
DataSlicer: Enabling Data Selection
For Visual Data Exploration

Farid Alborzi, Rada Chirkova,
Pallavi Deo, Christopher Healey,
Gargi Pingale, Vaira Selvakani

North Carolina State University, USA
Email: {falborz,rychirko,psdeo,

healey,gpingal,vbselvak}@ncsu.edu

Juan Reutter
Pontificia Universidad Catolica de Chile

Email: jreutter@ing.puc.cl

Surajit Chaudhuri
Microsoft Research, USA

Email: surajitc@microsoft.com

Abstract—Determining how to select and transform the data
for visualization is one of the hardest problems faced by data-
unfamiliar or inexperienced users when performing a visual
exploration to solve an analytical task. Our main hypothesis is
that for many data sets and common analytical tasks, such as
finding outliers or general trends in data, there are relatively few
“data slices” that are key to providing effective visualizations for
the task. By focusing human users on appropriate and suitably
transformed parts of the underlying data sets, these data slices
can help the users carry their task to correct completion.

To verify this hypothesis, we develop a framework that permits
us to capture exemplary data slices in an exploration task, and
to explore and parse visual-exploration sequences into a format
that makes them distinct and easy to compare. We develop a
recommendation system, DataSlicer, that matches a “currently
viewed” data slice with the most promising “next effective” data
slices for the given exploration task. We report the results of
controlled experiments with an implementation of the DataSlicer
system, using four common analytical task types. The experiments
demonstrate statistically significant improvements in accuracy
and exploration speed versus users without access to our system.

I. INTRODUCTION
Data-intensive systems accompanied by visualization tools

are being increasingly used for interactive data explorations
[25], [26], [19], [22], [28], [18], [27]. These and other systems
provide useful tools that help data analysts in their exploratory
tasks of visually identifying trends, patterns, and outliers of
interest. The visualizations make it more efficient to find task-
relevant types of objects in exploratory data analysis, especially
in presence of very large data. The reason is, visualizations
allow analysts to leverage their domain expertise, knowledge
of context, and ability to manage ambiguity in ways that a
fully automated system cannot.

Due to the exploratory nature of their tasks, analysts often
face a wide variety of visualization options to choose from. As
pointed out in [28], it is not the visualization per se that is the
main challenge. Indeed, once the data to visualize have been
selected and transformed (e.g., grouped and aggregated in an
appropriate way), users can take advantage of a visualization
tool to provide an appropriate and effective visual presentation
of the resulting data. In this paper we look into exploratory
data analysis under the assumption that we have access to
such presentation solutions, and focus instead on the issue of
determining which “data slices” would be the most helpful to
the user in addressing the task at hand when visualized. Here,

the term data slice refers to the outcome of the process that
involves selecting the data of interest from the given data set,
as well as potentially applying transformations (e.g., grouping
and aggregation) to the selected data.

The issue of identifying the data slices that are appropriate
for the given task is a challenge for inexperienced users
or those not familiar with the data at hand. The reason is
that, typically, only a small fraction of the available data
slices results in task-relevant visualizations, while all the other
options fails to help the user with her task. This may force such
users to examine a large number of options, to find those that
lead to relevant visualizations for their exploration or analysis
task. While clearly a challenge in presence of large-scale data,
this is a hard problem even when the data set is small.

Our Focus: Our focus is on analytical tasks of common
interest, such as detection of outliers or trends, that users often
perform in visual exploratory analysis of data. Our objective
is to improve the user experience by suggesting to her those
data slices that, when visualized, present correct solutions to
her task in a prominent way. Solving this problem would
be instrumental in helping casual or inexperienced users to
effectively conduct explorations of potentially unfamiliar data
sets, in a number of application domains and for a spectrum
of exploration objectives. For our study, we assume that a user
begins work by declaring the task that she plans to perform.
We also assume that she is able to identify a correct solution
for her task (e.g., an outlier) when the solution is presented to
her prominently in a visualization of some data slice.

Proposed Solution: We address the combinatorial explosion
in data-slice selection by basing data-slice suggestions on the
stage at which the user is in solving her task, and (when
available) on expert knowledge of the domain, task, and data
set. In this emphasis on, and appreciation of, expert knowledge
in solving complex data problems, our effort is in line with the
research directions such as that of DeepDive [21], [24].

As an illustration, consider a relational table storing infor-
mation obtained from [4] (see [15] for the details) on major
earthquakes worldwide from 1900 through 2013. The data set
has 17 attributes and 8289 data points, please see Fig. 1(a) for
a fragment of the data.

Suppose that in that data set, the user task is to find locations
in Central America containing earthquakes that are outliers
based on magnitude. In this user task, there is a wide range
of options when selecting the initial data to be visualized. For
instance, a natural starting point in the exploration would be



Place
AVG

of
Dep.

AVG
of

Mag.

NUM.
of

Rec.

Guadeloupe 100.0 7.4 1

Antigua and
Barbuda

16.9 6.6 4

Martinique 102.0 7.0 3

East of Do-
minica

11.2 7.2 1

(a) A fragment of the data set [4] (b) A visualization using dimensions average mag-
nitude (of earthquakes at location), number of earth-
quakes (at location), and depth (of earthquake)

(c) A visualization using only the average magnitude
dimension (bigger circles represent greater average
magnitude)

Fig. 1. Visual exploration (part 1) in search of earthquake-magnitude outliers in Central America using data set [4], please see experimental task 1 in Section
VII. The arrows in (b) and (c) highlight the visualizations of the “Guadeloupe” data point shown in (a); this data point is one of the answers to task 1.

(a) A visualization using the average magnitude di-
mension (darker tones represent greater magnitude)

(b) Box plot showing outlier values
of average earthquake magnitude

(c) A visualization showing the answers (magnitude-
outlier earthquake locations) prominently on the map

Fig. 2. Visual exploration (part 2) in search of earthquake magnitude outliers in Central America using data set [4], please see experimental task 1 in Section
VII. The sequence (b)–(c) is an expert solution to the task. The arrows in (a) and (c) highlight the “Guadeloupe” answer data point, please see Fig. 1.

to examine a map showing locations and other information
about the earthquakes in the data set. One such visualization
is shown in Fig. 1(b). The key point to note is that this
visualization is unlikely to be helpful to those users who are
not familiar with the data set. For instance, the arrow in Fig.
1(b) is pointing to one correct answer (Guadeloupe in Fig.
1(a)) for this exploration task; observe that the visualization
is not conducive to finding that answer, as the data point in
question does not stand out in the visualization.

One explanation for the relative ineffectiveness of the visu-
alization of Fig. 1(b) for the exploration task at hand is that
Fig. 1(b) shows not only the location and magnitude, but also
other information about each earthquake. Suppose the analyst
eliminates those features of the data that are irrelevant to the
task at hand; the resulting visualization could be as in Fig. 1(c)
or 2(a).1 Interestingly and perhaps counterintuitively, we have
found that these visualizations are not very helpful either to
human viewers performing this task on the data set [4], again
because the answers do not all stand out visually.

A more effective way to address this exploratory task is for
the user to first examine a box plot showing the earthquake-
magnitude mean and outlier whiskers; please see Fig. 2(b) for
the visualization. Once the cutoff value for outlier earthquake
magnitude has been found, the user can effectively construct a
correct answer for her task by filtering out the irrelevant data.
The result is visualized in Fig. 2(c).

The data slice depicted in Fig. 2(b) is not related to the
data slices used to construct Figures 1(b)–2(a). The difference
goes beyond removing irrelevant data features and, in fact,
represents a drastically different choice of both the data
dimensions and of their grouping layout. We found that if

1The difference between Figures 1(c) and 2(a) is just in the visual repre-
sentation of the values of earthquake magnitude.

a user is unable to find a data slice that would be effective
at presenting prominently the outlier values of earthquake
magnitude in the data set, then suggesting to her the data slice
(and straightforward visual presentation) of Fig. 2(b) would
typically enable her to proceed efficiently to constructing the
data slice of Fig. 2(c). Moreover, if the user is not sure how to
proceed even after examining Fig. 2(b), then she should find
the data slice (and the map presentation) of Fig. 2(c) a helpful
suggestion for the final stage of her overall task.

In our experiments with this data set and user task (Section
VII), we found that for humans looking for earthquake-
magnitude outliers for the first time, it is not trivial to come
up with an effective first-step visualization such as the box
plot of Fig. 2(b). Moreover, even though the data set [4]
has relatively few (17) data attributes, it is impractical to
enumerate all the possible data slices by brute force, in the
hope of eventually identifying and visualizing a useful choice
such as the data in Fig. 2(b). Indeed, a seemingly natural but
suboptimal choice of the initial visualization to look at — such
as those in Figures 1(b)–2(a) — is not necessarily conducive to
finding the answers to the exploration task in question. While
clearly a challenge in presence of large-scale data, this effect
may be present even in those cases where the data sets are
small by today’s measures. (Recall that the earthquakes data
set [4] has 8289 records.) Note that relatively minor (“local”)
modifications of initially suboptimal data choices to visualize,
such as in the transition between Figures 1(b)–1(c), do not
necessarily make the resulting visualization any more helpful
to the user than the previous choice.

The main hypothesis put forth in this paper is that for many
data sets and common exploratory-analysis tasks, there are
relatively few data slices that are key to providing effective
visualizations for the task. Intuitively, these data slices are



manifestations of the domain and data-set knowledge that is
relevant to the task at hand. As we argue in this paper and cor-
roborate with our preliminary experiments (see Section VII),
the data-slice choices made by domain experts may help other
users of the data set solve similar exploration/analysis tasks in
a more correct and efficient fashion. To substantiate and verify
these claims, we use the specific measures (as in, e.g., [12],
[13]) of: result accuracy, understood as the average number
of correct solutions found, and of user efficiency (speed),
understood as the average number of data-specification steps
taken to find a correct visualization for the task.

Significant advances have been made lately in developing
various facets of visual solutions for data exploration and
analysis. Major projects, including those in [3], [1], [7], [28],
[22], [29], focus on determining which data slices could be
useful to human viewers when visualized. (We provide an
overview of these projects in Section II.) Typically, data slices
in these and other projects are suggested to the users based on
generic expectations about what a user might find interesting
in the data, rather than in the context of a particular task that
the user might be facing, or of the user’s stage in solving the
task. Thus, to the best of our understanding, the solutions in
the literature still fail to solve the problem of how to efficiently
lead casual or inexperienced human users to visualizations of
the data that summarize in an effective and prominent way
the data points of interest for the user’s exploratory-analysis
task. As observed via the preliminary experiments reported
in this paper, solving two distinct visual-exploration/analysis
tasks on the same data set may lead to distinct sequences of
data slices, with the data slices in each sequence being of value
in the context, and perhaps at the specific stage, of just one
of these tasks but not the other. (Please see the discussion of
experimental tasks 3 and 4 in Section VII.) In addition, to the
best of our knowledge, suggesting (sequences of) data slices
that would be helpful in solving at least one of these tasks,
that of determining trends in the data, cannot be done using
tools such as, for instance, SeeDB [28], [22].

The specific contributions that we report are as follows:

• We develop a formal framework for capturing data slices of
interest in a given class of visual-exploration tasks, and for
providing appropriately visualized user-specific modifications
of each data slice. The data structures in the framework are
scalable in the size of the data set, and typically do not need to
be modified as the contents of the data set change over time.

• We develop prediction software that matches a “currently
viewed” data slice with the most promising “next effective”
data slice for the given type of exploration task on the data.

• We implement our framework and prediction system,
DataSlicer, in tandem with commercial visualization software.

• Finally, we provide results from controlled experiments
with 48 volunteers. The experiments demonstrate, for four
common types of visual-analysis tasks, statistically significant
improvements in accuracy and exploration speed versus users
without access to our system.

Organization: After reviweing related work in Section II, we
present a high-level description of our framework in Section
III. Section IV outlines our main algorithms, and Section V
describes construction of our data structures. The architecture
of the DataSlicer system is detailed in Section VI. Section VII
reports the experimental results, and Section VIII concludes.

II. RELATED WORK
Significant advances have been made lately in developing

various facets of visual solutions for data exploration and
analysis. In this space, we focus mainly on projects that
concentrate on the problem of finding the right visualization,
e.g., [1], [22], [28], [29]. We refer the reader to the survey [14]
for a more general discussion of data-exploration techniques.

The system architecture in this current project is based
on the connection between SQL queries and visualizations,
which is at the core of commercial tools such as Tableau
[15], [26]. Our data-slice format, as detailed in Section IV-A,
has been inspired by, and is similar to, the formalization of
visualizations provided in [26]. At the same time, the main
purpose of that formalization in [26] is for the visualization
system to keep track of the current visualization, as it is being
actively managed by the user, rather than by the system itself.
In this current paper, the main purpose of the data-slice format
is to match the user’s current visualization with the stored past
visualizations, and to recommend back to the user the best
“next-step” data slice for her visualization sequence.

As in [9], [10], we view the task of constructing visualiza-
tions as a two-step process: One first decides on the data slice
that is to be shown, and then chooses an appropriate visual
specification for this data slice. Several projects, including [9],
[10], [11], have focused in this space on (semi) automatic
recommendation of the best visual specification for a given
task and data slice. However, the built-in assumption in those
projects is that the appropriate data slice has been chosen. Our
work is orthogonal to these efforts, in that we aim at choosing
the best data slice, and assume that the visual specifications
are given. In the future we expect to be able to combine
forces, to create a system that can help users to select both
the appropriate data and the best presentation.

Regarding the problem of choosing the appropriate data
slice, the first connection that comes to mind is the problem
of choosing the adequate SQL query for a given task. This
problem has received substantial attention in the database
community (see, e.g., [8], [17], [2]). At the same time, our
work is more closely related to those projects that focus
on learning which data need to be presented using a visual
interface, rather than on constructing directly the appropriate
SQL query. Here we have systems such as Vizdeck [16] and
Charles [23], which aim to recommend the best visualization
based on statistical properties of the data. There are also
systems that recommend visualizations based on the user
feedback [1], [3], [7]. The system called SeeDB [28], [22]
automatically generates “interesting visualizations” based on
those data slices where the trend deviates in a statistically
significant way from the trend on the overall data set. Further,
[29] describes a vision of an automated system, which can
explore past user decisions with the goal of discovering further
operations on the data of potential interest to the same user.

In this current project, our overall goal is the same as in the
above papers. At the same time, instead of aiming for a fully
automatic generic tool for selecting potentially popular indi-
vidual data slices, we focus on choosing data slices that best
address a given visualization-based task. As a result, the data
slices selected by our system are task dependent, rather than
data-set dependent, and are also not limited to “statistically
interesting” data as in the SeeDB system [22], [28]. (For an
illustration of how our system provides task-dependent, rather



than data-dependent, recommendations, please see discussion
in Section VII of experimental tasks 3 and 4 performed on
the same data set.) Further, we work with the hypothesis that
previous users, when faced with the same type of task, could
guide the system as to which data slices (or sequences thereof),
along with their visualizations, are or are not interesting for
the current user. In its emphasis on domain knowledge for
the given task and data set, our approach is in line with
research directions such as that of DeepDive [21], [24]. As
a result, our approach can suggest to users data slices, such as
those showing general trends on the data, that state-of-the-art
systems cannot recommend to the best of our knowledge. (See
discussion of experimental task 4 in Section VII.)

Finally, a good example of a collaborative tool for visual-
izing data is AstroShelf [20]. This tool is specifically tailored
for astrophysicists and, unlike ours, aims more at facilitating
collaborations than recommending visualizations.

III. THE FRAMEWORK: AN OVERVIEW
In this section we describe the envisioned user experience

with a visualization-enabled system, where the system would
advance the user’s task-solving process by suggesting task-
relevant data slices from the underlying data. We then outline
our proposed approach to delivering such an experience.

A. The Intended User Experience
When presented with a visual-exploration or visual-analysis

task, users need to make decisions on which data to visualize to
solve the task. The default approach is for the user to construct
various visualizations directly in a visualization tool, and to
then keep improving or replacing them until one or more
visualizations that are effective for the task are found. This
can be time- and resource-consuming (cf. [28]). Our goal is
to alleviate or eliminate the inefficiencies in solving the data-
selection part of the user’s visual-analysis task.

Our proposed system is designed to serve as a back-end of
a standalone visualization tool. At any given time in working
on the task, users may ask the system to suggest visualizations
that would be useful for solving the task. If so requested, the
system would analyze the current user’s session and would
recommend an (appropriately visualized) data slice based on
the history of previous users who were involved in solving
similar tasks. When analyzing the sequences of previous users,
the system would assign higher priority to those data slices that
were labeled by previous users as interesting; for instance,
a data slice is considered interesting if past users spent a
considerable amount of time looking at its visualization(s).

Consider, for example, the task of finding earthquake-
magnitude outliers in Central America using the data set [4], as
presented in Section I. A user may start her work on this task
by constructing a visualization similar to those of Fig. 1(b)
or 2(a). If she is overwhelmed by the amount of potentially
relevant information in the visualizations, she would ask the
system for a recommendation. The system would then analyze
the user’s currently viewed data slice, and would determine
that the most successful past sequences involving the data slice
of Fig. 2(a) would next switch to the data slice presented in
Fig. 2(b), and then to that of Fig. 2(c). The two latter data
slices, in that order and augmented by the current session’s
filtering conditions (Central America), would end up being
recommended back to the user. The system would determine
appropriate visualizations for the recommended data slices by
using either the current user’s visualization preferences in her

current session or (if not available) by rules in the system. The
user would then have everything she needs to solve the task of
finding magnitude-outlier earthquakes. For the framework and
system introduced in this paper, the claim of this example is
corroborated by our experimental results, please see in Section
VII a discussion of experimental task 1.

B. The Proposed Approach: Data Sequences via Graphs
Our proposed framework and system are designed to work

with users who create sequences of appropriately visualized
data slices. A sequence could be exploratory, with the user
trying to determine which individual (single) data slice works
best for addressing her current task. Alternatively, a sequence
could be part of a solution that calls for construction of mul-
tiple consecutive data slices, as in the earthquake-magnitude
task of Sections I and III-A. Either way, we use the graph
representation to encode all the sequences of data slices for a
type of task on a data set; we call the resulting graph the
data-slice graph for this task and data set. In a data-slice
graph, nodes encode data slices, together with any appropriate
visualizations, and directed edges encode transitions between
consecutive data slices in past user sessions.

When users ask for recommendations, our system matches
their current session with the information stored in the data-
slice graph, based on node similarity. Our approach can use
any algorithm for measuring similarity between nodes; please
see Section IV-B for a specific instantiation. The system then
recommends to the user those data slices that were the most
helpful, at the matched point in the graph, to previous users
working on tasks of the same type. Again, our approach
can use any algorithm for determining whether a node is
helpful — interesting — enough to a user. (For instance,
in our experiments we considered a data slice interesting if
its visualization has been examined by at least one user for
an amount of time above a fixed threshold.) To enable the
recommendation feature, each node in the data-slice graph is
marked as either “interesting” or “not interesting.”

The number of data slices that one could construct using a
data set with even a few attributes may be prohibitively large
for computational purposes. It may not be practical or even
feasible to represent and store all the possibilities explicitly.
Instead, since our goal is to present the user with a specific data
slice, we manipulate abstractions from visualizations using the
relational model, similarly to what was done in [26].

More precisely, we map each data slice to a (simplified)
relational-algebra expression, and work instead with simple
relational queries. Moreover, we store as nodes in a data-
slice graph only those relational-algebra expressions that were
featured in at least one sequence executed for the same type
of task on the data set at hand by at least one previous user.

The data-slice graph contains all the information that we
need to recommend data slices to the user: Once we match
the user’s current data slice to a node in the graph, it suffices
to look for those interesting nodes in the graph that are
“downstream closest” to the matched node. Intuitively, this
amounts to finding the next interesting nodes in previous
sequences that feature a data slice similar to that of the
current user. In the next two sections we provide details on
the construction of the data-slice graph, how the matching is
done, and how we look for the closest interesting nodes.



IV. THE DATASLICER SYSTEM
In this section we describe the DataSlicer framework and

system. We start with a brief description of our theoretical
framework for specifying sequences of data slices and their
accompanying visualizations. We then discuss how the frame-
work parses sequences and stores them in a data-slice graph,
and explain how this graph is used to recommend to users data
slices for addressing their task on the data set.

A. Data-Slice Sequences and Graphs
We represent each visual depiction of data as a tuple Vis =

〈D,S〉. Here, D is the data specification, which contains the
information on the data slice in the visual depiction. Further,
S is the visual specification, with information regarding how
the data slice is to be visually presented, including the type
of visualization (e.g., box plot or pie chart), colors, shapes,
and so on. Consider, for instance, Fig. 1(b), which visualizes
information on earthquakes in Central America. To create
this visualization, we first need the latitude and longitude
for each observation in the data set; this will tell us how to
place each observation on the map. Fig. 1(b) also shows three
additional attributes for each observation point: the average
magnitude, the number of records, and the average depth of
the earthquakes. Each attribute is shown using a different visual
cue: We use the dot color to represent magnitude, the dot size
to represent the number of records, and the dot label for the
average earthquake depth. The visualization terminology for
each of these attributes is a layer; in general, each layer is
assigned a different visual cue.

Thus, the data specification D for Fig. 1(b) will state which
information to extract about the data points to be shown: the
latitude, longitude, magnitude, number of records, and depth,
see Fig. 3. The visual specification V for Fig. 1(b) states that
the visualization needs to show the map of Central America,
that each data point is to be shown as a dot, and what visual cue
is asigned to each of the layers: color for average magnitude,
size for number of records, and label for average depth.

Our data-specification format has been inspired by, and is
similar to, the formal definition of visualizations provided in
[26]. (Please see Section II for a discussion of the difference
between [26] and this project in the use of the formalism.)
Similarly to [26], [28], we assume that the data to be specified
come from a single relational table.2 To define a data specifi-
cation on a relation R, the following information is required:

1. The fields applicable to the data set. These are either
attributes of R (called simple fields), or complex fields formed
by combining two or more fields using the operations of
concatenation (+), cross product (×), and nesting (/) [26].
Examples of complex fields are: Age_group × Region,
which corresponds to the product of these attributes; and
Quarter / Month, corresponding to the set of all months per
quarter. We also allow aggregation over simple and/or complex
fields, using operators SUM, MIN, MAX, or AVG.

2. How the data from these fields are extracted. This
amounts to specifying how the data are being grouped and
which filters are currently active. Here we also provide infor-
mation about which fields are being mapped to the visual axes
X and Y, and about what fields are being rendered as layers.

2If two or more relations are to be visualized, one could join them and treat
the result as a single relation to be visually represented. This is a common
approach in commercial data-visualization systems.

simple fields: lon (= longitude), lat (= latitude),
pl (= place), mag (= magnitude),
nr (= number of records), de (= depth)

complex fields: −
X Axis lon
Y Axis lat
Layers: AVG (mag), SUM (nr), AVG (de)
Grouping: pl
Filters: −

Fig. 3. The data specification for the visualization of Fig. 1(b).

As an example of a data specification, consider again the
visualization in Fig. 1(b). In this data specification, X corre-
sponds to longitude, Y to latitude, and there are three layers:
AVG(magnitude), SUM(number of records) and AVG(depth).
We also need to mention that the data are being grouped
by the value of “place.” (The attribute “place” is a usual
construct included in geographical data sets; it is used to group
the data points by their geographical location.) The full data
specification for Fig. 1(b) is shown in Fig. 3.

Formally, a data specification is a tuple (X, Y, Layers,
Filters, Grouping), where X and Y are the fields rendered
respectively as the X and Y axis, Layers is the set of fields
rendered as layers, Filters is the set of filters in use, and
Grouping is the set of attributes being grouped. Continuing
with our example, the data specification for Fig. 1(b) is

(lon, lat, { AVG (mag), SUM (nr), AVG (de) }, pl, - ).

Intuitively, a data specification is a template for a SQL query
of the form3

SELECT <fields to be displayed>
FROM <data set>
WHERE <filters on nonaggregated fields>
GROUP BY <grouping specification, X and Y axis>
HAVING <filters on aggregated fields>

The connection between data specifications and SQL is
important, as it provides flexibility when communicating with
the log of visualization systems: We can either capture their
data specifications, or we can capture SQL queries and produce
specifications ourselves. For our example, the query is

SELECT Latitude, Longitude, AVG(magnitude),
SUM(number of records), AVG(depth)

FROM Earthquakes
WHERE Latitude < 49.5 AND Latitude > 5.3 AND

Longitude < -24.5 AND Longitude > -128.7
GROUP BY Place

(Sometimes we may need the visual specification to generate
the SQL query for a given data specification. For example, in
this case we have restricted the Latitude and the Longitude,
but this information is stored in the visual specification.)

The Navigation Algebra: We now specify operations on data
specifications. The purpose is to enable transitions from one
data specification to the next in a visual-exploration sequence
that a user generates on the data. The basic operations for
transforming data specifications are as follows:
• Add or remove a filter condition;
• Add or remove a field to/from the SELECT condition (that
is, the fields rendered as a layer), X axis, or Y axis;

3This is the way specifications are generated in, e.g., the Polaris prototype
[26] of the Tableau Software system [15].



• Add or remove a field to/from grouping specification; and
• Modify the specification of a complex field by adding or
removing an operation (such as × or +).

(In most systems, one can directly replace a field A with a
field B. For technical reasons, we choose to model this action
with two operations: removing A and then adding B.)

We use the Navigation Algebra to represent how users navi-
gate between visualization in a step-by-step fashion. Consider,
for example, a user going from the visualization of Fig. 1(b)
to that of Fig. 1(c). We can model this as a sequence of three
data specifications, starting with

(lon, lat, { AVG (mag), SUM (nr), AVG (de) }, pl, - ),

then removing depth, to obtain

(lon, lat, { AVG (mag), SUM (nr) }, pl, - ),

and then removing the number of records, to arrive at

(lon, lat, { AVG (mag) }, pl, - ),

which corresponds to the data specification of Fig. 1(c).
Sequences and Data-Slice Graphs: When working on a

visual-exploration or visual-analysis task, users create what
we call sequences of visualizations: Starting at a particular
visualization (such as that of Fig. 1(b)), a user can create new
visualizations (such as the one of Fig. 2(a)), by performing
operations made available to them by the user interface – e.g.,
filtering the data, adding an extra attribute to the data specifi-
cation, or changing the type of visualization. Each subsequent
operation produces a new visualization in the sequence, and
users continue in this fashion until completion of their task.

Our goal is to suggest to the user the slice of the data
whose visualization is appropriate for the current stage of
the user’s task on the data. Thus, we do not concentrate
on those parts of the sequences where new visualizations
are created by modifying the visual specification. Rather, we
focus on the underlying sequence given by the changes in
the data specifications. These changes are modeled using our
Navigation Algebra as described above. Assuming that we
have a log with visualization sequences generated by previous
users, we construct what we call the Data-Slice Graph of
this log: The nodes of this graph consist of all the data
specifications occurring in the sequences in the log, and there is
a directed edge from node D1 to node D2 if the log contains a
sequence where D1 and D2 are consecutive data specifications.

As an example, Fig. 4(a) shows a data-slice graph for the
task of finding outlier earthquakes in the data set [4] (Section
I); this is task 1 in Section VII. The graph contains sequences
generated by users who were solving the same type of task on
the data set. Fig. 4(b) depicts a fragment of the graph, showing
nodes with IDs 14, 13, 8, 9, 23 and 24. Fig. 4(b) was generated
by the user sequence (D8, D9, D23, D24, D23, D8, D13, D14).
That is, the user started in node 8, with the specification

D8 = ( longitude, latitude, {}, place, - ),

that is, assigning the earthquake longitude to the X axis, the
latitude to the Y axis, and grouping by Place. This specification
corresponds to a visualization showing the map and just one
dot for each place in that map where there has been at least one
earthquake. (The grouping in D8 means that all the earthquake
events in the same vicinity are grouped into a single tuple.) The
user then went on to add a filter on the attribute Magnitude,

to filter out places where the average magnitude is not high
enough. Note that rather than storing the precise filter, D8

stores just the fact that a filter was added. This allows us to
store together all the data specifications with similar filters.

Continuing with the sequence, the user then added depth
(node ID 23 with data specification D23) and minimum depth
(24 and D24), then removed the minimum depth to arrive back
at node 23. After this, the depth was removed (back to node
8), then the number of records was added (node 13). Finally,
the user removed the grouping clause (node 14), probably to
see the entire data set at the same time.

Interesting Nodes: Some of the sequences of visualizations
in a log may contain data that are important for the task
assigned to the user. We denote these as interesting visual-
izations, and mark them as interesting nodes in our data-slice
graph.4 For example, in our experiments with task 1 of Section
VII, the nodes with IDs 9 and 23 in Fig. 4(b) were the most
interesting to the human subjects. Since the data specification
D9 represents visualizations that are similar to that of Fig.
2(c), this confirms the intuition that the visualization in Fig.
2(c) is amongst the most informative for this type of task.

We distinguish between two types of users: experts and
regular users. (This distinction is discussed in more detail in
Section V-B.) We say that there is an expert (directed) edge
from node D1 to node D2 if the sequence generating D1 and
D2 was generated by an expert, and there is a user (directed)
edge if it was generated by a regular user. In addition, for
each edge of the form (D1, D2) we maintain with the edge
the number of sequences in the log in which D2 followed D1.

B. Algorithms to Match and Rank Data Slices
The main focus of our framework is on servicing user

requests to recommend the next task-relevant data slice and
its appropriate visualization. To continue with our example,
suppose that a user is exploring the earthquakes data set for
magnitude outliers in Central America, and is currently looking
at the visualization of Fig. 1(b). The data specification for Fig.
1(b), as discussed in Section IV-A, is

(lon, lat, { AVG (mag), SUM (nr), AVG (de) }, pl, - ).

When the user asks for a recommendation, the system needs
to perform the following two operations:

1. The data specification currently being examined by the
user needs to be matched to a (data-specification) node in
the data-slice graph. The easy special case is the current data
specification being already represented by a node in the data-
slice graph. In general, we need to locate in the graph one or
more nodes that are closest to the current data specification, in
terms of operations of the Navigation Algebra of Section IV-A.
In our example, the data specification of Fig. 1(b) does not
exists in the data-slice graph of Fig. 4(a), so we need to match
it to the “best-match” node in the graph. The closest matches
would be the nodes with IDs 8 and 23. Intuitively, each of 8
and 23 is just three operations away from the specification of
Fig. 1(b). Indeed, to reach node 8 from Fig. 1(b), one needs
to remove all three layers, and to reach node 23, we remove

4In general, determining whether a visualization is interesting to a user
is a nontrivial problem. While our framework can use any interestingness-
measuring algorithm as a black box, in our experiments we marked as
interesting all those visualizations which at least one user visually examined
for at least a fixed number of milliseconds.



1

2

15

19

20 21

11

12

17 16

18

X

Y

Y

X

X

X

(dmin, (p,t), . .) (dmin, p, . .)

(mag, p, . .)

(d, p, . .)

(. (p,t), . .)

(. p, . .)

X

(. (d,dmin), p, .)

(. d, p, .)
Y

(n, p, . .) (t, . p, .)

(. n, p, .)

Y,grp
(. . p, .)

Y

X
Y 10

X,
grp

(lon, . . .)

X,Y

3 54

13

7

23

6

8

9

14

22

24

(. (p,dmin), . .)

grp

grpY

Y,grp Y

(. m, p, .) (. m, . .)

(. lat, . .)

(lon, lat, p, .)

(lon, lat, p, m)(lon, lat, (p,d), m)(lon, lat, (d,dmin), m)

(lon, lat, p, n)

(lon, lat, . .)

(lon, lat, . n)

Y

grp grp

fltr

grp fltr

grp

grp,
fltr

fltr

An expert graph, each node defines (x, y, grouping, filter) values: d ≡ depth, dmin ≡ minimum depth,
lat ≡ latitutde, lon ≡ longitude, m ≡ magnitude, n ≡ number of records, p ≡ place, t ≡ time, . ≡ no 
value; each edge defines value transitions between two nodes: X ≡ x, Y ≡ y, grp ≡ grouping, fltr ≡ filter

(a)

1

2

15

19

20 21

11

12

17 16

18

X

Y

Y

X

X

X

(dmin, (p,t), . .) (dmin, p, . .)

(mag, p, . .)

(d, p, . .)

(. (p,t), . .)

(. p, . .)

X

(. (d,dmin), p, .)

(. d, p, .)
Y

(n, p, . .) (t, . p, .)

(. n, p, .)

Y,grp
(. . p, .)

Y

X
Y 10

X,
grp

(lon, . . .)

X,Y

3 54

13

7

23

6

8

9

14

22

24

(. (p,dmin), . .)

grp

grpY

Y,grp Y

(. m, p, .) (. m, . .)

(. lat, . .)

(lon, lat, p, .)

(lon, lat, p, m)(lon, lat, (p,d), m)(lon, lat, (d,dmin), m)

(lon, lat, p, n)

(lon, lat, . .)

(lon, lat, . n)

Y

grp grp

fltr

grp fltr

grp

grp,
fltr

fltr

An expert graph, each node defines (x, y, grouping, filter) values: d ≡ depth, dmin ≡ minimum depth,
lat ≡ latitutde, lon ≡ longitude, m ≡ magnitude, n ≡ number of records, p ≡ place, t ≡ time, . ≡ no 
value; each edge defines value transitions between two nodes: X ≡ x, Y ≡ y, grp ≡ grouping, fltr ≡ filter

(b)

Fig. 4. (a) A data-slice graph for experimental Task 1 of Section VII. Each graph node is shown using its (x, y, grouping, filter) values, with d = depth,
dmin = minimum depth, lat = latitude, lon = longitude, m = magnitude, n = number of records, p = place, t = time, and . = no value. Edges define value
transitions between nodes, with X = x, Y = y, grp = grouping, fltr = filter. In (b), the bottom-right fragment of the graph is shown at higher resolution.

the magnitude and number of records, but introduce a filter on
magnitude. We keep all such “best-match” nodes.

2. Once a match has been found, the system needs to find
in the data-slice graph those “downstream” data specifications
that are potentially interesting to the user and are at the same
time the closest to the matched node, in terms of operations of
the Navigation Algebra. In our example, this would correspond
to nodes with IDs 9 and 23.

The algorithm addressing the first challenge is called
Match, please see Algorithm 1 for the pseudocode. The input
of this algorithm is a data specification D, and we compute,
for all nodes of the data-slice graph, the edit distance between
D and each of the specifications in the node of the stored
data-slice graph G. (As mentioned in Section III, both this
algorithm and the Rank Data Slice algorithm can use any
distance measure, e.g., page rank. The edit distance shown
in the pseudocode of Match is one specific choice made in
our implementation described in Section VI.) We do not want
to differentiate between the specifications where the X and the
Y axis are switched, as they represent semantically the same
object, and likewise for switching between layers and axis.
Thus, we proceed as follows. For each node n in the graph
we compute three distances between n and D: (1) The edit
distance ds that considers only the fields assigned to the X
and Y axis and the layers in D and n; (2) the edit distance dg
considering only the fields in the grouping clause; and (3) the
edit distance df that considers only the filters in each of D
and n. We then add the three values, and output all the nodes
n in the graph for which the resulting value is the lowest.

We now look at addressing the second challenge listed
above, making recommendations using the current match.
Once we have matched a specification to a node in the
data-slice graph, the next task is to retrieve the interesting
“downstream” nodes in the graph that are the closest to the
matched node. We do this using our Rank Data Slices
algorithm, please see Algorithm 2 for the pseudocode. The
algorithm works as follows. We assume that each node k in the
data-slice graph is given an “interestingness” value Ik. (Any
interestingness measure will work for our purposes, as outlined
in Section III.) We are also given a threshold T , with the
objective of selecting only those nodes with an interestingness
value above T , as well as the desired number M of output
nodes. For each node n that is in the output of the Match
function, we select all the nodes in the data-slice graph whose

interestingness value is greater than the threshold T , and rank
them in terms of their weighted-shortest-path distance to n.
(Other distance measures could be used instead.) We then
select and return the M nodes from this set that are closest
to n; if there are not enough such nodes, we complete the list
with the most interesting nodes overall according the I-values
in the graph. (This might be necessary if, for instance, the
user’s current visualization is not relevant to the task and thus
cannot provide a useful input to the Match algorithm.)

In our experiments, as reported in Section VII, we chose
screen time as our measure to determine the interest of each
data specification. (We assume there that the longer a user
looks at the screen in examining a particular visualization, the
more interesting that visualization is to the user.) We also set
our threshold T to 3 seconds. Though it might look like a
small value for the interestingness threshold, its effect is that
of filtering out almost 70% of the graph nodes. Furthermore,
in the experiments we considered the graph information that
had originated from an expert as much more helpful than the
information from a regular user, and thus made the weight of
expert edges in the graph lower (i.e., intuitively contributing
to a shorter distance from the matched node) than the weight
of “regular-user” edges. Specifically, the weight of an edge
from a specification D to a specification D′ that was part of
an expert sequence would be set in the experiments to 1, and
the weight of an edge from a regular-user sequence would be
set to 1+1/nu, where nu is the total count of previous users’
sequences that have moved from D to D′ in one step. Please
see Section V-B for a discussion of expert and regular edges.

Coming back to our example, recall that the specification
of Fig. 1(b) was matched to the nodes 8 and 23 of the query
graph. A call to Rank Data Slices will now try to find the
most interesting specifications that are closest to these nodes.
Intuitively, this can be understood as asking for the most inter-
esting specifications that include the latitude and longitude, and
thus are expected to be shown in a geographical representation.
The ranking algorithm would return the two interesting nodes
that are closest to either 8 or 23; these answers include 23
itself, with distance 0, and 9, with distance 1. To present these
back to the user, we take these specifications and produce
a visualization using the user’s previous visual specification,
which was a geographical representation. If we use the visual
specification of Fig. 1(b), the visualization of the specification
of node 9 would look just like that of Fig. 2(c).



Algorithm 1: Match Data Slices
Given: Data-slice graph G and maximal number M of
nodes in the output.
Input: Data specification D.
Output: The set of nodes of the data-slice graph G that

is nearest to D in terms of edit distance.
for each node n in G do

ds = edit distance between the selection arguments
of n and D;
da = edit distance between the filters of n and D;
dg = edit distance between the grouping clauses of
n and D;
set distance(n) = ds + da + dg;

return up to M nodes n in G with the lowest values of
distance(n).

Algorithm 2: Rank Data Slices
Given: Data-slice graph G, maximal number of output
nodes M , interestingness value Ik for each node k in
G, and interestingness threshold T .
Input: A node n of the data-slice graph G.
Output: List of M interesting nodes closest to n.
L = ∅;
for each node m in G with Im > T do

compute
distance(m) = wheighted_shortest_path(n,m);
if distance(m) < infinity then

add m to L;

Sort L according to distance (ascending);
if size(L) >= M then

return the M first nodes of L;
else

add to L the M − size(L) most interesting nodes in
G according to I that are not in L;

return L.

V. CONSTRUCTING AND USING DATA-SLICE GRAPHS
In this section we outline the process of constructing the

data-slice graph for a given task type on a data set. Then we
discuss the modes of using data-slice graphs depending on
whether domain experts have been involved in the construction.

A. The Construction Algorithm
Recall (Section I) that we assume that each user declares

her task as she begins the work. Thus, each user sequence can
be associated in the log with the task that the user was solving
when generating the sequence. We also assume that each expert
sequence (if any) is marked as such by the log administrator;
we discuss the implications later in this section. At the point
of logging a completed user sequence, we reformulate it, with
two goals in mind. First, we make sure that all the logged
sequences are formulated “at the same level of granularity.”
Toward this goal, we make each sequence detailed enough so
that each edge in the output sequence corresponds to a single
operation in the Navigation Algebra of Section IV-B (see Fig.
4(a) for an illustration of the outcome). The second goal is to
mark, in each sequence, each node that is interesting under the
given interestingness measure, see Sections III-B through IV-B
for a discussion. The overall algorithm for this reformulation

of user sequences is straightforward.
Suppose now that we have selected from the log all the

sequences that are to be included in the data-slice graph that
we are constructing. (We discuss potential selection criteria
in Section V-B.) We begin the construction by declaring one
arbitrary selected sequence as the (initial) data-slice graph. We
then keep adding all the other selected sequences to the graph
one at a time, by combining each node in the current sequence
with some node in the graph, as long as the two nodes are the
same in the D part of their Vis = 〈D,S〉 representation. That
is, we combine a node in a user sequence with a node in the
graph if and only if the D parts of these nodes are the same; we
store with each resulting node as many visual (S) specifications
as we had in all the nodes that we have combined. If, on the
other hand, for a node n in the sequence being added there
are no nodes in the data-slice graph that have the same D part
as n, we just add n as a new node in the graph. For each
node we keep the maximum interestingness amongst all the
sequences in which this node appeared. Once we have merged
all the nodes of a sequence with the graph in this manner,
we add to the graph all the edges belonging to the sequence
being added. In the process, if the sequence being added is an
expert sequence, we re-weigh all its edges as described in the
discussion of the Rank Data Slices algorithm in Section IV-B.

Output and Correctness: The output of the overall graph-
construction algorithm is a data-slice graph constructed as
described above. By definition of the algorithm, its output does
not depend on the order in which the selected input sequences
are processed and merged with the graph. The construction
can be done either in the batch fashion or with the graph being
enhanced over time in an incremental fashion, with addition
of one user sequence at a time as needed.

B. Recommendation and Prediction Systems
We are now ready to discuss possible criteria for selecting

logged user sequences for entry into the data-slice graph.
Recommendation Systems: One criterion could be to include

all the sequences from the log that are associated with the
task type of interest. (Recall that we consider two tasks on the
same data set to be the same if they only differ in the filtering
criteria. E.g., we declare to be the same the tasks “find all
the magnitude-outlier earthquakes in the world” and “find all
the magnitude-outlier earthquakes in Central America” on the
data set [4], see Section III-A.) In this case, there is no need to
mark user sequences as expert, and thus the entire process of
constructing both the log and the data-slice graph as described
in Section V-A can be fully automatic.

We call such a data-slice graph a recommendation graph; the
overall DataSlicer system will function as a recommendation
system in this case. The reason is, in this case we have
no information on which nodes in the graph would be the
most helpful to the users in prominently featuring correct
solutions to their task. In working with such a graph, the users
will possibly “upvote” over time those graph nodes that are
more helpful to them in solving their task. This “upvoting”
process is sound, as we assume (Section I) that each user
can recognize correct solutions once they have been presented
to her prominently in some visualization of the data. (The
“upvoting” functionality can be easily added to the ranking
algorithm of Section IV-B.) The resulting graph nodes can
then be recalibrated automatically into more interesting nodes.

Prediction Systems: We now consider the case where the



Front End (Any Visualization Software) 

User Asks 
Recommendation 

Log Parser 
Construct Visual 

Spec. 

Data-Slice 
Graph Match Function 

Ranking 

Graph 
Construction 

Suggesting 
Helpful 

Visualization 

Fig. 5. The DataSlicer system architecture.

help of domain experts is available, or perhaps even sought
after, as would be in case of mission-critical applications. Re-
call that the log administrator can mark some of the sequences
to be logged as coming from domain experts. This can be done
in case one or more experts on the domain, task type, and data
set are involved in solving tasks of this type for the benefit of
the user community; the community could be employees of a
certain company, analysts using a certain product, and so on.
In this case, the process of constructing the graph is the same
as before (see Section V-A), with expert nodes and edges being
marked explicitly as such in the construction.

When the DataSlicer system uses a data-slice graph con-
structed using expert sequences, we refer to this mode of op-
eration as “prediction mode,” and to the system as a “prediction
system.” Indeed, domain experts are expected to know how to
solve effectively and efficiently tasks of the given type on the
data set, and nodes and edges generated in the graph by their
solutions are expected to help the community in solving tasks
of the same type more so than sequences created by regular
users. Note how our algorithm of Section V-A incorporates
into a data-slice graph and automatically reconciles potentially
different approaches of multiple experts to solving the same
task. As a result, the sequences coming from multiple experts
get transformed into multiple solution paths in the graph.

VI. PUTTING IT ALL TOGETHER
Fig. 5 depicts a high-level overview of the architecture of our

system. In this section we explain it component by component,
and then discuss the scalability and implementation.

Front End: The front end of the system can be any visu-
alization tool, as long as this tool can issue appropriate data-
specification queries on the data-set store and visualize the
answers, and also has a means of communicating its operations
to other software. Some commercial visualization systems
make available logs of their operations; we have implemented
DataSlicer with a commercially available front-end tool, in
such a way that all the communication with the front end is
made through these logs, as explained in the next module.

Interface: The DataSlicer interface is the means to connect
with the front-end visualization tool. The interface is in charge
of the following two main tasks: First, we need a way of
obtaining and understanding logs of the system, to be able to
extract from the logs information about previous-user sessions.
This part of the interface is called the log parser; it also
maintains the current user’s current visual specification, as well

as the data specifications returned by the ranking algorithm of
Section IV-B. Second, once the system has recommended a set
of data specifications, these need to be visualized and presented
back to the user. To create these visualizations, we maintain the
current user’s previous visualization preferences and use them
wherever possible to visualize the recommended data specifi-
cations. For those recommended data specifications that cannot
be visualized using the current user’s visual preferences, the
system uses default visualization rules. Because of the closed
architecture that many commercial visualization systems opt
to implement, for our experiments we had to implement this
second task in a semi-manual way.

Data-Slice Graph: The data-slice graph for the given task
and data set is physically stored as a separate database. We do
not, however, allow for any direct updates to the data-slice
graph. Instead, to augment the data-slice graph with more
information, we set up separate system sessions where past
users sequences are provided to the log parser. During those
sessions, the log parser enhances the existing data-slice graph
with a new set of sequences, or creates a new data-slice graph
from scratch, as detailed in Section V-A.

Back End: The back end of the system is the part that is in
charge of producing recommendations for users. It comprises
the Match and Rank algorithms, as described in Section IV-B.

Scalability: In the DataSlicer architecture, visualizations
are constructed for users by separate front-end visualization
software, which sends to the data store queries based on the
data slices, and then visually postprocesses the query answers.
Thus, in the overall DataSlicer system, the processing of data-
slice queries is decoupled from executing the Match and Rank
algorithms of Section IV-B on the data-slice graphs. Further,
data-slice graphs are constructed based on task-exploration
sequences and thus on the structure rather than on the contents
of the data set being explored. Thus, the size of each data-slice
graph does not depend on the number of tuples of the data set,
and does not need to be modified as the contents of the data set
change over time. On the other hand, the size of a data-slice
graph is directly proportional to the number of user sequences
that it captures, and the Match and Rank algorithms clearly run
in at most linear time with respect to the size of the graph.
Addressing the issue of scalability of Match and Rank on data-
slice graphs in the number of user sequences in the graph is
a direction of our current work.

The Implementation: The system used for the experiments
reported in Section VII has been built using the Java frame-
work and compiled using JDK 1.8. To store the data-slice
graphs for the experiments, we used MongoDB version 2.2. We
worked with a commercial visualization tool; we can support
working with any visualization tool, but for each different
visualization tool, a different DataSlicer interface needs to be
built. (This includes the log parser and the connection that
presents visualizations back to the user.)

VII. EXPERIMENTAL RESULTS
To evaluate DataSlicer’s recommendation performance, we

conducted a set of controlled experiments. The results were
evaluated in terms of participant speed, understood as the
average number of data-specification steps taken to find a
correct visualization for the task, as well as of result accuracy,
understood as the degree to which the participant’s solution
is close to the correct solution. (In our experiments, the
correct solutions were determined as part of the experimental



Name Position Age BA
Melky Mesa UT 25 0.50
Derek Jeter SS 38 0.32
Andy Pettitte P 40 0.25
Francisco
Cervelli

C 26 0.00

Chris
Dickerson

OF 30 0.29

Brett Gardner LF 28 0.32
Rabinson Cano 2B 29 0.31
Eric Chavez DH 34 0.28

(a) Fragment of data set [5] for task 2 (b) Box plot showing prominently answer outliers for task 2 on data set [5]
Fig. 6. Experimental task 2 using data set [5]: fragment of the data set and a visual solution that shows prominently the answers to the task.

2005 2006 2007 2008 2009 2010
China 375 430 430 545 545 545
France 886 1148 1148 1248 1248 1248
Germany 765 765 765 887 937 937
Italy 1217 1217 1217 1231 1231 1245
Japan 957 957 957 957 957 970
Netherlands 1005 1005 1005 1020 942 942
United
Kingdom

1267 1267 1267 1350 1160 1045

United
States

1160 1160 1160 1245 1315 1315

(a) Import costs ($ / container) in 2005-2010 in [6] (b) Diagram showing prominently answers (trend outliers) for task 3 on data [6]
Fig. 7. Experimental task 3 using data set [6]: fragment of the data set and a visual solution that shows prominently the answers to the task.

2000 2001 2002 2003
Export 279.56 299.41 365.40 485.00
Import 250.69 271.33 328.01 448.92

2004 2005 2006 2007
Export 655.83 836.90 1061.68 1342.21
Import 606.54 712.09 852.77 1034.73

2008 2009 2010
Export 1581.71 1333.30 1752.10
Import 1232.84 1113.20 1520.33

(a) Export and import values for China (top country in urban
population) in billion US$ in 2000–2010 in data set [6]

(b) Line diagram showing prominently answer import/export trends for the
top country in urban population in 2000-2010, for task 4 on data set [6]

Fig. 8. Experimental task 4 using data set [6]: fragment of the data set and a visual solution that shows prominently the answers to the task.

setup.) Following the experiments, each participant completed
a questionnaire to capture their perception of: (1) the difficulty
of the assigned task, (2) the correctness of their solution, (3)
the correctness of the system’s solution, and (4) the overall
usefulness of DataSlicer.

Both the statistical and questionnaire results were positive.
Specifically, the results suggest that DataSlicer provides tech-
nically correct visualizations and, perhaps more importantly,
rapidly directs participants to a correct visualization, poten-
tially improving their performance over time.

A. Procedure and Result Summary
We conducted four sets of experiments involving 48 human

participants, with 12 participants randomly assigned to each
of the four separate groups. The participants were graduate
students ranging in age from 21 to 34, with 31 males and 17

females, each with normal or corrected to normal vision. Prior
to the four sets of experiments, separate tests were conducted
with four extra participants, to validate and debug both the
DataSlicer software and the experimental procedure.

Each of the 48 participants was first trained to work with
our choice of front-end visualization software, and was then
given a task to complete. The tasks focused on common data-
analytics concepts of finding outliers and general data trends.

After the initial training, each participant was asked to com-
plete their assigned task without using DataSlicer. The result-
ing log files were analyzed for comparison with DataSlicer’s
recommended “correct” visualization. Next, the participants
used DataSlicer to find additional solutions for the same task,
on the same data set. We then compared the accuracy and
speed for the participants’ task completion with and without
access to DataSlicer. The participants concluded their session



TABLE I. THE DATA SETS, NUMBER OF OBSERVATIONS, AND NUMBER
AND NAMES OF ATTRIBUTES FOR THE FOUR EXPERIMENTAL TASKS.

Data set Observations Attributes

Earthquakes [4] 8289 17 attributes: Time, Date & Time, Longi-
tude, Latitude, Depth, Magnitude, Magni-
tude type, Nst, Gap, Dmin, Rms, Net, ID,
Updated, Place, Type, Occurrences

Baseball [5] 495 10 attributes: Name, Position, Type, AB,
Age, BA, BB, G, H, RK

Economic [6] 2376 11 attributes: Country Name, Date, Ex-
ports, Imports, Cost to Import, Health
Expenditure per Capita, Urban Popula-
tion, Latitude, Longitude, Population To-
tal, Health Expenditure Total

by providing feedback via a questionnaire (see Section VII-E).
The data sets used in the experiments are summarized in

Table I, and the experimental results are given in Table II.
Please note that the data sets (Table I) were small in size.
Still, we found (Table II) that our human participants had
difficulty completing the assigned tasks even on these small
data sets. Presumably, increasing the number of observations
would further degrade the users’ unassisted performance.

The analysis of the experimental results has identified sta-
tistically significant improvements when access to DataSlicer
was available, in terms of both accuracy and speed as defined
in the beginning of this section. Welch’s analysis of variance
(ANOVA) [30] confirmed that DataSlicer aided participants,
helping them to perform tasks significantly faster and more
accurately compared to a traditional visualization system (see
Section VII-D). The tasks assigned to the participants include
spatial outliers, local outliers, trend outliers, and general trends,
which represent common analytic tasks on real data. Thus, the
improved accuracy and speed in our experiments suggest better
accuracy and speed for real-world data analysis.

B. The Tasks
Each participant was asked to perform one of the four dif-

ferent tasks, both with and without assistance from DataSlicer:
(1) locating spatial outliers in an earthquakes data set [4]; (2)
locating data outliers in a baseball data set [5]; (3) locating
outlier patterns and trends in an economic data set [6]; and (4)
recognizing the general trends in the (same) data set [6]. The
experiments were designed to cover common analytical tasks
performed across a wide range of data domains; the tasks and
data sets used in the experiments are as provided by [15].

The expert sequences for each task were generated and val-
idated as part of the experimental setup. The experts’ log files
were retrieved from the front-end visualization tool, parsed,
and integrated into DataSlicer as discussed in Section V-A.

Task 1: Spatial Outliers. This task used an earthquakes data
set [4] containing the location of 8,289 earthquakes with mag-
nitude 6 or greater throughout the world, from 1900 to 2013
(Table I). The participants were asked to find places (locations)
on the map that contain earthquakes with either: (1) outlier
magnitudes; or (2) outlier number of occurrences. Given the
set of all outliers O, we define an outlier o ∈ O as a value
that is more than 1.5 inter-quartile ranges IQR = Q3 − Q1

above quartile boundary Q3 or below quartile boundary Q1,
o ≥ Q3 + 1.5 IQR or o ≤ Q1 − 1.5 IQR.
Task 2: Local Data Outliers. This task used a baseball data
set [5] containing 10 attributes for 45 baseball players from the
2012 Major League Baseball season (Table I). The participants

were asked to find the data points for players that were outliers
based on a specific position or type. For example, a participant
could look for outlier players at the shortstop position by
identifying all shortstop players, then search for outliers within
that subgroup. If a data point contained any attribute that was
an outlier relative to the other players in the subgroup (hence
the name “local data outliers”), then that player would be
reported as an outlier.

Given the outlier sets for a given position or type for the
10 attributes O1, . . . , O10, we define an outlier oi ∈ Oi as a
value that is more than 1.5 inter-quartile ranges IQRi above
boundary Qi,1 or below boundary Qi,3, oi ≥ Qi,3 +1.5 IQRi
or oi ≤ Qi,1 − 1.5 IQRi. If a player has at least one oi ∀ 1 ≤
i ≤ 10, that player is considered an outlier player.
Task 3: Outliers in Economic Patterns. This task used a
World Bank indicators data set [6] containing 11 economic,
health, and population attributes for 216 countries for the years
2000–2010 (Table I). The participants were asked to identify
the top eight countries in terms of average exports, then
determine which of these countries displayed an outlier pattern
in terms of export statistics over the given years. Outliers are
identified by differences in the direction of the slope of their
trend lines versus the overall norm for a given attribute.
Task 4: General Economic Patterns. This task used the same
data set [6] as Task 3. The participants were asked to identify
a visualization that showed the similarities and dissimilarities
between the export and import trends for the top country in
the urban population category over the years 2000 to 2010.

C. Expert Solutions
The following steps were used in the expert sequences

(developed as part of the experimental setup) for each task.
Task 1. Identifying spatial outlier in the earthquakes data set
[4] involved two stages. First, the threshold needed to filter
non-outlier observations is found using a box plot (Fig. 2(b)).
The whiskers on the box plot define the exact upper and
lower thresholds for outlier values of magnitude or number of
occurrences. Second, a map containing only the outlier values
(Fig. 2(c)) is generated. Locations of outlier earthquakes on
the map can then be identified.
Task 2. Similar to task 1, a boxplot is used to identify data
outliers in the baseball data set. First, players are nested within
either position or type. This has the effect of focusing on a
specific position or type. Next, boxplots for all ten attributes
are generated to identify outlier thresholds for each attribute,
for the given subgroup of players. Any player with an attribute
value outside these thresholds, for any attribute, is considered
an outlier player. Participants can hover over the sample points
above or below the boxplot threshold whiskers to identify
specific outlier players in the visualization (Fig. 6(b)).
Task 3. Identifying export pattern outliers in the World Bank
indicators data set [6] involved two stages. First, the top eight
countries in terms of average exports were filtered by setting
a lower export bound to include only eight countries. Next,
a line graph visualization of each country’s exports over the
years 2000 to 2010 was generated. The countries whose trend
lines deviated in slope from the norm (i.e., the trend lines
that did not follow the ascending or descending pattern of the
norm) were deemed to be outliers (Fig. 7(b)).
Task 4. Recognizing general patterns in import and export
data for the top urban population country in the World Bank



TABLE II. EXPERIMENTAL RESULTS: (A) PERFORMANCE IMPROVEMENTS, REPORTED FOR ACCURACY AS (WITH DATASLICER)/(WITHOUT
DATASLICER) RATIOS, AND FOR SPEED AS (WITHOUT DATASLICER)/(WITH DATASLICER) RATIOS; (B) AVERAGE SPEED VALUES ACROSS THE TASKS; (C)

AVERAGE ACCURACY VALUES ACROSS THE TASKS.

Performance-Improvement Ratios for Users over Tasks 1-4

Minimum Maximum Average
Accuracy-Improvement Ratios 1.84 16.9 5.09

Speed-Improvement Ratios 3.19 8.45 6.34

Average (µ) User Speed per Task, in Visualization Steps Taken to Solve Task

Average speed (in visualization steps) Task 1
(earthquake)

Task 2
(baseball)

Task 3
(economic)

Task 4
(economic)

Without DataSlicer 17.1 16.9 16.0 12.75

With DataSlicer 3 2 2 4

(a) (b)

Average (µ) user Task 1 Task 2 Task 3 Task 4

accuracy per task “occurrence” (#
outliers found)

“magnitude” (#
outliers found)

“position” (#
attributes found)

“position” (#
outliers found)

“type” (#
attributes found)

“type” (#
outliers found)

(# outliers
in trends)

Correct visualization
achieved (% cases)

Without DataSlicer 4.9 9.9 0.58 0.17 0.42 0.92 0.5 50

With DataSlicer 83 30 2 1 1 3 2 92

(c)

indicators data set [6] involved two stages. First, the top urban
population country in 2000–2010 was identified by setting
a lower bound on urban population as a filter. Next, a line
diagram was generated on imports and exports over these
years. The resulting visualization contains the top country’s
trends for both imports and exports (Fig. 8(b)).

D. Detailed Statistics for the Experimental Evaluation
We used Welch’s analysis of variance (ANOVA) [30] to

search for significant differences between the participant per-
formance with and without assistance from DataSlicer. The
results show that the participants were both faster5 and more
accurate6 with access to DataSlicer than without, with p-values
ranging from 0.009 to below 0.0001. Below we include a
detailed report for each task.
Task 1. In task 1, the participants were asked to identify
locations that contain outlier earthquakes based on magni-
tude and number of occurrences. For both attributes, the
participants were more accurate, finding on average 9.9 out-
liers without DataSlicer versus 30 outliers with DataSlicer
for magnitude, and 4.9 versus 83 outliers on average for
number of occurrences (F (1, 11) = 57.85, p < 0.0001
and F (1, 11) = 2966.98, p < 0.0001, respectively). The
participants also required significantly fewer data-specification
steps to complete the task with DataSlicer (3, on average)
than without (17.08, on average). A comparison of the average
number of data-specification steps combined over both tasks
yielded F (1, 11) = 98.06, p < 0.0001.
Task 2. In task 2, the participants were asked to identify
players with outlier attribute values for a specific position or
type. For both categories, the participants correctly identified
more outlier players with DataSlicer than without (0.17 versus
1 outlier on average, F (1, 20.29) = 28.74, p < 0.0001 for
position and 0.92 versus 3 outliers on average, F (1, 12.06) =
26.62, p = 0.0002 for type). The participants also located more
total attributes that contained outlier values using DataSlicer
(0.58 versus 2 attributes found on average, F (1, 13.87) =
29.96, p = 0.0001 for position and 0.42 versus 1 attribute
found on average, F (1, 17.28) = 28.74, p = 0.009 for type).
Finally, the participants required fewer data-specification steps
to report their results: 16.91 data-specification steps on average

5Increased speed here means that fewer data-specification operations were
required with DataSlicer than without, to identify a correct visualization.

6Better accuracy here means that more outliers were located with DataSlicer
than without, and general trends were located with DataSlicer but not without.

without DataSlicer, and 2 with DataSlicer, F (1, 11.08) =
114.3, p < 0.0001.
Task 3. In task 3, the participants were asked to identify
the top eight countries by average exports, then to determine
which countries’ trend lines for each of the 11 attributes
displayed outlier characteristics. The participants were able to
correctly choose the top eight countries both with and without
DataSlicer. However, the participants correctly located more
outlier trend lines with DataSlicer (2, on average) than without
(0.5, on average), F (1, 13.22) = 26.71, p = 0.0002, and
they were faster in terms of the number of data-specification
steps required to identify the outliers (an average of 16
without DataSlicer versus 2 with DataSlicer), F (1, 11.04) =
58.06, p < 0.0001.
Task 4. In task 4, the participants were asked to construct
a visualization highlighting the similarities and dissimilarities
between “export” and “import” trends for the top “urban
population” country over the years 2000 to 2010. Twelve
participants worked on task 4. Without DataSlicer, six of them
were able to correctly obtain a final visualization, while the
other six could not. With DataSlicer, the number of participants
able to find a correct visualization increased to eleven, a sig-
nificant improvement in accuracy (F(1,17.15)=5.85, p=0.0271).
Moreover, the participants using DataSlicer accomplished the
task more rapidly in terms of data-specification steps per-
formed (an average of 12.75 without DataSlicer versus 4 with
DataSlicer, F(1,13.56)=20.21, p=0.0006).

E. The User Questionaires
Table III shows the questions and answers, per task, in the

questionnaires that we asked the human participants to com-
plete for each experiment. (One questionnaire was completed
per participant per task.)

F. The Results
The average results for accuracy (either the number of

solutions found or the indicator of whether the single correct
solution was found) and for speed (the number of query steps
performed), both without and with assistance from DataSlicer,
are detailed in Table II. Based on the average values in Table II,
the accuracy of user solution for all tasks is at least 1.84 times
better with DataSlicer than without DataSlicer. Moreover, the
speed in obtaining final visualization is at least 3 times better
with DataSlicer than without DataSlicer. In addition, based
on Welch’s analysis of variance (ANOVA) tests [30], we
determined that in each of the four tasks, the participants were



TABLE III. THE QUESTIONS AND ANSWERS IN THE USER
QUESTIONNAIRES FOR THE FOUR EXPERIMENTAL TASKS. THE VALUES

ARE IN THE RANGE OF [1-7], WITH 7 THE HIGHEST AND 1 THE LOWEST.

Participants

Question 1 2 3 4 5 6 7 8 9 10 11 12 Average

level of difficulty faced by user 2 2 1 2 5 5 4 4 1 4 3 3 3

level of the system’s usefulness 4 2 5 4 4 7 5 6 6 7 7 6 5.25

level of the system’s accuracy 4 5 5 6 5 7 4 6 7 7 7 6 6.17

user’s confidence about the
correctness of his/her own answer

7 5 3 7 4 4 4 5 7 7 6 7 5.5

user’s confidence about the
correctness of system’s answer

4 6 5 6 6 7 3 6 6 7 6 7 5.75

Task 1

Participants

Question 1 2 3 4 5 6 7 8 9 10 11 12 Average

level of difficulty faced by user 1 2 6 2 3 4 4 2 2 4 4 2 2.83

level of the system’s usefulness 7 5 5 6 6 7 7 6 6 6 7 6 6.17

level of the system’s accuracy 6 6 6 7 5 7 7 7 7 7 7 7 6.58

user’s confidence about the
correctness of his/her own answer

4 6 3 6 6 4 7 7 7 5 4 6 5.42

user’s confidence about the
correctness of system’s answer

6 6 6 6 6 7 7 7 6 6 7 6 6.33

Task 2

Participants

Question 1 2 3 4 5 6 7 8 9 10 11 12 Average

level of difficulty faced by user 2 3 3 4 4 5 5 4 5 2 2 6 3.75

level of the system’s usefulness 7 4 7 7 6 4 6 4 6 6 6 6 5.75

level of the system’s accuracy 7 4 6 7 4 6 6 5 6 7 7 7 6

user’s confidence about the
correctness of his/her own answer

6 6 6 7 4 4 5 5 3 7 5 7 5.42

user’s confidence about the
correctness of system’s answer

5 5 6 7 6 6 6 5 6 6 6 7 5.92

Task 3

Participants

Question 1 2 3 4 5 6 7 8 9 10 11 12 Average

level of difficulty faced by user 3 2 2 2 4 5 4 3 6 3 6 2 3.5

level of the system’s usefulness 7 6 6 7 6 7 4 5 3 2 1 1 4.58

level of the system’s accuracy 7 7 7 7 7 7 3 5 3 2 4 1 5

user’s confidence about the
correctness of his/her own answer

7 6 5 7 6 6 5 2 5 7 6 4 5.5

user’s confidence about the
correctness of system’s answer

7 7 6 7 7 7 5 6 3 3 7 1 5.5

Task 4

in statistically significant ways both faster and more accurate
with help from DataSlicer than without the help. (Please see
Section VII-D for the detailed statistics.)

Based on these results, we conclude that DataSlicer allows
participants to find statistically significantly more outliers and
trends, in significantly fewer data-specification steps, than
unaided exploration. The tasks assigned to the participants in-
clude spatial outliers, local outliers, trend outliers, and general
trends, which represent common analytic tasks on real data.
Thus, the improved accuracy and speed in our experiments
suggest better accuracy and speed for real-world data analysis.

The questionnaire results (see Section VII-E) were also
positive. On a scale of 1 to 7, with 1 being lowest and 7 highest,

the participants rated the usefulness of DataSlicer as 5.44, on
average, and the accuracy of DataSlicer as 5.94, on average.
The participants were more confident about their answers with
DataSlicer than without (5.88 versus 5.46, on average).

VIII. CONCLUSIONS
Searching for outlier data elements, data patterns, and trends

are common and critical tasks during visual analytics. Visual-
izations offer the ability to present data in ways that leverage
a user’s domain expertise, knowledge of context, and ability to
manage ambiguity that fully automated systems cannot. Users
are often overwhelmed by the sheer volume of data (even in
small data sets such as that [4] of experimental task 1 in Sec-
tion VII), which may prevent them from understanding even
basic properties of their data sets. This becomes particularly
important in situations where the data set is large.

Moreover, the exact definition of “outlier” or “trend” can
change based both on the context and on where the user is in
her current exploration. For example, as a user is exploring a
data set, it is not uncommon for their definition of “outlier” to
vary based on their current discoveries to date. While we have
tested four task types, they were designed to be representative
of exactly this type of real-time exploration and discovery.

In our experiments, DataSlicer significantly improved both
the accuracy and speed for identifying spatial outliers, data out-
liers, outlier patterns, and general trends. The system quickly
predicted what a participant was searching for based on their
initial visualization operations, then presented recommenda-
tions that allowed the participants to properly transform the
data in ways that immediately identified the desired solutions.

Although our data sets were moderate in their size, our
human participants had difficulty completing the assigned tasks
on the data. Presumably, increasing the size of data would
further degrade their performance, and therefore strengthen
the value of using DataSlicer. As discussed in Section VI, our
predictive sequence comparisons are relatively insensitive to
data-set size, depending most directly on the number of expert
sequences to match against. In the scenarios that we have
tested, larger data sets would lead to more target observations
(e.g., outliers identified), but not to more steps required to find
the targets. In this way, we address an important goal of scal-
ability: with predictions based on user-generated sequences,
the prediction cost is based on the number of sequences and
sequence length, and not on data set size.

As discussed in Section V-B, our system can work in
two ways: as a prediction system, where expert nodes are
assigned higher weight at the time of doing predictions, or
as a recommendation system, where only past sequences of
regular users are used. To see the performance of our system
as a recommendation system, we assembled a separate data-
slice graph from the twelve regular-user sequences obtained
from our original set of experiments with task 1 of Section
VII. In this case (unlike the experiments in Section VII),
the data-slice graph did not involve any expert sequences.
The resulting data-slice graph, classified in Section V-B as
“recommendation graph,” was significantly different from the
“prediction graph” that was used in the original experiments
for task 1. We then ran preliminary tests to see the quality of
the recommendations that DataSlicer produced in this case.
Unfortunately, the results were far from satisfactory, as no
graph nodes were of significant help to users in their solving
task 1 with DataSlicer. This confirms the intuition that such



tasks are very difficult to solve for users that are not experts in
their fields, therefore reinforcing the desirability of construct-
ing data-slice graphs using expert sequences. It remains to be
seen if recommendation graphs can be useful tools for simpler
tasks, or with significantly larger user bases. We believe this
is an important direction for future work.

REFERENCES

[1] U. Cetintemel, M. Cherniack, J. DeBrabant, Y. Diao, K. Dimitriadou,
A. Kalinin, O. Papaemmanouil, and S. Zdonik. Query steering for
interactive data exploration. In CIDR, 2013.

[2] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query recommen-
dations for interactive database exploration. Scientific and Statistical
Database Management, pages 3–18, 2009.

[3] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Explore-by-example:
An automatic query steering framework for interactive data exploration.
In ACM SIGMOD, pages 517–528, 2014.

[4] Dropbox. https://www.dropbox.com/s/hye4pi82wcwsrrp/CDWT_ch7_
Earthquakes.xlsx. Accessed in February 2015.

[5] Dropbox. https://www.dropbox.com/s/eflow6vsmgbulk5/CDWT_ch5_
2012NYStats.xlsx. Accessed in February 2015.

[6] Dropbox. https://www.dropbox.com/s/jym44gtqni2qddf/Sample%20-%
20World%20Bank%20Indicators.xlsx. Accessed in February 2015.

[7] M. Drosou and E. Pitoura. Ymaldb: exploring relational databases via
result-driven recommendations. VLDBJ, 22:849–874, 2013.

[8] J. Fan, G. Li, and L. Zhou. Interactive SQL query suggestion: Making
databases user-friendly. In ICDE, pages 351–362, 2011.

[9] D. Gotz and Z. Wen. Behavior-driven visualization recommendation.
Proc. Intl’ Conf. Intelligent User Interfaces, pages 315–324, 2009.

[10] L. Grammel, M. Tory, and M Storey. How information visualization
novices construct visualizations. IEEE Trans. Visualiz. and Comp.
Graph., 16(6):943–952, 2010.

[11] C. G. Healey and B. M. Dennis. Interest driven navigation in visualiza-
tion. IEEE Trans. Visualiz. and Comp. Graph., 18:1744–1756, 2012.

[12] C. G. Healey and J. T. Enns. Attention and visual memory in
visualization and computer graphics. IEEE Trans. Vis. Comput. Graph.,
18(7):1170–1188, 2012.

[13] C. G. Healey and A. P. Sawant. On the limits of resolution and visual
angle in visualization. ACM Trans. Applied Perception, 9(4):20, 2012.

[14] S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview of data
exploration techniques. In ACM SIGMOD, pages 277–281, 2015.

[15] Ben Jones. Communicating Data with Tableau. O’Reilly Media, 2014.
[16] A. Key, B. Howe, D. Perry, and C. Aragon. Vizdeck: self-organizing

dashboards for visual analytics. In ACM SIGMOD, 2012.
[17] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. SnipSuggest:

Context-aware autocompletion for SQL. PVLDB, 4(1):22–33, 2010.
[18] M. Livny, R. Ramakrishnan, K. S. Beyer, G. Chen, D. Donjerkovic,

S. Lawande, J. Myllymaki, and R. K. Wenger. DEVise: Integrated
querying and visual exploration of large datasets. In ACM SIGMOD,
pages 517–520, 1997.

[19] J. D. Mackinlay, P. Hanrahan, and C. Stolte. Show Me: Automatic
presentation for visual analysis. IEEE Trans. Vis. Comput. Graph.,
13(6):1137–1144, 2007.

[20] P. Neophytou, R. Gheorghiu, R. Hachey, T. Luciani, D. Bao, A. Labrini-
dis, E. Marai, and P. Chrysanthis. AstroShelf: understanding the
universe through scalable navigation of a galaxy of annotations. In
ACM SIGMOD, pages 713–716, 2012.

[21] F. Niu, C. Zhang, C. Re, and J. Shavlik. DeepDive: Web-scale
knowledge-base construction using statistical learning and inference. In
Proc. Intl’ Wkshp Searching Integrating New Web Data Sources, 2012.

[22] A. Parameswaran, N. Polyzotis, and H. Garcia-Molina. SeeDB: Visu-
alizing database queries efficiently. PVLDB, 7(4):325–328, 2013.

[23] T. Sellam and M. Kersten. Meet Charles, big data query advisor. In
CIDR, 2013.

[24] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, and C. Ré. Incremental
knowledge base construction using DeepDive. PVLDB, 8, 2015.

[25] C. Stolper, A. Perer, and D. Gotz. Progressive visual analytics: User-
driven visual exploration of in-progress analytics. IEEE Trans. Vis.
Comput. Graph., 20(12):1653–1662, 2014.

[26] C. Stolte. Query, analysis, and visualization of multidimensional
databases. PhD thesis, Stanford University, 2003.

[27] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for query,
analysis, and visualization of multidimensional databases. Comm. ACM,
51(11):75–84, 2008.

[28] M. Vartak, S. Madden, A. Parameswaran, and N. Polyzotis. SeeDB:
automatically generating query visualizations. PVLDB, 7(13), 2014.

[29] A. Wasay, M. Athanassoulis, and S. Idreos. Queriosity: Automated data
exploration. In Proc. IEEE International Congress on Big Data, 2015.

[30] B. L. Welch. On the comparison of several mean values: An alternative
approach. Biometrika, 3/4:330–336, 1951.

https://www.dropbox.com/s/hye4pi82wcwsrrp/CDWT_ch7_Earthquakes.xlsx
https://www.dropbox.com/s/hye4pi82wcwsrrp/CDWT_ch7_Earthquakes.xlsx
https://www.dropbox.com/s/eflow6vsmgbulk5/CDWT_ch5_2012NYStats.xlsx
https://www.dropbox.com/s/eflow6vsmgbulk5/CDWT_ch5_2012NYStats.xlsx
https://www.dropbox.com/s/jym44gtqni2qddf/Sample%20-%20World%20Bank%20Indicators.xlsx
https://www.dropbox.com/s/jym44gtqni2qddf/Sample%20-%20World%20Bank%20Indicators.xlsx

	Introduction
	Related Work
	The Framework: An Overview
	The Intended User Experience
	The Proposed Approach: Data Sequences via Graphs

	The DataSlicer System
	Data-Slice Sequences and Graphs
	Algorithms to Match and Rank Data Slices

	Constructing and Using Data-Slice Graphs
	The Construction Algorithm
	Recommendation and Prediction Systems

	Putting It All Together
	Experimental Results
	Procedure and Result Summary
	The Tasks
	Expert Solutions
	Detailed Statistics for the Experimental Evaluation
	The User Questionaires
	The Results

	Conclusions
	References

