE_SIZE) != StoredCRCValues[page])

ERROR(SDC_DETECTED, "Page %d had an unrecoverable SDC\n", page);
else

printf("Page %d RECOVERED\n", page);
}
MarkPageAsUnlocked(page);

}
//Called by a timer per relock-interval. Transitions ALL pages to locked.
void RelockAllPages() {
for(int page = 0; page < TOTAL_PAGES; page++) {
if(PageIsUnlocked(page)) {

void *address = MemoryStart + (page * PAGE_SIZE);
StoredCRCValues[page] = GenerateCRC32(address, PAGE_SIZE);
GenerateECCBits(address, StoredECCValues[page]);
MarkPageAsLocked(page);

} } }

Table I
STORAGE OVERHEADS OF FLIPSPHERE ERROR DETECTION AND

CORRECTION CODES
Algorithm Overhead per Storage

4KB page Overhead %

CRC32 Hash 4 bytes 0.10%
72/64 ECC 512 bytes 12.5%
Total Cost 516 bytes 12.6%

C. Error Correction

In the previous section, we referred to FlipSphere’s ability
to store a hash of pages that are under its protection.
While the comparison of hash values cannot correct errors,
we can still provide correction capabilities by computing
and storing error correcting codes (ECC), such as ham-
ming codes alongside our CRC hashes. For example, the
72/64 hamming code, frequently used in hardware, may
be employed inside of FlipSphere to provide single error
correction, double error detection (SECDED) capabilities at
the expense of the additional storage required for the ECC
codes. In fact, combining FlipSphere with hardware ECC
can provide not only the ability to detect triple bit errors
or greater (dependent on the capabilities of any particular
ECC chip), but can also provide correction capabilities as
the software-layered protection in FlipSphere may still retain
viable error correcting codes once hardware protection has
been exceeded.

Using FlipSphere extended with hashing plus ECC codes,
it is possible to enjoy the protection and speed of hashing
while limiting ECC code recalculation during unlocking
only to times when a page has become corrupt during
execution resulting in a mismatched hash. Listing 4 revises
the pseudo-code for error detection (CRC) and correction
(ECC). FlipSphere extends basic error detection by using
72/64 hamming codes for parity, which requires 1 byte
(8bits) of storage per 8 bytes (64bits) of data, as shown
in Table I.

D. Memory Layout

Internally, FlipSphere maintains several separate sections
of memory, the largest of which is the memory of the
protected application. At a high level, FlipSphere is capable
of protecting any contiguous range of virtual memory, such
as the application’s heap or BSS data section exclusively.
Beyond that, storage is kept for internal data, namely for
locked/unlocked status, CRC, and ECC data of every man-
aged page. The internal data is held in a separate range
of virtual addresses distant from the application’s data.
Application data may be either (1) unprotected (outside of
FlipSphere’s range of protection), (2) protected but unlocked
(if accessed recently), or (3) protected and locked (not
recently accessed but with up-to-date CRC and ECC bits).

E. Regions of Memory Protected

Internally, FlipSphere maintains its own alternative pro-
tected heap space for the application and interposes mem-
ory allocation functions, such as malloc, realloc, and
memalign. These interposed functions will allocate mem-
ory from FlipSphere’s protected heap and provide addresses
for the application. Later, these heap pages will always be
either locked or unlocked.

Alternatively, for applications that allocate the bulk of
their memory in a data or BSS section of the executable,
FlipSphere protects those sections of data as well. When
an application begins execution, all memory in FlipSphere’s
protected heap or data/BSS sections are locked by default.
When an application allocates memory (i.e., calls malloc),
the pages returned will become unlocked on future read/write
memory accesses until locked by the library later on. Mem-
ory outside of the scope of FlipSphere’s protected memory
will by default not be protected or altered in any way.

F. Acceleration: Xeon Phi and SSE4.2

The heavy use of CRC hashing and software-based gener-
ation of ECC bits would normally prohibit the efficiency of
any software error detection and correction mechanism. Flip-
Sphere takes advantage of recent hardware developments by
performing CRC generation on the host CPU by utilizing the
new, performant CRC32 instruction[8] added in the SSE4.2
instruction set. Furthermore, one of FlipSphere’s significant
contributions is the use of accelerators with an asynchronous
kernel written for the Intel Xeon Phi (Intel Many-Integrated
Core) co-processors[9]. Each Phi co-processor is an Intel
chipset with approximately 60 cores capable of over a
teraflop of performance through a high degree of parallelism.
As each co-processor is a dedicated PCI-x card, FlipSphere’s
custom kernel is responsible for data transfer of application
memory via DMA between the host memory and the Phi’s
own on-board memory. From there, FlipSphere is able to
generate new ECC bits (previously shown as a function in
Listing 4) that are kept until the next relocking interval and

the process is repeated. We will explore both full and partial
Xeon Phi utilization for resilience such that a co-processor
may optionally be partially co-executing an application and
our resilience algorithm at the same time on a Phi.

G. Assumptions and Limitations

FlipSphere’s protection extends only to memory and is
not designed to protect against faults that occur in the CPU
or other attached devices, including any attached Xeon Phi
co-processors.

Since protection is provided for data stored in main mem-
ory, FlipSphere requires the capability to detect memory
accesses. FlipSphere achieves this by altering process page
tables and removing read/write page permissions in order to
receive OS signals that indicate which memory addresses are
being accessed upon a page fault. This requires a memory
management unit (MMU) and the ability for applications to
install a signal handler that detects access violations.

For simplicity, FlipSphere at present only protects mem-
ory that is dynamically allocated using previously mentioned
functions such as malloc or static sections of data such as
the BSS. While the benchmarks evaluated under FlipSphere
handle BSS and malloc data, the approach generalizes and
could be extended to protect all data regions (including code
and initialized data).

As FlipSphere verifies page contents upon transitioning
from the locked to the unlocked state, any SDCs that affect
unlocked memory during the window in which they are
not protected are vulnerable. For this reason it is important
that the relocking timer fires frequently enough as to not
needlessly leave more pages than necessary in an unlocked
state when they are not being utilized. Specifically, it is
desirable that the relock interval does not allow substantial
amounts of memory to become unlocked when only a
smaller working set of pages is needed for execution.

Any application that depends on DMA with devices such
as network interconnects must ensure that buffers are in
an unlocked state before DMA begins. This assumption is
necessary since DMA avoids the MMU and thus FlipSphere
is never notified of page accesses to buffers. Data written
through DMA would appear as corruption to FlipSphere
because changes made via DMA occur while the pages are
in a locked state. As described in the next section, we ensure
that MPI and other libraries depending on DMA safely work
within this requirement via MPI library interpositioning.
FlipSphere ensures that MPI safely works with locked pages
used as pointers in MPI operations by tracking all outstand-
ing MPI requests and any associated pointers.

III. IMPLEMENTATION

A. Memory Tracking Technique

To ensure protection of memory, FlipSphere has to receive
a notification when a page is accessed, which is implemented
via a mprotect system call to remove read and write
access of protected pages. Removing these permissions
ensures that a segmentation fault (SIGSEGV) violation is
raised when the page is accessed. The library installs a signal
handler for this SIGSEGV violation for notification.

Upon notification, FlipSphere uses an internal table to
verify that the addressed page is under its protection. Then,
as stated previously, verification is performed by comparing
hash values. After verification, the page’s read and write bits
are restored, again using the mprotect call, and control is
returned to the application.

FlipSphere’s internal table stores the following informa-
tion for each protected page.

• A status flag to indicate locked, unlocked, or permanently2

unlocked pages;
• Storage for the page’s last known good hash;
• (Optional) Storage for the page’s software ECC bits.

Also, each locked page’s hash and ECC storage is tunable
to accommodate the size of whichever hashing algorithm is
used.

B. Synchronized mprotect/TLB Flushing

In order for FlipSphere to track accesses to memory, it
depends on the memory management unit (MMU) to trigger
access violations whenever pages in the locked state are read
or written. During the transition from locked to unlocked,
which occurs after FlipSphere verifies an accessed page’s
hash, the PROT_READ and PROT_WRITE page permissions
are added to the target page. In the x86 64 architecture,
in which we evaluated FlipSphere, the process of adding
additional access rights to a page does not involve flush-
ing the TLB, which makes the cost of transitioning from
PROT_NONE to read and write permissions relatively cheap.
Unfortunately, the reverse process in which we return all
pages’ access rights to PROT_NONE during a relocking cycle
is much more expensive and, in fact, causes a TLB flush for
each call to mprotect.

To minimize the disruption caused by frequent TLB
flushes, FlipSphere’s unlock and relock algorithms are ex-
tended to perform as few mprotect calls as possible, by
pre-computing which neighboring virtual pages will receive

2Pages considered permanently unlocked refer to any region of memory
that is either undergoing a potential DMA transfer (MPI transmission, for
instance) or a system call that may directly change application memory).
Pages are no longer considered permanently unlocked as soon as the
operation that placed them in this state completes, such as the completion
of an MPI message receive to a buffer.

the same permissions in order to coalesce all identical page
permissions into as few system calls as possible.

Further, if desired, FlipSphere may synchronize all pro-
tected processes on a node when the relocking timer is trig-
gered. Instead of independently tracking the next relocking
trigger per process, one server process simultaneously noti-
fies all protected processes to temporarily suspend execution
while pages are re-locked and PROT_NONE is applied to
their page permissions. Synchronizing across all processes
not only avoids costly TLB flushes during computation but
also ensures that memory access performance remains as
consistent as possible to reduce the system noise of TLB
misses.

C. Hashing and ECC Implementations

FlipSphere currently supports the CRC32 hashing algo-
rithm and the 72/64 hamming code (ECC) for both CPUs
and the Xeon Phi accelerator. Additional hashing and/or
ECC algorithms can be easily added to FlipSphere, e.g.,
utilizing external libraries such as libgcrypt or writing new
kernels for the Xeon Phi. Our own 72/64 hamming code
implementation is capable of single-error-correct-double-
error-detect on each group of 64 bits in protected memory.
Our kernel is capable of execution on either a host processor
with SSE4.2 (we rewrote our algorithm to use instructions
like the bit population counter in SSE4.2) or preferably on
a Xeon Phi by substituting the population count op-code for
a comparable one of the Phi’s ISA.

We parallelize both the host and Phi code using OpenMP,
substitute the normal parity computation with compact look-
up tables, generate pipelined code by removing instruction
branching, and finally unroll our computations to match the
size of a virtual page on the target host. Note that we also
implement verification/correction for the ECC codes to fix
errors on-demand when a hash mismatch occurs.

D. Optimization: Background Relocking

Recall that FlipSphere can synchronously trigger all pro-
tected processes to relock their unprotected pages all at
once to line up anticipated TLB flushes due to mprotect.
Unfortunately, this leaves applications with a brief win-
dow of time in which all progress is stopped, including
communication. This is FlipSphere’s primary source of
overhead to a protected application’s completion time. Mit-
igating this, to allow applications to make forward progress
in both computation and any outstanding communication,
FlipSphere provides an optimized version of its relocking
algorithm that operates in parallel to the application. By
temporarily serializing the process of mprotecting pages
and optionally DMA copying memory to an accelerator,
such as a Xeon Phi, FlipSphere can delegate the task of
generating ECC bits to run in parallel to the application as
soon the application’s memory is safely copied via DMA.

GLIBC M All t Fli S h M All tGLIBC�Mem.�Allocator FlipSphere Mem.�Allocator

P d P dU d Protected ProtectedUnprotected Protected
A li i

Protected
Lib i

Unprotected
Lib i Application LibrariesLibraries Application LibrariesLibraries

ll syscallssyscalls syscalls
ll ti

y
memory allocationsyscalls memory�allocationmemory�allocationsyscalls

MPI ll MPI callsMPI�callsMPI�calls MPI�callsca s

FlipSphereFlipSphere
syscall hookingsyscall hooking
SEGV�access�violations

lKernelKernel
Figure 4. FlipSphere Component Interactions

Since accelerators operate in the background, the application
continues with forward progress immediately.

E. Protected Memory: Heap and BSS

There are two potential types of memory that FlipSphere
protects: the heap or BSS. First, heap data that is dynami-
cally allocated via malloc, realloc, free, etc. is pro-
tected by interposing the standard memory allocation func-
tions. Internally, a separate heap is created by FlipSphere and
managed by the dlmalloc memory allocator to force the heap
into a specific (known) memory range. Returning addresses
that are within a predefined protected range of memory,
FlipSphere’s allocator effectively provides SDC protection
for dynamically allocated memory. Since many dynamically
linked libraries will make use of dynamic memory, our
interposed functions will perform a back trace using the
stack to identify if the caller should receive a pointer to the
regular application heap or FlipSphere’s protected heap. For
example, MPI implementations will commonly dynamically
allocate memory, but special care must be taken to never re-
turn pointers to a protected heap address due to the potential
for DMA accesses between the MPI implementations and
communication devices. Application/library malloc calls
will receive protected memory.

Note that since MPI calls and system calls always carry
the potential to include pointers to protected memory,
FlipSphere monitors these calls from both protected and
unprotected libraries as well as the application itself.

Figure 4 visualizes the interactions between the various
software layers and components with FlipsSphere.

Alternatively, many applications opt to allocate large
arrays of memory in their BSS section. For these types of
applications, FlipSphere inspects the program during startup
(using LD_PRELOAD and the constructor attribute we
preempt even the main() function) and determines what
range of virtual memory is allocated for the BSS section
in order to directly apply page protection to this range.
When FlipSphere is protecting the BSS, dynamic memory
allocation interpositioning on malloc is disabled and thus
no longer returns specially allocated locked memory to
the application on heap requests. In this sense, FlipSphere
mutually exclusively protects either the heap or BSS since

we currently protect a single, consecutive memory range,
which is an implementation decision made to facilitate the
creation of a prototype library. It does not affect results as
C/C++ codes tend to use heap while Fortran codes utilize
the BSS, i.e., we did not encounter codes that extensively
use both heap and BSS.

F. Client/Server Model of FlipSphere

As a single server may host multiple protected processes
on it, FlipSphere has adopted a client/server model that
allows it to provide services such as notification relock
interval timers, multiplexing of Xeon Phi co-processors, and
simplified logic abstracted away from running in the same
address space as the protected application.

One of FlipSphere’s primary goals is to be application
agnostic. We accomplish this by bootstrapping the startup of
a process to be protected by utilizing Linux’s LD_PRELOAD
environment to attach a FlipSphere shared library to the
address space of a process during startup. This library
proceeds to immediately intercept execution as soon as the
process is created. A series of steps occur next:

• Config: FlipSphere reads configuration data from envi-
ronment variables, including heap size, unlock ahead
tuning, relock interval value, and other tuning parameters
(thread/core counts, and whether to track memory, provide
error detection, and/or utilize the Phi for error correction
codes).

• Memory: FlipSphere allocates shared memory for the
protected heap (if applicable) or unmaps the original BSS
from the process’s virtual mappings and then reallocates
it as a shared region. It also creates shared memory for all
internal data, such as page state, CRC values, and ECC
bits.

• Fork: The original process forks, sharing only data seg-
ments allocated in the previous step. If a forked server
already exists, the client instead attaches to the server, thus
connecting to all of the client’s shared memory segments.

• Server: The server tests communication with the client,
and optionally “warms up” the Xeon Phi by allocating
buffers which will later be filled with application memory
prior to using the ECC calculation kernel.

• Client: The client installs signal handlers for SIGSEGV
and a signal for relock interval timer events from the
server. Special hooks are installed in all Linux signal
manipulation functions to ensure the process cannot over-
write FlipSphere’s signal handlers. Instead, they may be
installed as chains by FlipSphere. Thereafter, FlipSphere
code preloaded into the application will only execute in
(1) the context of a signal handler for FlipSphere or
SIGSEGV, (2) one of many hooked wrapper functions that
ensure MPI and system calls have their pointers unlocked
prior to execution, or (3) our alternative protected heap
allocator, if applicable.

• Proceed: Full control is returned to the application, which
begins to run main().

One point of interest is that between the client (applica-
tion) and server (FlipSphere), all virtual memory is shared
via Linux shared memory. This removes the need for any
redundancy in host memory or any memory copies, since
both processes have access to the same physical memory,
albeit in different virtual address spaces. By adopting this
model, the server initiates communication via triggers and
timers that are received as signals by the client. Utilizing
inter-process communication (IPC), the server is able to
control or multiplex the Xeon Phi for the client, which
provides the added benefit that a protected application may
still be able to offload computation on to a Phi if it desires
since the server is an entirely separate process.

G. Handling User Pointers with System Calls

The use of the SIGSEGV handler allows FlipSphere to
track an application’s memory accesses at the page level
during execution. Unfortunately, if an application or one of
its libraries makes a system call with a pointer to userspace
memory, the kernel will not invoke the userspace SIGSEGV
handler when it is unable to dereference a pointer. E.g., a
system call to read will directly place data into a userspace
process’s memory. Since the kernel is directly writing to a
pointer of a process, a SIGSEGV will not be generated if
the kernel is given a pointer to a region of memory that does
not have write permission. For this reason, we must wrap
relevant system calls and preemptively unlock any pointers
to protected userspace memory that the kernel receives as
parameters. To achieve this, FlipSphere includes hooks for
syscalls via a wrapper that unlocks all pointers passed to the
kernel prior to starting the actual system call’s logic.

Not all system calls are interposed, and many do not
even need to be since they lack userspace pointers. In
choosing which system calls to support initially, we profiled
many MPI applications and determined which system calls
were needed for our MPI library and for the applications
themselves to function as a proof-of-concept.

H. MPI Support and DMA

Any libraries (such as MPI) that depend on DMA to
transmit data to hardware will operate outside the bounds
of the MMU and thus will go undetected by FlipSphere.
To ensure that any memory undergoing DMA accesses
will not be perceived as corruption, FlipSphere interposes
all calls to MPI functions using the MPI profiling layer.
Any MPI function that takes as arguments a pointer to
memory that will be read/written will be treated as per-
manently unlocked before control is transferred to MPI.
Additionally, since non-blocking MPI sends and receives
may leave a region of memory volatile to change for an

indeterminate amount of time, FlipSphere tracks all out-
standing MPI Request objects to ensure that any pending
non-blocking MPI requests will be prevented from returning
to the locked state until the MPI Request is completed. This
specifically includes asynchronous send/receive operations,
which FlipSphere identifies as outstanding until a matching
MPI_Test, MPI_Wait, or related function is called for
each request. Memory that may be modified by MPI and
DMA operations will always remain in an unlocked state
until the MPI operation that triggered it is finished. Flip-
Sphere has support for all common MPI calls in C, C++,
and Fortran.

IV. EXPERIMENTAL RESULTS

To gauge FlipSphere’s effectiveness, we performed ex-
periments to demonstrate both range of coverage in memory
and cost as application runtime overhead. These experiments
were carried out on compute nodes of the Stampede cluster
at TACC with each node consisting of 16 cores with Intel
Xeon E5 E5-2680 processors and 32GB memory.

For our experiments involving Xeon Phi co-processors,
we ran FlipSphere’s kernels on Xeon Phi SE10P (Knights
Corner) co-processors. Our results will cover performance
metrics under utilization of an entire co-processor for re-
silience as well as partial resource sharing to allow co-
execution of resilience algorithms and computation on the
same accelerator.

As one of the contributions of FlipSphere is ECC genera-
tion in a Xeon Phi kernel, we first wrote our ECC algorithm
on an x86 64 host CPU and evaluated the engine to measure
the throughput of ECC generation. Next, we ported the
optimized version of our algorithm to the Xeon Phi and
evaluated it by varying the number of threads available.
Table II shows the performance of both the host CPU and
Phi. As our code is highly parallel, both configurations show
peak performance when the maximum number of hardware
threads is used. While raw throughput when all host CPUs
are used does outperform a Xeon Phi at full capacity, it
is critical to keep in mind that we may only dedicate a
subset of the available computation resources to resilience
while the majority of the resources will be for application
progress. In FlipSphere, ECC generation occurs in tandem
with regular computation, i.e., compute cores are used for
application forward progress while others may be reserved
and utilized for resilience. Crucially, if resources are not split
between computation and resilience, then applications would
be forced to wait for periodic resilience tasks to complete
when in fact the tasks may be safely and efficiently split.
Therefore, let us now look at the most important metric of
Table II by noting that when 25% of the host threads are
reserved for resilience, we achieve only 26% of the potential
ECC generation (resilience) throughput. But we can nearly
double the efficiency to 48% of optimal Phi performance

Table II
ECC GENERATION PERFORMANCE

Number of Threads Throughput % of Optimum Throughput

1/16 CPU Thds. 1148 MB/s 7%
2/16 CPU Thds. 2161 MB/s 13%
4/16 CPU Thds. 4352 MB/s 26% (25% host thds. used)
8/16 CPU Thds. 8691 MB/s 51%

15/16 CPU Thds. 16016 MB/s 94%
16/16 CPU Thds. 17035 MB/s 100% (Host Optimum)
17/16 CPU Thds. 14800 MB/s 87%

61/244 Phi Thds. 4372 MB/s 48% (25% Phi thds. used)
122/244 Phi Thds. 7226 MB/s 76%
244/244 Phi Thds. 9560 MB/s 100% (Phi Optimum)
305/244 Phi Thds. 7754 MB/s 81%

when only 25% of Phi cores are reserve for resilience. The
difference indicates that systems based on Xeon Phi are
better suited for software-based resilience than traditional
architectures.

Although today’s Intel Xeon Phi Knights Corner (KNC)
co-processors are separate compute units that communicate
through the PCI-express and maintain their own DRAM
(separate from the host’s DRAM), the next generation Xeon
Phi (Knights Landing — KNL) will be available in two
forms, as a co-processor and as the next generation host
CPU. For FlipSphere’s purposes, this change provides a key
variable in the way we evaluate our performance. In KNC,
which we evaluated FlipSphere on, all memory must incur a
DMA between the host CPU and the co-processor via PCI-
express. However, the next generation KNL simply will not
incur the performance penalty as the host DRAM is directly
attached to the Xeon Phi. While Xeon Phi’s computational
performance will likely improve in each generation, from
FlipSphere’s perspective we are most concerned with the
fact that DMA overhead is not relevant and any clock speed
performance gains or additional threads will only increase
performance.

FlipSphere’s Xeon Phi implementation of ECC generation
was profiled earlier as shown in Table II. Our first result to
report is an observed DMA transfer rate between the host
CPU and Xeon Phi (KNC) of 6271 MB/s, which is lower
than the kernel’s ECC generation throughput of 9690 MB/s.
Although the DMA transfer rate appears reasonable, we
notice that the serial portion of FlipSphere requires a DMA
copy from the application’s data to the Xeon Phi before
the application may resume progress. For instance, copying
512 MB of application data imposes a serial requirement
of at least 0.08 seconds at every relock interval. For an
application running for one hour with a relock interval of
0.1 seconds, we expect 72000 interrupts for DMA for a total
costed time of 48 minutes, which would be unreasonable.
As discussed, the DMA penalty will not apply to the KNL
generation of Xeon Phi. Thus we will report results for
KNC (DMA added), and KNL (no DMA, derived as an
interpolation from the former) in the results section, although
the pertinent result is the effectiveness of FlipSphere’s Xeon
Phi integration, not the cost of DMA, which will be phased
out from Xeon Phi.

As FlipSphere protects applications from silent data cor-

ruption by employing a generalized technique of hashing
pages to provide on-demand integrity verification, we chose
to evaluate our library on two different applications from
the NAS Parallel Benchmarks (NPB) suite. Our first exper-
iment is NPB’s FT (a discreet 3D fast Fourier Transform)
benchmark with a customized input size 75x75x75 to extend
execution across 10 iterations. The second experiment is
NPB’s CG (conjugate gradient solver) with a customized
problem size of 150,000 and 10 iterations. Each application
has different memory access patterns so that FlipSphere is
evaluated in both an environment where memory is touched
relatively infrequently per time unit (FT) and very frequently
(CG). For reference, to consider how much memory will
later be protected and transferred over DMA, CG processes
used 475MB of memory, and FT 640MB.

(a) Relock interval 0.025 sec

(b) Relock interval 0.05 sec

(c) Relock interval 0.10 sec
Figure 5. NAS FT CRC (Bit Flip Detection Only)

A. Error Detection (CRC) Only

We first analyze the performance of FlipSphere with error
detection (CRC) enabled on the NPB-FT benchmark as
shown in Fig. 5. In this particular experiment the host CPU
is used for CRC generation, and Phi co-processor is not
utilized. The three subfigures show multiple experiments
with different relock interval values. Fig. 5(a) shows the
results of varying the unlock ahead (UH) parameter while
keeping a constant relock interval of 0.025 seconds. We
observe a convex trend with a minimum runtime at UH=32
of 18 seconds (left y-axis) and approximately 5% memory
unlocked (right y-axis) on average, or, inversely said, up to
95% of memory is protected against silent data corruption at
this datapoint. This is a substantial degree of protection. For
reference, the original benchmark completed in 10 seconds,
which indicates that with RL=0.025 seconds and UH=32 we

(a) Strided (b) Linear
Figure 6. Two common, periodic memory access patterns of NPB-FT

Table III
NAS FT - CRC PLUS ECC - WITH DMA, 100% XEON THDS. (FULL

LOAD ON KNIGHTS CORNER)

Row Relock
Interval

Unlock Ahead
Value

Normalized
Completion

Time

Percent Memory
Unlocked

1 0.05s 16 1.62x 17.8%
2 0.05s 32 1.46x 20.6%
3 0.05s 64 1.44x 23%
4 0.05s 128 1.51x 24.5%
5 0.1s 16 1.59x 18.3%
6 0.1s 32 1.5x 20.5%
7 0.1s 64 1.44x 23.1%
8 0.1s 128 1.45x 25.2%
9 0.15s 16 1.59x 22.8%
10 0.15s 32 1.51x 24.2%
11 0.15s 64 1.44x 26.7%
12 0.15s 128 1.52x 27.6%

observed a 70% runtime overhead, which is relatively high
albeit with a high degree of protection.

As FlipSphere is designed to be tuned to an application,
it is important to point out that the reported results show
the affects of tuning. By observing the effects of varied
input parameters we see that Fig. 5(c) shows no added
runtime benefit (in terms of time to completion) when
UH is increased beyond 32. In fact, as UH is increased,
we only notice a steep decline in the amount of memory
protected. Figures 5(a) and 5(b) both show sensitivity to
unlock ahead and relock interval, which demonstrates the
potential ranges a user would explore to find their desired
trade-off of performance vs. resilience. Generally, decreasing
the relock interval increases the resilience of an application
and its time to completion, while the unlock ahead value
is then subsequently used to further tune the application
(decrease overhead by improving time to completion) to
match both the working set size (per unit relock interval) and
amount of contiguous memory read in stride per memory
region/structure.

B. Error Detection and Correction

We now evaluate FlipSphere’s detection and correction
contributions in two configurations: (1) All Xeon Phi threads
are used for resilience while the protected application runs
on the host, which obligates DMA transfer between the
host and Xeon Phi, and (2) we approximate a Xeon Phi
running as the host processor (no DMA required) with 75%
of threads reserved for the application while 25% are ear-
marked for resilience. Today’s Knights Corner co-processors
are used in the former and are an accurate representation
of performance. An environment with a Knights Landing
host processor is approximated by reserving only 25% of
hardware threads for FlipSphere. The ratio of compute to
resilience threads is variable, but we have chosen 25%
from Table II. This configuration does not require DMA,

Table IV
NAS FT - CRC PLUS ECC - WITHOUT DMA, 25% XEON THDS.

(APPROXIMATING LOAD SPLITTING)

Row Relock
Interval

Unlock Ahead
Value

Normalized
Completion

Time

Percent Memory
Unlocked

1 0.05s 16 1.56x 8.8%
2 0.05s 32 1.40x 10.8%
3 0.05s 64 1.58x 10.8%
4 0.05s 128 1.51x 15.4%
5 0.1s 16 1.47x 16.8%
6 0.1s 32 1.54x 16.8%
7 0.1s 64 1.43x 19.4%
8 0.1s 128 1.30x 23.3%
9 0.15s 16 1.54x 23.6%
10 0.15s 32 1.51x 24.6%
11 0.15s 64 1.37x 27.6%
12 0.15s 128 1.31x 29.5%

Table V
NAS CG - CRC PLUS ECC - WITH DMA, 100% XEON THDS. (FULL

LOAD ON KNIGHTS CORNER)

Row Relock
Interval

Unlock Ahead
Value

Normalized
Completion

Time

Percent Memory
Unlocked

1 0.05s 16 1.80x 22.2%
2 0.05s 32 1.55x 31.3%
3 0.05s 64 1.35x 43.6%
4 0.05s 128 1.40x 50.4%
5 0.1s 16 1.69x 39.3%
6 0.1s 32 1.46x 53.4%
7 0.1s 64 1.33x 62%
8 0.1s 128 1.30x 66.3%

hence, performance is increased without the overhead of
DMA. At the same time, the resilience throughput is de-
creased. Depending on the access patterns of applications, in
some occasions the net difference results in no performance
change in terms of protection and overhead. For FT, Rows
2 of Tables III and IV show similar completion time, for
instance, but protection is halved in the latter. For CG, rows
1 and 2 of Tables V and VI show almost no difference in
performance as the effect of moving the overheads from
DMA to computation was balanced out.

For all results in Tables III to VI, we have highlighted
what we deem to be the best performing configurations.
Each row contains as tunable input parameters the unlock
ahead value and the relock interval resulting in a normalized
runtime (1.0x is an unmodified execution without resilience)
and the percent of memory unlocked, on average. To find
the degree of protection, we invert the percent of memory
unlocked, i.e., lower unlocked is better. Although not shown,
we have evaluated FlipSphere in many unreported configu-
rations (to conserve space), but have reported the best per-
forming values and their neighbors to provide perspective.

As shown in Fig. 6, FT predominantly experiences a
strided access memory pattern and periodic scanning pattern.
Compared to CG (which has rapid, linear scanning of all
its address space), FT’s performance with FlipSphere is
highly dependent on a tuned unlock ahead value. While
Table III is representative of performance with DMA, a
similar result also appears in Table IV. We can see that
in each set of 4 rows we only vary the unlock ahead
value and always observe peak memory coverage between
values 16-32 for unlock ahead. This is indicative of proper
tuning to match the strides shown in Fig. 6. Beyond that
range, memory coverage rapidly decreases for values such
as 64-128. Although not shown, one can increase the mem-

Table VI
NAS CG - CRC PLUS ECC - WITHOUT DMA, 25% XEON THDS.

(APPROXIMATING LOAD SPLITTING)

Row Relock
Interval

Unlock Ahead
Value

Normalized
Completion

Time

Percent Memory
Unlocked

1 0.05s 16 1.85x 21.9%
2 0.05s 32 1.52x 34.7%
3 0.05s 64 1.43x 42.1%
4 0.05s 128 1.21x 48%
5 0.1s 16 1.80x 41.8%
6 0.1s 32 1.43x 53.4%
7 0.1s 64 1.32x 62.7%
8 0.1s 128 1.38x 62.1%

ory coverage by lowering the relock interval, but this is
prohibitively expensive as overheads quickly exceed 2-3x,
which would then begin to favor double modular redundancy
for bit flip detection alone (albeit without the corrective
capabilities FlipSphere provides). For FT, we conclude that
the highlighted row 2 is the best balanced configuration
when both the completion time and memory protection
are considered as it provides 90% memory coverage at a
40% overhead when Xeon Phi is the host CPU for both
computation and resilience. Alternatively, it provides 80%
coverage with a 46% overhead when traditional CPUs are
used on the host for computation.

CG’s performance is reported in Tables V and VI. While
the tables feature different resilience configurations, the
completion time and memory coverage is similar in CG’s
case since it is more memory bound than FT. While Ta-
ble VI utilizes only 25% of the Phi’s hardware threads for
resilience, its loss of resilience throughput is balanced out
by a lack of DMA transfer overheads (Knights Landing).
In contrast to FT, the best reasonably achievable memory
coverage of 88% is possible at a runtime overhead of 85%
for both configurations of CG due to high frequency of
memory scanning. CG illustrates the impact of high speed
memory accesses on FlipSphere, still under protection at less
than 2x overheads. Notice that we support error correction
with overheads more performant than dual redundancy,
which only provides error detection.

V. RELATED WORK

FlipSphere is based on the software of LIBSDC [10].
LIBSDC provides software-based page-level protection by
tracking page accesses using the MMU and removing page
permissions of a less recently used page every time a
new page is accessed. LIBSDC may result in application
slowdowns ranging from as little as 1x to as high as 20x
due to a combination of its page locking mechanisms, depen-
dence on the application tracing API ptrace and hashing
methods used. FlipSphere differentiates itself from LIBSDC
by providing a full software-based ECC implementation via
hardware accelerators, protection of both application heap
and BSS, non-blocking performant timer-based relocking
instead of LRU, MPI and network device interception to
provide protection for memory incurring DMA, and kernel
function call tracking to remove dependence on ptrace.
FlipSphere constitutes a low-overhead, feasible option for

software-based SDC protection that uses hardware accelera-
tors. Research involving GPGPUs to generate ECC codes of
GPU memory has been investigated [11]. That work focused
on generating and storing ECC codes for GPU memory that
resides in GPU global memory only. In contrast, we generate
software ECC for data the resides on the host CPU by using
hardware accelerators.

One method to address silent data corruption is from
the field of algorithmic fault tolerance where researchers
have proposed methods to protect matrices from SDCs that
corrupt elements within a dense matrix [12]. While these
methods are effective for some matrix operations, fault
tolerant algorithms are incredibly difficult to design for many
arbitrary data structures or operations on that data [13].
Worse, this method does not provide comprehensive cover-
age to the entire application, which leaves anything outside
of the algorithm vulnerable to SDCs. Distributed systems
approaches and eventually consistent storage abstractions
provide a software solution to harden limited state within
protocols [14], [15] or checking code for specific data
structures [16], but they do not generalize to large-scale
numerical data (matrices) in HPC.

Another approach is to use software background scrub-
bing with ECC to periodically validate memory and correct
errors if possible [17]. In contrast, FlipSphere provides on-
demand page-level checking based on the application’s data
access patterns. In an HPC environment, software-based
background scrubbing would likely consume considerable
memory bandwidth and generate substantial application jit-
ter [18].

Source-to-source transformation techniques [19] generate
a redundant copy of all variables and code at the source
level. Additional conditional checks verify agreement in the
redundant variables after a set of redundant calculations is
performed. If redundant variables do not agree, the applica-
tion aborts. This technique is unable to handle pointers and
requires frequent conditional jumps for consistency checking
so that the efficiency of pipelining and speculative execution
suffers. FlipSphere has lower memory overheads, supports
pointers, and protects any region of memory at runtime.

SDC resilience in software. Error detection by duplicated
instructions (EDDI) [20] duplicates instructions and memory
and exploits super-scalar processor capabilities to redun-
dantly execute all calculations and compares results between
their redundant variable copies. Thus, memory is halved
and register pressure is doubled. FlipSphere is platform-
independent and does not require redundant execution. Ex-
tensions to EDDI have been proposed [21] that achieve
better efficiency by assuming reliable caches and memory,
but still require redundant registers and instructions. Their
experiments showed an average normalized execution time
of 1.41, but without protection for system memory. Com-
piled executables with fault tolerance were 2.40x larger than

the original codes. Control-flow checking tries to detect the
effects of SDCs in applications [22] but does not protect
against data corruption (SDCs).

VI. CONCLUSION

FlipSphere realizes a silent data corruption detection
and correction library. It protects pages of memory with
known good hashes per page coupled with software based
ECC codes. Memory is verified on demand and FlipSphere
confirms the integrity of each page upon access while fixing
any potential errors using the precomputed ECC codes.

We showed that using Intel Xeon Phi co-processors to
offload software-based resilience is feasible for adding a
variable amount of memory resilience to an application using
a generic approach, free of any type of algorithmic fault-
tolerance requirements. Our research is the first to indicate
that when a portion of computational resources is set aside
for resilience, Intel Xeon Phi is superior relative to a tradi-
tional host CPU for software ECC resilience computation.

FlipSphere exceeds the standard of protection provided by
ECC by ensuring that errors evading even hamming codes
will always be detected, even if not fixed, by performing
CRC32 verification after hamming code correction is at-
tempted.

Our results indicated that FlipSphere’s error detection
and correction can achieve up to 90% coverage with a
40% runtime overhead for some classes of applications.
Even highly memory bound applications still achieve up
to 88% coverage at an overhead of 85%, which provides
significant benefit over double redundancy (100% cost) or
triple redundancy (200% cost) as FlipSphere further provides
error correction, in contrast to detection only under dual
redundancy. With costs between 40%-85% vs 200%, our
results may indicate an opportunity to disable ECC for
DRAM and rather run ECC-unprotected when FlipSphere
provides protection for kernels (not just for ECC-detectable
events but also extra protection against silent data corrup-
tion), particularly since turning off ECC may result in lower
memory latency and power consumption; yet, in contrast
to Li at al. [23], FlipSphere does not require algorithmic
changes.

REFERENCES

[1] C. Chen and M. Hsiao”, “Error-correcting codes for semicon-
ductor memory applications: A state-of-the-art review,” IBM
Journal of Research and Development, vol. 28, no. 2, march
1984.

[2] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors
in the wild: a large-scale field study,” in SIGMETRICS Con-
ference on Measurement and Modeling of Computer Systems,
2009.

[3] C. Di Martino, Z. Kalbarczyk, R. Iyer, F. Baccanico, J. Fullop,
and W. Kramer, “Lessons learned from the analysis of system
failures at petascale: The case of blue waters,” in Dependable
Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP
International Conference on, June 2014.

[4] V. Sridharan and D. Liberty”, “A study of dram failures in
the field,” in Supercomputing, Nov 2012.

[5] A. Geist, “How to kill a supercomputer: Dirty power, cosmic
rays, and bad solder,” IEEE Spectrum, Feb. 2016.

[6] K. Ferreira, R. Riesen, P. Bridges, D. Arnold, J. Stearley,
J. H. L. III, R. Oldfield, K. Pedretti, and R. Brightwell,
“Evaluating the viability of process replication reliability for
exascale systems,” in Supercomputing, Nov. 2011.

[7] A. Geist, “What is the monster in the closet?” Aug. 2011,
invited Talk at Workshop on Architectures I: Exascale and
Beyond: Gaps in Research, Gaps in our Thinking.

[8] “Fast crc computation for iscsi polynomial using crc32 in-
struction,” White Paper, April 2011.

[9] “Intel xeon phi co-processor brief,” White Paper, 2013.

[10] D. Fiala, K. Ferreira, F. Mueller, and C. Engelmann, “A
tunable, software-based DRAM error detection and correction
library for HPC,” in Workshop on Resiliency in High Perfor-
mance Computing in Clusters, Clouds, and Grids, 2011.

[11] N. Maruyama, A. Nukada, and S. Matsuoka, “Software-based
ECC for GPUs,” Jul. 2009.

[12] K.-H. Huang and J. A. Abraham, “Algorithm-based fault
tolerance for matrix operations,” IEEE Transactions on Com-
puters, vol. C-33, no. 6, june 1984.

[13] Z. Chen, “Online-abft: An online algorithm based fault toler-
ance scheme for soft error detection in iterative methods,” in
Symposium on Principles and Practice of Parallel Program-
ming, 2013.

[14] M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini,
“Practical hardening of crash-tolerant systems,” in USENIX
Conference on Annual Technical Conference, 2012.

[15] D. Behrens, C. Fetzer, F. P. Junqueira, and M. Serafini,
“Towards transparent hardening of distributed systems,” in
Workshop on Hot Topics in Dependable Systems, 2013, pp.
4:1–4:6.

[16] C. Borchert, H. Schirmeier, and O. Spinczyk, “Generative
software-based memory error detection and correction for
operating system data structures,” in Dependable Systems and
Networks (DSN), 2013 43rd Annual IEEE/IFIP International
Conference on, June 2013.

[17] P. Shirvani, N. Saxena, and E. McCluskey, “Software-
implemented edac protection against seus,” IEEE Transac-
tions on Reliability, vol. 49, no. 3, sep 2000.

[18] K. B. Ferreira, P. G. Bridges, and R. Brightwell, “Character-
izing application sensitivity to OS interference using kernel-
level noise injection,” in Supercomputing, Nov. 2008.

[19] M. Rebaudengo, M. Reorda, M. Violante, and M. Torchi-
ano, “A source-to-source compiler for generating dependable
software,” in Workshop on Source Code Analysis and Manip-
ulation, 2001.

[20] N. Oh, P. Shirvani, and E. J. McCluskey, “Error detection
by duplicated instructions in super-scalar processors,” IEEE
Transactions on Reliability, vol. 51, no. 1, mar 2002.

[21] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I.
August, “Swift: Software implemented fault tolerance,” in

International Symposium on Code Generation and Optimiza-
tion, 2005.

[22] N. Oh, P. Shirvani, and E. McCluskey, “Control-flow checking
by software signatures,” IEEE Transactions on Reliability,
vol. 51, no. 1, mar 2002.

[23] D. Li, Z. Chen, P. Wu, and J. S. Vetter, “Rethinking algorithm-
based fault tolerance with a cooperative software-hardware
approach,” in Supercomputing, 2013.

