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1 Matroid axioms

The term matroid was first used in 1935 by Hassler Whitney [34]. Most of the material in this
overview comes from the textbooks of Lawler [25] and Welsh [33].

A matroid is defined by a set of axioms with respect to a ground set S. There are several ways to
do this. Among these are:

Independent sets. Let I be a collection of subsets defined by

• (I1) ∅ ∈ I
• (I2) if X ∈ I and Y ⊆ X then Y ∈ I
• (I3) if X,Y ∈ I with |X| = |Y |+ 1 then there exists x ∈ X \ Y such that Y ∪ x ∈ I

A classic example is a graphic matroid. Here S is the set of edges of a graph and X ∈ I if X is
a forest. (I1) and (I2) are clearly satisfied. (I3) is a simplified version of the key ingredient in the
correctness proofs of most minimum spanning tree algorithms. If a set of edges X forms a forest then
|V (X)| − |X| = |c(X)|, where V (x) is the set of endpoints of X and c(X) is the set of components
induced by X. If |X| = |Y |+ 1, then |c(X)| = |c(Y )| − 1, meaning X must have at least one edge x
that connects two of the components induced by Y . So Y ∪ x is also a forest.

Another classic algorithmic example is the following uniprocessor scheduling problem, let’s call it
the scheduling matroid. Let S be a set of tasks indexed 1, . . . , n where each task i takes unit time
and has an integer deadline di. A subset X of tasks is in I if they can all be completed by their
deadlines. In this setting, there are no precedence constraints among the tasks. Aside: the variation
where tasks have a release time before which they cannot be executed also induces a slightly more
general matroid.

Here again, (I1) and (I2) are trivial. To see that (I3) is true, let i be a task in X \ Y with di as
large as possible. If di > dj for all j ∈ Y we are done: we can schedule i after all tasks in Y are
finished. Otherwise X has at most di tasks with deadlines ≤ di and at most di − 1 of these are in
Y (otherwise di ∈ Y ). So we can schedule task i in slot di (the slot right before deadline di).

Another axiomatic description of a matroid is in terms of bases. Here B is a collection of subsets of
S satisfying the following.

• (B1) if B1, B2 ∈ B and x ∈ B1 \B2 then there exists y ∈ B2 \B1 such that (B1 ∪ y) \ x ∈ B.

A base in a graphic matroid is a spanning forest. In the scheduling matroid it is a maximal set of
tasks that can all be scheduled before their deadlines.

Equivalence of these axioms sets can be proved for special cases but can also be proved abstractly.

The following is easy to prove from (I3).

Theorem 1 If X and Y are independent and |X| > |Y | then there exists Z ⊆ X \ Y such that
|Y ∪ Z| = |X| and Y ∪ Z is independent.

It follows that . . .

Corollary 1 A maximal independent set of a matroid is also a maximum independent set. All bases
of a matroid have the same cardinality.
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If we define a base to be a maximum independent set, then (B1) can be proved easily. Or we can
start with bases and define an independent set to be a subset of a base.

The fact that all bases have the same cardinality leads to another axiomatic charaterization – in
terms of rank, where rank is a function ρ : 2S 7→ Z.

• (R1) 0 ≤ ρ(X) ≤ |X|
• (R2) X ⊆ Y implies ρ(X) ≤ ρ(Y )
• (R3) ρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ ρ(X) + ρ(Y ) (submodularity)

The rank of a set X is the maximum cardinality of an independent subset of X. For example, if a
graph G = (V,E) is connected and F ⊆ E then ρ(F ) = |V (F )| − |c(F )|.
A final way (not quite – there are several others – but we’ll stop here) to define matroids is in terms
of circuits. Here C is a collection of subsets of S satisfying the following.

• (C1) if C1, C2 ∈ C and C1 6= C2 then C1 6⊆ C2

• (C2) if C1, C2 ∈ C, C1 6= C2 and z ∈ C1 ∩ C2, there exists C3 ∈ C such that C3 ⊆ (C1 ∪ C2) \ z
In a graphic matroid a circuit is a simple cycle. In a scheduling matroid it is a set C of k+ 1 tasks,
all of which have deadlines ≤ k and no subset of C has this property. In other words, a circuit C is
a minimally dependent set: C is not independent but every subset of C is. It is easy to show that
if C is a circuit then ρ(C) = |C| − 1.

Theorem 2 If B is a base of M(S) and x ∈ S \ B then there exists a unique circuit C(x,B) such
that x ∈ C(x,B) ⊆ B ∪ x. Furthermore, if y ∈ C(x,B) then (B ∪ x) \ y is also a base.

The circuit C(x,B) is called the fundamental circuit of x with respect to the base B.

2 Matroid algorithmics

Matroids are important algorithmically because of the fact that a maximal independent set is also
maximum. This means that one can use a greedy algorithm to find a minimum cost (minimum
spanning tree) or maximum profit (maximum profit set of tasks to be scheduled) base of a matroid.
It is useful first to define the concept of contraction.

Definition. The contraction of a matroid M with respect to an element e on ground set S, denoted
as M/e is a matroid M ′ = (S \ e,B′) such that if B′ ∈ B′, i.e., B′ is base of M ′, then B′ ∪ e is a
base of M . This is a simplification of the formal definition of contraction in the textbooks [2, 33],
but works well for our purposes.

In a graphic matroid contraction with respect to an edge e = vw is the obvious operation: replace v
and w with a new vertex x whose neighbors are those of v and w; parallel edges and self-loops are
not an issue – the underlying graph of a graphic matroid need not be a simple graph.

In a scheduling matroid contraction with respect to task i with deadline di modifies each task j with
dj ≥ di so that it now has deadline d′j = dj − 1.

A simple recursive algorithm for finding the minimum cost base of a matroid, given a cost function
f on the elements, is as follows (max profit is analogous).

function Greedy-Min-Cost(M = (S,B)) is
if rank of M is 0 (no independent sets) then return ∅
else

choose x ∈ S so that ρ(x) > 0 and f(x) is minimum
return x ∪Greedy-Min-Cost(M/x)

endif
end Greedy-Min-Cost

Correctness follows directly from the definition of contraction and (B1): x must be included in an
optimum base. Suppose base B is the minimum cost base that includes x. Let B′ be any other base.
If x 6∈ B′ then there exists y ∈ B′ \ B such that B′′ = (B′ ∪ x) y is also a base. Since f(y) ≥ f(x)
we know that the cost of B′′ is at least that of B.
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Efficient greedy algorithms for both the graphic and the scheduling matroid are based on the fact
that contraction can be implemented using disjoint set union. In the case of a graphic matroid the
elements are vertices and, when an edge uv is contracted, the sets containing u and v are merged.
In a scheduling matroid the elements are deadlines and when a contraction takes place with respect
to a task with deadline d, the sets containing d and d − 1 are merged (effectively changing tasks
with deadlines d to ones with deadlines d− 1). If matroid elements are already sorted by increasing
cost/decreasing profit the time bound is therefore O(mα(m,n)) where m is the number of elements
and n is the rank (each contraction reduces the rank by one). In the special case of the scheduling
matroid the arguments of the union operations are known in advance. Gabow and Tarjan [18] took
advantage of this fact to reduce the time to O(m); their algorithm makes heavy use of random access
(to maintain tables indicating the unions that have been done) instead of simple pointer chasing.

Algorithm Greedy-Min-Cost, when specialized to graphic matroids, is Kruskal’s algorithm for
minimum spanning trees. Other algorithms are derived if we replace the requirement that x have
minimum cost with the weaker one that x is guaranteed to be in a minimum cost base, usually proved
using Theorem 2. The ability to derive almost linear time algorithms1 for minimum spanning trees
stems from the fact that contraction is an efficient, purely local, operation – see, e.g., Gabow et
al. [14].

The best known time bound of a greedy algorithm for the scheduling matroid is O(m+n lg n), where
m = |S| and n = ρ(s) (see, e.g., Gabow and Tarjan [17]). We can make three observations: (a) there
is no need to consider deadlines > m; (b) for any deadline d, only the d largest profit tasks need to
be considered; and (c) the highest profit task with deadline ≥ n is included in some base. Note that
n ≤ min(m, dmax) where dmax is the latest deadline.

The algorithm Max-Profit-Schedule is as follows.

1. For d = 1 to m, create a (max) heap Hd of (the at most d highest profit) tasks having deadline
d; include tasks with deadlines > m in Hm.

2. Let T = ∅ (T is the set of tasks to be scheduled)

3. For d = m down to 1:

(a) let i = removeMax(Hd)

(b) add i to T

(c) merge Hd into Hd−1

The algorithm effectively does a the contraction when Hd is merged into Hd−1. Correctness follows
from the fact that each iteration of the loop in step 3 adds a task of greatest profit that has deadline
≥ the rank of the current (possibly contracted) matroid.

Step 1 can be done in time O(m): use a linear-time median algorithm to get the d highest profit
tasks (when there are more than d tasks) for Hd. Any efficient mergeable heap implementation can
create a heap in linear time. The number of removeMax operations in step 3 is n; each one adds an
element to the base. These therefore take time O(n lgm). If Fibonacci heaps (or similar) are used,
the merges can be done in linear time. Total time is O(m+ n lgm).

1The almost part of this remark applies to purely combinatorial algorithms. There exist linear time algorithms
that play around with the representations of the numbers.
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3 Matroid taxonomy

Here we explore the different types of matroids that arise in practical applications and their theo-
retical underpinnings. Classes of matroids arise if we consider closure under duality and minors.

3.1 Duality

The dual of a matroid M = (S,B) (not to be confused with the dual of an LP) is a matroid
MD = (S,BD) in which B′ ∈ BD if and only if S \ B′ ∈ B. A base in the dual is the complement
of a base in the original. The dual of the dual is, of course, the original matroid. In the case of a
planar graph, the dual corresponds to the usual definition. See Fig. 1. Some additional facts about
the dual (proofs omitted):

1. A circuit C in M is a co-circuit in MD and vice-versa. In the case of graphs, co-circuits are
cutsets. For example, h, i and b, d, g, e are cycles in GD in Fig. 1 and they are cutsets in G.
Conversely, a, c, h, i, f is a cycle in G and a cutset in GD.

2. Contraction in the dual corresponds to deletion in the original and vice versa. Contracting an
edge in the dual of a planar graph has the effect of coalescing the adjoining faces, i.e., deleting
the edge in the original.

3. The dual of a graphic matroid is also graphic if and only if the underlying graph is planar.

These facts have important algorithmic consequences.

First, another theorem.

Theorem 3 If C is a circuit of a matroid M = (S,B) and D is a circuit in MD, also called a
co-circuit, then |C ∩D| 6= 1.

Using Theorem 3 you can show that if x is a maximum cost element of a circuit, then there exists
a minimum cost base that does not include x. So another greedy minimum spanning tree algorithm
involves repeatedly finding maximum cost edges in circuits and removing them until the result is
a tree. An efficient algorithm based on this idea is a randomized one by Karger et al. [23]. If we
“dualize” the circuit element removal algorithm – deletion in the original corresponds to contraction
in the dual – we get a version of Greedy-Min-Cost that finds the maximum weight complement
of a spanning tree/forest.

Even more important algorithmically is that the circuit removal algorithm, when applied to the dual
of a graphic matroid yields an algorithm that repeatedly chooses a minimum cost edge of a cut set,
the underlying framework of most of the known minimum spanning tree algorithms.

You might think this works only for planar graphs. Not true: co-circuits in a graphic matroid are
still cutsets of the graph. The only issue is that the dual may not be graphic.

3.2 Minors and closure properties

A minor of a matroid M is any matroid that can be derived from M by a sequence of deletions and
contractions. Both graphic and scheduling matroids are closed under minors.

Duality is a different story as we have already seen for graphic matroids. The class of binary matroids,
matroids whose independent sets are independent vectors of 0’s and 1’s, is closed under minors and
duality and includes both graphic matroids and their duals, co-graphic matroids. A binary matrix
corresponding to a graph is the vertex/edge incidence matrix. To get closure under dual, invoke a
standard representation with respect to a base B = {b1, . . . , br}:
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(a) A planar graph G = (V,E) and the graph
induced by putting a vertex in each face and
connecting adjacent faces.

(b) The dual GD = (V D, E) of G. Note that
GD has the same edges as G, but V D is the
set of faces of G.

Figure 1: A planar graph and its dual. The complement of a spanning tree in the original graph is
a spanning tree in the dual and vice-versa.

a b c g h d e f i
a 1 0 0 0 0 1 0 1 0
b 0 1 0 0 0 1 1 1 1
c 0 0 1 0 0 0 1 0 1
g 0 0 0 1 0 0 0 1 1
h 0 0 0 0 1 0 0 0 1

d e f i a b c g h
d 1 0 0 0 1 1 0 0 0
e 0 1 0 0 0 1 1 0 0
f 0 0 1 0 1 1 0 1 0
i 0 0 0 1 0 1 1 1 1

(a) Standard representation with respect to
B = {a, b, c, g, h}.

(b) Representation of the dual with respect
to E \B.

Figure 2: Binary representations of the matroid corresponding to graph G in Fig. 1 and its dual.
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b1, . . . , br e1, . . . , er

Ir A

The representation for the dual is

e1, . . . , er b1, . . . , br

Iq AT

For the example in Fig. 1 the two matrices with respect to base {a, b, c, g, h} are shown in Fig. 2.
These matrices are no longer vertex/edge incidence matrices but they do have an interesting property:
if x ∈ E−B then the 1’s in the column for x correspond to C(x,B), i.e., the endpoints of the edges
in the fundamental circuit each appear exactly twice and therefore cancel out. Contraction in a
binary matroid is equivalent to deleting a column and adding it to each of the others.

An obvious generalization of a binary matroid is a linear matroid, where independence corresponds
to independence of a set of vectors over any field. Linear matroids were the original concrete model
on which matroid theory was built [34].

The dual of a scheduling matroid M = (S,B) is also a scheduling matroid MD = (S,BD). First
assume a standard representation in which the maximum deadline is n = ρ(S). Note that if there
are k tasks with deadline n, the latest deadline, and the second latest deadline is n− δ then, in the
original matroid, at least δ of the k tasks must be scheduled. So in the dual, at most k − δ of these
tasks should be scheduled. This observation leads to the following recursive definition of the dual of
M = (S,B).

• if n = 0 then BD = {S}, i.e., all tasks have deadline m = |S| and S is the unique base
• otherwise let n− δ be the latest deadline of a task with deadline < n (or n if there are no other

tasks) and let Sn = {i | di = n} and let k = |Sn|
• then MD includes the tasks of Sn, each with deadline k−δ, plus the dual of M = (S′,B′), where

S′ = S \ Sn and B′ = {B ∩ S′ | B ∈ B}, with k − δ added to each deadline

This process corresponds to the scheduling algorithm presented earlier, which we can now interpret
as finding a minimum profit base in the dual by repeatedly deleting a maximum profit task from a
circuit.

Fig. 3 illustrates the process of constructing the dual on an example. The three tasks g, h, i have
deadline n and δ = 2: we give them deadline 1. Now we find the dual of the matroid with tasks
a–f : n = 3, δ = 1, Sn = {e, f}; deadline is 1, but we add 1. Deadlines for the remaining tasks are
determined similarly.

A more interesting example is shown in Fig. 4

a
b

c
d

e
f

g
h
i

1 2 3 4 5

g
h
i

e
f

c
d

a
b

1 2 3 4

The matroid M . Here, any base must have,
e.g., at most one of a or b, at most two of
a, b, c, d, at least two of g, h, i and at least
one of e, f if not all of g, h, i are included.

The matroid MD. Included in any base are
at least one of a, b, at least two of a, b, c, d, at
most one of g, h, i and at most one of e, f if
one of g, h, i is included.

Figure 3: A scheduling matroid and its dual. Tasks are shown in columns representing their dead-
lines.
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b
c
d
e a

1 2

The matroid M . Any base must have at least
two of b, c, d, e and may or may not have a.

The matroid MD. Because δ = 2 and k = 4
the tasks b, c, d, e are given a deadline of 2.
In the reduced instance n = δ = k = 1 (only
one task, a, with deadline 1). So the deadline
of a in the dual is 0, which is expanded to 2.

Figure 4: Dual of a different scheduling matroid.
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A transversal of size 3 A transversal of size 4 An augmenting path

Figure 5: How axiom (I3) is satisfied in a transversal matroid.

A generalization of the class of scheduling matroids is transversal matroids. Let G = (V1, V2, E) be
a bipartite graph. Then M = (V1, I), where X ⊆ V1 ∈ I if there exists a matching that covers the
vertices in X, is a transversal matroid. Clearly (I1) and (I2) are satisfied. For (I3) let X and Y be
in I with |X| = |Y |+ 1 and let MX and MY be the corresponding matchings. MY must leave some
vertex x of X uncovered. Observe that MX ⊕MY , the symmetric difference of MX and MY , is the
disjoint union of paths and cycles. One of the paths P must lead from x to an uncovered vertex
z ∈ V2. Then (MX \ P ) ∪ (MY ⊕ P ) is a matching that covers all of Y in addition to x. See Fig. 5

Side note: P is usually referred to as an augmenting path. The bipartite matching problem associated
with a transversal matroid can also be formulated as a max flow problem with a source s, an edge
with unit capacity directed into each v ∈ V1 and a sink t with a unit capacity edge wt for each
w ∈ V2.

The augmenting path argument can be used for the more general class of matching matroids, based
on non-bipartite graph matching. The corresponding flow problem is more complex. Surprisingly,
it is also true that every matching matroid is also a transversal matroid – the construction is not at
all obvious – so matching matroids are not really more general. A scheduling matroid is a special
case of a convex transversal matroid, one in which there exists a permutation π of V2 such that, for
every x ∈ V1 the set {y | xy ∈ E} is contiguous in π.

Unfortunately neither transversal or matching matroids are closed under minors. Consider the
example in Fig. 6. The graphic matroid in Fig. 6(a) is also a transversal matroid, as illustrated in
Fig. 6(b), but when edge x is contracted – Fig. 6(c) – the result is not transversal. A circuit in a
transversal matroid consists of k elements that have k− 1 neighbors among them (but not every set
with this property is a circuit). In Fig. 6(c), {a, b}, {c, d} and {e, f} are circuits; so a and b share
a neighbor, as do c and d and e and f . No two of these neighbors can be the same: otherwise, for
example, {a, c} would also be a circuit.
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(a) A graphic transversal matroid

(b) Its representation as a transversal matroid

(c) Contraction with respect to x
      is not transversal

Figure 6: A transversal matroid whose contraction with respect to a given element is not transversal.
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(a) The matroid M of
Fig. 6(c) as a strict gam-
moid.

(b) The dual of the matroid
M shown as a transversal
matroid.

(b) The dual of the matroid
M shown as a graphic ma-
troid.

Figure 7: A strict gammoid and its dual.
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The smallest class that includes transversal matroids and is closed under both minors and duals is
the class of gammoids, defined as follows.

• Let G = (V,E) be a directed graph and W ⊆ V a fixed set of vertices.
• There is a linking of U ⊆ V into W if there is a mapping f : U 7→W such that there is a set of

disjoint paths, each path leading from u ∈ U to f(u) ∈W .
• For any fixed W the set of U such that there exists a linking from U into W form the independent

sets of a matroid over V . Such a matroid is called a strict gammoid.
• A gammoid is obtained by restricting U to some subset of V .

Fig. 7(a) illustrates the strict gammoid corresponding to the graphic matroid in Fig. 6(c). A matroid
is a strict gammoid if and only if it is the dual of a transversal matroid. Proofs of this are given
in the textbooks by Aigner [2] and Welsh [33]. Figures 7(b) and (c) show the dual of the strict
gammoid in Fig. 7(a) as a transversal and graphic matroid respectively. It is easy to see that a
transversal matroid M is a gammoid – let W be the V2 in the matching representation of M and
restrict the resulting strict gammoid to the vertices of V1.

Gammoids, like binary matroids, are linear matroids. There are many ways to define a hierarchy
on gammoids. Here is one. The simplest closed subclass is that of uniform matroids: Un,m is a
matroid on m elements in which every subset of size n is a base. The sum of a set of uniform
matroids is called a partition matroid. In general, if M1 = (S1,B1) and M2 = (S2,B2) are two
matroids with S1 ∩ S2 = ∅, then their sum, M1 + M2, is a matroid M = (S1 ∪ S2,B) where
B = {B1 ∪ B2 | B1 ∈ B1 and B2 ∈ B2}. A min-cost or max-profit base in a partition matroid can
be found using a linear-time median algorithm.

Uniform matroids are also scheduling matroids: Un,m is equivalent to a scheduling matroid with
m tasks each having deadline n. Partition and scheduling matroids therefore agree on uniform
matroids but then diverge on rank-two matroids with four elements. Let [m1,m2] denote a (rank-
two) scheduling matroid with mi tasks having deadline i. A four element rank-two scheduling
matroid has either six bases ([0, 4] or [1, 3]), five bases ([2, 2] – the only non-base is the set of two
deadline 1 tasks) or three bases ([3, 1]). Rank-two partition matroids have six bases (U2,4), four bases
(U1,2 + U1,2) or three bases (U1,3 + U1,1). So the scheduling matroid [2, 2] cannot be a partition
matroid and the partition matroid U1,2+U1,2 cannot be a scheduling matroid. The only non-uniform
partition matroid that is also a scheduling matroid is U1,2 + U1,1

A matroid M is binary if and only if it does not have U2,4 as a minor. The “only if” part is easy:
U2,4 requires exactly two rows and four columns; in a binary matroid, one of those columns would
have to be the 0 vector. A gammoid is binary if and only if it does not have K4 as a minor, i.e., if
it is the graphic matroid of a series-parallel graph.

Fig. 8 shows the relationships among the matroid classes discussed above.

4 More matroid algorithmics

Beyond finding the optimum base of a matroid there are additional, more challenging, problems,
two of which are addressed here.

4.1 Matroid intersection

An instance of matroid intersection consists of two matroids over the same ground set M1 = (S, I1)
and M2 = (S, I2). The objective is to find X ⊆ S such that X ∈ I1 ∩ I2, i.e., X is independent in
both matroids. Even a maximum cardinality X may not be trivial to find. An example of matroid
intersection is bipartite matching. In contrast to the transversal matroid, the elements are the
edges of a bipartite graph G = (V1, V2, E) and a set of edges must be independent in two partition
matroids:

M1 =
∑
v∈V1

U1,deg(v) and M1 =
∑
v∈V2

U1,deg(v)
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linear

gammoid                          

 transversal

                                binaryplanaruniform
series

parallel

graphic

co-graphic

scheduling

partition

convex

U1,2 U1,1+

Figure 8: A (partial) hierarchy of matroid classes (not to scale).

Here, each U1,deg(v) contains edges incident on v, i.e., at most one such edge can be included in an
independent set.

Fig. 9 shows how given maximal matching can be extended to a maximum matching via discovery
of an augmenting path. Taking the symmetric difference along the path fdehi yields matching
{a, e, f, i}. In general, a sequence of O(

√
n) augmenting paths leads from an empty matching to a

maximum matching, as shown by Hopcroft and Karp [21].

The weighted bipartite matching problem, i.e., find a matching of maximum weight given weights
on the edges, can be formulated as a linear program. Let xij = 1 if edge ij with weight wij is to
be included in the matching, 0 otherwise. Here i ∈ V1 and j ∈ V2. The objective is to maximize∑
ij∈E wijxij subject to

∑
ij xij ≤ 1 for every i ∈ V1 and

∑
ij xij ≤ 1 for every j ∈ V2. The

constraints ensure that each vertex has at most one incident edge in the matching. Early methods
for solving weighted bipartite matching, sometimes known as Hungarian methods (in recognition of
the König-Egervary Theorem equating maximum matching and minimum vertext cover) used the
dual problem. Let yi be the dual variable corresponding to the constraint for i ∈ V1 and zj the
variable for the constraint for j ∈ V2. Then the objective is to minimize

∑
i∈V1

yi+
∑
i∈V2

zj subject
to yi + zj ≥ wij for every ij ∈ E.

The most well-known Hungarian method, as described by Lawler [25], does a sequence of breadth-
first searches like the cardinality matching algorithm. The algorithm makes use of the fact that
an optimum primal/dual solution is found when the following complementary slackness conditions
hold:

1. if xij > 0 then yi + zj = wij

2. if yi > 0 then
∑
ij xij = 1 (the sum is over edges incident on i)

3. if zj > 0 then
∑
ij xij = 1 (the sum is over edges incident on j)

The conditions say that whenever a dual variable is nonzero, the corresponding constraint is satisfied
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Figure 9: A breadth-first search finds an augmenting path with respect to a maximal matching.
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Figure 10: The final search and subsequent dual-variable adjustment in a Hungarian method for
weighted bipartite matching.
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Figure 11: The dependence graph for a matroid intersection and an augmenting path.

with equality. The searches for augmenting paths maintain primal and dual feasibility and (1) and
(3) by starting with all xij = zj = 0 and yi = maxij wij – so (2) is not satisified until the end. An
edge ij can participate in a search only if it is tight, i.e., wij = xi + yj . Thus ((1) is maintained.
Using auxiliary variables during the search, the algorithm, when it gets stuck, adjusts dual variables;
it decreases all of the yi by a fixed amount δ, based on current conditions, and increases some, but
not all of the zj by δ. Fig. 10 shows the final adjustment, after the last, unsuccessful search. The
edge e, which would have been used in an augmenting path in the cardinality problem, cannot be
used here because it is not tight. In this example, the first adjustment reduces all yi from 8 to 5
and increases zj to 3 only for the other endpoint of edge d. This makes edges h and i tight while
preserving both primal and dual feasibility.

The process of augmenting and adjusting dual variables is reminiscent of many network flow algo-
rithms. This is no accident – the weighted bipartite matching problem, also known as the assignment
problem, is often formulated as a minimum cost flow problem.

Matroid intersection problems involving more general matroids can also be solved using variations
of the augmenting paths idea. Algorithms involving intersections of graphic or scheduling matroids
with partition matroids are discussed by Gabow and Tarjan [17]. The basic idea is to find a mimimum
cost base (if minimum cost is the objective) followed by a sequence of swaps until the constraints of
the partition matroid are satisfied, if possible.

Tong, Lawler and Vazirani [31] were able to show that matroid intersection problems on gammoids
reduce to bipartite matching (in the cardinality case) and weighted non-bipartite matching, discussed
below, in the weighted case. On the other side of the matroid hierarchy, more sophistication is
required in the process of finding augmenting paths. As will become evident in the later discussion
of matroid parity, the addition or removal of an element from either of the two matroids impacts
the relationships among the other elements in nontrivial ways.

The good news is that there is a static auxiliary graph, the dependence graph, that captures all swaps
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that can take place in each matroid. Let X be the current independent set and let B1 and B2 be
bases in M1 and M2, respectively so that X ⊆ Bi for i = 1, 2. Construct the (directed) dependence
graph GX = (S1, S2, A) with respect to X as follows.

• create a bipartition using two copies of each matroid element, so S1 = S2 = S
• if y ∈ C(x,B1) add arc xy to A
• if x ∈ C(y,B2) add arc yx to A

The arc xy corresponding to y ∈ C(x,B1) captures the idea that, if y is removed from B1, x can
replace it. The arc yx corresponding to x ∈ C(y,B2) captures the idea that, if y is added to B2,
x can be removed from it. A sequence of such swaps yields a path in GX ; call it an augmenting
path if it begins with an element y 6∈ X and ends with an element z 6∈ X. As already noted, the
path may not lead to a new independent set because any swap will affect the identity of the cycles.
However, Krogdahl [24] showed that an augmenting path P in the dependence graph leads to a
larger independent set if P admits no shortcuts.

Fig. 11 shows the dependence graph for a matroid intersection problem involving the intersection
of a graphic matroid M1 and a partition matroid M2. The latter is U1,3 + U1,3 + U2,3 with sets
{a, b, c}, {d, e, h} and {f, g, i}, respectively. The current independent set X = {a, d, g} is maximal
in both M1 and M2. To turn this into a base B1 of M1 we add edges c and h. To get a base B2 in
M2 we add element f to bring the number in the partition containing g to 2. The added elements
are parallel to existing ones that can replace them if an augmenting path is found. The augmenting
path shown in Fig. 11(c) indicates that adding c to B2 forces the removal of a. In M1, elements
b, e and i have a in their fundamental circuits. The augmenting path suggests adding i and then
removing f from B2. Since the latter is not in X, the sequence of swaps leads to {c, d, g, i}, a larger
set independent in both M1 and M2.

For general matroids (not necessarily linear) an oracle algorithm is used in conjunction with this
augmenting path idea. An oracle algorithm treats the matroid as a black box which can be queried:
give it a set X and it returns the rank ρ(X). Lawler [25] describes an oracle algorithm for cardinality
matroid intersection that runs in time O(mn2ρ), where ρ is the time for an oracle query. This
was improved to O(mn2 lg n) for linear matroids by Cunningham [6]. For graphic and cographic
matroids, particularly planar graphs, clever data structures can be used to keep track of cycles and
the bounds are further reduced to O(mn1/2) and O(n3/2 lg n) for graphic/co-graphic and planar
graphs, respectively – see Gabow and Stallmann [15].

In constrast to the matching problem, formulating a linear program for the weighted case is a
challenge. Instead of a simple constraint at each vertex there has to be a constraint of the form∑
i∈C xi ≤ |C| − 1 for each circuit C and there are exponentially many circuits. The trick is to

add these constraints on an as needed basis. Various minimum spanning tree algorithms (simple
optimization, not matroid intersection) do this implicitly – see, e.g., Ahuja et al. [1]. For general
matroids (not necessarily linear) an oracle algorithm is used in conjunction with the Hungarian
method as described by Lawler [25] – runtime is O(mn3 +mn2ρ), where ρ is the time for an oracle
query. For linear matroids, Frank [8] improved this to O(mM(n)), where M(n) is the time to do
matrix multiplication (or, in this case, solving a system of linear equations). This can probably be
improved for graphic and co-graphic matroids and especially planar graphs but the results are not
in yet (as far as I know).

4.2 Matroid parity

The matroid parity problem (sometimes called matroid matching) is formulated as follows: Input is
a matroid M = (S, I) and a partition of S into pairs of elements, i.e., each element x ∈ S has a
unique mate x′ ∈ S. The objective is to find the maximum cardinality (or weight if the pairs are
weighted) X ∈ I such that, for each pair x, x′, the element x ∈ X if and only its mate x′ ∈ X, i.e.,
the pairs must stay together. A special case of matroid parity is nonbipartite graph matching. Here
M is a partition matroid composed from graph G = (V,E) as

∑
v∈V U1,deg(v). Think of each vertex
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being a uniform matroid over the edges incident on it, but only using the half of each edge belonging
to the vertex, independent of the other endpoint of the edge. Now an edge is a pair representing its
two endpoints, each member of the pair participating in one uniform matroid.

Matroid parity generalizes all the problems discussed so far, as well as a large collection of network
flow problems. In particular it generalizes both nonbipartite matching (and, by extension, bipartite
matching) and matroid intersection. The latter is easy to see. Consider a matroid intersection
problem defined by M1 = (S, I1) and M2 = (S, I2). Let M = M1 +M2, i.e., create two copies of S,
one for each matroid, and create a pair from the two copies of each element.

Nonbipartite matching also has an augmenting path theorem: a matching is maximum if and only
if it admits no augmenting path, but the situation is more complicated algorithmically than for
bipartite matching. Fig. 12 illustrates how two exploratory paths in a search may meet and not
yield an augmenting path even though one exists. In bipartite matching, when two paths meet, they
either form an augmenting path or an even length cycle. In the latter case, either path through the
cycle can be used as part of an augmenting path if one exists.

The problem in nonbipartite matching is that an “exit”, such as the one involving edge j in Fig. 12
may be missed because the alternation between matched and unmatched edges is different on oppo-
site sides of the cycle. Edmonds [7] figured out that the odd cycle, which he referred to as a blossom,
could simply be contracted into a single vertex, after which the search could proceed. Blossoms can
also be incorporated into a linear programming formulation of the problem. In an odd cycle of length
k, at most bk/2c edges can be included. Fig. 12 shows the full LP formulation with the dual variable
zβ corresponding to the blossom β. Blossoms can be nested arbitrarily, but the search still succeeds
if there is, indeed, an augmenting path. Furthermore, the LP formulation can be used to obtain
an algorithm for weighted nonbipartite matching. Edmond’s O(n4) algorithm was implemented by
Gabow [10] to run in time O(n3). This was further reduced to O(mn1/2) by Micali and Vazirani [28],
matching (hah) the bound for the bipartite case.

Matroid parity, like matroid intersection, can be reduced to matching when the underlying matroid
is a gammoid [31]. This works for both the cardinality and weighted cases.

The other side of the matroid hierarchy is much more interesting. Gary and Johnson [20] list
spanning tree parity, matroid parity in graphic and/or co-graphic matroids, as an open problem.
That same year2 Lovasz [26] showed that the cardinality parity problem for linear matroids could
be solved in polynomial time, albeit with a high degree polynomial. Estimates range from O(m2n5)
for (co-)graphic matroids3 to O(n10) for linear matroids [27]. Furthermore, the algorithm does not
resemble any algorithms for the problems that matroid parity generalizes. Lovasz and, independently,
Jensen and Korte [22], also gave an exponential lower bound for any oracle algorithm solving the
matroid parity problem; contrast this with matroid intersection.

As with all the special cases of matroid parity, there is an augmenting path theorem. The primary
issue is how to ensure that an augmenting path, if one exists, may be found using a search.

To get an idea of the pitfalls when solving the graphic matroid parity problem consider the example
in Fig. 13. A standard breadth-first labeling starting at a determines that either c or e can be added
when b′ is removed. Then c′ forces removal of d and e′ forces removal of d′. How the search proceeds
depends on which of c or e is encountered first. But regardless, the option of removing g, g′ after
adding both c and e is missed.

There is no obvious shrinking operation here. Instead, the solution is to create a transform T (b′, c, e)
that captures all feasible exits from the blossom. In a standard representation of the binary matroid,
let [zb′zgzh] be the projection onto the subspace induced by b′, g, h. Then c = [101] (its fundamental
cycle includes b′ and h) and e = [111] (the cycle includes all three). T (b′, c, e) = [101]⊕[111] = [010],4

2Actually it was a year earlier, but not well known outside of Hungary.
3Based on a Lisp implementation by Stallmann, which may still be available in electronic form if anyone really,

really wants it.
4In a more general linear matroid, the two vectors would each be multiplied by a different scalar related to b′; here

that scalar is 1 for both of them.
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primal dual
max xa + xb + xc + xd + xe + xf min y1 + y2 + y3 + y4 + y5 + y6

+ xg + xh + xi + xj + y7 + y8 + y9 + y10 + 2zβ
xa ≤ 1 (vertex 1) y1 + y2 ≥ 1 (edge a)
xa + xb ≤ 1 (vertex 2) y2 + y3 ≥ 1 (edge b)
xb + xc + xd ≤ 1 (vertex 3) y3 + y4 + zβ ≥ 1 (edge c)
xc + xe + xj ≤ 1 (vertex 4) y3 + y5 + zβ ≥ 1 (edge d)
xd + xf ≤ 1 (vertex 5) y5 + y7 + zβ ≥ 1 (edge f)
xe + xg ≤ 1 (vertex 6) y4 + y6 + zβ ≥ 1 (edge e)
xf + xg + xh ≤ 1 (vertex 7) y6 + y7 + zβ ≥ 1 (edge g)
xh + xi ≤ 1 (vertex 8) y7 + y8 ≥ 1 (edge h)
xi ≤ 1 (vertex 10) y8 + y10 ≥ 1 (edge i)
xj ≤ 1 (vertex 9) y4 + y9 ≥ 1 (edge j)
xc + xd + xe + xf + xg ≤ 2 (blossom)

solution solution
xa = xd = xg = xj = 1 y8 = y9 = zβ = 1

all others 0

Figure 12: An example of a search for an augmenting path eith respect to a matching in a nonbi-
partite graph. Also shown are the primal and dual LP formulations and the values of variables in
the optimumn solution.
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matroid
class

optimization
(greedy)

cardinality
intersection

cardinality
parity

weighted
intersection

weighted
parity

partition O(m) O(BM(m,n)) [31] O(GM(m,n)) [11, 32] O(WB(m,n)) [11] O(WG(m,n)) [11, 32]

scheduling O(m+ n lg n) [17] O(BM(m,n))[31] O(GM(m,n)) [31] O(WG(m,n)) [31] O(WG(m,n)) [31]

gammoida O(BM(m,n)) O(BM(m,n)) [31] O(GM(m,n)) [31] O(WG(m,n)) [31] O(WG(m,n)) [31]

planar O(n) [4] O(n3/2 lg n) [15] O(mn lg6 n) [15] O(mM(n)) [8]b open

(co-)graphic O(mαm,n) [3] O(mn1/2) [15]c O(mn lg6 n) [15] O(mM(n)) [8] open

linear O(M(n)) O(mn2 lg n) [6]d O(mM(n)) [16] O(mM(n)) [8] open

general O(m lgm+mρ) O(mn2ρ) [25] Ω(cn) [26]e O(mn3 +mn2ρ) [25] Ω(cn) [26]

aTime bounds for transversal/matching matroids extend to gammoids.
bThere must be a better algorithm
cThis bound applies if m ∈ Ω(n3/2 lgn). If m ∈ Ω(n lgn) ∩ O(n3/2 lgn) the bound is O(m2/3n lg1/3 n). If

m ∈ O(n lgn) it is O(m1/3n4/3 lg2/3 n).
dImproved to O(mn1.62) – don’t ask – by Gabow and Xu [19]
eHere c = 2− ε for ε→ 0 as n→∞; uses an extension of the non-linear Vamos-Higgs matroid.

Table 1: Time bounds for various matroid related algorithms; some of these may be outdated.
Here m is the number of elements and n the rank of the matroid. To indicate provenance of the
time bounds, let M(n), BM(m,n), WB(m,n), GM(m,n) and WG(m,n) represent the bounds for
matrix multiplication, bipartite matching, weighted bipartite matching, non-bipartite matching and
weighted non-bipartite matching, respectively. The notation ρ, in context of time bounds for general
matroids, refers to the time to query a rank or independence oracle.

which is exactly g as desired. It also captures the fact that h is not an option.

An algorithm that solves the matroid parity problem using blossom shrinking with transforms is
reported by Gabow and Stallmann [16]; it has time bounds O(mM(n)) for linear matroids and
O(mn2) for (co-)graphic matroids. Using clever data structures the bound for (co-)graphic matroids
can be improved to O(mn lg6 n) [15].

Another line of attack on matroid parity involves a reduction to a sequence of matroid intersection
problems, originally proposed by Orlin and VandeVate [30] and improved by Orlin [29]. Time bounds
are O(mn4) and O(m3n), respectively, for linear matroids.

In Table 1 gives the latest bounds (as far as I know) for algorithms solving a wide variety of matroid
problems. Some of the entries depend on the following time bounds, also subject to improve-
ment.

• matrix multiplication, M(n) ∈ O(n2.2...), Coppersmith and Winograd [5].
• cardinality bipartite matching, BM(m,n) ∈ O(mn1/2), Hopcroft and Karp [21].
• cardinality nonbipartite matching, GM(m,n) ∈ O(mn1/2), Micali and Vazirani [28].
• weighted bipartite matching, WB(m,n) ∈ O(mn+ n2 lg n), Fredman and Tarjan [9].
• weighted nonbipartite matching, WG(m,n) ∈ O(minn3,mn lg n), Gabow, Galil and Spencer [13],

improved to O(mn+ n2 lg n) by Gabow [12].
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