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Abstract
This paper proposes Lean Contrastive Diver-
gence (LCD), a modified Contrastive Divergence
(CD) algorithm to accelerate the training process
of Restricted Boltzmann Machine (RBM) while
maintaining the same training result achieved by
the original CD algorithm. It efficiently recog-
nizes and removes redundant computations from
two aspects: one focuses on the sampling pro-
cess, giving upper and lower bounds of the pos-
sible conditional probability of each sampled
unit; the other one focuses on the calculation
of the conditional probability, reusing history
results to speed up the computation. Experi-
ments show that LCD could achieve significant
speedups comparing to the original algorithm.

1. Introduction
As a generative model, Restricted Boltzmann Machine
(RBM) has been used for extracting meaningful high-level
representations (e.g., hidden features in images) from many
different types of data input including labeled or unla-
beled images (Hinton. et al., 2006; Ranzato et al., 2010),
sequence of speech signals (Mohamed & Hinton, 2010),
word observations (Dahl et al., 2012) and movie ratings
(Salakhutdinov, 2010). It is originally developed as Binary
RBM in which both the visible and hidden layers are binary
units. Variations (e.g., Gaussian-Bernoulli RBM) are intro-
duced to deal with real value observations and other types
of input. RBMs can also be stacked to form deep learn-
ing networks like Deep Belief Network and Deep Boltz-
mann Machines (Hinton. et al., 2006; Bengio et al., 2007;
Salakhutdinov & Hinton, 2009; Nair & Hinton, 2009; Sri-
vastava & Salakhutdinov, 2012).

For many machine learning algorithms, the training is
based on gradient descent. However, the loss function of
RBM is intractable so it is difficult to use gradient descent
directly. Therefore, Contrastive Divergence (CD) learning
procedure (Hinton, 2002; 2010), an approximation to gra-
dient descent, is used to train RBM. It creates a Markov
Chain for each data point and runs Gibbs Sampling for sev-
eral iterations to get a low variance estimation of the equi-
librium states distribution under the RBM model. CD-k
represents a CD algorithm with k Gibbs Sampling itera-
tions for each data point. It is shown that CD-10 always
performs better than CD-1 (Tieleman, 2008) but consumes
much more time due to more Gibbs Sampling steps. Per-
sistent Contrastive Divergence (PCD) (Tieleman, 2008) is
introduced as a faster and simple alternative of the original
CD algorithm. Other Efforts (Tieleman & Hinton, 2009;
Nair & Hinton, 2010; Cho et al., 2011; Tang & Sutskever,
2011; Courville et al., 2011; Tran et al., 2013; Yamashita
et al., 2014; Wang et al., 2014) have also been taken to find
efficient and better ways to train the model.

In this paper, we present Lean Contrastive Divergence
(LCD), an enhanced training algorithm that accelerates the
training process from a different perspective. Instead of
introducing new approximations as previous studies did,
LCD recognizes and removes unnecessary computations
existing in the original algorithm. It could speed up not
only the original CD but also those CD based algorithms
developed in previous studies. Taking CD as an exam-
ple, LCD optimizes it without changing the training results
from two aspects. First, by calculating upper and lower
bounds of vector dot product result, it saves some dot prod-
uct calculations in the Gibbs Sampling process. Second,
it reuses conditional probabilities calculated from the pre-
vious iteration and only computes the changes contributed
by vector units that are different between two consecutive
iterations. LCD combines these two approaches and uses
either one of them or the combined version adaptively for
each training epoch. This paper uses Binary RBM trained
with CD as an example to illustrate the main idea of the op-
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timization. Section 3.4 shows that LCD could be applied to
variations of RBM, RBM based Deep Learning Networks
and other CD based training algorithms with only small
modifications. We test the performance of LCD on Binary
RBMs and Gaussian-Bernoulli RBMs. We also apply our
optimization to PCD training algorithm (LPCD) and use it
to train Binary RBMs. The experiment results are included
in section 4. In most of the cases, LCD achieves substantial
speedups over the original CD based training algorithms.

In the rest of this paper, we first give a brief introduction
of the RBM training algorithm, emphasizing the CD algo-
rithm and the Gibbs Sampling process, in section 2. In
section 3, we describe the optimization approaches used
in LCD and its applicability to variations of RBM, Deep
Neural Networks and other Training Algorithms. Section 4
presents setups and results of the experiments. Finally, we
summarize the work in section 5.

2. RBM Training Algorithm
2.1. RBM with Binary Units

Figure 1. A Binary RBM with n visible units and m hidden units.
h represents the hidden unit vector and v represents the visible
unit vector.

As illustrated in Figure 1, Binary RBM, the simplest RBM,
is composed of two layers of binary units: a visible layer
(v) with n visible units and a hidden layer (h) with m hid-
den units. These two layers are denoted by a visible unit
vector v and a hidden unit vector h. The state of each unit
can only be 0 or 1. θ = (a,b,W ) are the model parame-
ters: the bias vectors a ∈ Rn and b ∈ Rm for the visible
and hidden layers and the weight matrix W ∈ Rn×m that
contains the weights on edges between pairwise visible-
hidden units. The conditional distributions are:

P (hj = 1|v) = σ(bj + vTW(:,j)) (1)

P (vi = 1|h) = σ(ai +W(i,:)h) (2)

where σ(·) is the sigmoid activation function. Previous
studies (Hinton, 2010; Tieleman & Hinton, 2009) showed
that the updating rules for θ during the training process with

a learning rate ε are the following:

∆Wij = ε(〈vihj〉d − 〈vihj〉m) (3)

∆ai = ε(〈vi〉d− 〈vi〉m); ∆bj = ε(〈hj〉d− 〈hj〉m) (4)

where 〈·〉d and 〈·〉m are the expectations under the distri-
bution specified by the training input data and the theoret-
ical RBM model. Although computing 〈vihj 〉d is straight-
forward, 〈vihj 〉m is intractable due to the large number of
possible joint (v,h) configurations.

2.2. Contrastive Divergence and Gibbs Sampling
Process

Contrastive Divergence (CD) algorithm (Hinton, 2002) is
a learning procedure being used to approximate 〈vihj 〉m .
For every input, it starts a Markov Chain by assigning an
input vector to the states of the visible units and performs
a small number of full Gibbs Sampling steps. Resulting
reconstructed visible units are used to approximate the ex-
pectation of the model distribution (Hinton, 2010; Ben-
gio, 2009). The detailed algorithm for processing a whole
dataset is shown in Alg. 1.

The main part of CD is the Gibbs Sampling process. As
shown in Alg. 1 lines 11 - 18, a full Gibbs Sampling step
includes sampling visible units given the hidden layer and
then sampling the hidden units given the reconstructed vis-
ible layer. Based on how many full Gibbs Sampling steps
are performed, the algorithm is named as CD-k with k
standing for the number of steps.

Tieleman (2008) observed that CD-10 outperformed CD-
1 for almost all tested cases. Although it takes longer for
CD-10 to finish a same number of epochs, CD-10 always
achieves a larger log-likelihood with a same time of train-
ing. After a close study of CD, we find some redundant
computations in the Gibbs Sampling process. By eliminat-
ing those computations, there are opportunities to speed up
the training algorithm. CD-k with k > 1 then costs much
less and is preferable due to better learning result.

3. Optimizing the CD Algorithm
The main computation of the original CD algorithm comes
from the k-steps Gibbs Sampling when k > 1 . There-
fore, optimizing this part could largely reduce the execu-
tion time. We utilize two different approaches to remove
redundant computations in this part.

The first one is Bound optimization. As shown in lines 12-
13 and lines 16-17 of Alg. 1, to sample a visible or hidden
unit, CD calculates the probability of turning on the unit
and set it to 1 if the probability is greater than a gener-
ated random number. The computation of the conditional
probability includes a dot product of two vectors (W(i,:)h
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Algorithm 1 original CD algorithm
1: Input: input dataset, number of inputs N , batch size
Nb, number of training epochs Ne, number of gibbs
sampling steps k, input vector dimension n, size of hid-
den layer m

2: for e = 1 to Ne do
3: for batch = 1 to N/Nb do
4: for q = 1 to Nb do
5: Let the qth input be vector vd

6: for j = 1 to m do
7: P+(hj = 1|vd) = σ(bj + vT

dW(:,j))
8: hj = rand() < P+(hj = 1|vd)
9: end for

10: for step = 1 to k do
11: for i = 1 to n do
12: P (vi = 1|h) = σ(ai +W(i,:)h)
13: vi = rand() < P (vi = 1|h)
14: end for
15: for j = 1 to m do
16: P (hj = 1|v) = σ(bj + vTW(:,j))
17: hj = rand() < P (hj = 1|v)
18: end for
19: end for
20: for i = 1 to n do
21: for j = 1 to m do
22: < vihj >d = vd,i · P+(hj = 1|vd)
23: < vihj >m = vi · P (hj = 1|v)
24: ∆Wij + = ε(〈vihj〉d − 〈vihj〉m)
25: ∆ai + = ε(〈vi〉d − 〈vi〉m)
26: ∆bj + = ε(〈hj〉d − 〈hj〉m)
27: end for
28: end for
29: end for
30: update parameters θ = (a,b,W )
31: end for
32: end for

in line 12 or vTW(:,j) in line 16), which is time consum-
ing. Also, the memory access is expensive here because
the Gibbs Sampling process goes though the whole W ma-
trix in order to sample a hidden or visible layer once. The
main idea of Bound optimization is to give upper and lower
bounds of the dot product result instead of calculating the
exact value. In this way, we may be able to avoid some of
the expensive dot-product computations as well as saving
memory access time.

The second one, Partial Dot Production, is inspired by the
fact that only a few units change their states between two
consecutive Gibbs Sampling of either the visible layer or
the hidden layer after training for a while. Therefore, to
compute W(i,:)h or vTW(:,j), we could keep track of the
changing units and update the result from the previous it-

eration by adding or subtracting the weights corresponding
to the changing units.

If not mentioned otherwise, the remaining of this section
uses the sampling process of hidden units as an example.

3.1. Bound Optimization

In the Gibbs Sampling Process, hj = rand() < P (hj =
1|v) is used to sample the j th hidden unit. Since there
is a comparison between the conditional probability and a
random number, the information we actually need for later
computation is the comparison result, not the exact value
of the probability. Therefore, it is possible that some of the
calculations of the probability are unnecessary. A method
of obtaining the comparison result without calculating the
probability could then save us a lot of work.

The method we propose is using the bounds of P (hj =
1|v) as a filter to avoid some computations. Given Eq. 1,
since the sigmoid function is monotonically increasing and
bj is a constant, the lower and upper bounds of the proba-
bility P(hj = 1 |v) are

lb(P (hj = 1|v))= σ(bj + lb(vTW(:,j )) (5)

ub(P (hj = 1|v)) = σ(bj + ub(vTW(:,j )) (6)

Then if r > ub(P (hj = 1|v)) or r < lb(P (hj = 1|v)),
we set hj = 0 or hj = 1 accordingly. Only when r falls
between lb(P(hj = 1 |v)) and ub(P(hj = 1 |v)), we com-
pute the exact value of the probability using Eq. 1.

To define the bounds of vTW(:,j), we explore two different
ways in this paper: one simply adds the weights and the
other makes use of the triangular inequality.

3.1.1. BOUND WITH WEIGHT SUMMATION (WS)

Let W+
min,j , W−

max ,j be the minimum positive weight and
the maximum negative weight in W:,j . N+

W:,j
and N−W:,j

are the number of non-negative and non-positive weights
in W:,j . N 1

v is the number of units with a state of 1 in
the visible unit vector v. We use the following formulas to
estimate the bounds of the dot product:

lb(vTW(:,j)) =
∑
i

W−ij +max(0, N1
v −N−W:,j

) ·W+
min,j

(7)
ub(vTW(:,j)) =

∑
i

W+
ij +max(0, N1

v−N+
W:,j

) ·W−max,j

(8)
Taking Eq. 7 as an example, we first add the negative
weights to get a lower bound. If N1

v is larger than N−W:,j
, it

means there are visible units with a state of 1 corresponding
to positive weights. In that case, we multiply the difference
between N1

v and N−W:,j
with the minimum positive weight
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to get a tighter lower bound. In a similar way, we could
calculate the upper bound as shown in Eq. 8.

Overhead Analysis: To get the summations of positive and
negative weights in each weight vector W:,j , the algorithm
need to go through the entire weight matrix once, result-
ing in a computation overhead of O(mn). It seems to be
a large overhead since it is comparable to the computation
complexity of a full Gibbs Sampling step. However, the
summations could be reused as long as the weight matrix
doesn’t get updated. Therefore, when training RBM with
the CD-k algorithm, we could reuse the calculated bounds
across k Gibbs Sampling steps for processing a training in-
put. Moreover, the training inputs set are usually divided
into batches with a batch size of Nb (which is usually 100
or more). The weights as well as the biases are updated af-
ter processing a batch of inputs. Considering this, we only
need to update the summations once per batch and the com-
putation overhead remains O(mn) for processing a whole
input batch.

The remaining part of bounds calculation are about finding
the maximum and minimum weights in W:,j , counting the
number of positive and negative weights inW:,j and count-
ing the number of 1s in the visible unit vector v. Informa-
tion about the weights could be gathered while calculating
the summations of positive and negative weights. N 1

v could
be counted by adding a counter when sampling the visible
units (lines 11-14 in Alg. 1). Overall, the overhead brought
by WS is negligible.

3.1.2. BOUND WITH TRIANGULAR INEQUALITY (TI)

Another way to calculate the bounds of vTW(:,j) can be
obtained by representing the vector dot product as

vTW:,j =
1

2
(‖v‖2 + ‖W:,j‖2 − d2j ) (9)

with dj = ‖v −W:,j‖. As illustrated in a 2d space
in Fig. 2, given v, W:,1, W:,j′ with j′ 6= 1 and ∆ =
‖W:,j′ −W:,1‖, we have

|d1 −∆| ≤ dj′ ≤ d1 + ∆ (10)

Combining Eq. 9 and Eq. 10, we calculate the bounds as

lb(vTW(:,j)) =
1

2
(‖v‖2 + ‖W:,j′‖2 − ub(dj′)2) (11)

ub(vTW(:,j)) =
1

2
(‖v‖2 + ‖W:,j′‖2 − lb(dj′)2) (12)

An advantage of this method comparing to the previous one
is that it could be applied directly to Gaussian-Bernoulli
RBM which takes real number inputs.

Overhead Analysis: Calculating the bounds in this way
introducing more overheads since we need to maintain

Figure 2. A 2d illustration of vector representations of visible vec-
tor v, W:,1, W:,j′ , d1, dj′ and∆

‖W:,j‖, ∆ and ‖v‖. We use ∆ = ‖W:,j′ −W:,1‖ all the
time in order to simplify the algorithm and to reduce the
overhead. The computation complexity of ‖W:,j‖ and ∆
are both O(mn). However, we only need to update them
after processing a batch of inputs. If the batch size if large,
this overhead is relatively small. Similarly, we only need to
calculate ‖v‖ once when sampling the hidden unit vector
in one Gibbs Sampling process. Then the overhead O(n)
is small compared to O(mn) when m is large.

3.1.3. BENEFIT BROUGHT BY BOUND OPTIMIZATION

Using the sampling process of hidden units as an example,
the original CD goes through the entire weight matrix in or-
der to sample the whole hidden unit vector. The computa-
tions required for sampling each hidden unit is O(n) where
n is the number of visible units. Therefore, the computa-
tion complexity of calculating the conditional probability
in each Gibbs sampling step is O(mn) with m denoting
the number of hidden units. The total computations needed
for the k-steps Gibbs Sampling is O(kmn) .

In the Bound optimization, we first compute the bounds. If
the randomly generated number falls out of the bounded
range, the computations needed to generate a sample is
O(1 ) without counting the overhead. Otherwise, it is
O(n), which is the same as the one needed by the origi-
nal CD. The overall speedup we could achieve depends on
the amount of the removed computations and the overhead
introduced by calculating the bounds of vTW(:,j).

Let f be the fraction of hidden units sampling calcula-
tions on which our bounds filter works successfully. Then
the computation complexity of our optimization for pro-
cessing a batch of input comes from three main parts:
the bounds maintenance (O(mn) for WS based approach
or O(mn + Nbkn) for TI based approach), the probabil-
ity calculation when the bounds filter works successfully
(O(fNbkm) for both of the approaches) and the probability
calculation when the bound filter fails (O((1 − f )Nbkmn)
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for both of the approaches). Comparing to the original CD-
k algorithm which requires O(Nbkmn) computations, our
method is more efficient than the original algorithm when
f is large.

Experiments show that the amount of computations re-
moved by the TI based approach is similar to the amount
achieved by the WS based approach. Since the WS based
approach has a smaller overhead, we use it to calculate
the bounds in all the experiments other than those with
Gaussian-Bernoulli RBM. For Gaussian-Bernoulli RBM,
since TI based approach could be used without modifica-
tion, we implement it to calculate the bounds.

3.2. Partial Dot Production (PDP)

In either the visible layer or the hidden layer, we observed
in the experiments that differences only exist in a few units
between any two consecutive Gibbs Sampling steps, which
means only a few units flip from 0 to 1 or from 1 to 0, after
training RBM for a while. Fig. 4 illustrates how the fraction
of flipping units changes across epochs for both the hidden
layer and the visible layer with a learning rate of 0.01 on
the MNIST dataset. The fraction is not very large at the
beginning and drops dramatically at later epochs. We will
discuss this experiment result more in section 4. Based on
this result, we could assume that after training the RBM for
a while, a large fraction of visible units and hidden units has
a high probability to stay in the same state in two succes-
sive Gibbs Sampling steps for a training input under most
situations.

Utilizing this feature could help us remove a lot of redun-
dant computations. We still use the sampling of hidden unit
vector as an example here. Let vq be the visible unit vec-
tor used to sample the hidden unit vector hq+1 during the
(q + 1)th Gibbs Sampling step. Use cqj to represent the
input of the sigmoid function such that

cqj = bj + (vq)TW(:,j) (13)

Hence the formula for calculating the conditional prob-
ability of turning on the j th hidden unit becomes
P(hq+1

j = 1 |vq) = σ(cqj ). Let S0→1 and S1→0 be the
sets of visible units which change their states (0 → 1 and
1 → 0 ) during the sampling of vq+1 . For example, if
vq = {0, 1, 1, 0} and vq+1 = {0, 0, 1, 1}, we construct the
sets as S0→1 = {v4} and S1→0 = {v2}. In the (q + 2)th

Gibbs Sampling step, when calculating the probability us-
ing P(hq+2

j = 1 |vq+1) = σ(cq+1
j ), instead of computing

cq+1
j = bj + (vq+1)TW(:,j), we calculate

cq+1
j = cqj +

∑
vt∈S0→1

vq+1
t wtj −

∑
vt∈S1→0

wtj (14)

In this way, we reuse the result computed from the pre-
vious iteration and only calculate the partial dot prod-

uct
∑

vt∈S0→1
vq+1
t wtj instead of the full dot product∑

i v
q+1
i wij . This optimization could speed up both the

training and the predicting processes.

Benefit and Overhead Analysis: The overhead of PDP
mainly comes from the maintain of the two sets S0→1 and
S1→0 , which is O(n) for sampling the hidden unit vector.
Let fv be the fraction of flipping units in the visible unit
vector. The computation complexity of using PDP for a
Gibbs Sampling step isO(2fvmn). When fv is small, PDP
could bring significant speedup over the original CD.

3.3. Combing the Two Approaches

We observe that the Bound optimization works better at the
beginning of the training while PDP works well in the later
stage. Therefore, it could be a good idea to combine these
two approaches together to achieve an even better perfor-
mance for the whole training process.

There are two major factors affect the design of the com-
bined version. First, PDP may be able to remove a lot
of computations when the Bound optimization fails in the
early stage of training. Second, if we apply the Bound op-
timization for every unit and change to PDP if the bounds
filter fails, the choice of the current iteration will affect the
computations needed in the next iteration if PDP is cho-
sen in the next iteration. As shown in Eq. 14, we need to
know cqj in order to calculate cq+1

j using PDP. However, if
the Bound optimization works in the current iteration, the
unit hj is set to 0 or 1 directly without calculating the ex-
act value of cqj . Then in the next iteration, if the Bound
optimization fails, we cannot benefit from PDP because we
don’t know cqj .

Taking these two factors into consideration, we design the
Combined version in a way such that each of them has a
chance to be chosen for each Gibbs Sampling step during
the entire training process. For each Gibbs Sampling step,
we compare the expected computations (〈comp〉) required
by both of the approaches and choose the one with a small
〈comp〉. If choosing the Bound optimization, for the units
on which the Bound optimization fails, we apply PDP if cqj
is calculated in the previous iteration.

During the training, we choose among the Bound optimiza-
tion, PDP and the combined version adaptively. At the be-
ginning, we start the training with the combined version.
Then before the starting of each epoch, based on the statis-
tics collected in the previous epoch, we calculate the over-
heads and benefits brought by each of the three choices and
use the one with largest net benefit for the coming epoch.
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3.4. Application to Variations of RBM, Deep Neural
Networks and Other Training Algorithms

Binary RBM is a special class of RBM. Gaussian-Bernoulli
RBM and other kinds of RBMs are proposed to learn from
non-binary data images or other types of input. These vari-
ations of RBM could also benefit from our optimization.
Taking Gaussian-Bernoulli RBM as an example, the visi-
ble units are real values while the hidden units are binaries.
Therefore, the Bound optimization could be used for sam-
pling the hidden units while PDP could be used for sam-
pling the visible units. For deep networks such as Deep
Belief Network and Deep Boltzmann Machine, the first
layer could be either a binary RBM or a Gaussian-Bernoulli
RBM, and the stacked following layers are binary RBMs,
so our optimization could also be applied to them directly.

As mentioned in section 1, some algorithms introduce ap-
proximations to the original CD in order to optimizing the
RBM training process. As long as these algorithms have
the Gibbs Sampling process, or perform the calculation of
the conditional probability of turning on a unit in the same
way, our optimization could be used. For example, PCD is
an approximation of the CD algorithm. Instead of starting
a Markov Chain for every input, it starts a chain for every
input in a batch. The total number of the Markov Chain is
equal to the batch size. Then when a batch of new inputs
come into the model, the Markov Chains start at the points
where they stop and continue the sampling process. This
method is shown to have better performance than CD-1,
even CD-10 in most of the experiments (Tieleman, 2008).
Our optimization could be applied directly to PCD since it
has no difference from CD considering the Gibbs Sampling
steps.

4. Experiments
We evaluate the efficiency of our optimization on both of
Binary RBM and Gaussian-Bernoulli RBM over a variety
of real world datasets. For Binary RBM, we study the per-
formance of LCD and LPCD over six datasets: the MNIST
handwritten digits dataset (LeCun et al., 1998), the CalTech
101 Silhouettes dataset (Marlin et al., 2010), the MICRO-
NORB dataset (Tieleman & Hinton, 2009), the small 20-
Newsgroup dataset (Marlin et al., 2010) and the UCI repos-
itory Abalone dataset (Bengio et al., 2007). Experiments
are also preformed on the transformed MNIST (f-MNIST)
dataset in which each pixel flips its value (Cho et al., 2011).
For each of the datasets, the RBM is trained using differ-
ent versions of CD-k and PCD-k algorithm with different
k values (1, 5 and 10). For the Gaussian-Bernoulli RBM,
we compare the performance of LCD over the original CD
with three different k values. k value starts from 2. For
k = 1 case, our optimization cannot be used because of the
real value visible units. The datasets used for this part are

MNIST, f-MNIST, Abalone, a Financial dataset (Bengio
et al., 2007), face image dataset CBCL (Yamashita et al.,
2014) and Olivetti face dataset (Cho et al., 2013).

The learning rates are fixed during the training process and
different learning rates are studied in the experiments. The
number of visible units of RBM is determined by the size
of the input image. Previous studies have shown that RBM
is able to achieve a good training result on these datasets.
Most of the configurations (e.g., # of visible and hidden
units, k) we used in our experiments are adopted from these
studies. Since our optimization doesn’t change the train-
ing result of the original CD and calculating the training
data log-likelihood is expensive, we use a fixed number of
epochs as the termination criteria. To compare the opti-
mized algorithm with the original one, we run both algo-
rithms for the same number of epochs and compare the ex-
ecution time. The size of the datasets and the configura-
tions of corresponding RBM setups are shown in columns
2-8 of Table 1 and Table 2. N is the size of the dataset. n
and m are the number of visible and hidden units. lr is the
learning rate and k is the number of Gibbs Sampling steps.

epoch
0 20 40 60 80 100

s
p
e
e
d
u
p

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
k = 1
k = 5
k = 10

Figure 3. Speedups gained by applying the Bound optimization
to the original CD-k algorithm over the MNIST dataset. The
speedup is measured for every epoch and plotted as a function
of epoch in this graph.

4.1. Performance of the Bound Optimization Across
Epochs

Figure 3 illustrates how the speedups obtained by the
Bound optimization change with training epochs. The re-
sults of training the MNIST dataset using CD-1, CD-5 and
CD-10 with a learning rate of 0.01 are shown as an ex-
ample here. This experiment takes 10000 training inputs
and runs for 100 epochs. The speedup is significant at
the first several epochs and diminishes very fast. It is be-
cause the weights are initialized with small random values
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Table 1. Overall Speedups for Binary RBM with CD and PCD algorithm

dataset N n m No. Batch lr k overall speedup
LCD LPCD

Epoch Size Bound PDP Comb Adapt pdp

Abalone 2100 8 25 500 100 0.01
1
5

10

0.87
0.67
0.63

0.83
1.06
1.12

0.74
0.57
0.54

1.04
1.12
1.15

1.10
1.27
1.31

20Newsgroup 8500 100 500 100 100 0.01
1
5

10

1.13
1.60
1.73

1.19
1.87
2.14

1.34
1.98
2.17

1.45
1.92
2.16

1.21
1.83
2.11

MNIST 50000 784 500 20 100 0.01
1
5

10

1.08
1.16
1.15

1.22
2.36
2.72

1.28
2.35
2.55

1.34
2.49
3.29

1.17
2.29
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Figure 4. The fraction of flipping units in both the visible and the
hidden unit vectors. The upper figure corresponds to the visible
unit vector while the lower figure represents the hidden unit vec-
tor. The MNIST dataset is used to get these results.

at the beginning of the training. So the bounds calculated
by summing the positive and negative weights are tight and
able to remove many computations. However, as the model
gets better trained, the weights get larger and more discrete.
The summations of positive and negative weights also get
larger. Due to the nature of the sigmoid function (the ”S”
shape), the resulting bounds become looser quickly and the
efficiency of the bounds filter decreases fast.

The results also show that a larger k value results in a larger
speedup. This is because for CD, we need to compute the
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Figure 5. Speedups gained by applying the partial-dot-product
optimization (PDP) to the original CD-k algorithm over the
MNIST dataset. The speedup is measured for every epoch and
plotted as a function of epoch.

exact conditional probability of turning on each hidden unit
in the first Gibbs sampling step and the last Gibbs Sam-
pling step. They are used on lines 22 and 23 in Alg. 1
for weights update. Only the sampling steps in between
could get saved by the Bound optimization. As a result,
the more Gibbs Sampling steps the training algorithm has
for processing a single input, the more benefit it could get
from the bound optimization. According to previous works
(Tieleman, 2008; Hinton, 2010; LISAlab, 2016), k could be
as large as 10 or 15 and a larger k value typically leads to a
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Table 2. Overall Speedups for Gaussian-Bernoulli RBM with CD algorithm

dataset N n m No. Batch lr k overall speedup
Epoch Size PDP Comb Adapt

Abalone 2100 8 25 500 100 0.0005
2
5

10

1.04
1.08
1.08

1.00
0.97
0.97

1.04
1.07
1.09

Financial 3100 13 35 500 100 0.0005
2
5

10

1.04
1.11
1.11

1.01
1.02
1.00

1.05
1.10
1.11

MNIST 50000 784 500 20 100 0.0005
2
5

10

1.00
1.44
1.56

0.99
1.41
1.41

1.19
1.27
1.53

f-MNIST 50000 784 500 20 100 0.0005
2
5

10

1.03
1.44
1.59

0.96
1.49
1.67

1.18
1.60
1.53

CBCL 2000 381 400 500 100 0.0005
2
5

10

1.16
1.46
1.48

1.18
1.42
1.64

1.19
1.46
1.58

Olivetti 384 4096 500 300 64 0.0005
1
5

10

1.27
1.59
1.97

1.20
1.75
2.05

1.28
1.76
2.46

better learning result even with a same training time. This
leaves some substantial room for the Bound optimizations
to take effect.

4.2. Performance of PDP Across Epochs

Figures 4 and 5 show the performance of PDP on the
MNIST dataset. If a unit changes its state between two
consecutive sampling steps, we call it a flipping unit. We
can tell from Figure 4 that the number of flipping visible
and hidden units decreases during the training process, as
stated in section 3.2. For the visible unit vector, the frac-
tion of flipping units is around 20% at the beginning of the
training and drops to under 10% for all three k values. For
the hidden unit vector, we mark every hidden unit from un-
known to 0 or 1 in the first Gibbs Sampling step. So the
fraction of flipping units of the hidden unit vector is larger
than that of the visible unit vector in a same epoch. When
k=1, we only sample the hidden unit vector twice. There-
fore at least half of the hidden units are considered to be
different from that of the previous iteration. As k increases,
the first Gibbs Sampling step weights less, so the fraction
of flipping units is much smaller than the k=1 case.

The speedups achieved by only applying PDP is shown in
Figure 5. When k=5 or k=10, the fraction of flipping units
in both of the visible and the hidden unit vectors are less
than 20% at around epoch 100. However, the maximum
speedup achieved in our experiments is not 5. This could
be explained by the memory access latency. Even though
the computations are removed due to identical unit values,
the data may still be loaded into the cache from memory if
other data in the same block are used for calculation. This
could result in the speedup not proportional to the percent-

age of computation being saved when applying PDP.

4.3. Overall Speedups

The overall speedups are given in Table 1 and Table 2.
The rightmost 5 columns of Table 1 report the speedups
of our optimized algorithms over the original ones on bi-
nary RBM with CD and PCD and a learning rate of 0.01.
The performance of Bound, PDP, combined version and
adaptive version are shown for LCD. For LPCD, only the
speedups of adaptive version are included. According to
the results, our optimization works better on dataset with a
larger input vector dimension. Also, a larger k value results
in a larger speedup. When k=1, the overall speedups over
the original algorithm are relatively small comparing to the
k=5 or 10 cases. It indicates that with only one Gibbs Sam-
pling step, there are only a few opportunities existing for
either the bound optimization or PDP. When k increases to
5 or 10, the improvement of performance given by bound
optimization itself is limited. Meanwhile, PDP brings a
significant speedup. The adaptive version always achieves
a speedup of larger or comparable to the other three ver-
sion (except for the k=1 case of f-MNIST). The speedups
achieved with a learning rate of 0.1 and 0.001 are similar.

For the Gaussian-Bernoulli RBM, we study the perfor-
mance of PDP, the combined verision and the adaptive ver-
sion. It is clear that the speedup achieved by our method
is larger when the input vector dimension is large. Also,
the adaptive version works better than the other two ver-
sions for most of the cases. Only the result of learning
rate 0.0005 are shown here. The training process with a
learning rate of 0.001 and 0.0001 are also studied and the
speedups are similar.
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Overall, the experiments demonstrate that our optimiza-
tions could efficiently remove a lot of redundant compu-
tations and bring substantial speedups with respect to the
original CD-k and PCD-k algorithms.

5. Conclusion
This work studies the training algorithm of RBM and pro-
poses LCD as an accelerated CD algorithm by recognizing
and removing redundant computations. Choosing adap-
tively among the Bound optimization, PDP and the com-
bined version, LCD efficiently cut up the RBM training
time by two thirds (10 sampling steps per round) without
affecting the training results. It demonstrates the promise
for accelerating RBM-based deep networks.
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