
EDGE OFFSET IN DRAWINGS OF LAYERED GRAPHS WITH
EVENLY-SPACED NODES ON EACH LAYER

MATTHIAS F. STALLMANN

Abstract. Minimizing edge lengths is an important esthetic criterion in graph drawings. In a layered graph
drawing method the total length of edges can be minimized at any of several points in the drawing process. Here
we focus on edge offset, a measure closely related to edge length – we call it stretch. And we consider minimizing
stretch when the permutation of nodes on each layer is determined, usually the point at which edge crossings are
minimized. If we fix x-coordinates so as to distribute nodes evenly on each layer we can then permute nodes and
use the permutations to assign nodes to these fixed x-coordinates with the objective of minimizing total stretch. We
show that (a) the problem of minimizing stretch in this setting is NP-hard; (b) there exists a straightforward mixed
integer program for stretch minimization; and (c) any heuristic or algorithm that minimizes or attempts to minimize
crossings has asymptotic approximation ratio at least 2 when it comes to stretch.

1. Introduction

An `-layer graph G = (V,E) has V = V1 ⊕ ...⊕ V` and E ⊆
⋃

1≤i<`(Vi × Vi+1). In other words, the
nodes are partitioned into ` layers and all edges connect nodes on adjacent layers. An embedding
of a layered graph G defines a permutation πi : Vi → |Vi|. We call πi(v) the position of v. Position
specifies the order of nodes on a layer but not their x-coordinates.

In the method for drawing directed graphs proposed by Sugiyama et al. and refined by others [17,
10, 11] there are five basic steps: (i) removing cycles by reversing the direction of some of the edges;
(ii) assigning nodes to layers; (iii) making the layer assignment proper (all edges connect nodes on
adjacent layers) by inserting dummy nodes; (iv) minimizing edge crossings by permuting nodes on
each layer; and (possibly) (v) adjusting x-coordinates of nodes to satisfy esthetic criteria.

Prior work on reducing edge length in layered graph drawings has focused on assigning nodes to layers
with minimum edge length as an objective (as suggested in Di Battista et al. [9, Ch. 9]), on permuting
nodes on layers with minimum edge length as an objective (see Chimani and HungerLänder [5]), on
holistic approaches that attempt to optimize multiple esthetic criteria (see, e.g., Kusnadi et al. [14]
or Stolfi et al. [16]) or on adjusting x-coordinates of nodes on each layer after their ordering has
been determined (see, e.g., Buchheim et al. [3] or Brandes and Köpf [1]).

Here we assume that layer assignment has been done and x-coordinates on each layer are given so as
to distribute nodes evenly on each layer. The permutation of nodes on layers is not yet determined, as
in the approach of Chimani and Hungerländer. Like them we aim to minimize is the total horizontal
displacement of the edges. Their approach differs from ours in that they require nodes to occupy
points with integer coordinates (without the restriction that they be evenly spaced, a restriction
that requires fractional coordinates as we shall see).

Formally, if vw ∈ E, where v ∈ Vi and w ∈ Vi+1, let s(vw), the stretch of edge vw, be

|π̃i(v)− π̃i+1(w)|

where

π̃k(x) = πk(x)
|Vk|−1 if |Vk| > 1

1
2 otherwise (place a single node in the center)

Note that s(vw)+1 is the Manhattan distance between v and w while
√
s(vw)2 + 1 is the Euclidean

distance. The stretch of an edge is referred to as the edge offset in [14]. The sum of the Manhattan
distances of the edges is

∑
vw∈E s(vw) + |E|. However, the sum of the Euclidean distances, total

edge length, is not directly related to the sum of the stretches; instead, if d(vw) is the (Euclidean)
length of vw, then

∑
vw∈E d(vw)2 =

∑
vw∈E s(vw)2 + |E|.

1



2

1 2

4 5

3

6

1 2

4 5

3

6

(a)

(b)

Fig. 1.1. A two layer graph illustrating the relationship between stretch and edge length.

For example, consider Fig 1.1. The total stretch of both embeddings is 2: In (a), edges 1-4, 2-5 and
3-6 have 0 stretch; edges 2-4 and 3-5 have stretch 0.5; and edge 1-6 has stretch 1. In (b), edges
1-4 and 3-5 have 0 stretch while edges 1-6, 2-4, 2-5 and 3-6 each have stretch 0.5. With respect
to Euclidean distance, however, the embedding (a) has a total of 3 + 2

√
1.25 +

√
2 ≈ 6.65 while

embedding (b) has a total of 2 + 4
√

1.25 ≈ 6.47. The sums of the squares are as follows:∑
vw∈E s(vw)2 = 2 · 0.25 + 1 = 1.5 in (a)∑
vw∈E d(vw)2 = 3 + 2 · 1.25 + 2 = 7.5 in (a)∑
vw∈E s(vw)2 = 4 · 0.25 = 1 in (b)∑
vw∈E d(vw)2 = 4 · 1.25 + 2 = 7 in (b)

In Section 2 we show that minimizing total stretch is NP-Hard. Section 3 gives a mixed integer
program for minimizing total stretch and a quadratic program for minimizing total edge length and
in Section 4 we discuss the ratio between the stretch of an embedding with minimum crossings and
one that has minimum stretch overall. We conclude with some remarks in Section 5.

2. NP-Completeness

The problem of minimizing total stretch is NP-Hard, even when the graph has only two layers.
Consider the following decision version of the two-layer problem.

Two-Layer Edge Stretch (TLES). Given a bipartite graph G = (V1, V2, E) and a rational
number r, do there exist bijections π1 : V1 → {0, . . . , |V1| − 1} and π2 : V2 → {0, . . . , |V2| − 1} such
that ∑

vw∈E
s(vw) ≤ r

where

s(vw) = |π̃1(v)− π̃2(w)|



3

1

3 4

2

(a) The graph G for the OLA instance

1 342

(b) An optimal linear arrangement of G 

1' 3'4'2'

z12 z13 z14 z24 z34

(b) An embedding of G' corresponding to the linear arrangement shown in (b) 

Fig. 2.1. An example showing the reduction from OLA to TLES.

and

π̃`(x) = π`(x)
|V`|−1 if |V`| > 1

1
2 otherwise

Since total stretch can be calculated in polynomial time given a πi for each layer i, TLES is in NP.
We show that TLES is NP-Complete via reduction from Optimal Linear Arrangement (OLA) – see
Garey et al. [12].

Recall the definition of OLA: Given a graph G = (V,E) and a positive integer k, does there exist
f : V → {1, . . . , |V |} such that

∑
uv∈E |f(u)− f(v)| ≤ k.

To convert an instance 〈G = (V,E), k〉 of OLA to an instance 〈G′ = (V1, V2, E
′), r〉 of TLES, let

V1 = {v′ | v ∈ V }
V2 = {zuv | uv ∈ E}

∪ {yi | 1 ≤ i ≤ n(n− 1)/2− |E|} spacers to ensure that none of the images of the
edges have to “go backwards”

E′ = {u′zuv | uv ∈ E} there are no edges involving the spacers

So, for each edge uv in the OLA instance, both u′ and v′ are connected to zuv. The image of an edge
uv of G is therefore a path u′zuvv

′. Let r = k/(|V | − 1). We assume here that |V | > 1; otherwise
the instance is trivially positive.



4

Suppose there exists f such that
∑
uv∈E |f(u) − f(v)| ≤ k. Then we can let π1(u′) = f(u) − 1 for

u ∈ V . To construct π2 let u be the vertex of G with f(u) = i and let v1, . . . , vk be its neighbors
that have f(vj) > f(u), in arbitrary order. Then let π2(zuvj ) = i(i− 1)/2 + j− 1. The spacer nodes
are then assigned the remaining π2 values.

Now consider any edge uv ∈ E and assume f(u) < f(v). First note that π̃1(u′) ≤ π̃2(zuv) < π̃1(v′).
There are exactly two edges in G′ that correspond to uv, namely u′zuv and zuvv

′. Their combined
contribution to the sum is

(π̃2(zuv)− π̃1(u′)) + (π̃1(v′)− π̃2(zuv)) = π̃1(v′)− π̃1(u′)

= (π1(v′)− π1(u′))/(|V1| − 1)

= (f(v)− f(u))/(|V | − 1)

Thus the sum will be k/(|V | − 1).

Conversely, suppose there exist π1 and π2 such that
∑
u′zuv∈E′ s(u′zuv) ≤ k/(|V | − 1). Without

increasing any s(u′zuv) we can use the spacer nodes to move the zuv nodes so that π̃1(u′) ≤ π̃2(zuv) <
π̃1(v′), when π1(u′) < π1(v′). Then s(u′zuv) + s(v′zuv) = π̃1(v′)− π̃1(u′) = (f(v)− f(u))/(|V | − 1).
If we let f(u) = π1(u′) + 1 then

∑
uv∈E |f(u)− f(v)| ≤ k.

Fig. 2.1 shows an example of the reduction. The arrangement in (b) has total cost 8. In the
embedding of G′ the total stretch does not depend on the exact positions of the zuv as long as zuv
is to the right of whichever of u′ or v′ appears first in the embedding of V1 and to the left of the
other. In this case the edge pairs corresponding to 1-2, 1-3, 1-4, 2-4 and 3-4 have stretch values of
1/3, 1, 2/3, 1/3 and 1/3, respectively, for a total of 8/3.

3. Mixed Integer Programming Formulation

A mixed integer programming formulation for minimizing total stretch begins with the framework
of an ILP for crossing minimization, such as the ones described by by Jünger and Mutzel [13],
Mutzel [15], Chimani et al. [4, 7, 6] and Buchheim et al. [2], among others.

Since we are not minimizing crossings we need only those variables that keep track of positions of
nodes on each layer. Let xij = 0 if i comes before j on a layer, 1 otherwise. and let pi = the (integer)
position of i on Li (its layer). The constraints that enforce a total order are

xij + xji = 1 for j ∈ Li; anti-symmetry
xik − xij − xjk ≥ −1 transitivity∑
j∈Li,j 6=i xji − pi = 0 where Li is the set of nodes in layer i

Now introduce variables sij to represent the (not necessarily integer) stretch s(ij) for each edge ij.
The objective is to minimize

∑
ij∈E sij . We need constraints to express the fact that

sij =

∣∣∣∣ 1

|Li| − 1
pi −

1

|Lj | − 1
pj

∣∣∣∣
To keep the notation simple, let

zij =
1

|Li| − 1
pi −

1

|Lj | − 1
pj

(When |Li| or |Lj | = 1 we replace the denominator with 2 as noted earlier.) Using standard tricks
for absolute value constraints, introduce binary variables bij and add the following constraints.

sij + zij ≥ 0(3.1)



5

x2 x3 x4x1 x5 x6

y1y2 y3 y4 y5 y6

x7

y7

(a) An embedding with no crossings. Total edge stretch is 6.

x2 x3 x4 x1 x5 x6

y1y2 y3 y4 y5 y7

x7

y6

(b) A embedding with minimum stretch = 4 and 18 crossings.

Fig. 4.1. An instance (n = 7) of the general case of the approximation lower bound.

sij − zij ≥ 0(3.2)

zij + 2bij − sij ≥ 0(3.3)

−zij − 2bij − sij ≥ −2(3.4)

Constraints (3.1) and (3.2) ensure sij ≥ |zij |. Constraints (3.3) and (3.4) ensure sij ≤ |zij | in the
following way. We know that −1 ≤ zij ≤ 1. If zij is positive let bij = 0 and note that (3.3) forces
sij ≤ zij while (3.4) fourth has no effect. If zij is negative let bij = 1; then (3.4) forces sij ≤ −zij
while (3.3) has no effect.

4. Approximation Lower Bound

When it comes to approximating edge stretching, the (asymptotic) ratio between total stretch
achieved by any heuristic or exact algorithm that permutes nodes to minimize edge crossings and
minimum stretch is ≥ 2.

Consider a two layer graph G = (V0, V1, E) with V0 = {x1, . . . , xn} and V1 = {y1, . . . , yn}. Connect
x1 with y1, . . . , yn and y1 with x1, . . . , xn. So E = {x1yi | 1 ≤ i ≤ n} ∪ {xiy1 | 1 ≤ i ≤ n}.
An embedding with no crossings has x1 on the far left and y1 on the far right. See Fig. 4.1(a) for
the example when n = 7. The resulting total stretch is∑n−1

i=1 i

n− 1

for the edges incident on x1 and ∑n−2
i=1 i

n− 1

for the remaining edges, for a grand total of n− 1.



6

The minimum total stretch is achieved by putting both x1 and y1 in the middle – see Fig. 4.1(b).
The total stretch, if n is odd, is

4 ·
∑(n−1)/2

1=i i

n− 1
=
n+ 1

2

The ratio will be 2(n− 1)/(n+ 1), which approaches 2.

5. Concluding Remarks

In embedding a layered graph, nodes can be permuted to minimize stretch (leading to reduced edge
length) during the step whose objective is normally to minimize crossings. Some questions remain
unanswered.

• The use of spacer nodes in the NP-Completeness proof make the proof less than satisfying. Is
the problem really NP-Hard if we insist that the graphs are connected?

• How useful is the mixed integer program? Preliminary experiments suggest that, because of
the multitude of potential total stretch values, a solver such as CPLEX [8] may take long to
converge.

• Is the asymptotic lower bound of 2 on the ratio between minimum stretch when crossings are
minimum and minimum stretch overall also an upper bound?

REFERENCES

[1] U. Brandes and B. Köpf, Fast and simple horizontal coordinate assignment, in Graph Drawing: 9th Interna-
tional Symposium, 2001, pp. 31–44.

[2] C. Buchheim, D. Ebner, M. Jünger, G. Klau, P. Mutzel, and R. Weiskircher, Exact crossing minimiza-
tion, in Graphy Drawing: 14th International Symposium, vol. 3843 of Lecture Notes in Computer Science,
2006, pp. 37–48.

[3] C. Buchheim, M. Jünger, and S. Leipert, A fast layout algorithm for k-level graphs, in Graph Drawing, 2000,
pp. 229–240.

[4] M. Chimani, C. Gutwenger, and P. Mutzel, Experiments on exact crossing minimization using column
generation, in 5th International Workshop on Experimental Algorithms, 2006, pp. 303–315.

[5] M. Chimani and P. Hungerländer, Multi-level verticality optimization: Concept, strategies, and drawing
scheme, Journal of Graph Algorithms and Applications, 17 (2013), pp. 329–362.

[6] M. Chimani, P. Hungerländer, M. Junger, and P. Mutzel, An SDP approach to multi-level crossing mini-
mization, Journal on Experimental Algorithmics, 17 (2012).

[7] M. Chimani, P. Mutzel, and I. Bomze, A new approach to exact crossing minimization, in 16th Annual
European Symposium on Algorithms, vol. 5193 of Lecture Notes in Computer Science, 2008, pp. 284–296.

[8] CPLEX, IBM ILOG CPLEX Optimization Studio. http://www-01.ibm.com/software/commerce/optimization/-
cplex-optimizer/.

[9] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing: Algorithms for the Visualization
of Graphs, Prentice Hall, 1999.

[10] P. Eades and L. Xuemin, How to draw a directed graph, IEEE Transactions on Visual Languages, (1989),
pp. 13–17.

[11] E. R. Gansner, E. Koutsifios, S. C. North, and K. P. Vo, A technique for drawing directed graphs, IEEE
Transactions on Software Engineering, 19 (1993), pp. 214–230.

[12] M. Garey, D. Johnson, and L. Stockmeyer, Some simplified np-complete graph problems, Theoretical Com-
puter Science, 1 (1976), pp. 237 – 267.

[13] M. Jünger and P. Mutzel, 2–Layer Straightline Crossing Minimization: Performance of Exact and Heuristic
Algorithms, Journal of Graph Algorithms and Applications (JGAA), 1 (1997), pp. 1–25.

[14] Kusnadi, J. Carothers, and F. Chow, Hierarchical graph visualization using neural networks, IEEE Trans-
actions on Neural Networks, 8 (1997), pp. 794–799.

[15] P. Mutzel, An alternative method to crossing minimization on hierarchical graphs, SIAM J. Optimization, 11
(2001), pp. 1065–1080.

[16] J. Stolfi, H. A. D. d. Nascimento, and C. F. X. d. Mendonça, Heuristics and pedigrees for drawing directed
graphs, Journal of the Brazilian Computer Society, 6 (1999), pp. 38 – 49.

[17] K. Sugiyama, S. Tagawa, and M. Toda, Methods for visual understanding of hierarchical system structures,
IEEE Transactions on Systems, Man, and Cybernetics, 11 (1981), pp. 109–125.


