
A Software Framework for Efficient
Preemptive Scheduling on GPU

Guoyang Chen, Xipeng Shen, Huiyang Zhou
North Carolina University

{gchen11,xshen5,hzhou}@ncsu.edu

Abstract
Modern GPU is broadly adopted in many multitasking environ-
ments, including data centers and smartphones. However, the cur-
rent support for the scheduling of multiple GPU kernels (from dif-
ferent applications) is limited, forming a major barrier for GPU
to meet many practical needs. This work for the time demonstrates
that on existing GPUs, efficient preemptive scheduling of GPU ker-
nels is possible even without special hardware support. Specifically,
it presents EffiSha, a pure software framework that enables preemp-
tive scheduling of GPU kernels with very low overhead. EffiSha
consists of a set of APIs, an innovative preemption-enabling code
transformation, a new runtime manager, and a set of preemptive
scheduling policies. The APIs redirect GPU requests to the run-
time manager, which runs on the CPU side as a daemon and de-
cides which GPU request(s) should be served and when a kernel
should get preempted. The preemption-enabling code transforma-
tion makes GPU kernels voluntarily evict from GPU without the
need to saving and restoring kernel states. We demonstrate the ben-
efits of EffiSha by experimenting a set of preemptive scheduling
policies, which show significantly enhanced support for fairness
and priority-aware scheduling of GPU kernels.

1. Introduction
As a massively parallel architecture, GPU has attained broad adop-
tions in accelerating various applications. It has become an es-
sential type of computing resource in modern computing systems,
ranging from supercomputers, data centers, work stations, to smart-
phones.

Most of these systems are multitasking and parallel with more
than one application running and requesting the usage of GPU
simultaneously. In data centers, for instance, many customers may
concurrently submit their requests, multiple of which often need to
be serviced simulteneously by a single node in the data center. How
to manage GPU usage fairly and efficiently in such environments is
important for the responsiveness of the applications, the utilization
of the GPU, and the fairness and quality of service of the computing
system.

The default management of GPU is through the undisclosed
GPU drivers and follows a first-come-first-serve policy. Under
this policy, the system-level shared resource, GPU, may get un-
fairly used: Consider two requests from applications A and B;
even though A may have already used the GPU for many of its
requests recently and B has only issued its first request, the default
GPU management—giving no consideration of the history usage
of applications—may still assign the GPU to A and keep B waiting
if A’s request comes just slightly earlier than B’s request. More-
over, the default scheduling is oblivous to the priorities of kernels.
Numerous studies [10, 12, 15, 16] have shown that the problematic

way to manage GPU causes serious unfairness, response delays,
and low GPU utilizations.

Some recent work [12, 16] proposes some hardware extensions
to help alleviate the issue, but the increased complexity make their
practical adoptions uncertain.

Software solutions may benefit existing systems immediately.
Prior efforts towards software solutions fall into two classes. The
first is for trackability. They propose some APIs and OS intercept-
ing techniques [10, 15] to allow the OS or hypervisors to track the
usage of GPU by each application. The improved trackability may
help select GPU kernels to launch based on their past usage and pri-
orities. The second class of work is about granularity. They use ker-
nel slicing [4, 22] to break one GPU kernel into many smaller ones.
The reduced granularity increases the flexibility in kernel schedul-
ing, and may help shorten the time that a kernel has to wait before
it can get launched.

Although these software solutions may enhance GPU manage-
ment, they are all subject to one important shortcoming: None of
them allow the eviction of a running GPU kernel before its finish—
that is, none of them allows preemptive GPU schedules. The re-
quest for GPU from an application, despite its priority, cannot get
served before the finish of the GPU kernel that another applica-
tion has already launched. The length of the delay depends on the
length of the running kernel. The prior proposals (e.g., kernel slic-
ing [4, 22]) help reduce the length of a kernel and hence the delay,
but is subject to performance loss due to the increased GPU kernel
launching overhead and the reduced parallelism in smaller kernels.
Our measurement shows that the PKM [21] has 58% performance
loss with small preemption latency.

In this work, we propose a simple yet effective way to solve
the fundamental dilemma that has been facing the prior solutions.
The key is the first software approach to enabling efficient preemp-
tions of GPU kernels. Kernels need not be sliced anymore. They get
evicted when it is time to switch kernels on GPU. The dilemma be-
tween schedule flexibility and performance loss is hence resolved.

How to enable efficient kernel preemption is challenging for the
large overhead of context savings and restoration for the massive
concurrent GPU threads. Before this work, all previously proposed
solutions have relied on special hardware extensions [12, 16].

Our solution is pure software based, consisting of some novel
program transformations and runtime machinary. We call our
compiler-runtime synergistic framework EffiSha (for efficient
sharing). As a pure software framework, it is immediately deploy-
able in today’s systems.

EffiSha consists of a set of APIs, an innovative code transfor-
mation, and a new runtime managing scheme. The APIs are at two
levels. The high-level APIs allow users to express their intended
priorities of a GPU kernel if they want to, while the low-level APIs
are used by compilers to pass information about the kernel to the
runtime.



The novel code transformation, named preemption enabling
transformation, is the key to making efficient GPU preemption
possible. It converts a GPU kernel into a special form such that
preemptions at certain points in the kernel would need to save and
restore little if any data. The transformed kernel is subject to certain
restrictions on where in the kernel preemptions may happen. Our
experiments validate that the restriction does not prevent EffiSha
from enalbing flexible preemptive GPU scheduling.

The EffiSha runtime translates the preemption opportunities
into efficient scheduling capability. It features an innovative proxy
design. It includes a runtime daemon process that runs on the CPU
side and a runtime proxy that runs on the GPU side. The daemon
executes the (preemptive) scheduling policy of GPU kernels, and
informs the running GPU kernel when it is time for it to get evicted.
The proxy is a special GPU thread block of the running GPU
kernel. It is created as part of the GPU kernel through the earlier
mentioned preemption enabling transformation. (Each GPU kernel
has its own proxy.) The idea of creating such proxies is essential
for keeping the interactions between GPU kernels and the CPU
daemon efficient.

To demonstrate the benefits of EffiSha, we construct the first
GPU scheduler that supports preemptive GPU kernel scheduling.
We implement two scheduling policies on it. The results on 11 GPU
benchmarks show that the enabled preemptive scheduling improves
the responsiveness (in terms of average turnaround time) of GPU
kernels over the default executions, and produces schedules con-
sistent with the different priorities of kernels. With the same small-
preemption-latency requirements, PKM [21] shows 58% slowdown
while EffiSha only has 4% slowdown. It demonstrates the promise
of EffiSha for opening up new opportunities for sharing GPUs in a
more fair, efficient, and flexible manner.

Overall, this work makes the following major contributions:

• It presents EffiSha, a complete framework that, for the first time,
makes beneficial preemptive GPU scheduling possible without
special hardware extensions.

• It proposes the first software approach to enabling efficient
preemptions of GPU kernels. The approach consists of multi-
fold innovations, including the preemption enabling program
transformation, the creation of GPU proxies, and a three-way
synergy among applications, a CPU daemon, and GPU proxies.

• It exemplifies the usage for EffiSha by constructing and experi-
menting a preemptive GPU scheduler. .

2. Background
Modern GPUs exploit massive thread/data-level parallelism to
achieve high computational throughput. They employ the single-
instruction multiple-thread (SIMT) programming models. All the
threads/work items share the same kernel code and the thread iden-
tifiers are typically used to determine their corresponding work-
loads. For a kernel, its threads/work items are organized in a grid
of thread blocks/workgroups. Depending on the resource availabil-
ity, a GPU dispatches one or more thread blocks to its stream-
ing multiprocessors (SMs) or compute units. All the threads in
the same thread block must be executed on the same SM. Each
thread block is executed independently upon others and the order
of thread block dispatching is decided by the hardware to achieve
load balance among SMs. Warps are formed from the threads in
a thread block and each warp is executed in the single-instruction
multiple-data (SIMD) manner. Threads in the same thread block
can communicate and synchronize with each other through fast on-
chip shared memory. As a result, a thread block forms a basic unit
of collaborative execution and is also referred to as a cooperative
thread array (CTA).

Kernel of matrix addition:  
%threadIdx.x: the index of a thread in its block; 
%blockIdx.x: the global index of the thread block; 
%blockDim.x: the number of threads per thread block 

  idx = threadIdx.x + blockIdx.x * blockDim.x; 
  C[idx] = A[idx] + B[idx];

Figure 1. A kernel for matrix addition.

1. kernel (traditional GPU)

2. predefined # of block-tasks  
(kernel slicing based work[20][21])

3. single block-task (EffiSha)

4. arbitrary segment of a block-task (impractical)

Figure 2. Four levels of GPU scheduling granularity.

With GPUs being widely adopted for general purpose comput-
ing, there is an eminent need for the devices to be shared among
multiple applications. In the past, GPU does not allow the eviction
of running computing kernels. A newly arrived request for GPU
by a different application must wait for the currently running ker-
nel finishes before it can use the GPU. In a recent generation of
GPU (NVIDIA K40m), we find that it can support a certain degree
of eviction and time-sharing among different kernels from differ-
ent applications. The details of the scheduling is not disclosed. Our
empirical exploration shows that when a new kernel arrives, after a
certain time, the currently running GPU kernel drains all its active
thread blocks and lets the new kernel to run on the GPU. This new
feature improves the flexibility of time sharing of GPU. However,
still, it is the hardware that makes the full decision on how these
kernels are scheduled and executed. It is entirely oblivious to the
priorities of the kernels or the requirement of the quality of service
to them. In comparison, our proposed preemption scheme empow-
ers the user to realize flexible scheduling policies for efficiency,
fairness, user responsiveness, or quality of service.

3. Granularity for GPU Scheduling
Scheduling granularity determines the time when a kernel switch
can happen on GPU. This section explains the choice made in this
work.

We first introduce the term block-task. In a typical data-parallel
GPU program, each thread block processes a small portion of the
entire data set. A block-task refers to the work of a thread block in
such a kernel. The execution of the kernel is hence a collection of
block-tasks. The ID of a thread block is taken as the ID of its block-
task. For example, the matrix addition example in the Figure 1
consists of B block-tasks (B is the total number of thread blocks)
with IDs equaling 0, 1, ..., and (B-1).

Figure 2 lists four granularities for GPU scheduling. At the
top is an entire kernel execution; kernel switches on GPU can
happen only at the end of the entire kernel. This is what traditional
GPU supports. All previously proposed software solutions have
tried to support level-2 granularity. The preemptive kernel model
(PKM) [21], for instance, breaks the original kernel into many
smaller kernels, with each processing a pre-defined number (K)
of the block-tasks in the original kernel. Even though with this
approach the GPU still switches kernels at the boundary of a kernel,
the slicing reduces the size of the kernel and hence the granularity.
A challenge at this level is to determine the appropriate value of K.



0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

M
ax

 L
e

n
gt

h
(m

s)
 

Figure 3. The maximum length of a task in SHOC benchmarks
(the largest input in the benchmark suite are used).

Previous work has relied on profiling to do so, feasible to restricted
real-time environment, but not for data center-like general sharing
environments. It further suffers a dillemma between responsiveness
and overhead as Section 8 will show.

The level most flexible for scheduling is the lowest level in
Figure 2, where, GPU may switch kernels at an arbitrary point
in the execution. However, it is impractical on existing GPUs as
it would require saving and restoring the state of massive GPU
threads, which incurs tremendous overhead [12, 16].

In this work, we design EffiSha to offer the level-3 scheduling
granularity. GPU kernel switch can happen at the end of an arbitrary
block-task. This choice has several appealing properties. It offers
more scheduling flexibility than level 1 or level 2 does. It requires
no kernel slicing, and hence, circumvents the difficulty of level
2 for selecting the appropriate K value and the much overhead
associated with kernel slicing. And finally, unlike level-4, no thread
states are needed to save or restore at this level, since preemptions
do not happen in the middle of a thread execution

The size of a block-task determines the worst delay of kernel
evictions (i.e., the time between the eviction flag is set and the
time when the kernel gets actually evicted). Figure 3 shows the
maximum length of a block-task in the level-1 SHOC benchmark
suite [6]. All block-tasks are shorter than 0.8 milliseconds. The
actual eviction delay is even much shorter than the task length,
only 0.08ms on average (detailed in Section 8). Considering that
in modern Linux, a context switch happens once every 1-10ms in
typical cases [], the level-3 granularity is quite small. For the rare
cases where a block-task is too large, it may be possible to develop
some compiler techniques to reduce the granularity by splitting a
kernel or reforming tasks; it is left for future explorations.

4. Overview of EffiSha
EffiSha is the first framework that offers the level 3 scheduling
granularity efficiently. This section provides an overview of it.

As Figure 4 shows, it consists of four major components, work-
ing at the times of both compilation and execution. The compila-
tion step is through a source-to-source compiler that we have devel-
oped. It transforms a given GPU program into a form amenable for
runtime management and scheduling. First, it replaces some GPU-
related function calls in the host code with some APIs we have
introduced, such that at the execution time, those API calls will
pass the GPU requests and related information to the EffiSha run-
time. Second, the compiler reforms the GPU kernels such that they
can voluntarily stop and evict during their executions. The eviction
points in the kernels are identified by the compiler with the prop-
erty that no (or a minimum amount of) data would need to be saved
and restored upon an eviction.

The EffiSha APIs are mostly intended to be used by the com-
piler, but could be also used by programmers in a GPU kernel for
offering optional hints to the compiler and runtime. Some high-
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Figure 4. Overview of EffiSha.

level APIs are designed to allow users to specify the intended pri-
ority of kernels.

The EffiSha runtime consists of a daemon on the host side, and
a “proxy” of the daemon on the GPU side. The latter is in form of
a special thread block of the executing GPU kernel; its creation is
facilitated by the preemption-enabling code transformation done by
the compiler. This novel design is key to the low runtime overhead
of EffiSha.

The EffiSha daemon receives all the GPU requests from the
applications. These requests could be of different priorities. The
EffiSha daemon organizes the requests in queues. Based on the
scheduling policy that we have designed, it decides when to evict
the current running kernel(s) and which kernel(s) to launch next.
The interplay between the daemon and the “proxy” of the daemon
efficiently notifies the executing GPU kernels when it is time for
one or multiple of them to evict. Those kernels, thanks to the
reformation of their code by the compiler, then voluntarily exit
from the GPU. They are recorded in the scheduling queues of
EffiSha. When the EffiSha daemon decides that it is time for one
of the kernels to start or resume their executions on GPU, it notifies
the hosting process of the kernel, which launches or re-launches
those kernels accordingly.

The design of EffiSha ensures a very low overhead of a GPU
kernel preemption. It exploits the enabled preemptive schedules
to achieve improved responsiveness, fairness, and GPU utilization.
We next use an example to first explain how the essential machinary
of EffiSha works, and then describe the implementations in the
compiler module and the runtime.

5. Preemption-Enabling Code Transformation
Figure 5 illustrates the effects of the Preemption-Enabling trans-
formation to a GPU program. It converts the GPU kernel to a form
that uses persistent threads [8] (explained later), and inserts some
assistant code into the host side to help with scheduling.

The statements in bold font in Figure 5 are inserted by the
EffiSha compiler. A transformation critical for enabling the low-
overhead preemption is the changes applied to the device code,
shown by Figure 5 (c). As the execution of a GPU kernel fol-
lows the single-program multiple-threads (SPMT) model: All GPU
threads run the same kernel code; the differences in their behav-
iors are determined by their thread IDs, as shown by the usage of



host code: 
    … 
    // a synchronous kernel launch  
    AGpuKernel<<< … >>> (arg1, arg2); 
    … 

device code: 
    AGpuKernel (arg1, arg2) { 
         kernel_body; 
    } 
    

host code: 
    … 
    _EffiSha_H_pre // a macro  
   // a kernel launch  
    AGpuKernel<<< … >>> (arg1, arg2); 
   … // other statements 
    _EffiSha_H_post // a macro 
    a point waiting for the kernel to finish 
    … 

device code: 
    AGpuKernel (arg1, arg2) { 
         __EffiSha_Proxy // a macro 
         while (1){
             taskIdx= FetchATask(); 
             returnIfAllWorkDone 
             kernel_body; // blockIdx replaced
                                  //  with taskIdx 
             evictIfNeeded 
         } 
   } 
    

idx = threadIdx.x + blockIdx.x * blockDim.x; 
C[idx] = A[idx] + B[idx];

idx = threadIdx.x + taskIdx.x * blockDim.x; 
C[idx] = A[idx] + B[idx];

(c) Changes to an example kernel body

(a) Original code (b) Transforming result 

Figure 5. Illustration of the effects of preemption-enabling code transformation. The top two graphs (a) and (b) show the code of a GPU
program before and after preemption-enabling code transformation; the bottom two graphs (c) and (d) use matrix addition as an example to
show the changes to the body of the kernel: from the default thread-block ID indexed form to the block-task ID indexed form.

“blockIdx” in the matrix addition example in the top part of Fig-
ure 5 (c). The preemption-enabling transformation changes it into
a form indexed by block-task IDs.

An important observation is that the ith block-task does not have
to be processed by the ith thread block; it keeps its integrity as long
as it is indexed with i (its ID), regardless of which thread block is
processing it. Based on the observation, one step of the preemption-
enabling transformation replaces the variable of thread-block ID in
a kernel with a variable of block-task ID as illustrated by the re-
placement of “blockIdx” with “taskIdx” in Figure 5 (c). By elimi-
nating the tie between a block-task and a thread block ID, it offers
the freedom for an arbitrary thread block to process an arbitrary
block-task—and a thread block can even process multiple block-
tasks. The flexibility is important for the remaining part of the trans-
formation.

The second part of the transformation is illustrated in the device
code in Figure 5 (b). It adds a while loop around the body of the
kernel. In each iteration of the loop, a thread block grabs the ID of
a yet-to-process block-task and works on that block-task. The loop
iterates until all block-tasks are finished or it is time for the kernel
to get evicted. These threads, as they stay alive across block-tasks,
are also called persistent threads [8]. Because in the new form each
thread block executes many (rather than one) block-tasks, much
fewer thread blocks need to be created at the launch of the kernel—
as long as the number of thread blocks is enough to keep the GPU
fully utilized.

Our description has been for the typical GPU kernels that are
data-parallel kernels. In some rare cases where the original kernel is
already in the form of persistent threads, the compiler can recognize
that based on the outmost loop structure, skip this step of code
transformation, and move on to the next step.

Low-Overhead Kernel Preemption With the kernel in the form
of persistent threads, preemption-enabling transformation puts the
eviction point at the end of the block-task loop (i.e., the while loop
in Figure 5 (b).) It gives an appealing property: Upon preemptions,
no extra work is needed for saving or restoring threads states. The
reason is that since the current block-tasks have finished, there is
no need to restore threads states for processing those block-tasks.

For the block-tasks yet to process, later relaunches of the kernel
can process them based on the memory state left by the previous
launch of the kernel. The memory state contains the effects left by
the earlier block-tasks, including the counter indicating the next
block-task to process. If later block-tasks depend on some values
produced by earlier block-tasks (e.g., in the case of atomic data
summation), they can find the values on the memory. No extra data
saving or restoring is needed upon evictions.

The placement of eviction points offer the level-3 scheduling
granularity as Section 3 has discussed. This level of scheduling
granularity offers more flexibilities than previous software-based
support of GPU scheduling does.

In addition to the described code changes, the Preemption-
Enabling transformation adds two predefined macros respectively
to the points before and after the kernel invocation in the host code.
It also injects into the kernel code a proxy of the EffiSha runtime
daemon. For their close connections with the runtime components
of EffiSha, we postpone the explanation of these features to the next
section while explaining the EffiSha runtime.

6. EffiSha API and Runtime
The main functionality of the EffiSha runtime is to manage the us-
age of GPU, making a kernel get launched, evicted, or re-launched
at appropriate times. With the undisclosed GPU driver as a black
box, it is hard for the EffiSha daemon to directly manipulate a GPU
kernel inside the context of another process. As a result, the run-
time management has to involve the cooperations among the Eff-
iSha daemon, the GPU threads, and the CPU processes that host
the GPU kernels. A careful design is necessary to ensure that they
work smoothly and efficiently.

Our description of the design starts with a data structure named
kernel-stubs and the set of possible states that a GPU kernel could
have and their transitions. They are essential for understanding the
runtime cooperations.

6.1 Kernel-Stubs and State Transitions
The EffiSha daemon hosts a number of kernel stubs. Each holds a
record for a GPU kernel that is yet to finish. As Figure 6 (a) shows,
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Figure 6. Kernel stubs and the possible state transitions of a GPU
kernel.

a kernel stub contains two fields: One is kState, which indicates the
current state of the kernel, the other is iPriority, which indicates the
initial priority of the kernel.

Each kernel stub is a small piece of (CPU-side) shared memory
created by the EffiSha daemon. When an application requests a
kernel stub for a GPU kernel call (through an EffiSha API call),
the daemon allocates a kernel stub for it, maps the stub to the
address space of the host thread, and returns the address to the host
thread. The usage of shared memory allows the stub to be both read
and written by the daemon and the host thread directly. We have
also considered an alternative design which leaves the stub in the
daemon space; the host thread then must access the stub through
system calls. It incurs much more overhead than the use of shared
memory because the stubs are frequently read by the host thread as
we shall see in the next subsection.

The field kState in a kernel stub can have one of seven values,
corresponding to all the seven states that a GPU kernel can pos-
sibly have. Figure 6 (b) shows the set of states and the possible
transitions among them. When a kernel stub gets created, it is be-
fore the host thread reaches the kernel invocation; the kernel is in
a preparation state (PREP). The kernel then transits to the READY
state, indicating that it is ready to be launched. When the EffiSha
daemon changes its state to TORUN, the host thread may launch
the kernel and the state of the kernel becomes RUNNING. When
the EffiSha daemon changes its state to TOEVICT, the GPU ker-
nel evicts from GPU voluntarily and the kernel goes back to the
READY state. When the GPU kernel finishes, the kernel state turns
to DONE and the kernel stub gets reclaimed for other usage.

6.2 Basic Implementation of the Runtime
We now describe the basic implementation of the EffiSha runtime,
and explain how the runtime supports the state transitions for kernel
scheduling. We leave optimizations of the implementation to the
next subsection.

Our description follows the computation stages and state tran-
sitions shown in Figure 7. On the right side of Figure 7, there is
the transformed GPU program code, which reveals the details of
some macros showed in Figure 5; on the left side of Figure 7 are
the states of the kernel corresponding to each of the computation
stages.

The host thread calls the API “GetAKernelStub” to obtain a
kernel stub for the next kernel call. At the creation time, the kState
in the stub equals “PREP”. The API “initStub” sets the “iPriority”
field of the stub with the initial priority (also called static priority)
of the kernel; if it is “null”, the kernel inherits the priority of the host
thread. The call also changes the state of the kernel to “READY”.
After that, the host thread starts to poll the kState in the stub until
the EffiSha runtime daemon changes its value to “TORUN”. The
host thread then changes the kState to “RUNNING” and launches
its kernel.

host code: 
    … 
  KR = GetAKernelStub();

  InitStub(KR,initPriority);

  while (KR.kState != TORUN);

  KR.kState=RUNNING; 
  // a kernel launch  
   AGpuKernel<<< … >>> (arg1, arg2); 
   … // some other statements 
   while (KR.kState != DONE) {
       if (KR.kState == TORUN) {
          KR.kState=RUNNING;
          AGpuKernel<<< … >>> (arg1, arg2);
  }
  a point waiting for the kernel to finish
   FreeAKernelStub(KR); 
   … 

device code: 
    AGpuKernel (arg1, arg2) { 
         point ⓵ // some code in optimized impl. 
         while (1){
             taskIdx= FetchATask(); 
             returnIfAllWorkDone 
             kernel_body; // blockIdx replaced
                                  //  with taskIdx 
             if (KR.kState == TOEVICT){ // point ⓶
                if (lastThreadToExit) 

KR.kState = READY;
                return;

} 
         } 
   }

PREP

READY

TORUN

RUNNING

scheduler

RUNNING

TORUN

RUNNING

DONE

TOEVICT

scheduler

TOEVICT

READY

Figure 7. Changes of the kState of a kernel in each stage of the
execution of a GPU program (bold font shows the code inserted by
the EffiSha compiler).

The bottom of Figure 7 shows the device code and state transi-
tions. During the execution of a GPU kernel, when a GPU thread
finds no more block-task left, it changes the kState field of the stub
to “DONE”. Otherwise, it processes its work, and then before gra-
bing a new task, it checks whether the kState is now “TOEVICT”.
If so, the thread exits; the last thread to exit, changes kState to
“READY” such that the kernel can be re-launched later. The vol-
untary evictions require no saving of the GPU thread states thanks
to the independence of block-tasks mentioned in Section 5. In the
implementation, kernel stubs are mapped to pinned memory such
that GPU threads can also access it.

After launching the GPU kernel, the host thread continues its
execution1. Right before it reaches the next waiting point, it gets
into a while loop, in which, it repeatedly checks the kState until it
becomes “DONE”. During the check, the kernel may get evicted
and later get scheduled by the EffiSha runtim to resume, in which
case, the runtime changes kState to “TORUN”, and as soon as the
host thread sees it, it re-launches the kernel.

6.3 Optimizations
The basic implementation enables evictions and re-launches of
GPU kernels through coordinations among the EffiSha runtime
deamon, the host CPU thread, and the GPU threads. To make it
work efficiently, we have developed three optimizations as follows.

Proxy on GPU In the basic implementation, kState is made vis-
ible to all three parties: the daemon, the host thread, and the GPU
threads. That simplifies the coordinations among them, but is not
quite efficient. The main issue is on the repeated accesses to kState
by each GPU thread. Because the accesses have to go through the
connections between CPU and GPU (e.g., through the PCIe link),
they cause significant slowdowns to some kernels, especially those
that have small block-tasks (e.g., 100x slowdown on a Triad ker-
nel).

We optimize the implementation by creating a special thread
block for each GPU kernel. The thread block does not process any

1 Here, we assume asynchronous kernel launches. If the original kernel
launch is synchronous, the compiler changes it to asynchronous and adds
a waiting point right after it.



if (this is the first thread block){
  local_kState = KR.kState;
  while (local_kState!=DONE){
     if (KR.kState==TOEVICT){
        local_kState = TOEVICT;
        break;
    }
 }
 return;
}

Figure 8. Codelets used for creating a proxy of the EffiSha runtime
on GPU.

block-tasks for the kernel, but serves as the proxy of the EffiSha
runtime, running on the GPU along with the other thread blocks
of the kernel. In this implementation, there is a copy of kState on
the GPU memory. The proxy thread block keeps reading the kState
on the host memory and updates the copy on the GPU accordingly.
With that, the other thread blocks of the GPU kernel just need to
read the local copy to find out the time to get evicted. The other job
of the proxy is to monitor the status of the kernel (e.g., by reading
the block-task counter) and to update the kState on the host memory
to “DONE” or “READY” accordingly.

The proxy is implemented through the help of the EffiSha com-
piler. The compiler adds the code in Figure 8 to the point 1 right
above the device while loop in Figure 7. The check of the thread
block ID ensures that thread block 0 serves as the proxy and the
remaining thread blocks serve as normal workers. Notice that the
check of the ID is outside the block-task while loop and adds al-
most no overhead. In addition, the read of kState at the point 2 is
replaced with the read of the local copy of kState.

We note that for the implementation to work well, the proxy
should not be put by the hardware into the waiting queue while
other thread blocks of the kernel are actively running. Otherwise,
the local copy of kState would not get updated promptly. The con-
dition is ensured by the preemption-enabling transformation de-
scribed in the previous section. Recall that by making each thread
block process many block-tasks, the transformation brings the flex-
ibility for controlling the number of thread blocks. For the proxy
to work actively, the compiler just needs to set the total number of
thread blocks properly (based on the register and shared memory
demands per thread block).

Adaptive Checking The use of the proxy frees the other thread
blocks from accessing the remote host memory repeatedly, which
reduces the overhead substantially. But we still observe 15% over-
head for kernels with fine-grained block-tasks. We add the feature
of adaptive checking to further reduce the overhead. The idea is to
let a GPU thread check the local copy of kState in every k iterations
of the device-side while loop in Figure 7, where, k is set to r ∗L/l,
L is the length of the scheduling time slice, l is the estimated length
of each iteration of the device while loop, and the factor r is a pos-
itive integer, which helps amortize the influence of the errors in the
estimation of l by making several checks per time slice (we use 10
in our experiments). There could be various ways to make the es-
timation, through performance models, offline or online profiling,
or program analysis. Our implementation uses simple online sam-
pling, which, at runtime, measures the length of the first iteration
of the while loop executed by the first thread of each thread block
and uses the average as the estimated value of l.

Together, these optimizations reduce the overhead by 11.06%
as detailed in the evaluation section.

Asynchronous Checking In the host code in Figure 7, we have
showed that there is a while loop before the waiting point in the
code, which continuously checks kState to help re-launch the ker-

nel if it is evicted. One potential issue is that if there is a lot of
CPU work existing after the kernel launch and before the wait-
ing point, the kernel could have got evicted long before the host
thread reaches the while loop, and hence suffers a long delay in the
re-launch. This issue occurs rarely in our experiments because the
amount CPU work before the waiting point is usually quite small
compared to the scheduling time slice. Still, to alleviate the poten-
tial issue in some rare cases, the EffiSha compiler inserts a custom
signal handler into the GPU program. When the runtime daemon
sees a long delay (about 100 microsec) for kState to turn into RUN-
NING from TORUN, it sends a signal to the host thread. The signal
handling function changes kState to RUNNING and launches the
kernel.

6.4 Setting Priority
By default, a kernel’s iPriority inherits the priority of the host
thread. However, a programmer may use an EffiSha API call
(setIPriority) to customize the priority of a kernel. The call is
mainly to pass the info to the compiler, which uses it as the second
parameter of the inserted call of initStub to set the actual iPriority
field of the kernel stub at run time.

Similar to the priority control in Linux for CPU threads, only
the superuser (root) may set a higher priority than the default. If a
normal user sets the priority higher than the host thread, the EffiSha
runtime ignores the value and uses the priority of the host thread
instead.

A caveat is that even though the EffiSha runtime daemon re-
spects the priority when it schedules kernels, the actual effect is also
related with the priority of the host thread because (re)launches are
through them. For instance, if when the EffiSha daemon changes
the kState to TORUN, the host thread is in CPU waiting queue, the
kernel cannot get re-launched until the host thread resumes run-
ning. A low-priority host thread could hence result in lots of delay
to the kernel (re)launch. To avoid the problem, a suggestion to su-
perusers is to ensure that the host thread has a priority no lower
than the kernel.

7. Scheduling Policies
The support provided by EffiSha opens up the opportunities for in-
vestigating the effects of different preemptive scheduling policies
on GPU kernel executions. In this work, we exemplify it by con-
structing two preemptive scheduling policies.

• Priority-based immediate eviction (piv). In this schedule, the
EffiSha runtime daemon schedules kernels purely based on their
initial priorities. The scheduler maintains a waiting queue for
kernels that are waiting to use GPU. The kernels in the queue
are ordered in their priorities. When the GPU becomes avail-
able, the scheduler always chooses the head of the queue (i.e.,
the kernel with the highest priority) to launch. If a new com-
ing kernel has a higher priority than a currently running kernel,
the scheduler immediately has the current kernel evicted and
has the new kernel launched. Otherwise, the currently running
kernel runs to completion.
This scheduling policy allows high-priority kernels to get exe-
cuted as soon as possible, but leaves low-priority kernels facing
the risk of starvation when there is a long-running kernel or con-
tinuous arrivals of new kernels with higher priority than some
waiting kernels.

• Dynamic priority-based round-robin policy (dprr): The sched-
ule policy is similar to the CPU scheduling policy used by
recent Linux systems. It maintains two waiting queues, one
active queue and one inactive queue. This schedule uses dy-
namic priority. The dynamic priority of a kernel equals to its



initial (static) priority when that kernel just arrives, but get in-
creased by one for every millisecond the kernel waits in the
active queue. The increase is capped at 20. In each of the two
queues, kernels are ordered by their dynamic priorities. A new
coming kernel is put into the active queue (positioned based on
its priority).
Everytime a kernel is scheduled to work, it gets a time slice (or
called quota). The length of the time slice is weighted by the
priority; it is set to (p+ 1)/2 ms, where p is the priority of the
kernel. At the expiration of its time quota, the kernel goes into
the inactive waiting queue and its dynamic priority is reset to
its initial (static) priority. When a GPU becomes available, the
scheduler chooses the head of the active waiting queue to run.
When the active queue becomes empty, the two queues switch
the role: The inactive queue becomes active, and the old active
queue becomes the inactive queue.

8. Evaluation
We implement a prototype EffiSha system, which uses Clang [1] as
the base for the development of the source-to-source compilation.
We conduct a set of experiments, trying to answer the following
main questions:

• Preemption. Can EffiSha enable preemptions without hurting
the correctness of the executions?

• Priority. Can schedulers based on EffiSha indeed support the
different priorities of different kernels?

• Overhead. How much time overhead does EffiSha add to GPU
executions?

• Delay. As mentioned, EffiSha restricts where preemptions can
happen in a GPU kernel. How much delay does the restriction
cause for an eviction to take place?

• Facilitation. Can EffiSha facilitate the construction and com-
parison of different preemptive schedulers on GPU?

8.1 Methodology
Our experiments use the programs in the level-1 folder of the
SHOC CUDA benchmark suite [6]. Table 2 lists the benchmarks.

We design an experimental setting to emulate the scenarios
where the requests for GPU from different applications may have
different priorities, and some requests may arrive while the GPU
is serving for other applications. In our experimental setting, the
11 benchmarks issue their requests for GPU (i.e., launching a GPU
kernel) in turns. Another application issues the request 3ms after
the previous application issues its request. We set the order of
the 11 applications as the top-down order in Table 3—which was
arbitrarily chosen.

We experiment with three different priority settings, as the three
rightmost columns in Table 3 show. The “random” scheme assigns
an application with a random integer between 0 and 30 as the
priority of its kernel. The “group” scheme assigns adjacent two or
three applications with the same priority. The “SJF” (shortest job
first) scheme decides the priority of a kernel based on its length
(i.e., the “standalone time” column in Table 3); the longer, the
lower.

We run the experiments on a NVIDIA K40m GPU. Table 1
shows the information of the machine. Without noting otherwise,
in the experiments, the baseline of the comparisons is always the
executions of the default benchmarks without going through any
changes by EffiSha.

Table 1. Machine Description.
Name GPU card Processor CUDA
K40m NVIDIA K40m Intel Xeon E5-2697 7.0

Table 2. Benchmarks
Benchmark Description

BFS Breadth-first Search in a graph
FFT 1D Fast Fourier Transform
MD Molecular dynamics
MD5Hash MD5 Hash
NeuralNet A Neural Network
Reduction Summation of numbers
Scan An exclusive parallel prefix sum of floating data
Sort A radix sort on unsigned integer key-value pairs
Spmv Sparse matrix-dense vector multiplication
Stencil2D 2D 9-point single and double precision stencil computation
Triad A version of the stream triad

Table 3. Kernel length and priorities.
Benchmark Standalone Priorities

time (ms) random group SJF
NeuralNet 14.25 2 2 1
Sort 5.46 17 2 4
Reduction 2.06 17 2 7
MD5Hash 3.29 22 5 6
MD 13.8 22 5 2
Scan 1.41 7 5 8
Triad 1.22 3 8 9
Stencil2D 28.4 20 8 0
FFT 1.17 24 11 10
Spmv 4.57 7 11 5
BFS 5.99 1 11 3

8.2 Soundness and Support of Priorities
We run the 11 benchmarks in all the settings under the four pre-
emptive schedules. The programs all run correctly, and kernels get
evicted as expected by the scheduling policies.

We further conduct the following experiment to validate the
appropriate support of priorities by EffiSha-based preemptive
scheduling. We launch the 11 benchmarks for 1000 times and mea-
sure the total number of evictions for each kernel. Every launch is
assigned with a random priority (ranging from 1 to 9). Initially, all
the kernels are launched at the same time. A kernel gets invoked
again a certain time period (which is called “wait time”) after the
finish of its previous invocation. We change the wait time from
1ms to 64ms. The scheduling policy piv is used; its direct usage of
the static priority of kernels makes it ideal for studying the relations
between priorities and the actual measurements.

Figure 9 shows the number of evictions that happen on the ker-
nels at each level of priority. When “wait time” is 1ms, the launches
of kernels are dense, and there are a large number of evictions
for kernels at the low priorities. As “wait time” increases, fewer
conflicts happen among the requests for GPU, and the numbers of
evictions drop. For a given “wait time”, the higher the priority of
a kernel is, the less frequently the kernel gets evicted. These ob-
servations are consistent with the objective of the priority-based
scheduling policy, confirming the feasibility enabled by EffiSha for
scheduling GPU kernels to accommondate kernels of different pri-
orities.

8.3 Overhead
EffiSha may introduce several sources of overhead, categorized into
two classes:

• Overhead incurred by code changes, including the usage of
persistent kernels, the creation of the GPU proxy, the checks on
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the eviction flag, and other changes that the EffiSha compiler
makes to the host code and kernels.

• Overhead incurred by preemptive scheduling. It mainly in-
cludes the time taken by kernel evictions and resumptions, and
any side effects of them to the runtime executions.

We measure the overhead of either class respectively.

Transformation overhead. The first is to measure the overhead
brought by its transformed code and the introduced runtime dae-
mon and proxy. For this measurement, we run each of the trans-
formed benchmarks alone; during the execution, the daemon (and
proxy) works as normal, except that there is no kernel evictions
since no other kernels request the GPU. We compare the execution
time with that of the original kernels (i.e., without EffiSha trans-
formations) to compute the overhead. We call such overhead the
transformation overhead.

Figure 10 reports the transformation overhead in three cases: the
basic EffiSha design, the design with the use of proxy, the design
with the use of proxy and all other optimizations that have been
mentioned in Section 6.3. The first group of bars in Figure 10 show
the overhead of the basic EffiSha implementation. The overhead
differs for different applications, due to the differences in their
memory access intensities and the length of each block-task. But
overall, the overhead is large (up to 97X). The overhead is primarily
due to the fact that every GPU thread has to frequently poll the state
variable on the host memory through the PCIe bus.

The second group of bars in Figure 10 show that the usage
of proxy cuts the overhead dramatically. The average overhead
reduces from 10X to 15%. However, for stencil2D, the overhead
is still over 100%. The reason is that every block-task in that kernel
is short. Since the polling of the flag is done in every block-task,
the overhead is large. The third group of bars indicate that the
adaptive polling method helps address the problem. The overhead
of stencil2D is reduced to 8%, and the average overhead becomes
4%.

Here we compare EffiSha to a prior work, PKM [21]. PKM
partitions the kernel grid into subgrids and launches subgrids as
separate kernels. This way, the GPU kernel can be preempted
at the subgrid granularity. The challenge of PKM, however, is
the subgrid configuration: large subgrids lead to high preemption
latency (i.e., slow response to preemption requests) while small
subgrids reduce the thread-level parallelism and incur additional
kernel launching overheads. In Figure 11, we show the execution
overhead of Kernelet for different subgrid configurations, which are
tuned to meet different preemption latency requirements, from 1ms
to 0.0625ms. As the preemption latency decreases, the overhead of
PKM becomes significant(average 45%(up to 98%) slowdown for
response time 0.0625ms).

To compare the overhead of PKM with EffiSha, we tuned the
subgrid value so that the response time is same as EffiSha for each
application. The response time of EffiSha for each application is

showed in Figure 13. The last bar in Figure 10 shows the overhead
of PKM. As we can see, the average overhead of EffiSha with all
optimizations is 4%(up to 8% for Triad). For PKM, with the same
preemption latency as EffiSha for each application, the average
overhead is 58%(up to 140%). We can see that, compared to PKM,
EffiSha has much lower overhead and does not require fine-tuning
to determine the subgrid configuration.
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Scheduling Overhead In the second way, we measure the over-
head when EffiSha is actually used in some preemptive schedulers.
Our measurement is as follows. We run the 11 benchmarks (with
the 3ms delay of each kernel’s starting time) on the default GPU,
and record the time spanning from the start of the first kernel to the
end of the last kernel, and denote the time as T . (Notice that be-
cause the time between the launches of two adjacent kernels (i.e.,
the δ = 3ms) is short, at any moment during the period of T , the
GPU is working on some kernel.) We then redo the measurement
but with each of the two preemptive schedulers deployed. Let T ′

be the measured time got in one of the experiments. The schedul-
ing overhead in that experiment is then computed as (T ′ − T )/T .

Figure 12 reports the overhead of the four schedulers under each
of the three priority settings. The scheduler “dprr” has the larger
overhead than “piv” for its more operations in the more complex
scheduling algorithm. But all the overhead is less than 5%.

8.4 Delay
To see how quickly the running kernel can act on an eviction
request, we measure the preemption latency for each kernel, which
refers to the time between the setting of the eviction flag and the exit
of the kernel from GPU. To measure it, we keep each kernel doing
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Figure 13. Preemption latency of each kernel.

the same work on GPU as it does in its normal runs, but repeatedly.
At some moment, the eviction flag is set to true. An inserted
cudaStreamSynchronize() call in the host code makes the host
thread wait for the kernel to exit to measure the latency. Figure 13
shows the preemption latency of each kernel. The average latency
is about 0.08ms. MD has the longest preemption latency (0.4ms)
because of its large block-task. BFS, FFT, NeuralNet and Triad
have a less than 0.015ms latency.

8.5 Facilitating Scheduler Designs
Thanks to the feasibility brought by EffiSha, one can now compare
different preemptive schedulers for GPU kernels. In this part, we
exemplify it by reporting some observations in our comparisons of
the two preemptive schedulers and the default executions.

One obvious difference from the default executions is that all
these schedulers show a certain consideration of kernel priorities,
while the default executions do not. As this difference has been
mentioned in earlier part of the paper, our comparisons in this
part concentrate on the implications of the different preemptive
schedulers to the workload turnaround time and the overall system
throughput.

Normalized turnaround time. Figure 14 reports the normalized
turnaround times (NTT) for the kernels in the three settings. Here,
NTT is defined as follows [7]

NTTi = Ti
MP /Ti

SP ,

where, Ti
SP and Ti

MP are the execution time of a kernel in its
standalone run and its co-run. The value of NTT is usually greater
than 1, the smaller the more responsive the kernel is.

In each of the graphs in Figure 14, we order the benchmarks
from left to right in an increasing order of priority.

Our discussion starts with the default scheduling results on the
“Group Priority Assignment” (Figure 14 (a)). The average NTT
is 5.08. Programs Scan, Triad, FFT have the largest NTT, which
are 9.16, 8.07 and 10.8 respectively. The reason is that the kernel
execution times of Scan, Triad, FFT are 1.41ms, 1.22ms, 1.17ms,
which are relatively small compared to other applications. They
wait for 11ms, 8ms and 10ms for the default scheduler to schedule
them to GPU. Programs MD, Spmv, Stencil2D wait for much longer
times (36ms, 18ms and 28ms), but because their execution times
are much longer, their NTT are only 3.7, 5.0 and 2 respectively.
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Figure 14. Normalized turnaround times. The benchmarks are put
in an increasing order of their priorities (from left to right).

The piv scheduler allows applications with a high priority to
finish as soon as possible. As we can see, for all benchmarks on
the left side of Scan(including) , NTTs under piv are larger than the
default. For all benchmarks on the right side of Scan, their NTTs
under piv are smaller than the default. Overall, its average NTT is
much larger than the default. The reason is that some low-priority
benchmarks, although they are ready to run at an early time, have to
wait for the higher-priority kernels to finish and hence are subject
to a very long turnaround time. For example, Reduction, Sort, Scan
wait for 77ms, 73ms and 53ms to be scheduled to SMs while their
execution times are only 2.06ms, 5.46ms, and 1.41ms, which leads
to the large NTTs (38,14,39).

The policy dprr provides more chances for all applications to
share GPU than piv does.

We also tried to assign random priorities to the kernels, and
the insights we obtained are similar to what we have already men-
tioned. Results are omitted for the interest of space.

The results on the SJF setting (Figure 14(b)) have some differ-
ences. The high priority benchmarks MD5Hash, Scan, Triad, FFT
suffer large NTTs in the default execution. All the benchmarks on
the right hand side of Sort get the perfect NTT (1). On average, both
piv and dprr can significantly reduce NTT compared to the default
execution.

System throughput. Figure 15 shows the overall system through-
put for the five schedulers. Following prior work [7], the system
throughput (STP) is defined as

STP =

n∑
i=1

Ti
SP /Ti

MP .
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Figure 15. Overall system throughput.

The range of STP is from 0 to n, where, n is the number of
kernels (11 in our case). The larger, the better.

The support of priority-based preemption does not throttle the
system throughput. All the preemptive schedulers happen to get a
higher throughput than the default.

9. Related Work
With GPUs becoming an important computing resource, there is a
strong interest in making GPUs first-class resource to be managed
by operating systems (OSes). Numbers efforts have been reported
along this direction. Gdev [9] integrates the GPU runtime support
into the OS. It allows GPU memory to be shared among multiple
GPU contexts and virtualizes the GPU into multiple logic ones.
GPUfs [13] enables GPUs with the file I/O support. It allows the
GPU code to access file systems directly through high-level APIs.
GPUvm [15] investigates full- and para-virtualization for GPU
virtualization. Wang et al. [18] proposed OS-level management
for GPU memory rather than letting it managed by applications.

One critical issue that prevents GPUs from being CPU-like first-
class computing resource is the lack for preemption. Preemptive
multitasking/multiprogramming on CPUs is achieved with context
switching. But it incurs too much overhead on GPUs due to the na-
ture of massive concurrent threads. To reduce this overhead, differ-
ent hardware and software schemes have been proposed. Tanasic
and others [16] proposed a hardware-based SM-draining scheme,
leveraging the fact that a completed thread block does not need
to store its context. When a preemption request is received by an
SM, no more thread blocks are allowed to be dispatched to it.
After the SM drains all the resident thread blocks, it can be pre-
empted. To further reduce the preemption latency, Park and oth-
ers [12] proposed to use different preemption techniques depending
the progress of a thread block. When the thread block is at an idem-
potent point, it can be simply flushed and marked as unexecuted.
When the thread block is close to finish, SM-draining is used. At
other points, the context switching is used to enable immediate re-
sponse. Although these schemes show high promises, they require
new hardware support. In comparison, our proposed scheme is pure
software and enables preemption on existing GPU devices.

Besides our proposed approach, another software scheme to en-
able preemption is to use kernel slicing. It slices a long-running
kernel into multiple subkernels, splits large data transaction into
multiple chunks, and then inserts preemption points between sub-
kernel launches and memory copy operations. The scheme has been
studied in real-time community, represented by the recent proposals
of GPES [22] and PKM [4]. A challenge in this scheme is to select
the appropriate slice size. As Section 8 has shown, there is an inher-
ent overhead-responsiveness dilemma. For real-time systems where
the set of workload is predefined, one could use profiling to find
slice sizes suitable to these applications. But For general-purpose
systems (e.g., data centerns and cloud) with a large, dynamically
changing set of workload, the approach is difficult to use. In com-
parison, our solution requires no kernel slicing and hence is not

subject to such a dilemma. It is designed to fit the needs of general-
purpose systems.

The problem EffiSha addresses is to enable flexible time sharing
of GPU among different applications. Orthogonal to it is the sup-
port of spatial sharing of GPU. The problem there is how to maxi-
mize the GPU efficiency by better controling the resource usage of
each kernel when multiple GPU kernels run at the same time on one
GPU. Techniques, such as Elastic Kernel [11] and Kernelet [21],
have been proposed to adjust the resource usage of each of the
co-running kernels such that they can run efficiently together. A
recent work proposes to partition SMs among kernels for efficient
resource usage through SM-centric program transformations [19].
There are also some hardware proposals for a similar purpose [2].
Spatial sharing and time sharing are orthogonal in the sense that
both are needed to make GPU better serve for a multi-user shared
environment. Spatial sharing is often limited to a small number of
kernels (mostly two in prior studies), and on current GPUs, co-
running kernels must come from the same application. In a general
shared environment like data centers and clouds, time sharing is
needed even if spatial sharing is used.

Another layer of scheduling is about the tasks within a GPU ker-
nel or between CPU and GPU. A number of studies have explored
this direction [3, 5, 8, 14, 17, 20]; some of them have used persistent
threads to facilitate the scheduling. These studies are complemen-
tary to the scheduling of different kernels on GPU.

10. Conclusions
In this work, through EffiSha, we demonstrate a software solu-
tion that enables preemptive scheduling for GPU without the need
for hardware extensions. To use EffiSha, the programs need to go
through the compilation-based transformation. For practical usage,
this explicit step can be avoided if the transformation is integrated
into the native compiler by the vendors. Experiments show that Eff-
iSha is able to support preemption with less than 4% overhead on
average. It opens up the opportunities for priority-based preemptive
management of kernels on existing GPUs.
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