
Dynamically controlling node-level parallelism in Hadoop

Kamal Kc
North Carolina State University

kkc@ncsu.edu

Vincent W. Freeh
North Carolina State University

vwfreeh@ncsu.edu

Abstract—Hadoop is a widely used large scale data process-
ing framework. Applications run in Hadoop as containers, the
concurrency of which affects completion time of an application
as well as system resource usage. When there are too many
concurrent containers, resource bottlenecks occur and when
there too few, system resources are underutilized. The default
and best practice settings underutilize resources which results
in longer application completion times. In this work, we develop
an approach to dynamically change the parallelism for concur-
rent containers to suit an application. Our approach ensures
efficient utilization of resources and avoids bottlenecks for
all types of MapReduce applications. Our approach improves
performance of MapReduce applications by as much as 28%
and 60% respectively when compared to the best practice and
default settings.

I. INTRODUCTION

Hadoop is an open source large scale data processing
framework [1]. Programs that process large datasets can be
written in MapReduce framework and deployed on Hadoop
clusters [2]. To write a MapReduce program, a user only
needs to implement map and reduce functions, and the
framework takes care of all other operations such as creating
tasks for each function, parallelizing the tasks, distributing
data, and handling machine failures. YARN is an improved
architecture of Hadoop and separates resource management
from application logic [3], [4]. The generalization of re-
source management makes it easier to deploy not only
MapReduce applications, but also other applications such
as Spark and Tez [3].

Despite the improvement in architecture of Hadoop in
YARN, performance tuning is largely manual and is done
via configuration parameters. The configuration parameters
control the allocation of tasks, intermediate buffer sizes, data
compression, and other large number of internal operations.
Achieving better system resource utilization therefore re-
quires carefully tuning the configuration parameters, which
are about 150. Previous work shows slowdown between 1.5
and 4 times due to misconfiguration [5], [6], [7]. Improving
Hadoop’s performance is critical due to its widespread use
on a variety of applications such as indexing, log analysis,
ecommerce, analytics, and machine learning [8]. In this
work, we investigate and develop dynamic tuning approach
for Hadoop in order to improve its resource allocation as
well as performance of an application. Our tuning approach

focuses on a Hadoop parameter called concurrent container
slot.

Concurrent container slot (CCS) is a derived configuration
parameter of Hadoop that determines how many concurrent
tasks run in a node. It is derived from the total memory
setting of a node and the memory setting of a container.
For example, if the total memory setting of a node is 48GB
and the memory setting of a container is 2GB, then the
maximum number of concurrent containers that can run in
the node is 24. Therefore, the CCS for the node is 24.
For MapReduce applications, CCS determines how many
concurrent map or reduce tasks can run at a time in a
single node. Our previous work shows that an application
suffers a performance degradation up to 132% when the
number of concurrent tasks in a node is not appropriately
configured [5]. A naı̈ve way of determining the best CCS
is to exhaustively profile the completion time for all CCS
values. This approach is impractical as it is a time consuming
process. Rather, there are existing best practices, some that
suggest manually trying several possible values [9] and
others that provide a guideline to set the configuration values
[10]. Our findings show that following best practices can
result in under utilization of resources and longer completion
time of applications. It is therefore desirable to have an
approach that effectively utilizes system resources, ensures
faster completion of applications, and automatically tunes
the configuration parameters. In this paper, we develop and
evaluate dynamic tuning methods that to achieve these goals.

Our dynamic tuning method is based on feedback con-
troller. We design and evaluate three different types of
feedback controller. During the execution of an application,
the feedback controller changes CCS in response to the
change in resource usage of a system. The system resource
usage is monitored at short intervals such that any bottleneck
is quickly addressed. This is aided by our implementation of
a suspend mechanism in YARN. When CCS is lowered to
resolve the bottleneck, the extra containers are suspended,
which reduces the total number of IO requests or the CPU
contention. This helps to immediately get rid of bottlenecks.
The efficient resource usage due to the feedback controller
ensures faster completion time for applications.

There are two advantages to dynamically controlling
CCS over static tuning. First, it does not require profiling.
Second, the ideal CCS can change during the execution

1

of the application. Our findings show that our approach
achieves more efficient resource usage and a performance
improvement of as much as 28% and 60% respectively when
compared to the best practice and the default settings. In the
following sections of the paper, we present the related work,
describe the design and implementation of our dynamic
tuning approach, and finally evaluate the results.

II. RELATED WORK

Four areas of prior research are related to our work. The
first area is Hadoop tuning. Research in this area explores
tuning Hadoop using a training model [11], using tuning
rules in conjunction with a hill climbing search to explore
configuration parameters [12], using cost based optimization
over application profile [7], using prior knowledge of
optimal values of other applications [6], and automatically
using resource threshold as control [13]. Our work differs
from previous tuning efforts because it does not require prior
knowledge, tuning rules, or extensive profiling of applica-
tions. Additionally, as our work uses dynamic control, it
does not rely on predetermined resource usage threshold.

The second related area is feedback-based control. Several
types of controller are used to adjust different systems.
A PI controller can be used to tune web server response
content quality based on its server utilization [14], and is
also used to set CPU frequency of a machine by using its
power consumption [15]. Another related work uses a PID
controller to set CPU allocations by using machine response
time [16]. Our work evaluates three different feedback
controllers that use system resource usage to tune CCS.

The third related area is resource allocation. One work
in this area focuses on resource sharing among multiple
jobs by satisfying their dominant requested resource [17].
This ensures fairness for multiple jobs. Another work, which
discusses the development of YARN, focuses on enabling
each application to specify its resource requirement [3]. This
helps to simplify resource allocations on each Hadoop node.
In contrast, our work maximizes system resource utiliza-
tion and avoids bottlenecks without specifying application
resource requirements.

The fourth related area uses predefined techniques to
optimize application performance. Several techniques such
as rules [18], program analysis [19], or selecting alternative
implementations [20] are used to optimize the performance
of an application. These approaches provide an additional
method of improving system performance when application
usage scenarios can be enumerated before execution or
when an application can be reconfigured to use alternative
implementations.

III. DESIGN AND IMPLEMENTATION

In order to dynamically change CCS, we need to know
the relationship between CCS and application completion
time. As completion time is not known during the execution

of an application, we need a proxy for completion time
that can be read continuously online. We explored many
resource usage metrics to discover those that correlate with
completion time. In this section, we describe these proxy
metrics. We also discuss architectural changes to YARN,
and design and implementation of three dynamic feedback
controllers.

A. YARN architecture and containers

YARN rearchitects the original MapReduce framework by
putting resource management and MapReduce application
in separate modules. This enables YARN to perform only
resource management tasks and makes it is useful to run
other frameworks in addition to MapReduce. The resource
management framework consists of a resourcemanager and
multiple nodemanagers. Applications run in YARN as con-
tainers, which are process abstractions that can run any
user program. These containers run in nodemanagers and
are allocated by the resourcemanager. Each nodemanager
updates its memory and virtual core limits to the resource-
manager [21], [22]. The memory and virtual core request
of an application container is then used to determine how
many containers the resourcemanager can allocate to a
nodemanager.

When a MapReduce application is deployed, it creates
an application master that runs as a container in a nodem-
anager. The application master asks the resourcemanager
for containers to run map and reduce tasks. After the
resourcemanager assigns containers to nodes, the application
master coordinates their execution in conjunction with node-
managers. Containers are freed after they complete map or
reduce operations. Memory and virtual core limit specified
in configuration files determine the number of concurrent
containers that run in a node. Misconfiguration may result
in fewer or greater concurrent containers slots (CCS) than
ideal. This may result in slowdown of a MapReduce appli-
cation [5].

Our implementation of dynamic CCS uses a distributed
architecture where each nodemanager periodically computes
CCS. This new CCS value is propagated to the resourcem-
anager using protocol buffer messaging API. The existing
YARN resourcemanager uses memory values to determine a
node’s CCS, but the resourcemanager in our implementation
directly uses the computed CCS value to allocate containers.
The nodemanager ensures that the memory requirement of
all the running containers does not exceed the available
physical memory of the node.

B. Dynamic CCS

The operations performed by a nodemanager to dynam-
ically change CCS are as follows. In the nodemanager,
a thread samples the system resource usage periodically.
The selected resource metrics are indicators of good and/or
bad performance. These metrics and their relationship with

2

Figure 1: Map and reduce task phases.

performance are described in the Section III-C. A feedback
controller uses these metric values to compute the CCS for
next interval. If the new CCS is lower than the current CCS,
then the extra container processes are suspended. If the new
CCS is higher and there are existing suspended containers,
then they resume execution. The suspended containers re-
sume before any new containers spawn. This happens even
when the CCS remains the same and the running containers
complete execution. When there are no suspended containers
and the current number is fewer the current CCS, then newer
containers are assigned by the resourcemanager.

YARN does not support suspending containers. The mech-
anism to suspend containers was implemented as a part of
this work. Containers are suspended by using the operating
system signal mechanism. The signal SIGSTOP suspends a
container process and the signal SIGCONT resumes it [23].
The suspend implementation keeps track of each container
in one of the two queues – run queue and suspend queue.
Similar suspend mechanism implementation is used in a
previous work [24].

The purpose of decreasing CCS is to avoid instantaneous
and transient IO or CPU bottlenecks. Therefore, it is im-
perative to reduce parallelism (by suspending containers)
immediately. A secondary advantage of suspend mechanism
is that the system resource usage can be measured in shorter
intervals. As new CCS takes effect immediately, a shorter
interval such as 10 seconds is sufficient. This measurement
interval is small enough to have quicker response and large
enough to generate sufficient container activity and exhibit
negligible overhead. However, further investigation is needed
to determine ideal measurement interval.

C. Resource usage monitoring

In order to determine the types of resource metrics that
are relevant to tuning a MapReduce application, we describe
map task resource usage in detail. A map task consists of
six phases. These phases as shown in Figure 1 are compute,
collect, sort, spill, combine, and merge-spill. In the compute
phase, a map task performs the map function computation
on each input key-value pair. In the collect phase, it stores
the processed key-value pairs in an output buffer. The output
is logically divided into partitions equal to the total number
of reduce tasks. In the sort phase, the map task sorts the
output key-value pairs of each partition. When the output
buffer is full, the map task spills its content to a spill file in
the local disk. This is the spill phase. The combine phase
is optional and when present, the map task performs a local
reduce operation on the output key-value pairs. At the end,

Figure 3: Feedback control for dynamically changing CCS.

if there are multiple spill files then they are merged together
to produce a single map output file. This is the merge-spill
phase. Each map task phase is either CPU or IO intensive.
The CPU intensive phases are compute, collect, sort, and
combine. The IO intensive phases are spill and merge-spill.

Performance metrics of a Hadoop application can be
collected from two different sources – Hadoop counters
and operating system statistics. Hadoop counters generate
statistics about container tasks, jobs, and HDFS operations.
Operating system statistics are more general and include
information on the CPU utilization, IO read and writes,
context switches, blocked processes, and other system statis-
tics [25]. In this work, we use operating system statistics
because it provides instantaneous information on the state
of a system and can be used to quickly identify if the
system has degraded due to resource bottlenecks. As our
work uses Linux, these statistics are available in the files
/proc/stat and /proc/diskstats [25].

Ideally, a metric can be used to determine application
performance if it can be distinctly mapped to a performance
value. No operating system metrics reliably predict comple-
tion time on there own [26]. Three metrics shown in Figure 2
are most helpful in separating good and bad performance.
Each point in the figures represents a 30-second average of
the metric values. The figures contain measurements for six
diverse applications. The map completion time for each point
is for the application run in which the sample measurement
is taken, which explains the vertical grouping of points. As
the y-axis is completion time, lower is better.

The metric shown in Figure 2a is user cpu, which is the
percentage of time spent by CPU in user mode, a high
value indicates good performance. The metric shown in
Figure 2b is the number of processes blocked on IO, a
high value indicates poor performance. The metric shown
in Figure 2c is the total number of context switches, a high
value indicates good performance. However, a small range
in the high value results in bad performance for context
switches. These three metrics form the basis of measuring
resource usage in our work.

D. Feedback controllers

Feedback controllers change the state of a system based
on its current state. In our implementation, a feedback
controller works as shown in Figure 3. The input to the
controller is error, which is the difference between the

3

increasing

in
cr

ea
si

n
g

(a)

increasing
in

cr
ea

si
n

g

(b)

ctxt

m
a
p
 c

o
m

p
le

ti
o
n
 t
im

e

(c)
Figure 2: Effect of user CPU utilization, blocked processes, and context switches in completion time.

measured resource metric values and the reference metric
values. Reference metric values are the desired values the
system targets to achieve the shortest completion time. One
controller in our work uses fixed metric values as reference
values, whereas others do not and and rely on other compara-
ble reference values. Nevertheless, each controller has input
that is an error value representing the deviation of current
system state from the desired one. Based on this error value,
the controller computes the next CCS and the nodemanager
makes sure that CCS numbers of container processes are
running in the system. The goal of the controller is to
minimize the error, ideally to zero. In this work we evaluate
three different types of controllers as described below.

1) Waterlevel controller: Waterlevel controller mimics a
water tank controller which uses two water level markers —
a lower mark and an upper mark, to maintain water content
in the tank. When water level decreases below the lower
mark, water starts filling the tank and when the level reaches
the upper mark, it stops. This process continues and the
controller always keeps water level between the two marks.

An equivalent Waterlevel controller can be constructed
for dynamic CCS by choosing the lower and upper marks
as threshold values for the three metrics – user cpu,
procs blocked, and ctxt. This controller works as follows.
When any metric decreases below the lower mark, CCS in-
creases1. On the other hand, when any metric value increases
above the upper mark, CCS decreases. Increasing and de-
creasing CCS also respectively increases and decreases the
metrics, except for some cases discussed in the previous
Section III-C. The error input, as shown in the Figure 3,
therefore has one of the two values – 0 or 1, 0 when a metric
value is smaller than the lower mark and 1 when a metric
value is greater than the upper mark. The controller increases
CCS when the error is 0 and decreases it when the error is 1.

1Metrics can disagree (i.e., one is high and one low). Our solution takes
this into account. However, these metrics are correlated, this case has never
been observed.

The controller increases or decreases CCS by a fixed amount
(e.g., 2). In order to ensure that the resource usage is similar
to the upper mark, the two lower and upper marks are set
closer. This ensures efficiency in resource usage.

2) PD controller: A PD controller2 has proportional
and derivative components that affect its output [27], [28].
Equation 1 shows how the next CCS is calculated using
the coefficients, Kp (proportional) and Kd (derivative), that
weigh the error value E(k) measured at kth time. Kp uses
current error and Kd uses change in the error.

∆CCS = KpE(k) + Kd(E(k) − E(k − 1)) (1)

Unlike the Waterlevel controller, the PD controller gener-
ates new CCS rather than a binary increase or decrease value.
To compute a single error value from the three metrics,
user cpu, procs blocked, and ctxt, we need to combine them
together. As these metrics have different value ranges and
different correlation with application time, we combine the
metrics to form a parameter called score that accounts for
these factors. Space does not permit us to adequately explain
the score function. However, the score was designed so that a
higher score represents a good performance whereas a lower
score represents bad performance.

As described earlier, a PD controller relies on the error to
derive new CCS values. If the maximum achievable score of
an application is known, then the error parameter is the dif-
ference between the maximum score and the measured score.
But, the maximum score is not known before executing
an application, because applications have different resource
usages. Therefore, we construct an error parameter that
becomes 0 when the score is maximum, becomes positive
if CCS needs to increase, and becomes negative if CCS
needs to decrease. This error parameter is the rate of change
of score compared to the change in CCS. It is shown in

2We experimented with a PID controller. But the integral component (I)
is not appropriate because it accumulates error, which does not apply in
this case.

4

k
k­1

E(k)

E(j)

E(i)
i

i­1

jj­1

Figure 4: Bezier approximation of score against CCS.

Equation 2 as E(k), where k represents the measurement
for kth time sample.

E(k) =
score(k) − score(k − 1)

CCS(k) − CCS(k − 1)
(2)

E(k) is the slope of the curve between score and CCS.
Figure 4 shows the Bezier approximation of score as a
function of CCS for terasort. As mentioned previously, the
score is measured empirically using the three metrics and
indicates good performance when high and bad performance
when low. The plot shows that as CCS increases, the score
initially increases, peaks and then gradually decreases. This
behavior is similar for other applications. In the figure, at
point j, the score is the highest and the error E(j) is 0. In
this case, the controller attempts to maintain the same CCS.
At point k, the score is increasing and the error E(k) is
positive. In this case, the controller increases CCS. At point
i, the score is decreasing and the error E(i) is negative. In
this case, the controller decreases CCS.

The gain parameters are tuned one at a time. Initially,
Kp is tuned and then Kd. The main goals of tuning are to
obtain parameter values that have quick ramp up time and
do not result in large CCS changes. For this, each parameter
is assigned a set of values in decreasing order and resulting
CCS change is observed. For Kp the values used were 4.0,
2.0, 1.0, and 0.5. With 4.0, there were large changes in CCS
values, but as Kp decreased, the changes also decreased.
The value of 1.0 was selected for Kp because with 0.5
even though the CCS changes decreased, the ramp up was
slow. Next, Kd is tuned in similar manner by keeping Kp
constant at 1.0. For Kd, the values used were 2.0, 1.0, 0.5,
and 0.1. The selected value that best fit both the goals was
0.5. Therefore, this work uses Kp and Kd values of 1.0 and
0.5.

3) PD+pruning controller: Pruning can be done together
with a PD controller to eliminate changes in CCS after the
controller finds the one with the best score. CCS tuned by
due to PD controller frequently change, as instantaneous
resource usage changes quite often even for same CCS.

Applications CPU UTIL IO THRPUT Application type
(%) (MB/s)

terasort 42 10.58 IO-intensiverankedinvertedindex 50 7.93
word count 63 4.97

Balancedinvertedindex 72 5.45
termvectorperhost 74 5.53

grep 99 0.01 CPU-intensive

Table I: Types of applications based on CPU and IO char-
acteristics.

PD+pruning addresses this behavior and eliminates the con-
stant changing of CCS. While tuning, if a new CCS results in
a higher score, then old CCS is pruned. When the new CCS
does not result in a higher score, then the controller attempts
to find higher score for CCS in the range between the new
and the old CCS. If it finds any such CCS, it continues with
the tuning. Otherwise, the highest score the controller could
find is one with the old CCS. This CCS is then used through
the remainder of application execution.

IV. EVALUATION

A. Experimental setup

The cluster used in this work consists of ten IBM Pow-
erPC machines. Each node has two POWER7 processors
with 16 cores – 64 total CPU threads, 124GB RAM, and
a 10 Gbps Ethernet network link. Hadoop (version 2.2.0)
is configured with one resourcemanager and nine nodem-
anagers. HDFS is configured with one namenode and nine
datanodes.

Our experiments use six Hadoop applications from the
PUMA benchmark [29]. These six applications, as shown
in Table I, were selected to diversify the applications types
based on their per map task CPU utilization (CPU UTIL)
and write IO demand (IO THRPUT). CPU UTIL is the
percentage of total map task time that is spent on the CPU
intensive phases of a map task. IO THRPUT is the rate (in
MB/s) at which a map task writes data to its output files.
Having applications with all ranges of CPU UTIL (42% to
99%) and IO THRPUT (10.58 MB/s to 0.01 MB/s) ensures
that our results are applicable to all types of Hadoop applica-
tions. In our previous work, we found that using CPU UTIL
values applications can be grouped into three regions [5].
IO-intensive applications have high IO and low CPU usage,
Balanced have medium IO and medium CPU usage, and
CPU-intensive have low IO and high CPU usage. The best
suitable CCS values are different for each of these regions.
Except for terasort, all other applications use wikipedia
dataset available in PUMA benchmark. The dataset size is
900GB, which is formed by combining multiple copies of
the original 300GB wikipedia PUMA dataset. Terasort uses
the data generated by teragen program [1].

Apart from the three dynamic approaches, we also com-
pare other alternative tuning techniques. They are described
as follows.

5

Applications Default Best Optimal WL PD PD+
practice pruning

terasort 1.57 1 (1560) 0.89 0.93 0.90 0.91
rankedinvertedindex 1.58 1 (2102) 0.79 0.83 0.79 0.80

wordcount 1.68 1 (2521) 0.73 0.78 0.73 0.76
invertedindex 1.66 1 (2976) 0.77 0.81 0.77 0.80

termvectorperhost 1.69 1 (3272) 0.79 0.80 0.79 0.80
grep 1.82 1 (2526) 0.68 0.70 0.72 0.69

Table II: Relative comparative map completion times for
various CCS settings. The best practice column shows total
elapsed time in seconds.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

C
C

S

Time(s)

Default
Best practice

Exhaustive search
WL

PD
PD+pruning

Figure 5: CCS changing for terasort for all tuning ap-
proaches.

1) Default values: Hadoop distribution has default con-
figurations for YARN as well as for MapReduce. The default
configuration is 8 concurrent map tasks or 4 concurrent
reduce tasks.

2) Best practice: Guidelines for best practice suggest
setting aside specific amounts of CPU and memory resource
for the system and background operation [10], [30], [31].
Best practices suggest a CCS value based on available
resources, specifically number of cores, number of disks,
and amount of memory. Best practices recommend CCS be
1.5 times the number of physical cores (24 in our case). It
suggests a CCS equal to 1.8 times the number of disks (18
in our case). Finally, it suggests reserving some memory for
the system and allocating the remainder to containers. In
our case, the system reserve is 24GB, so 104GB divided
by 2GB per container suggests CCS of 52. Further best
practices suggests taking the minimum of these three values.
Therefore, the best practice CCS used in this paper is 18.

3) Exhaustive search: Exhaustively searching all possible
CCS values can also find the optimal CCS value of an
application. However, this approach has two disadvantages
– it takes a long time to exhaustively search the best CCS
and the search has to be performed for each application.

B. Performance comparison

Table II shows relative comparison between map comple-
tion times for various CCS tuning approaches. The compar-
ison is relative to the time for best practice. The table shows

-20

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

C
C

S

time(s)

terasort - default CCS - 8

CCS
progress(%)

user_cpu(%)
blockedprocs

ctxt
score

Figure 6: Resource usage of a nodemanager during map
execution of terasort for default CCS.

that the default configuration is at least 50% slower for all
applications. All three dynamic approaches are much better
than best practices (7-31% better). All are within 4% of
exhaustive (ie, optimal). While all 3 are good, PD is slightly
better. It is on average 21% better than best practice and
1% worse than optimal. Among the dynamic approaches,
PD is better than WaterLevel (WL) and PD+pruning for
all applications except for grep, where it is slower by 1%
and 2% respectively. Compared to the exhaustive search, PD
controller is equally better for four applications and slower
for the remaining two by a maximum of 4%.

An effective tuning approach needs to change CCS to
address resource usage fluctuations. When an application
runs, the CPU and IO operations performed by map tasks
interleave causing changes in resource usage of a node.
Furthermore, resource usage fluctuations also occur due to
different types of tasks, for example, reduce tasks have
different resource usage characteristics than map tasks.
Figure 5 shows the CCS values over time on one node
during the execution of terasort, in order to illustrate the
difference in how the approaches respond to system re-
source usage. The default, best case, and exhaustive search
are static approaches, and therefore do not change CCS.
Among the dynamic approaches, PD and WL changes CCS.
PD+pruning changes CCS initially, but stabilizes CCS to
a fixed value after the 350 second mark. This means that
it does not respond to any resource usage change after
350 seconds. Table II and Figure 5 therefore show that
among all approaches, dynamic tuning using PD controller
achieves the most satisfactory performance as well as CCS
responsiveness.

C. Resource usage

Figure 6 shows nodemanager CCS, resource usage (user
CPU, blocked processes, and context switches), score, apli-
cation progress of terasort with default CCS of 8. The figure
shows highest CPU usage at 30%, low blocked procs and
ctxt value of 2, and score close to 0. In this case, the resource
is underutilized, as there is sufficient spare CPU resource

6

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

C
C

S

time(s)

terasort - best practices CCS - 18

CCS
progress(%)

user_cpu(%)
blockedprocs

ctxt
score

Figure 7: Resource usage of a nodemanager during map
execution of terasort for best practices CCS.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

C
C

S

time(s)

terasort (IO-intensive) - PD controller

CCS
progress(%)

user_cpu(%)
blockedprocs

ctxt
score

Figure 8: Resource usage of a nodemanager during map
execution of an IO-intensive application (terasort) for PD.

available. Figure 7 shows the resource usage, score, and
progress for terasort with best practice CCS of 18. In this
case also, the CPU resource is underutilized. The CPU usage
peaks at 60%, and low blocked procs and ctxt have values
of 2.

Figures 8, 9, and 10 show the resource usages, score, and
application progress for IO-intensive (terasort), Balanced
(invertedindex) and CPU-intensive (grep) applications. All
three figures show CPU resource being appropriately used.
For IO-intensive application in Figure 8, the CPU usage has
a peak value of 90%. It is relatively lower than the other
two because it has a higher blocked procs. Whenever CCS
increases, CPU usage increases, but blocked procs increases
as well. This results in lower score and indicates increasing
IO bottleneck. Therefore, the controller lowers CCS. For
Balanced application in Figure 9, CPU utilization increases
but blocked procs and ctxt remain low. Therefore, CPU
usage is as high as 99%. For CPU-intensive application in
Figure 10, with increasing CCS, CPU utilization increases
but ctxt increases as well. Hence, the controller adjusts
CCS and does not allow ctxt to increase significantly. The
resulting CPU usage peaks at 90%. These three figures show
that the dynamic approach utilizes available resources more

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
C

S

time(s)

invertedindex (Balanced) - PD controller

CCS
progress(%)

user_cpu(%)
blockedprocs

ctxt
score

Figure 9: Resource usage of a nodemanager during map
execution of a Balanced application (invertedindex) for PD.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

C
C

S

time(s)

grep (CPU-intensive) - PD controller

CCS
progress(%)

user_cpu(%)
blockedprocs

ctxt
score

Figure 10: Resource usage of a nodemanager during map
execution of a CPU-intensive application (grep) for PD.

efficiently than the best practice and default.

D. Tuning CCS for multiple workloads

During the execution of an application, the best CCS can
change due to resource pressure caused by other workloads
running in the system. To demonstrate this, we run a
background IO bound workload while terasort is executing.
This background workload generates write traffic with a
maximum of 32 procs blocked. Figure 11 shows the result.
Initially, the PD controller tunes CCS to values around 40.
At 460 second, the background workload starts and runs
until 980 second mark. During this time, the procs blocked
value is high, and the resulting score is low. Therefore, the
controller decreases the CCS. After the workload completes
execution, the CCS increases back to value above 40. It
completes in 1760 seconds, with best practice CCS and
same background workload it takes 2000 seconds. Dynamic
approach has a improved performance of 12% over best
practice, which is 2% higher than when comparing them
without any background workload. Therefore, this experi-
ment illustrates the effectiveness of PD controller in tuning
CCS even when there are other workloads in a system.

Summary. The resource usage for the static and dynamic
approaches showed that having a dynamic tuning method

7

Background
IO bound workload

Figure 11: Dynamic CCS reponse to background IO work-
load for terasort.

adjusts appropriately to resource usage fluctuations, does
not under utilize resources, and avoids resource bottlenecks.
Additionally, the performance comparison showed improve-
ment up to 28% for PD based dynamic CCS when compared
to the best practice and 60% when compared to default.

V. CONCLUSION

In this paper, we explored feedback based dynamic
approaches to tune concurrent container slot (CCS) and
improve performance of Hadoop applications. Our dynamic
approaches use controllers that take instantaneous score or
score to CCS ratio as input and generate new CCS as output.
The score is a combination of user CPU, blocked processes,
and context switches values. We evaluated WaterLevel, PD,
and PD+pruning controllers. While all dynamic controllers
performed better than the best practice, PD controller was
comparably better with highest performance benefit of 28%
as well as with better CCS responsiveness to fluctuations
in resource usage. The result is even better with 60%
improvement compared to default settings. In order to ensure
that the findings are applicable to all types of MapReduce
applications, the six applications selected in this work have
diverse CPU and IO usage profiles. In conclusion, our find-
ings suggest that for Hadoop applications, instead of using
existing best practice and default settings, using dynamic
tuning offers better performance and system responsiveness
while avoiding resource bottlenecks.

REFERENCES

[1] “Hadoop,” http://hadoop.apache.org.
[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data

processing on large clusters,” in OSDI, 2004.
[3] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,

M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler, “Apache Hadoop YARN: Yet Another
Resource Negotiator,” in SOCC, 2013.

[4] “Apache Hadoop Next Generation MapReduce (YARN),”
http://hadoop.apache.org/docs/r2.4.0/hadoop-yarn/
hadoop-yarn-site/YARN.html.

[5] K. Kc and V. W. Freeh, “Tuning Hadoop map slot value using
CPU metric,” in BPOE, 2014.

[6] K. Kambatla, A. Pathak, and H. Pucha, “Towards optimizing
hadoop provisioning in the cloud,” in HotCloud, 2009.

[7] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu, “Starfish: A self-tuning system for big
data analytics,” in CIDR, 2011.

[8] “Hadoop poweredby,” http://wiki.apache.org/hadoop/
PoweredBy.

[9] “Avoiding common hadoop administration
issues,” http://blog.cloudera.com/blog/2010/08/
avoiding-common-hadoop-administration-issues.

[10] “Installing HDP Manually,” Hortonworks Data Platform v 2.2,
Hortonworks (Page 30).

[11] Z. Zhang, L. Cherkasova, and B. T. Loo, “AutoTune: Optimiz-
ing Execution Concurrency and Resource Usage in MapRe-
duce Workflows,” in ICAC, 2013.

[12] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A. R. Butt, and
N. Fuller, “MRONLINE: MapReduce Online Performance
Tuning,” in HPDC, 2014.

[13] K. Wang, B. Tan, J. Shi, and B. Yang, “Automatic Task Slots
Assignment in Hadoop MapReduce,” in ASBD, 2011.

[14] T. Abdelzaher and N. Bhatti, “Web server QoS management
by adaptive content delivery,” in IWQoS, 1999.

[15] R. J. Minerick, V. W. Freeh, and P. M. Kogge, “Dynamic
Power Management using Feedback,” in COLP, 2002.

[16] X. Wang and Y. Wang, “Coordinating Power Control and
Performance Management for Virtualized Server Clusters,”
IEEE TPDS,, 2011.

[17] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica, “Dominant Resource Fairness: Fair
Allocation of Multiple Resource Types,” in NSDI, 2011.

[18] “Hadoop vaidya,” http://hadoop.apache.org/docs/stable/
vaidya.html.

[19] C. Olston, B. Reed, A. Silberstein, and U. Srivastava, “Auto-
matic optimization of parallel dataflow programs,” in USENIX
ATC, 2008.

[20] C. Whaley, A. Petitet, and J. J. Dongarra, “Automated Em-
pirical Optimization of Software and the ATLAS Project,”
Parallel Computing, 2000.

[21] “JIRA YARN-1024 Define a CPU resource(s) unambigu-
ously,” https://issues.apache.org/jira/browse/YARN-1024.

[22] “JIRA YARN-1089 Add YARN compute units alongside vir-
tual cores,” https://issues.apache.org/jira/browse/YARN-1089.

[23] “SIGNALS(7) - Linux Programmer’s manual,” http://man7.
org/linux/man-pages/man7/signal.7.html.

[24] M. D. Mario Pastorelli and P. Michiardi., “OS-Assisted Task
Preemption for Hadoop Jobs,” in DCPerf, 2014.

[25] “PROC(5) - Linux Programmer’s manual,” http://man7.org/
linux/man-pages/man5/proc.5.html.

[26] K. Kc and V. W. Freeh, “Dynamic performance tuning of
Hadoop,” Technical Report, North Carolina State University,
2014.

[27] D. E. Seborg, D. A. Mellichamp, T. F. Edgar, and F. J. D. III,
Process Dynamics and Control. Wiley.

[28] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,
Feedback Control of Computing Systems.

[29] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar,
“Puma: Purdue mapreduce benchmarks suite,” TR, Purdue
University, 2012.

[30] “Migrating to MapReduce 2 on YARN,”
http://blog.cloudera.com/blog/2013/11/
migrating-to-mapreduce-2-on-yarn-for-operators/.

[31] E. Sammer, Hadoop Operations (Page 124).

8

