
Towards Ontology-Based Program Analysis

Yue Zhao∗, Chunhua Liao+, Xipeng Shen∗
∗Computer Scinece, North Crolina State University

+Lawrence Livermore National Laboratory
yzhao30@ncsu.edu, liao6@llnl.gov, xshen5@ncsu.edu

Abstract
Program analysis is fundamental for program optimizations, de-
bugging, and many other tasks. But developing program analyses
has been a challenging and error-prone process for general users.
Declarative program analysis has shown the promise to dramati-
cally improve the productivity in the development of program anal-
yses. Current declarative program analysis is however subject to
some major limitations in supporting cooperations among analy-
sis tools, guiding program optimizations, and often requires much
effort for repeated program preprocessing.

In this work, we advocate the integration of ontology into
declarative program analysis. As a way to standardize the defini-
tions of concepts in a domain and the representation of the knowl-
edge in the domain, ontology offers a promising way to address the
limitations of current declarative program analysis. We develop a
prototype framework named PATO for conducting program analy-
sis upon ontology-based program representation. Experiments on
six program analyses confirm the potential of ontology for comple-
menting existing declarative program analysis. It supports multiple
analyses without separate program preprocessing, promotes coop-
erative Liveness analysis between two compilers, and effectively
guides some program optimizations.

1. Introduction
Program analysis [45] is a common way for deriving various prop-
erties of a program from its code. It is fundamental for many as-
pects of modern computing, including program optimizations, vec-
torization and parallelization, performance or correctness bug iden-
tification, task scheduling, and so on.

There are mainly two ways to implement a program analysis. A
traditional way is imperative, in which, thousands of lines of code
(often in some imperative programming languages) is developed
based on some compiler framework for analyzing program con-
structs, types, control or data flows to infer certain properties of the
target program. Programmers typically need to go through some
steep learning curve about the structure and internal details of a
complex compiler, while the results are often unsatisfactory: The
code is often difficult to maintain, and bugs are common [63]. The
analysis, being specific to a particular compiler, is hard to extend,
to compose, or to reuse for other compilers.

The second approach, declarative program analysis, has been
proposed to overcome the productivity issues [17, 32, 56]. With it,
the developers just need to define some abstract domains and then
use some logic programming language (e.g., Datalog [59]) to de-
scribe the analysis rules that govern the relations or properties of
interest. Some automatic tools can then automatically do the infer-
ences over a certain representation of some relations in the target
program to find out the wanted relations or properties of the pro-
gram. Experiments have shown that, with this approach, the code
size of a program analysis often reduces by orders of magnitude

compared to the imperative approach, and the analyses become
easier to maintain and extend [13]. Moreover, with the substan-
tial improvement in optimizations of the logic processing engines
(e.g., bddbddb [60] and numerous optimizations to inference en-
gines [62]), the performance and scalability concerns of declarative
program analyses have been largely resolved.

In this work, we aim to further improve this promising paradigm
of program analysis, particularly, to investigate solutions to three
most important limitations of the current declarative program anal-
ysis:

• Cooperations. By expressing the analysis at a high level, dif-
ferent analysis tools could potentially reuse an analysis, and
different analyses could get composed together into a more so-
phisticated analysis. However, in practice, these benefits have
been difficult to achieve in general, due to the differences in
the analysis-specific representations of programs and relations.
In one analysis, the domain may be variable names and heap
addresses, and the relation may be “assigning one address to a
variable”; in another analysis, the domain may be expressions
and the relation may be “calculated before a program point”.
To compose the two analyses, the variable names and heap
addresses in the first analysis may have to be mapped to the
expressions in the second domain, which would require much
code development (likely entwined with the code in the compil-
ers), especially if the two analyses were developed by different
users based on different compilers that use different intermedi-
ate representations (IRs).

• Optimizations. So far, explorations of declarative program anal-
ysis have been focused on understanding program behaviors
(largely for the purpose of debugging), for which, program-
level knowledge has been enough. It is, however, insufficient
for another important purpose of program analysis, guiding
program optimizations. For the multi-facet dependence of per-
formance, program optimizations often need knowledge from
various sources: the program itself, the hardware, the algo-
rithms, the program input datasets, and various domain-specific
or problem-specific knowledge. Consequently, to provide use-
ful optimization guidance, declarative program analysis must
support the representations of the various kinds of knowledge,
and allow easy linkage among them, even if the various kinds
of knowledge may come from different sources. The analysis-
specific nature of the current declarative analysis designs offers
poor support to these needs.

• Preprocessing. A declarative program analysis typically re-
quires some preprocessing to extract useful relations from the
target programs to build up a relational database. This step
hurts the productivity benefits of this approach: As it is usually
tightly coupled with some compiler framework, it is tedious
and error-prone to develop. What makes this especially prob-

lematic is that different program analyses often use different
relations or ways to define the same or similar relations. As
a result, preprocessing needs to be developed for almost ev-
ery newly developed program analysis, seriously throttling the
productivity benefits of declarative program analysis.

In this work, we advocate the integration of ontology into
declarative program analysis to address the three limitations all
together. Our proposal comes from the observation that all the
three major limitations essentially stem from a single fundamental
shortcoming in current declarative program analysis: the lack of
a systematic conceptual framework to govern the definition, rep-
resentation, and organization of the various kinds of knowledge
(relations in a program, rules, domains, hardware configurations,
etc.) related with program analysis. The ad-hoc analysis-specific
approach used in today’s designs of declarative program analysis is
the fundamental reason for the much effort required for preprocess-
ing, and the barriers for supporting cooperations and optimizations.

Ontology, a concept originated from Philosophy, refers to the
study of the nature of being, as well as the basic categories of being
and their relations [47]. In recent decades, it has become a branch
in Information Science, serving as the primary way to standard-
ize the concept definitions and knowledge representations for a do-
main. It includes three concrete components: A standard vocabu-
lary and definitions of some common concepts and their relations
in a given domain, a standard format (e.g., the Web ontology Lan-
guage (OWL)) for representing the various instances and concepts
in any concrete problems in the domain and their relations, and
a whole set of tools that have been developed in the last several
decades for the development of an ontology and automatic logic
inference upon it.

The key idea in our proposal is to leverage ontology to help stan-
dardize the definitions of domains, relations, and other concepts in
program analysis, and to establish a single flexible representation of
program constructs as well as other kinds of knowledge related with
program analysis and its usage. With that, knowledge from various
sources may be linked seamlessly as long as they follow the stan-
dardized representation. Sharing the same conceptual framework
and set of terminology, different program analyses will be easy to
compose and interoperate together. The standardization will also
make it possible to develop a single comprehensive database of the
relations of a program to serve for various program analyses, re-
moving the needs for the separate development of preprocessing
for each analysis.

Ultimately, it would be desirable to establish a standard Pro-
gram Analysis ontology to describe programs, analysis, and re-
lated concepts—liken how the Semantic Sensor Network ontology
by W3C [15] facilitates the work in the sensor network domains.
Reaching that goal would require the coordinated effort from the
community and goes beyond the scope of this paper.

This work instead focuses on the following four-fold objectives:

• To introduce the idea of integrating ontology into program
analysis, and explain the concept of ontology-based program
analysis and its potential benefits.

• To investigate the feasibility of having a single representation
of a program in ontology to facilitate various program analyses
and hence reduce the much effort for developing program pre-
processing as required in current declarative program analysis.

• To validate the promise of ontology as the representation of
various kinds of knowledge related to program optimizations,
and hence extend existing declarative program analysis to guide
program optimizations.

• To confirm the benefits of ontology for facilitating easy cooper-
ations of different analysis tools.

To reach the four objectives, we have developed a prototype
framework named PATO (which stands for Program Analysis
Through ontology). In this prototype, we explore the use of sev-
eral principles to define a concept-proof ontology for C program
representations. Based on it, we have developed five program anal-
yses: canonical loop analysis, pointer analysis, control flow graph
construction, data access pattern analysis, and GPU data placement
guidance. These analyses differ in domains, relations, scopes, and
intended usage. Our experiments show that a single ontology-based
representation can successfully support all these analyses (without
separate preprocessing per analysis). The analyses inherit the pro-
ductivity benefits of declarative program analysis, reducing the
lines of code by tens of times compared to imperative implemen-
tations. Using the liveness analysis on two compilers (ROSE [2]
and LLVM [39]), we confirm the benefits of ontology for promot-
ing cooperations among different analysis tools. And using GPU
data placement optimization, we demonstrate the seamless link-
age of various sources of knowledge (programs, domain experts,
and hardware) enabled by ontology, and reveal the potential of
ontology-based program analysis for guiding program optimiza-
tions.

We acknowledge that this work is just the first step towards
ontology-based program analysis. The ontology implemented in
this work is for only the representations of C programs (and GPU
data placement), and the analysis has not exploited the potential of
ontology much beyond logic programming upon ontology-based
program representations. A full development of ontology-based
program analysis would require also the ontology and formal def-
initions of common concepts in program analysis (e.g., domina-
tor, post order, alias), their relations, and some deep investigations
of the opportunities that ontology may bring to program analysis.
Through this first step, by demonstrating the promise of ontology-
based program analysis, we hope that this work will stimulate fur-
ther studies by the community into this promising direction.

2. Background
Ontology is a concept originating in Philosophy, referring to the
study of the nature of being, as well as the basic categories of being
and their relations [47]. In recent decades, it has become a branch in
Information Science for representing the knowledge in a particular
domain. In this context, an ontology is a formal explicit description
of a domain’s knowledge, including concepts (or classes), proper-
ties of each concept (or relations) and individuals (or instances of
classes) [53]. An ontology is often visualized as a graph in which
nodes indicate concepts and edges indicate relations between con-
cepts. It is often represented in some standard triple format as we
will describe later in this section. Developing an ontology for a do-
main has many benefits, including 1) making domain knowledge
explicit to expose what is known and what is unknown, 2) enabling
knowledge interoperability by providing a common taxonomy and
vocabulary, 3) providing knowledge reuse since the ontology is a
persistent knowledge base, and 4) facilitating knowledge validation
and reasoning using existing inference engines (or reasoners).

Figure 1 shows an example borrowed from an introductory
article of ontology [47]. A class (e.g., “Winery”) describes con-
cepts in a domain. A class can have subclasses, representing the
“kind of” relations among concepts (e.g., “red wine” may be a
subclass of “wine”). A class can have many individual instances
(e.g., “Chateau Lafite Rothschild Pauillac” is an instance of the
class “Pauillac”). A property describes the attribute of a class or
instance. It is usually represented as an edge between classes or
instances. For instance, the “maker” property in Figure 1 shows
that the maker of “Chateau Lafite Rothschild Pauillac” is “Chateau
Lafite Rothschild”. A property may have some constraints, which
describe the value type, allowed values, the number of the values

(cardinality), and other features of the values which the property
can take.

Figure 1. An example ontology for the domain of winery.

The theory foundation of ontology is Description Logic (DL) [36],
a family of formal knowledge representation languages for formal
reasoning on the concepts of a domain. DL is expressive enough
to build sophisticated knowledge bases while still supporting effi-
cient inference. It has a popular standardized dialect, Web ontology
Language or OWL [44]. DL allows the use of axioms to describe
a knowledge base. For instance, an axiom Person(Alex) describes
that “Alex” is an instance of class “Person”, and Person w Human
describes the subsumption relationship between concept Person
and concept Human. DL languages could use different grammars.
Conventionally, a simple yet uniform format to represent axioms is
(subject, property, object) triple. Axioms in DL languages can all
be mapped to such a format. For instance, in Person(Alex), “Alex”
is the subject, “instance of” is the property, and “Person” is the ob-
ject. Visually, it is an “instance of” edge flowing from the “Alex”
node to the “Person” node in an ontology graph.

Through decades of development, a large body of tools (e.g.,
Stanford Protg [25], SWI-Prolog Semantic Web Library [62], etc.)
have been developed for creating ontologies and automatic reason-
ing upon an ontology-based knowledge base, which enables auto-
matic questions-and-answers, consistency check of the knowledge
base, derivation of new knowledge, and so on.

Like declarative program analysis, most of these tools leverage
logic programming languages (e.g., Prolog) for inferences. In logi-
cal programming, a program is composed of a list of rules written
in the form of clauses:

H:-B1, . . . ,Bn.

which reads as

H is true if B1 is true and ... Bn is true.

H is called the head of the rule and B1, . . . ,Bn is called the
body. When the body is empty, the rule becomes fact; for instance,
variable(a) states the fact that a is a variable.

3. Overview
By offering a generic way to represent the knowledge in a domain,
ontology simplifies the accumulation and share of various kinds
of knowledge among people or software agents. At the same time,
it allows automatic analysis and utilization of knowledge through
high-level declarative logic programming, thanks to its description
logic foundation. These properties make it potentially valuable for
facilitating program analysis which is essentially about reasoning
about the knowledge related to a program.

Figure 2 illustrates the basic idea of ontology-based program
analysis. It centers around a knowledge base built upon ontology.
The knowledge base may consist of the basic knowledge about the
code of the target program, as well as other knowledge (e.g., ar-
chitecture attributes) relevant to the program analysis. An ontol-
ogy converter, equipped with a parser, derives the basic program
knowledge from the code of the program, expresses the knowledge
in a standard format, and puts it into the knowledge base. This ba-
sic knowledge may include the structures and components (con-
trol blocks, data structures, etc.) of the program. In addition, the

Listing 1. Example C code fragment
// s.c
int a = 0;
int foo() {
for (int i = 0; i < 10; i++) {
a = a + i;
}
return 0;
}

knowledge base may include some knowledge that could be im-
ported about some libraries, or directly input by a domain expert
about some properties of the program or the hardware it executes
on (for optimizations).

Built upon description logic, ontology-based program analy-
sis keeps the conveniences of declarative program analysis. Rather
than writing thousands of lines of code inside a complex compiler,
users can simply write some logic queries about the kind of prop-
erties (e.g., which loops are canonical loops) of the program that
they want to know. These queries should follow some ontology
query APIs. The APIs will then return the answers that are auto-
matically obtained from the ontology-based knowledge base. For
complex queries, it can leverage many existing ontology reasoning
tools [55, 62]. Users of the ontology-based knowledge base can be
humans or software agents (e.g., tools for program optimizations or
testing.)

Example We use canonical loop analysis to illustrate how the idea
of ontology-based program analysis works. A canonical loop is a
type of well-structured loop conforming to specifications as shown
in Figure 3. Because of its regular structure, it has been the focus of
many studies on parallelization and loop optimizations [16, 35, 41].

The goal of canonical loop analysis is to recognize whether
a loop is in a canonical form. Traditional implementations of the
analysis (e.g., the implementation in the ROSE compiler [2]) con-
tains hundreds of lines of code for examining the IR of a loop. The
code is tied to a particular internal data structure of the chosen com-
piler, hard to port to another compiler or maintain.

In a traditional program analysis development, the task requires
an insertion of a separate pass over some intermediate representa-
tion of the whole program, which may need the development of
thousands of lines of code. For example, in the ROSE compiler [2]
(a source-to-source compiler broadly used in High Performance
Computing), the pass works on an Abstract Syntax Tree (AST). To
analyze the code at that level, a programmer needs to implement
many lines of code written in procedural languages (C/C++). The
canonical loop analysis in the ROSE compiler consists of 380 lines
of source code for examining the representations of the structure of
each loop and check them against the conditions in Figure 3.

In ontology-based program analysis, the process is simpler. The
programmer needs to invoke some provided ontology converter on
the code of the target program. An ontology-based knowledge base
is then produced to capture the program constructs, components,
and their relations. The programmer then just needs to use a declar-
ative logic programming language to describe rules governing the
forms that a canonical loop should conform. Treating those rules
as queries on the ontology of the program, existing logic reason-
ers can then automatically find all the canonical loops in the target
program. For example, a fragment of C code is shown in Listing 1.
The code’s corresponding ontology representation is shown in List-
ing 2. Each line is a triple: (subject, predicate, object). The numbers
in the subjects or objects are the line and column numbers of the be-
ginning and ending positions of a language construct in the source
code. (Next section explains the triples in the example in details.)

Original
program

Ontology
Translator

Construction API

Programmers;
Domain experts;

Hardware experts.

Human
Users

Q
uery API

Software
(optimizers,

testers)

Reasoning
Tools

prog analysis
queries

answers

answers

other
knowledge

program
knowledge

Knowledge
Utilization

 (Program Analysis)

Knowledge
Acquisition

Ontology-based Knowledge
Base

Well-
structured

doc. on
libraries

library
knowledge

prog analysis
queries

Figure 2. Overview of using ontology for program analysis.

Figure 3. Specification of a canonical loop (derived from OpenMP
manual [48].)

Listing 2. Sample ontology for C snippet (“x rdf:type y” indicates
that y is the type of the code segment in the range x)

(’3:1,5:1’, rdf:type, ’ForStatement’)
(’3:6,3:14’, rdf:type, ’VariableDecl’)
(’3:6,3:10’, rdf:type, Variable’)
(’3:1,5:1’, ’hasForInit’, ’3:6,3:14’)
(’3:1,5:1’, ’hasForTest’, ’3:17,3:22’)
(’3:1,5:1’, ’hasForIncr’, ’3:25,3:27’)
(’3:1,5:1’, ’hasBody’, ’3:30,5:1’)

The different program constructs can be easily extracted by Prolog
queries like those in Listing 3.

Listing 3. Sample analysis rules
isForStatement(Loop) :-
rdf(Loop, rdf:type, c:ForStatement).
hasForInit(Loop, InitExpr) :-
rdf(Loop, c:hasForInit, InitExpr).

Allowing the use of logic programming, ontology-based pro-
gram analysis inherits the productivity benefits of declarative pro-
gram analysis. More importantly, it overcomes the three aforemen-
tioned shortcomings of existing declarative program analysis by
leveraging ontology for standardizing the concept definitions in a
domain and the flexible representation of various sources of knowl-
edge.

4. Challenges and Solutions
The challenges for integrating ontology into program analysis exist
in each of the four main steps: the design of an ontology for
the domain, the generation of the knowledge, the utilization of
the knowledge base, and the design of the entire framework. In
this section, we discuss each of the challenges and present some
principles we use to address them. At the end, we describe PATO,
the prototype framework we have developed to do program analysis
upon ontology-based program representations.

4.1 Ontology Design
Challenges To create an ontology for any domain, the first pri-
mary task is to define the vocabulary to be used in the domain. That
includes the definition of the concepts, properties, and restrictions
in the domain. These definitions establish the conceptual terms and
their relations of the ontology-based knowledge base for the do-
main. Even though there are some de facto procedures on designing
an ontology [47], program analysis has some special challenges.
Program analysis has a large variety of tasks (e.g., loop analysis,
data access pattern analysis, alias analysis, dependence analysis,
liveness analysis, busy expression analysis, etc.) involving a huge
set of diverse concepts and relations. Even a larger variety exists in
the input programs. So the first question to use ontology for pro-
gram analysis is how to design an intuitive, efficient and flexible
ontology that can facilitate the various program analyses and input
programs.

Solutions In this work, we focus on the design of ontology for
representing programs of a particular programming language (C).
The design of the complete ontology of program analysis is left to
future work.

Through our explorations, we have found the following three
principles helpful.

Language standard-oriented design. When designing the vo-
cabulary of an ontology, it helps if one starts with reusing language
constructs and their categorizations defined in the standard of the
programming language of the target programs. Despite the vari-
ety of the input programs, they are all artifacts following the par-
ticular programming language. With the constructs and their cat-
egorizations of the programming language covered, we can easily
express programs using the language in the ontology-based knowl-
edge base. This approach helps achieve a good coverage of the in-
put programs with a vocabulary familiar to users. For example, to
model C programs in an ontology, we followed the standard of C99
and enumerate all program constructs and concepts in a top-down
fashion. Figure 4 shows a fraction of the top-level ontology for C
programs. The main concepts in the domain include variables, ex-
pressions, statements, and so on. The “construct” on the edges in-
dicate these vocabularies are the basic constructs in the C program
domain.

Figure 4. Top-level ontology for C program analysis.

Being generic in property designs. Besides classes of concepts,
an ontology also contains a vocabulary for properties (or called
relations). For example, an Expression instance may have some
Type, an Identifier may refer to some Definition. Because there
may be many properties to express, in our practice, we follow a
principle trying to define properties in a generic way, and encode
semantic meanings into concepts whenever possible. That allows
the possible use of a small set of properties and their combinations
to express a large number of possible properties in a program. For
example, when describing an identifier has static storage class, one
approach is to define a property hasStaticStorage and use it like
(someVar hasStaticStorage true). Alternatively, we may define
the concept Storage as a class and use a simpler property hasStor-
age as (someVar hasStorage static), where static is a member of
Storage. There are several benefits for this second choice. First, us-
ing generic properties makes the set of property vocabularies small

and thus easy to manage. For example, hasStorage is used to de-
scribe all storage classes instead of creating specific properties for
each storage class. Second, stripping semantics from property make
writing logic rules more flexible. For example, the knowledge of
(someVar hasStorage static) can be queried by the keyword has-
Storage. Otherwise, users may need to use many specific keywords
as hasStaticStorage, hasExternStorage, and so on.

Continuous enrichment. In our exploration, we find that con-
tinuous enrichment of the ontology vocabulary can be helpful. For
instance, in a canonical loop analysis, a user gives the description
of the concept of a canonical loop. If that concept turns out to be
needed frequently (by many users), the concept could then be in-
tegrated into the ontology framework to save the need for repeated
descriptions. Given that the program analysis ontology is intended
to be used by a community, a complexity is that different users may
use different names for a single user-defined relation (e.g., canon-
ical loop), making the detection of the repeated use of a user-level
concept difficult. Ontology-based logic reasoners come in handy.
As the descriptions of user-defined relations all use the vocabulary
in the same ontology, the reasoners can easily do a logic reasoning
on the descriptions to decide whether two user-defined relations are
equivalent. After recognizing the frequently needed user-level con-
cepts, such concepts can be added into the standard ontology for
future reuse.

Based on the three principles, we came up with an ontology
for C program representations to facilitate C program analysis.
It contains 178 concepts and 68 properties. It is not intended to
be complete (e.g., many program analysis concepts are not yet
defined), but is sufficient for examining the support of a single
ontology to multiple different program analyses as we will show
later in this paper.

4.2 Knowledge Generation
Challenges Building up a knowledge base is essential for any ap-
plication of ontology. For program analysis, the knowledge base
shall include the important knowledge related with the to-be-
analyzed program. There are three main questions to answer. (1)
ontology converter. How to construct an ontology converter that can
automatically convert a given program into the ontology represen-
tation needed by many common program analyses. (2) Naming. A
program may contain functions, statements, expressions, variables,
and so on. Any of them may appear many times in different loca-
tions. A challenge is what naming scheme the ontology should use
to reference each reference to avoid ambiguity. (3) Mapping. One
of the objectives of ontology-based program analysis is to facili-
tate the cooperations among different compilers and other program
analysis tools. A difficulty is that they may have different internal
representations of a program. To make them able to interact based
on the program ontology, the instances of program constructs in
the knowledge base should be possible to map to some common
ground meaningful to the different tools. One intuitive choice of
such common ground would be the source code of the program.
That will also make it easy for human to collaborate with program
analysis tools. A complexity in using source code for references is
how to make the naming robust to code changes. (4) Space. The
knowledge about a program can be tremendous. Besides the basic
knowledge directly driven from the program, there could be many
other kinds of higher-level knowledge such as canonical loops, data
dependences among statements, and so on. The higher-level knowl-
edge is derivable from the lower-level knowledge. The derivation
through reasoning may take non-trivial time. But if all this knowl-
edge is saved in the knowledge base, the space cost could be large.
How to strike a good balance is important for practical usage of
this new program analysis paradigm.

Solutions We come up with the following solutions to these chal-
lenges.

Ontology converter. Our experience shows that an ontology con-
verter can be easily created through a translator built on top of a
source-to-source compiler such as ROSE [2]. A source-to-source
compiler usually produces an abstract syntax tree (AST) represen-
tation which is close to the input code. The translator traverses the
AST of the program to get structural and semantic information,
which is then stored into the knowledge base as ontology. The pro-
gram constructs are represented as individuals (i.e. instances) of
some of the classes defined in the language ontology. Relations be-
tween them are represented by properties.

Naming and Mapping. In our naming scheme, we borrow the
internationalized resource identifiers (IRIs) [28] that OWL uses.
It helps avoid name conflicts. For the ontology of C program
language, names of concepts are built directly from the corre-
sponding terms used in the C language standard1. For exam-
ple, the concept type is referenced as c:Type. An example IRI
for the concept of types in a C program domain can look like
“http://example.com/owl/CProgram:Type”. Some aliases can be
defined as short names for the prefix strings of a domain.

More care needs to be taken for designing the naming scheme
for representing the instances of a program construct. Named
constructs such as types, variables, functions can use the C++
qualified name concept to uniquely identify them. For an un-
named construct (e.g., an assignment statement) or a reference
to named construct (e.g., variable reference), a common intuitive
approach is to use its location in the source code of the pro-
gram, such as file url, start location, end location where the lo-
cation is a pair of (line number, column number). For instance,
“http://my.com/file1.c, 3:1, 5:1” could refer to a loop that spans
from the beginning of the third line to the beginning of the fifth
line of file1.c. The problem with this scheme is that some minor
changes to the original program may invalidate all the names of the
constructs after the modification point.

We find scoped IRI useful to restrict the impact of a code
change to the names. In scoped IRI, a name is composed of some
qualified names and some relative locations in the source code. For
constructs like functions, structures, global variables, we add their
scopes before their names. Other constructs within these constructs
are named by their locations, while the line numbers are relative
to the start line number of their surrounding constructs rather than
the beginning of the source-code file. Using this method, a global
variable declared in the first line of a file “s.c” (from column 5 to 6)
can be named as s.c::1:5,1:6, while a variable declared on the first
line inside a function foo in file “s.c” (from column 6 to 10) can
be named as s.c::foo()::1:6,1:10. Thus, if there is some change of
the code, only the names in the same scope as the changing point is
need to be updated.

Space. To address the space challenge of putting everything into
a knowledge base, we split the knowledge base into a core knowl-
edge base and multiple loadable supplemental knowledge bases.
The core knowledge base is always loaded and others are loaded
as needed. We also design a cache-like management mechanism to
alleviate the problem. It maintains a buffer to store derived supple-
mental knowledge. When the upper limit of the buffer gets reached,
it starts to evict some of the stored knowledge (which would need
to be rederived when needed). For the eviction policy, there can be
multiple choices: least-recently-used (LRU), least-frequently-used
(LFU), and their variants.

1 We follow the naming convention of UpperCamelCase for classes and
lowerCamelCase for properties.

4.3 Knowledge Utilization
Challenges Some challenges also exist in the utilization of the
knowledge base for program analysis. (1) Efficiency. In many cases
(e.g., analyzing a large program), the runtime efficiency of con-
ducting a program analysis could be important. A question to an-
swer is whether the improved productivity of the new paradigm
hurts the runtime efficiency and if so, how to improve the effi-
ciency. (2) Generality. Using declarative programming languages
could be awkward for some usage cases, especially when they in-
volve some mathematical computations. Such cases however do ex-
ist in some program analysis and optimizations, for instance, when
they relate with some performance models (an example is the data
placement optimizations Section 5 will describe). Effectively over-
coming such limitations is important for the general applicability
of ontology-based program analysis.

Solutions We address these issues by both creating some short-
cuts and leveraging the features of existing ontology tools.

Efficiency. Recent years have seen some significant improve-
ment of the performance of logic reasoners [9, 55]. Many optimiza-
tions have been developed. For instance, in SWI-Prolog, the ontol-
ogy is stored as relation triples of (subject property object) with
C extensions and some indices are built for each element in the
triples. So a search of a particular element can be done in constant
time. Additional optimizations can be applied to queries. For in-
stance, Prolog provides the cut operator (i.e., the ! symbol) to avoid
unwanted backtracking in search. We find that following some ex-
isting guidelines when writing queries [12] can be quite helpful for
quickly narrowing down the reasoner’s search space.

In scenarios where the relevant knowledge base is simple and
consists of straightforward facts in triples (e.g., some memory con-
figurations), one may construct a customized lightweight parser in
high performance languages, which can further help achieve good
performance than going through a heavy-weight logic reasoner.

Generality. Ontology-based logic reasoning meets the needs of
many typical program analyses, but is not quite suitable for express-
ing analyses that involve a lot of mathematical computations (e.g.,
a regression-based performance modeling). We find that a mech-
anism called computable [54] originating in Robotics can help re-
solve the issue. Computable is some special ontology entity that can
attach procedures to some classes or properties. When the deduc-
tion rule queries the individuals of one of the classes or the proper-
ties, the associated procedures are invoked to compute individuals
for the target class or property. The procedure can be written in a
wide range of programming languages (e.g., C, C++, Python).

Besides allowing the direct input of queries by users written
in logic programming languages, ontology-based program analysis
also allows queries coming from a third-party software (which
could be written in even imperative languages like C, C++ or Java.)
For such cases, the ontology can be processed with libraries for
those languages (e.g., the OWL API [31] or Prolog interface to
foreign languages[7]). That offers the conveniences for existing
software tools (e.g., a compiler) to easily leverage ontology for
program analysis.

4.4 Framework Design and PATO
The final challenge is how to organize the various components
together into a unified framework for program analysis. It includes
choosing the DL language and the reasoner that suit the needs
of program analysis, designing and implementing the APIs for
both knowledge base construction and queries, and integrating all
the components together into a complete cohesive framework that
offers effective support to various program analyses.

To answer these questions, we have developed a prototype
framework named PATO, which integrates all the aforementioned

Protege

Direct
query

interface

Computables

Semantic web lib

Prolog
reasoning

engine

PATO
API

Parser
Translator
w/ scoped IRI

users/
software

program

user

Use

Build

Knowledge
base in memory
(Prolog internal

store)

Knowledge
base in OWL

files
w/ computables

Figure 5. Structure of PATO.

solutions to the various challenges, and leverages the power of
existing ontology tools.

Figure 5 outlines the main components of PATO. The knowl-
edge base in PATO can be in two forms, represented by the two
round-corner boxes on the right part of the figure. On the disk, the
knowledge is stored as OWL files. Each entry in the files is in an
OWL triple (subject, property, object). For instance, (var1, has-
Value, 0) means a variable has a constant value of 0. The reason
for selecting this form is that OWL triple is one of the standard
(and space-efficient) formats for ontology representations and is ac-
cepted by many ontology tools. Another part of the knowledge base
is the computables, which are attached to the concepts and proper-
ties in the triple collection. The cache-like buffering mechanism is
used for the space efficiency of the knowledge base.

Two of the primary ways to add knowledge into the knowledge
base are shown at the bottom of Figure 5. In the first way, there is a
parser (based on ROSE [2]) for converting an input program code
into an AST preserving source level information. We have also de-
veloped a translator that translates the basic program knowledge on
the AST into OWL triples and stores them into the knowledge base.
During the translation, the translator uses the scoped IRI as the
naming scheme. In the second way, we adopt Stanford Protg [25],
an interactive tool for ontology creation and manipulation. Through
its GUI, a user can intuitively add entries into the knowledge base.
The plugins of Protg also provide many other features to the users,
such as visualization, validation, and querying.

There are two ways to use the knowledge base. The first is
shown at the top of Figure 5. It is through the SWI-Prolog reasoning
engine. To use the knowledge base in this way, at the beginning,
the OWL files are loaded into memory; through it, the OWl files
are converted into an internal knowledge base through the existing
Semantic Web Library [62]. The in-memory organization of the
knowledge base features some efficient indexing schemes. When
seeing a query from a user or software agent, the Prolog engine
would start working on the internal knowledge base to provide the
answers. Prolog provides a general interface for input logic rules
and queries. We have further developed a higher-level set of API
tailored to represent some common terms used in program analysis
tasks (e.g., loops, functions, etc.), through them, the users may
write even more concise descriptions.

The second way to use the knowledge base is shown as the
shortcut (the diagonal path) in Figure 5. Through a direct query
interface we have developed in C++, the user or software agent
may directly work on the OWL file collection (and computables)
without going through Prolog. This shortcut is useful when Prolog
is not available to a user or too costly to use in some special sce-
narios. For tasks which only need some simple fact search (without
the need for much reasoning), this approach is more efficient than
the Prolog-based approach because it avoids the overhead in Pro-
log interpretation and other associated cost. Both the Prolog and

the shortcut approach can insert new knowledge (e.g., derived in a
previous program analysis) into the knowledge base.

It is worth noting that the rich set of available tools on ontology
proves helpful in our development and usage of PATO. Besides the
aforementioned usage of Protg [25] for ontology development, we
find the FaCT++ reasoner [55] helpful for checking the consistency
of the ontologies, the Prology semweb library [61] useful for load-
ing, parsing, and manipulating ontology-based knowledge bases,
and the Prolog engine [62] a convenient tool for inferences upon
the knowledge bases.

5. Experience
This section describes our experience of using PATO for program
analysis. To examine the feasibility of using a single ontology to
support multiple different program analyses efficiently, we imple-
ment five types of program analysis on PATO: canonical loop anal-
ysis, pointer analysis, control flow graph construction, data access
pattern analysis, and GPU data placement guidance. They differ
in domains, relations, scopes, and intended uses. Using GPU data
placement optimization, we examine whether ontology can indeed
enable seamless linkage of various sources of knowledge (pro-
grams, domain experts, and hardware) and whether ontology-based
program analysis can actually help guide program optimizations.
Using the liveness analysis on two compilers (ROSE [2] and LLVM
Clang [39]), we examine the benefits of ontology for promoting co-
operations among different analysis tools.

For the interest of space, our description concentrates on the
canonical loop analysis, the pointer analysis, and the cooperative
liveness analysis. We briefly cover the other analyses and the GPU
data placement experiment at the end. Without noting otherwise,
each reported timing result is the average of 10 times of repeated
measurements collected on a machine equipped with Intel Core-i5
CPU of 3.2GHz (8GB DRAM, 500Gb HDD hard drive) running
Ubuntu 14.04. For the results that show large variances, we also
report the statistics on the variances. The Prolog used is SWI
Prolog, and the primary compiler is the ROSE compiler (EDG 4x-
Based versoin) [2].

5.1 Canonical Loop Analysis
We first explain the Prolog code for canonical loop analysis. As
mentioned earlier, canonical loop analysis (CLA) checks whether a
loop is in a predefined canonical form. Our experiment uses the
canonical loop form defined in the OpenMP specification [48],
shown in Figure 3. The specification of an OpenMP canonical loop
can be written as declarative Prolog rules as shown in Listing 4. We
use italic font to distinguish variable from normal symbols.

In the Prolog specification, the head cannonicalLoop(Loop)
asks for individuals that satisfy all clauses in the body. The (,)
plays the role of logic conjunction (AND operation). Every clause
in the body is deducted by its own rule. In the end, the deduc-
tion is backed by queries on the existing knowledge base. The is-
ForStatement(Loop) is a more readable wrapper of the ontology
query Loop is-a ForStatement, where the variable Loop binds to
individuals if ontology triples (some-loop is-a ForStatement) ex-
ist in the knowledge base. Once the Loop is bound to some indi-
vidual, clauses like hasForInit(Loop, InitExpr) search the knowl-
edge base for (some-loop hasForInit some-init-expr) triples. Then
canonicalInit(InitExpr, LoopVar) checks if the found initial expres-
sion individuals conform to the language specification. The query
also returns the loop variable LoopVar if it can find it.

The analysis further checks whether the loop’s init construct
conforms to the specification. The first rule handles the var =
lb style while the second rule deals with other styles. Different
rules with the same head name form the logic disjunction (OR
operation). The cut operator (i.e., the ! symbol) is used to prevent

Listing 4. Prolog specification of an OpenMP canonical loop
(italic upper-case for variables, lower-case for properties)
% top level rule to find canonical loop
canonicalLoop(Loop) :-
isForStatement(Loop), !, %’!’ prevents

backtracking
hasForInit(Loop, InitExpr), %’,’ means logic AND
canonicalInit(InitExpr, LoopVar),
hasForTest(Loop, TestExpr),
canonicalTest(TestExpr, LoopVar),
hasForIncr(Loop, IncrExpr),
canonicalIncr(IncrExpr, LoopVar),
(
hasType(LoopVar, ’IntType’); %’;’ means logic

OR
hasType(LoopVar, ’PointerType’)
)
hasBody(Loop, ForBody),

% supportive rules to find canonical init-exp
canonicalInit(Init, LoopVar) :-
hasOperator(Init, AssignOperator), !,
hasLeftOperand(AssignOperator, VarRef),
referTo(VarRef, LoopVar),
hasRightOperand(AssignOperator, LB).

% rules with same heading: combined using logic
OR

canonicalInit(Init, LoopVar) :-
hasVarDecl(Init, LoopVar),
hasInitializer(Init, Initializer),
hasValue(Initializer, LB),
% the rest is omitted ...

unwanted backtracking. It means that, as long as the first rule
matches the form hasOperator(Init, AssignOperator), there’s no
need to check the second rule of the variable declaration form. Line
11 to 12 are the rules to do the type checking of loop variables. The
(;) means logic disjunction (equivalent to two separated rules).

Experimental Results The ontology in PATO successfully sup-
ports the analysis. We compare it with the imperative implemen-
tation in the ROSE compiler. The algorithm in ROSE traverses
the AST tree of a program to find for statement nodes and check
whether their sub-tree are in the canonical form. The code is writ-
ten in C++ and is specific to the ROSE AST’s internal data struc-
tures. The time complexity isO(n), where n is the number of AST
nodes.

The code length of PATO-based analysis is about half of the
imperative implementation in the ROSE compiler (190 versus 380
lines). We use the NAS Parallel Benchmarks (NPB) [8] for the
measurement.

The results are shown in Figure 6. The frontend time corre-
sponds to the parsing time of the parser in Figure 5. PATO uses
the same frontend as the ROSE implementation. The time of pro-
gram knowledge generation (KB gen) represents the time taken by
the ontology translator in the PATO framework. Finally, the other
two bars are the time of the canonical loop analysis with PATO and
ROSE respectively.

For the canonical loop analysis alone, we can see that the PATO
declarative approach even beats the native implementation for most
cases. It is slower only when the line number is small. One reason
is that the ROSE’s imperative implementation traverses the whole
AST tree to find all for loops. For PATO’s declarative implemen-
tation, the isForStatement relation information is stored explicitly

and can be efficiently accessed by the hash-indexed keyword im-
plementation of Prolog.

The ontology-based declarative analysis does have an obvious
overhead: It needs an extra step to traverse the AST tree and build
the initial knowledge base. However, as shown in the figure, the
overhead is smaller than the frontend time. Besides, for the PATO
system, the generated knowledge base can be reused for different
program analyses (e.g., control flow graph analysis).

Figure 6. Time comparison of the canonical loop analysis. The X-
axis shows the benchmark names and their numbers of source-code
lines.

Extensibility. An appealing property of using ontology is the
good extensibility. The previous discussion only covers canonical
loops in C programs that use primitive loop variable types, such
as pointer and integer types. OpenMP allows C++ canonical loops
that use complex iterators as long as the iterator supports random
access to the data elements. Examples of random access iterators
include std::vector¡T¿::iterator and std::deque¡T¿::iterator. Also,
programmers often define their own random access iterators. A
conventional solution to extend an imperative CLA implementa-
tion is to store the known random access iterators, including the
custom-defined ones, into a container for the compiler implemen-
tation to look up. The ad-hoc solution imposes barriers for ex-
changing the knowledge with other tools or developers. In PATO,
adding such a support is simpler. One can easily add the con-
cept RandomAccessIterator in the ontology and define it as is-
a(Iterator)∧has(RandomAcess). The knowledge of is-a(Iterator)
property can be gained by the knowledge builder while the knowl-
edge has(RandomAcess) can be inserted into the knowledge base
using the standard OWL API, either automatically by tools or man-
ually by developers. The analysis rules can then reason about ran-
dom access iterators. The resulting ontology can be then shared and
reused by different analyses.

5.2 Pointer Analysis
This part describes our experience in implementing Andersen’s
pointer analysis in PATO. Andersen’s pointer analysis is a well-
known inclusion based analysis [5]. The analysis result is typically
represented as the points-to set pts(x) for each pointer variable x.
It is flow-insensitive and does not distinguish different program
execution points but computes what the pointers may refer to at
any time of program execution.

The analysis is commonly regarded as solving a set constraint
problem. It classifies assignments involving pointers into several
kinds: taking the address of a stack variable or a heap allocated
space, copying a pointer from one variable to another, and assign-
ments through dereferences or references to a multilevel pointer.
It defines a propagation rule (or called constraint) for each of the
cases as illustrated in Table 1 (for C programs).

The analysis consists of two steps. The first step preprocesses
the target program to produce a simplified intermediate representa-
tion, which keeps only the statements that involve pointer manip-
ulations. Each kind of the assignments involving pointers is rep-

resented with a special notation. For example, p = &b is rep-
resented as stackLoc(p, b), p = malloc(...) is represented as
heapLoc(p, ...), p = ∗pp becomes load(p, pp), and ∗pp = q turns
into load(pp, q).

The second step propagates the points-to relations based on
those constraints and solves the problem by computing graph tran-
sitive closures through an iterative worklist algorithm [5].

Table 1. Constraints in Andersen’s pointer analysis.
Constraint type Statement Propagation rule
Base p = &b loc(b) ∈ pts(p)
Simple p = q pts(p) ⊇ pts(q)
Complex p = ∗pp ∀v ∈ pts(pp) · pts(p) ⊇ pts(v)
Complex ∗pp = q ∀v ∈ pts(pp) · pts(v) ⊇ pts(q)

In our implementation on PATO, the preprocessing step is done
on the program ontology representation through some simple pat-
tern matching rules. For example, the address taken pattern (p =
&b) is matched by the following:

Listing 5. The Prolog rule to match the address-taken instruction
matchAddressTaken(RHS) :- hasOperator(RHS,

AddressOp),
hasOperand(RHS, LocRef), referTo(LocRef,

Var).

The implementation breaks complex statements into simple ones
by introducing temporary variables. For example, ∗p = ∗q be-
comes tmp = ∗q; ∗p = tmp. Structures are analyzed in a field-
sensitive manner, while an array is regarded a single data object as
done in most previous studies [5, 13, 27].

For the analysis step, the propagation rules in Table 1 can be
directly mapped into logic rules in Prolog as shown in Listing 6.

Listing 6. The Prolog rules for the points-to computation
% p = &a; p = malloc()
pointsTo(P, Loc) :- stackLoc(P,
Loc); heapLoc(P, Loc).
% p = q
pointsTo(P, X) :- copy(P, Q),pointsTo(Q, X).
% p = *pp
pointsTo(P, X) :- load(P, PP),\\ pointsTo(PP,

V), pointsTo(V, X).
% *pp = q
pointsTo(V, X) :- pointsTo(PP, V),\\ store(

PP, Q), pointsTo(Q, X).

However, our experiments show that Prolog inferences based
on these rules are not efficient. It evaluates the rules in a top-down
manner with deep recursions and costly search through a large
space. Inspired by previous work [13, 60], we instead implement
the classic worklist algorithm in Prolog as illustrated as follows:

Listing 7. The worklist algorithm for pointer analysis in Prolog
andersenPtr :-
select(WorkList, V),
propLoad(V); propStore(V);
propFieldLoad(V); propFieldStore(V);
propEdge(V),
andersenPtr. % itratively execute the

analysis

propLoad(V) :-
load(P, V),
pts(V, A), % for each A in pts(V)
(\+ edge(A, P) -> assertz(edge(A, P)),\\

add(WorkList, A)).
% others are omitted

Figure 7. Enhancement of Liveness analysis by leveraging ontol-
ogy to combine the results from the Liveness analysis in LLVM
Clang and ROSE. (Dots show outliers). Left bars: the enhancement
over LLVM Clang results; right bars: the enhancement over ROSE
results.

Line 11 in the listing means that as soon as Prolog finds out that
there is no edge from A to P, it stops search and instead add A
into the worklist and continue with next A’ in pts(V, A’). The use
of → enables an early stop of useless searches, bringing large
performance benefits.

The entire implementation takes less than 500 lines of code,
about 300 lines of which are for the preprocessing step. When
being applied to the NPB benchmarks, the analysis takes no more
than 2 seconds on a program. We have also applied the analysis to
three programs [4] with more pointer operations: bzip2 (7K lines
of source code), gzip (8.6K lines), and oggenc (58K lines). The
analysis times are 2.1 sec, 3 sec, and 36 sec respectively.

5.3 Facilitating Cooperations
In the final experiment, we try to examine the potential benefits
of leveraging the standard representation of ontology to promote
synergy between different compilers. Particularly, we use Liveness
analysis as an example.

As a may-type data flow analysis, Liveness analysis is conservative—
that is, if a variable belongs to the Liveout set of a basic block, it
means that the compiler is uncertain whether the variable is dead at
the end of the basic block. So, for two different Liveness analyses
(both are sound and conservative), if a variable belongs to the re-
sult from one analysis but not that from the other, we can conclude
that that variable is not Live at the end of the said basic block. In
another word, the intersection of the results of the two Liveness
analyses gives a more precise result than either of the two analyses.

Both LLVM Clang and ROSE have their own Liveness anal-
ysis developed before. By using the ontology converters we have
developed for the two compilers, we convert the Liveness analy-
sis results from them into our ontology. By writing several lines of
Prolog code, the Prolog engine immediately extracts out the inter-
section of the sets of Live variables reported by the two compilers
for each basic block of a given program.

We define a metric called enhancement rate to characterize the
benefits of such a combination. Let A and B stand for two Liveness
analyses and RA and RB be their Liveout set for a given basic
block. The enhancement rate over A is defined as

enhancementRate(A) = |RA|
|RA∩RB |

The enhancement rate over B is defined similarly.
The results are shown in Figure 7. Box plots are used to show

the distribution of the enhancement rates over all the basic blocks
in the program. In the plot, the dots are outliers, and the intervals
show the range of the lower 75 percentile of the enhancement in
the observed result. The plot considers only the basic blocks whose
Liveout sets are not empty in the result from at least one of the
two compilers. The results indicate that the synergy improves the

average precision of Liveness analysis by over 10% and 20% for
LLVM Clang and ROSE respectively.

It is worth noting that the two compilers use different internal
representations for programs and the Liveness analysis results. It
is possible to write some special code to map their results to en-
able such a combination without using ontology. However, using
the ontology designed in this work, the benefits come as simple
side products of the ontology-based program analysis (by leverag-
ing the converters and the standardized representation developed
for many other program analyses). The productivity benefits would
become even more prominent when many types of analyses coop-
erate across compilers.

5.4 Other Experience
For the interest of space, we briefly describe three other experi-
ments.

One of them is an analysis to find out a program’s array access
patterns, including the access expressions to each array, lower and
upper bounds of the loops surrounding an array reference, numbers
of reads and writes to an array, and the ranges of its elements that
are accessed. With PATO, each of the types of information can be
easily extracted from the code through just a few lines of Prolog
statements. A previous imperative data access pattern analysis [14]
has more than 2000 lines of source code. PATO, on the other hand,
only needs 180 declarative rules to implement that analysis.

The second is to write code for control flow graph construction.
It requires the examination of control flows of the whole program.
On PATO, it is done through a set of simple rules based on the algo-
rithm of inductive graph constructions [23]. We compare our PATO
implementation with the implementations of ROSE and Clang [38],
which also use the inductive construction algorithm but differ in
the internal data structures and implementations. The PATO ver-
sion uses only 400 lines of code, up to 8.75X shorter than the tra-
ditional compiler implementations (1200 and 3500 lines for ROSE
and Clang respectively). The speed of the PATO analysis is similar
to that of the Clang, and is 10-40% faster than that of the ROSE
thanks to its efficient storage and query of the knowledge base.

Finally, we experiment with PATO for guiding data placement
on Graphic Processing Units (GPU). A GPU has multiple types of
memory with different performance characteristics. Prior studies
have proposed some rule-based methods [34] and analytic model-
based methods [14] for determine the placements of data that best
suit the data access patterns of a GPU program and showed sig-
nificant performance benefits. In this experiment, we build a data
placement optimizer based on PATO, and find it much simpler
to do than previous implementations. Because both the program
knowledge and the hardware knowledge are represented in the stan-
dard triple format, they can be automatically linked into one single
knowledge base, making automatic reasoning about data placement
possible. It also simplifies the integration of heuristic rules and
analytic models into a single analysis. Experiments on NVIDIA
K20c GPU show that the PATO-based analysis gives similar place-
ments as prior methods do [14]. Its analysis time is 5% longer, but
it exhibits a better extensibility thanks to its ontology representa-
tion and declarative implementation. For example, in the previous
work [14], to add the knowledge on some new GPUs memory fea-
tures, one needs to extend a hardware specification language by
adding some new constructs, and revise the code for parsing and
performance modeling. In PATO, the needed changes are simpler:
Through the Prolog GUI, users can easily add or remove a concept,
and add queries on the new features into the analysis rules.

6. Related Work
Ontology has been used to build various knowledge bases in differ-
ent domains, including Biology [6], Ambient Intelligence [19, 50,

51], Robotics [54], and others [43, 46, 49]. This work was enlight-
ened by these studies, but concentrates on the special challenges
facing program analysis.

In the software domain, ontology has been introduced, but
mainly for software management and teaching of programming
concepts, rather than program analysis. Specifically, Software on-
tology (SWO) [42] in the domain of software engineering focuses
on the meta information of software (e.g., licenses, publishing pro-
cesses, data formats). COPS [37] offers a sub-ontology for man-
aging the knowledge related with image processing. Eden and oth-
ers [21] have provide some theoretical discussions on the unique
aspects in designing an ontology for programs, but without explor-
ing the use of ontology for program analysis. There are several on-
tology designs for teaching some programming languages [24, 52].
This current work, to our best knowledge, is the first proposal on a
systematic integration of ontology into program analysis.

There are some prior efforts trying to ease the difficulties in the
development of program analysis. We discuss them in two aspects.

The first aspect is in the construction of a program analysis.
Some prior studies have offered some interfaces for simplifying
the construction of a program analysis. OpenAnalysis [1], for in-
stance, introduces a set of analysis-specific interfaces (e.g., traverse
all statements) as the building blocks for constructing a specific
analysis. Other efforts in the same direction include GENOA [18]
and StarTool [33]. These tools focus on imperative program anal-
ysis. There are some efforts that employ declarative program anal-
ysis to improve the productivity of program analysis development.
JTransformer [3], for instance, is a tool integrated into Eclipes that
allows the use of Prolog for analyzing and transforming Java source
code. JunGL [57] introduces a scripting language for writing pro-
gram analyses. It combines ML and Datalog. SemmleCode [58] is
a tool that stores program-related data into a knowledge base, and
allows the use of Datalog to write a program analysis that analyzes
the program by querying the knowledge base. There are some other
work [13, 26, 60] falling into the same category.

The second aspect is in the representation of a program. Some
prior work has tried to develop a common software exchange for-
mat (SEF) for representing a program to facilitate the interopera-
tion of software analysis and refactoring tools. Such a format needs
both a schema (or called metamodel) that describes the objects
and relationships, and a syntax that describes how model elements
are to be stored and transmitted. The Dagstuhl Middle Metamodel
(DMM) [40] is a representative of the former. DMM consists of a
set of models that capture program elements and their relations. It
follows some prior efforts such as Columbus [22] for C++ and the
UML metamodel [11]. There are some other metamodels devel-
oped, such as Program Element Fact (PEF) developed in JTrans-
former [3], and DIMPLE [10]. Graphs are the most popular format
for storing program elements in memory. TA [29] and TGraphs [20]
are two examples, which are both based on typed graphs (i.e., di-
rected graphs with attributes on both nodes and edges). GXL [30]
was introduced as a generic way to use XML to represent such
graphs. JunGL [57] uses some special graphs along with abstract
syntax trees.

This current work shares some similarities with these prior stud-
ies, such as the use of logical programming to simplify the develop-
ment of program analysis, and the creation of a common program
representation. However, this work differs from the prior studies
in several major aspects. First, it is the first work that points out
the potential of ontology for the program analysis community to
standardize the conceptualization for program analysis, and to pro-
mote the reuse and interoperations of analysis tools. It demon-
strates the potential benefits through the Liveness analysis by two
full-fledged existing compilers. Second, this work is the first that
points out the benefits of ontology as a unified representation for

not only program elements and relations but also knowledge from
other sources (e.g., hardware knowledge) that are essential for pro-
gram optimizations. It demonstrates the promise through GPU data
placement optimizations. Third, unlike many of the prior studies
that attempt to create a standalone tool for program analysis (e.g.,
JTransformer [3], Semmlecode [58]), this work aims to proposing
an approach or a paradigm, which could potentially be employed
by many program analysis tools and compilers, as demonstrated by
the expeirments described in the previous section.

7. Conclusion
This work demonstrates the promise of ontology for overcoming
the three major limitations of today’s declarative program analysis.
The five types of data analyses on PATO show that a single ontology
is able to support multiple different program analyses efficiently.
The GPU data placement experiments indicate the promise of on-
tology for seamlessly linking knowledge from different sources,
extending declarative program analysis with the capability to ef-
fectively guide program optimizations. The cooperative Liveness
analysis demonstrates that with ontology-based program analysis,
cooperations among different compilers or other program analysis
tools become simple, and the synergy turns out to be quite bene-
ficial. Overall, the study shows some promise of the integration of
ontology into program analysis. Establishing this new way of pro-
gram analysis, however, requires the development of an ontology
for Program Analysis and some deep investigation of the opportu-
nities that ontology may bring to program analysis and optimiza-
tions. We hope that this work will prompt further investigations by
the community into this promising direction2.

Acknowledgment
This material is based upon work supported by DOE Early Ca-
reer Award (DE-SC0013700), and the National Science Founda-
tion (NSF) under Grants No. 1455404, 1455733 (CAREER), and
1525609. This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Labora-
tory under Contract DE-AC52-07NA27344. Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of DOE and NSF.

References
[1] OpenAnalysis at Rice University. http://www.hipersoft.

rice.edu/openanalysis/.
[2] ROSE compiler infrastructure. http://www.rosecompiler.

org/.
[3] The JTransformer project. http://sewiki.iai.uni-bonn.

de/research/jtransformer/.
[4] Large single compilation-unit C programs. http:

//people.csail.mit.edu/smcc/projects/
single-file-programs/.

[5] L. O. Andersen. Program analysis and specialization for the C pro-
gramming language. PhD thesis, University of Cophenhagen, 1994.

[6] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.
Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, et al. Gene
Ontology: Tool for the unification of biology. Nature genetics, 25(1):
25–29, 2000.

[7] R. Bagnara and M. Carro. Foreign language interfaces for Prolog: A
terse survey. ALP newsletter, 15, 2002.

2 The source code of PATO and the analyses are accessible
through the following links: https://github.com/yzhao30/PATO-ROSE,
https://github.com/yzhao30/PATO-Pointer-Analysis.

[8] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel bench-
marks. Technical report, The International Journal of Supercomputer
Applications, 1991.

[9] N. Bassiliades, G. Antoniou, and I. Vlahavas. A defeasible logic
reasoner for the semantic web. International Journal on Semantic Web
and Information Systems (IJSWIS), 2(1):1–41, 2006.

[10] W. C. Benton and C. N. Fischer. Interactive, scalable, declarative
program analysis: from prototype to implementation. In Proceedings
of the 9th ACM SIGPLAN international conference on Principles and
practice of declarative programming, pages 13–24. ACM, 2007.

[11] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language
User Guide, The (2nd Edition) Addison-Wesley Object Technology
Series. Addison-Wesley Professional, 2005. ISBN 0321267974.

[12] I. Bratko. Prolog (3rd Ed.): Programming for Artificial Intelligence.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2001. ISBN 0-201-40375-7.

[13] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification
of sophisticated points-to analyses. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA ’09, pages 243–262, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-766-0. doi: 10.1145/
1640089.1640108.

[14] G. Chen, B. Wu, D. Li, and X. Shen. PORPLE: An extensible opti-
mizer for portable data placement on GPU. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-47, pages 88–100, Washington, DC, USA, 2014. IEEE Com-
puter Society. ISBN 978-1-4799-6998-2. doi: 10.1109/MICRO.
2014.20.

[15] M. Compton, P. Barnaghi, L. Bermudez, R. Garcı́a-Castro, O. Corcho,
S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang,
K. Janowicz, W. D. Kelsey, D. L. Phuoc, L. Lefort, M. Leggieri,
H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, and K. Taylor.
The SSN ontology of the W3C semantic sensor network incubator
group. Web Semantics: Science, Services and Agents on the World
Wide Web, 17:25–32, 2012. ISSN 1570-8268. doi: 10.1016/j.
websem.2012.05.003. URL http://www.w3.org/2005/
Incubator/ssn/ssnx/ssn.

[16] L. L. P. Da Mata, F. M. Q. a. Pereira, and R. Ferreira. Automatic par-
allelization of canonical loops. Sci. Comput. Program., 78(8):1193–
1206, Aug. 2013. ISSN 0167-6423. doi: 10.1016/j.scico.
2012.09.006.

[17] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program
analysis using general purpose logic programming systems—a
case study. SIGPLAN Not., 31(5):117–126, May 1996. ISSN 0362-
1340. doi: 10.1145/249069.231399.

[18] P. T. Devanbu. GENOA: A customizable language-and front-end
independent code analyzer. In Proceedings of the 14th international
conference on Software engineering, pages 307–317. ACM, 1992.

[19] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.-C. Burgel-
man. Scenarios for ambient intelligence in 2010. Office for official
publications of the European Communities, 2001.

[20] J. Ebert, V. Riediger, and A. Winter. Graph technology in reverse
engineering–the TGraph approach. In Proc. 10th Workshop Software
Reengineering. GI Lecture Notes in Informatics. Citeseer, 2008.

[21] A. H. Eden and R. Turner. Problems in the ontology of computer
programs. Applied Ontology, 2(1):13–36, 2007.

[22] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy. Columbus-
reverse engineering tool and schema for C++. In Software Mainte-
nance, 2002. Proceedings. International Conference on, pages 172–
181. IEEE, 2002.

[23] C. N. Fischer, R. K. Cytron, and R. J. LeBlanc. Crafting A Compiler.
Addison-Wesley Publishing Company, USA, 1st edition, 2009. ISBN
0-13-606705-0 978-0-13-606705-4.

[24] G. Ganapathi, R. Lourdusamy, and V. Rajaram. Towards ontology
development for teaching programming language. In World Congress
on Engineering, 2011.

http://www.hipersoft.rice.edu/openanalysis/
http://www.hipersoft.rice.edu/openanalysis/
http://www.rosecompiler.org/
http://www.rosecompiler.org/
http://sewiki.iai.uni-bonn.de/research/jtransformer/
http://sewiki.iai.uni-bonn.de/research/jtransformer/
http://people.csail.mit.edu/smcc/projects/single-file-programs/
http://people.csail.mit.edu/smcc/projects/single-file-programs/
http://people.csail.mit.edu/smcc/projects/single-file-programs/
http://dx.doi.org/10.1145/1640089.1640108
http://dx.doi.org/10.1145/1640089.1640108
http://dx.doi.org/10.1109/MICRO.2014.20
http://dx.doi.org/10.1109/MICRO.2014.20
http://dx.doi.org/10.1016/j.websem.2012.05.003
http://dx.doi.org/10.1016/j.websem.2012.05.003
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://dx.doi.org/10.1016/j.scico.2012.09.006
http://dx.doi.org/10.1016/j.scico.2012.09.006
http://dx.doi.org/10.1145/249069.231399

[25] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso,
M. Crubézy, H. Eriksson, N. F. Noy, and S. W. Tu. The evolution
of protégé: an environment for knowledge-based systems develop-
ment. International Journal of Human-computer studies, 58(1):89–
123, 2003.

[26] E. Hajiyev, M. Verbaere, and O. De Moor. Codequest: Scalable
source code queries with datalog. In ECOOP 2006–Object-Oriented
Programming, pages 2–27. Springer, 2006.

[27] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA. In
Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation - PLDI ’01, pages 254–263,
New York, New York, USA, 2001. ACM Press. ISBN 1581134142.
doi: 10.1145/378795.378855. URL http://portal.acm.
org/citation.cfm?doid=378795.378855.

[28] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and
S. Rudolph. OWL 2 web ontology language primer. W3C recom-
mendation, 27(1):123, 2009.

[29] R. C. Holt. An introduction to TA: The tuple-attribute language.
University of Toronto, Toronto, Draft Mar, 24, 1997.

[30] R. C. Holt, A. Winter, and A. Schürr. GXL: toward a standard
exchange format. In Reverse Engineering, 2000. Proceedings. Seventh
Working Conference on, pages 162–171. IEEE, 2000.

[31] M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL
ontologies. Semantic Web, 2(1):11–21, 2011.

[32] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow
analysis. SIGSOFT Softw. Eng. Notes, 20(4):104–115, Oct. 1995.
ISSN 0163-5948. doi: 10.1145/222132.222146.

[33] M. James and D. Atkinson. STAR* TOOL- an environment and lan-
guage for expert system implementation. Jet Propulsion Laboratory
Report NTR C, 17536, 1988.

[34] B. Jang, D. Schaa, P. Mistry, and D. Kaeli. Exploiting memory access
patterns to improve memory performance in data-parallel architec-
tures. IEEE Trans. Parallel Distrib. Syst., 22(1):105–118, Jan. 2011.
ISSN 1045-9219. doi: 10.1109/TPDS.2010.107.

[35] M. Kandemir, J. Ramanujam, and A. Choudhary. Improving cache lo-
cality by a combination of loop and data transformations. Computers,
IEEE Transactions on, 48(2):159–167, 1999.

[36] M. Krötzsch, F. Simancik, and I. Horrocks. A description logic primer.
arXiv preprint arXiv:1201.4089, 2012.

[37] P. Lando, A. Lapujade, G. Kassel, and F. Fürst. Towards a general
ontology of computer programs. In ICSOFT (PL/DPS/KE/MUSE),
pages 163–170, 2007.

[38] C. Lattner. LLVM and Clang: Next generation compiler technology.
In The BSD Conference, pages 1–2, 2008.

[39] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the Interna-
tional Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, CGO ’04, pages 75–, Washing-
ton, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2102-
9. URL http://dl.acm.org/citation.cfm?id=977395.
977673.

[40] T. C. Lethbridge, S. Tichelaar, and E. Plödereder. The dagstuhl middle
metamodel: A schema for reverse engineering. Electronic Notes in
Theoretical Computer Science, 94:7–18, 2004.

[41] C. Liao, D. Quinlan, J. Willcock, and T. Panas. Semantic-
aware automatic parallelization of modern applications using high-
level abstractions. International Journal of Parallel Program-
ming, 38(5-6):361–378, 2010. ISSN 0885-7458. doi: 10.1007/
s10766-010-0139-0.

[42] J. Malone, A. Brown, A. L. Lister, J. Ison, D. Hull, H. Parkinson,
and R. Stevens. The software ontology (SWO): A resource for re-
producibility in biomedical data analysis, curation and digital preser-
vation. Journal of Biomedical Semantics, 5(1):25, 2014.

[43] C. Matuszek, J. Cabral, M. J. Witbrock, and J. DeOliveira. An intro-
duction to the syntax and content of Cyc. In AAAI Spring Symposium:
Formalizing and Compiling Background Knowledge and Its Applica-
tions to Knowledge Representation and Question Answering, pages
44–49. Citeseer, 2006.

[44] D. L. McGuinness and F. Van Harmelen. OWL web ontology language
overview. W3C recommendation, 10(10):2004, 2004.

[45] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program
analysis. Springer, 2004.

[46] I. Niles and A. Pease. Towards a standard upper ontology. In Proceed-
ings of the international conference on Formal Ontology in Informa-
tion Systems-Volume 2001, pages 2–9. ACM, 2001.

[47] N. F. Noy and D. L. McGuinness. Ontology development 101: A guide
to creating your first ontology, 2001.

[48] OpenMP Architecture Review Board. OpenMP application program
interface version 4.0, July 2013. URL http://www.openmp.
org/mp-documents/spec30.pdf.

[49] A. Pease, I. Niles, and J. Li. The suggested upper merged ontology: A
large ontology for the semantic web and its applications. In Working
notes of the AAAI-2002 workshop on ontologies and the semantic web,
volume 28, 2002.

[50] D. Preuveneers, J. Van den Bergh, D. Wagelaar, A. Georges, P. Rigole,
T. Clerckx, Y. Berbers, K. Coninx, V. Jonckers, and K. De Bosschere.
Towards an extensible context ontology for ambient intelligence. In
Ambient intelligence, pages 148–159. Springer, 2004.

[51] N. D. Rodrı́guez, M. P. Cuéllar, J. Lilius, and M. D. Calvo-Flores. A
survey on ontologies for human behavior recognition. ACM Comput-
ing Surveys (CSUR), 46(4):43, 2014.

[52] S. Sosnovsky and T. Gavrilova. Development of educational ontology
for C-programming. 2006.

[53] S. Staab and R. Studer. Handbook on ontologies. Springer Science &
Business Media, 2013.

[54] M. Tenorth and M. Beetz. KnowRob—knowledge processing for
autonomous personal robots. In Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on, pages 4261–4266.
IEEE, 2009.

[55] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner:
system description. In Automated reasoning, pages 292–297. Springer,
2006.

[56] J. D. Ullman. Principles of Database and Knowledge-base Systems,
Vol. I. Computer Science Press, Inc., New York, NY, USA, 1988.
ISBN 0-88175-188-X.

[57] M. Verbaere, R. Ettinger, and O. de Moor. JunGL: A scripting lan-
guage for refactoring. In Proceedings of the 28th international con-
ference on Software engineering, pages 172–181. ACM, 2006.

[58] M. Verbaere, E. Hajiyev, and O. De Moor. Improve software qual-
ity with SemmleCode: an Eclipse plugin for semantic code search.
In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion, pages
880–881. ACM, 2007.

[59] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language De-
sign and Implementation, PLDI ’04, pages 131–144, New York, NY,
USA, 2004. ACM. ISBN 1-58113-807-5. doi: 10.1145/996841.
996859.

[60] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using datalog
with binary decision diagrams for program analysis. In Proceedings
of the Third Asian Conference on Programming Languages and Sys-
tems, APLAS’05, pages 97–118, Berlin, Heidelberg, 2005. Springer-
Verlag. ISBN 3-540-29735-9, 978-3-540-29735-2. doi: 10.1007/
11575467_8.

[61] J. Wielemaker. SWI-Prolog Semantic Web Library 3.0. URL
http://www.swi-prolog.org/pldoc/package/
semweb.html.

[62] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog.
Theory and Practice of Logic Programming, 12(1-2):67–96, 2012.
ISSN 1471-0684.

[63] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In ACM SIGPLAN Notices, volume 46, pages
283–294. ACM, 2011.

http://dx.doi.org/10.1145/378795.378855
http://portal.acm.org/citation.cfm?doid=378795.378855
http://portal.acm.org/citation.cfm?doid=378795.378855
http://dx.doi.org/10.1145/222132.222146
http://dx.doi.org/10.1109/TPDS.2010.107
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
http://dx.doi.org/10.1007/s10766-010-0139-0
http://dx.doi.org/10.1007/s10766-010-0139-0
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://dx.doi.org/10.1145/996841.996859
http://dx.doi.org/10.1145/996841.996859
http://dx.doi.org/10.1007/11575467_8
http://dx.doi.org/10.1007/11575467_8
http://www.swi-prolog.org/pldoc/package/semweb.html
http://www.swi-prolog.org/pldoc/package/semweb.html

	Introduction
	Background
	Overview
	Challenges and Solutions
	Ontology Design
	Knowledge Generation
	Knowledge Utilization
	Framework Design and PATO

	Experience
	Canonical Loop Analysis
	Pointer Analysis
	Facilitating Cooperations
	Other Experience

	Related Work
	Conclusion

