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Abstract—MapReduce is a widely used framework that runs
large scale data processing applications. However, there are
very few systematic studies of MapReduce on large clusters
and thus there is a lack of reference for expected behavior or
issues while running applications in a large cluster. This paper
describes our findings of running applications on Pivotal’s
Analytics Workbench, which consists of a 540-node Hadoop
cluster. Our experience sheds light on how applications behave
in a large-scale cluster. This paper discusses our experiences
in three areas. The first describes scaling behavior of appli-
cations as the dataset size increases. The second discusses the
appropriate settings for parallelism and overlap of map and
reduce tasks. The third area discusses general observations.
These areas have not been reported or studied previously. Our
findings show that IO-intensive applications do not scale as data
size increases and MapReduce applications require different
amounts of parallelism and overlap to minimize completion
time. Additionally, our observations also highlight the need for
appropriate memory allocation for a MapReduce component
and the importance of decreasing log file size.

I. INTRODUCTION

Hadoop is a popular open source implmentation of
MapReduce framework [1]. MapReduce framework runs
large scale data processing applications on a cluster [2]. To
write a MapReduce application, a programmer only needs
to implement map and reduce functions, and the Hadoop
MapReduce framework manages all other operations such as
creating tasks for each function, parallelizing the tasks, dis-
tributing data, and handling machine failures. Various types
of applications such as indexing, log analysis, ecommerce,
analytics, and machine learning run on Hadoop [3]. Our
work evaluates Hadoop on Pivotal’s Analytics Workbench
(AWB), which contains a 540-node Hadoop cluster [4].

Although there are multiple known deployments of
Hadoop clusters greater than 500 nodes, there is little
published work about MapReduce on a large cluster [3].
There is a study analyzing the logs of 6000 node cluster
that highlights the need to make resource allocation aware
of diversity in node resources [5]. Another study on logs of
a 3000 node cluster examines the diversity of applications
running on the cluster [6]. However, these studies do not
identify the expected behavior of applications when running
in a large cluster.

This paper studies three facets of MapReduce applications
in a large cluster. Our first evaluation explores data scaling

behavior of six MapReduce applications that have wide
variety in map and reduce task characteristics. Our second
evaluation explores the effect of configuration parameters on
application performance. Previous studies on small clusters
(10 and 14 nodes) have shown that tuning task parallelism
improves overall performance [7], [8]. However, the effects
of changing parallelism and overlap of tasks in MapReduce
applications in a larger cluster have not been studied. Our
third evaluation discusses experiences of running applica-
tions in a large cluster. This includes findings that are not
noticeable in smaller clusters.

Our results on data scaling show that for applications that
require higher IO throughput, the completion time increases
in higher proportion than the increase in data size. On
the other hand, for applications that require medium to
low IO, the completion time increases proportionally to
the increase in data size. Our results on parallelism and
overlap configuration show that an appropriate configuration
of parallelism and overlap improves the performance of
an application. This configuration value is dependent upon
application CPU and IO characteristics. Our findings on
AWB use shows observations that are not noticeable in a
smaller cluster. We discuss two such observations in this
paper — appropriately sizing a component of an application
and the suitability of the type of information level for huge
application logs produced by MapReduce applications.

The remainder of the paper is organized as follows.
Section II presents a background on Hadoop and related
work. Section III details our experiment methodology. Sec-
tion IV describes our findings on data scaling behavior of
MapReduce applications. Section V describes our findings
no tuning parallelism and overlap configuration of an appli-
cation. Section VI describes our experiences on observations
for a large cluster.

II. BACKGROUND

This section describes Hadoop and prior work.

A. Hadoop and MapReduce

The Hadoop architecture consists of a MapReduce com-
puting framework [2] and a data storage framework called
Hadoop Distributed File System (HDFS) [9]. HDFS is
formed by aggregating local storage of each client node.

1



It stores data in 64MB or larger block sized files. This work
uses the rearchitected Hadoop framework called YARN [10],
[11]. Unlike the original MapReduce, YARN separates re-
source management from the MapReduce application logic.
The resource management framework consists of a single
resourcemanager and multiple nodemanagers. The resource
management framework is generalized such that it can run
MapReduce as well as other applications. The container
is the unit of resource allocation and applications run in
these containers. Each nodemanager informs to the resource-
manager of its memory and CPU capacity. Using each
nodemanager’s resource capacity and the container memory
resource request of an application, the resourcemanager
determines the nodemanager in which the container runs.

When a MapReduce application is deployed, it creates an
application master (AM) that runs in a container. The AM
negotiates containers with resourcemanager and coordinates
the execution of map and reduce tasks in the allocated
containers. A map task processes a block of HDFS data.
The map task is typically assigned to a container local to
the node which has the input data block. The input to a
map task is in the form of key-value pairs. The map task
partitions its output by keys. The total number of partitions
is equal to the number of reduce tasks. The output is then
stored in the local disk. A reduce task processes one specific
partition of the map output. The data processed by a reduce
task is the aggregated collection of its assigned partition that
is copied from the outputs of all map tasks. Reduce tasks
write their output, which is the final output, to HDFS.

B. Parallelism and overlap configuration

Configuration parameters in YARN affect resource allo-
cations, scheduling, and logging. This work also attempts to
characterize the performance effects of parallelism and over-
lap in MapReduce applications. Two configuration parame-
ters — concurrent container slot and slowstart determine the
parallelism and overlap respectively.

Concurrent container slot (CCS) determines the paral-
lelism of MapReduce tasks. It is the maximum number
of concurrent containers that can run in a single node. It
is a derived configuration parameter and is equal to the
total memory configured for a nodemanager divided by the
memory request for each container. The nodemanager’s con-
figured memory is shared among map and reduce containers.
Reduce containers usually have bigger memory size as a
typical reduce task processes more data than a typical map
task. The default memory configuration for a nodemanager
is 8GB, for a map container is 1GB, and for a reduce
container is 2GB. This results in CCS of 8 when only map
tasks run. But, when reduce tasks also run the node, the total
number of concurrent containers will be less than 8.

Slowstart (SS) determines the overlap between map and
reduce tasks. Its value is equal to the percentage of map
tasks that complete before reduce tasks start. A SS value

of 75% means that the reduce tasks start as soon as 75%
of the total map tasks complete. The default value of SS is
5%. Not all reduce tasks are immediately scheduled. During
reduce scheduling, the AM ensures that sufficient containers
are available to run map tasks. Once a reduce task starts, it
runs to completion, which is necessarily after all map tasks
are complete. Therefore, a reduce task, once started, will
occupy its container until the end of the entire application.
Consequently, starting reduce tasks too early (small SS) can
result in underutilization when reduce tasks wait for map
output. On the other hand, starting too late (large SS) can
result in delayed copy of map output and resource burden
to store the intermediate map output. Therefore, slowstart
presents a trade-off. Section V discusses in detail the effects
of changing CCS and SS values for different types of
applications in AWB.

C. Related work

There are three areas of prior research that are related
to our work. The first area is large scale cluster study. The
original mapreduce work describes applications running in a
large 1400-node cluster [2]. There are known multiple large
Hadoop clusters with more than 500 nodes [3]. Prior studies
on large Hadoop clusters primarily focus on analysis of
workloads using log traces and addressing Hadoop runtime
issues. A study of log traces of clusters containing upto
3000 nodes showed that applications in large clusters have
different input, shuffle data, output, completion time, and
submission pattern [6]. Another study of logs of cluster with
up to 6000 nodes showed that resource allocation in Hadoop
should address the differences in per node CPU and memory
capacities and mixing of short and log Hadoop jobs [5].
Another previous work showed that jobs were failing in a
large Hadoop cluster due to incorrect configuration of the
storage framework [12].

The second related area is scalability. Previous work
compares scale-out and scale-up models and investigates
the relative effectiveness of scale-up [13]. Similarly, another
related work compares the performance of scale-out and
scale-up in Hadoop and finds performance improvement
with the scale-up model [14]. Another work studies the
scalability of an indexing application in Hadoop when
changing the cluster size [15]. Another related work uses IO
model and data parsing to address performance bottlenecks
in Hadoop [16]. Previous work also explores the limitation
of Hadoop scalability in terms of its inability to change map
and reduce slots for different applications [17].

The third related area is benchmark study. PUMA pro-
vides a collection of applications for MapReduce bench-
marking [18]. The applications used in this work are
from PUMA benchmark. HiBench provides both micro-
benchmark and real-world benchmark for Hadoop [19].
YCSB is a cloud benchmark that attempts to understand
the performance and behavior of cloud data serving systems
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Applications CPU UTIL IO THRPUT Application type
(%) (MB/s)

terasort 42 10.58 IO-intensiverankedinvertedindex 50 7.93
word count 63 4.97

Balancedinvertedindex 72 5.45
termvectorperhost 74 5.53

grep 99 0.01 CPU-intensive

Table I: Three types of applications in PUMA benchmark.

Applications Input Map output Shuffle Reduce output
terasort 17.60 TB 17.93 TB 18.29 TB 17.58 TB

rankedinvertedindex 16.70 TB 17.37 TB 17.83 TB 17.13 TB
word count 19.40 TB 23.55 TB 3.62 TB 5.15 GB

invertedindex 19.40 TB 29.54 TB 3.98 TB 43.85 GB
termvectorperhost 19.40 TB 31.92 TB 4.13 TB 46.35 GB

grep 19.40 TB 1.39 GB 4.20 GB 457 KB

Table II: Comparative data movement through the MapRe-
duce phases for Medium dataset.

[20]. TPC-W is a benchmark to test the scalability of e-
commerce websites [21].

III. EXPERIMENTAL METHODOLOGY

In order to make the findings of this work applicable
to all types of applications, we select them based on the
diversity of their CPU and IO activity. We use six out of the
thirteen benchmark programs in PUMA [18]. The programs
are grep, word count, invertedindex, rankedinvertedindex,
terasort, and termvectorperhost. The CPU usage of these six
programs range from a low value to a very high value. Sim-
ilar diversity exists for IO throughput. Remaining PUMA
applications similar CPU and IO characteristics.

The CPU and IO usage diversity is observable when
measuring the time spent by a map task in CPU intensive
phases of a map task. Table I lists the CPU and IO usage
values for a single map task. CPU UTIL is the percentage of
total map task time that is spent on the CPU intensive phases
of a map task. IO THRPUT is the rate at which a map task
writes data to its output files and it is measured in megabytes
per second. The values suggests distinction among the CPU
and IO usage of the applications. CPU UTIL varies from
42% to 99% and IO THRPUT varies from 10.58 MB/s
to 0.01 MB/s. Based on the range of low, medium, and
high CPU UTIL values shown in Table I, the applications
are categorized into three regions: IO-intensive, Balanced,
and CPU-intensive. Our previous study shows that these
categories have different map task paralellism that performs
best [8].

The diversity in the CPU and IO usage of map tasks
also affects the reduce task behavior because the size of
the reduce input is dependent on the amount of write
IO activity performed by maps. The map output data is
processed by a combiner, which performs local reduce of
the map output data and produces the shuffle data. Table II
shows the size of data that moves across these phases.
An important observation is the difference in the data size

for shuffle operation for applications of different regions.
Shuffle data is copied over the network and serves as input
for reduce tasks. Therefore, diversity in the reduce input
size affects the time spent by reduce tasks in network
copy, merge, sort, and reduce operations. The IO-intensive
applications have shuffle data as large as the input data size
and therefore require higher network throughput during data
copy. The Balanced applications have around 6x reduction
in the shuffle data. These applications do not require as
much network throughput as the IO-intensive applications.
The CPU-intensive application has around five orders of
magnitude reduction in the shuffle data. Therefore, this
application requires even less network throughput.

For experiments, we use Pivotal’s AWB, which is a 1000-
node cluster consisting of a 540-node Hadoop (version
2.2.0) installation [4]. Each node consists of 2 six-core
Intel Westmere CPUs with a total of 24 threads, 48GB
memory, 2 disks each with 2TB capacity, and 10 disks. The
nodes use infiniband for network connectivity. This setup
has a total memory capacity of 12 TB and HDFS storage
capacity of 10 PB. There are 3 dataset sizes used in this
work. They are named small, medium, and large in the
order of increasing data size. The datasets for terasort were
created using the teragen application. Datasets for remainder
of the applications were generated by copying the 300GB
datasets of PUMA multiple times. The smallest dataset size
is 16.7TB and the largest is 61.5TB.

IV. DATA SIZE SCALING

The original design of MapReduce is based on the premise
that the framework allows application to scale over a large
commodity cluster [2]. As the types of applications that run
in MapReduce have become more diverse [3], characterizing
data scaling helps to identify application specific properties
that may or may not affect its scaling. Data size scaling
determines how applications scale when data size changes
but the cluster resources do not. It is the most applicable
form of scaling compared to other scaling such as scale out
or scale up because once a cluster is designed its hardware
is not upgraded frequently.

Strong and weak scaling are alternative approaches to
analyze the scalability of an application. In strong scaling,
total data size is kept the same while the number of nodes is
increased. In weak scaling, data size assigned to each node
is kept constant while the number of nodes is increased.
A strong scaling application is the one whose ideal runtime
decreases proportional to the number of nodes, whereas ideal
runtime is constant in a weak scaling application. In our
study, we use a fixed map and reduce task data size similar
to weak scaling. In addition, we also perform other Hadoop
specific changes to ensure that the application’s performance
is not by affected resource contention overhead among the
map and reduce tasks. Our data scaling methodologies are
as follows.
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Applications Small Medium Large
terasort 2400 6000 9000

rankedinvertedindex 2400 6000 9000
word count 600 1200 1800

invertedindex 600 1200 1800
termvectorperhost 600 1200 1800

grep 4 7 10

Table III: Number of reduce tasks for the three data sizes.

1) Per map task computation: The data scaling exper-
iments use same default split size of 128MB for all data
sizes. Split size is the size of a block of data in HDFS. As
as map task processes one block of data, this ensures that
the computation per map task for all datasets is same. This
avoids any computation imbalance among the map tasks.

2) Per reduce task computation: While the total number
of map tasks is determined by the number of splits in the
input data, the number of reduce tasks is a user configuration
variable. Therefore, to avoid any computation imbalance
among the reduce tasks the total number of reduce tasks
is proportionately increased for all the datasets. This keeps
the data size processed by a reduce task same across all
input data sizes for an application. Table III shows the
number of reduce tasks used for all applications for all
datasets. The ratio between the number of reduce tasks for
the datasets is similar to the ratio between their sizes. For
example, the dataset size ratio for rankedinvertedindex for
medium to small dataset is 15.90TB/5.90TB=2.83, and the
ratio between the number of reduce tasks is 2400/750=3.2.

3) Application master: When the application master is
co-scheduled with map and reduce tasks in the same node,
it can cause slowdown due to increased resource contention
on the application master node. In order to minimize these
effects, we increase AM’s memory to occupy a single node.
This avoids the resource contention problem. It also ensures
that the application master has sufficient memory to keep
track and manage the large number of map and reduce
containers.

4) Parallelism and overlap configuration: Data scaling
experiments use concurrent container slot (CCS) of 16 which
runs a maximum of 16 concurrent map tasks or 4 concurrent
reduce tasks. The CCS of 16 was used in order to avoid
slowdown that may occur when running too many concurrent
map tasks. The performance effects of changing CCS values
is discussed in Section V. Additionally, slowstart value in
these experiments is 50%. This value does not cause any
adverse performance effects when used with CCS of 16.

A. Scaling results

Table IV shows that the execution time per unit data
(e.g., TS

DS
) for IO-intensive applications terasort and ranked-

invertedindex increases as the dataset size increases. For
terasort, the execution time per unit data for large is 126.7
seconds per terabyte (TB), which is 1.8x that of 71.4 for
small. The execution time per unit data steadily increases

for terasort as dataset size increases from small to medium
to large. Terasort does not scale well with the increase
in data size. Computation per unit data increases as data
size increases. Rankedinvertedindex has similar results for
execution time per unit data for increasing dataset size.

In contrast, for Balanced and CPU-intensive applications
(wordcount, invertedindex, termvectorperhost, and grep) Ta-
ble IV shows that computation per unit data remains closely
similar as dataset size increases. The computation time is
within 1.2x for the small and the large datasets for all the
four applications. For wordcount and invertedindex, the cost
per unit data increases by 1.2x, for termvectorperhost it
decreases by 1.2x and for grep it decreases by 1.04x. This
implies that as the data size increases these applications
scale well. Below, we perform resource usage analysis to
understand why the three categories of applications show
different scaling behaviors.

B. Resouce usage analysis

Table V shows the average values of CPU, disk IO,
and network usage of a node in the cluster. The CPU
utilization, shown as CPU in the table, is the average user
CPU value. CPU utilization of a system is divided into
user, system, iowait, and idle. The table shows the user
CPU usage because it represents time spent on CPU by
user programs and the main user program running in the
AWB cluster is Hadoop. There are two types of disk IO
shown in the table. IO in the table represents the average
of bytes read and written to disks throughout the entire
application run. IOM in the table represents the average
only during the map phase execution. The main reason to
include both disk IO values is to distinguish between the
effect of reduce phase on the overall throughput. Most IO
operations are performed on map phase. Due to this reason,
as reduce phase becomes longer for larger datasets, the
average IO throughput decreases when averaging over the
entire duration of an application’s execution. The network
utilization, shown as Net in the table, is measured by taking
the average of network input and output bytes during the
reduce phase of an application. We avoid including map
phase time in the network average calculation because of the
non existent network usage during map phase. Paragraphs
below explain the results for each of the resource values.

CPU usage. CPU usage of all six applications are fairly
similar for all the datasets. For example, CPU usage values
of grep are the highest at 65%, 65%, and 64%. With same
value for CCS and SS, the number of containers running at
any moment during the application’s execution is similar for
all datasets. This results in similar CPU usage values. CPU
usage values in map phases are relatively higher than the
averages shown in the table. This is because reduce phase
is less CPU intensive than map phase.

IO usage. The average disk utilization during map phase
(IOM ) of all six applications are also fairly similar for all
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Applications Small Medium Large
DS (TB) TS (s) TS

DS
DM (TB) TM (s) TM

DM
DL (TB) TL (s) TL

DL

terasort 17.60 1257 71.4 43.90 4479 102.0 61.50 7791 126.7
rankedinvertedindex 16.70 1115 66.8 38.60 3385 87.7 55.30 6068 109.7

wordcount 19.40 761 39.2 38.30 1790 45.8 57.70 2778 47.6
invertedindex 19.40 756 39.0 38.30 1893 48.6 57.70 2775 48.1

termvectorperhost 19.40 1462 75.4 38.30 2550 66.6 57.70 3566 61.8
grep 19.40 702 36.2 38.30 1348 35.2 57.70 1988 34.5

Table IV: Completion times (TS , TM , TL) and computation time per unit data for data sizes.

Applications CPU (%) IOM (MB/s) IO (MB/s) Net (MB/s)
S M L S M L S M L S M L

terasort 22 21 18 219 219 215 188 130 112 89 63 45
rankedinvertedindex 28 24 25 211 200 207 172 123 107 94 64 46

wordcount 50 40 42 99 76 87 85 76 81 31 37 27
invertedindex 61 54 48 95 85 72 91 77 67 41 32 34

termvectorperhost 47 44 42 82 72 65 43 46 50 15 17 29
grep 65 65 64 67 70 68 63 66 63 5 6 6

Table V: Average resource utilization of a single node in AWB (Datasets: S=small, M=medium, L=large).

datasets. The values for the IO-intensive applications are
particularly significant as both their input and output data
size is relatively high. Terasort IOM is 219 MB/s, 219
MB/s, and 215 MB/s for small, medium, and large datasets
respectively. Rankedinvertedindex shows similar values. This
suggests that as the dataset size increases, the disk IO
throughput is not affected. This is because the IO operations
are mostly performed in map phase, and with the same CCS
and SS values, there is no additional IO load during map
phase for any of the datasets. Another disk throughput value
(IO), which is the average for both map and reduce, is lower
than the corresponding IOM . This is more noticeable for
larger datasets because reduce tasks do not perform much
IO operations and the longer reduce time for larger datasets
lowers the average value.

Network usage. Out of all applications, for the two IO-
intensive applications – terasort and rankedinvertedindex,
the network throughput decreases as the dataset size in-
creases. For terasort, the network usage for small is double
that of large. Similarly, for rankedinvertedindex, the network
usage halves from 94 MB/s to 46 MB/s for large dataset
compared to the small one. For the remaining four Balanced
and CPU-intensive applications, network throughput remains
similar for all dataset sizes and are not as different as for
IO-intensive applications.

Figure 1 shows the network usage of terasort throughout
its execution for the three datasets. It also shows that the
even though the number of concurrent reduce tasks and
reduce input size is same, the network usage peaks at
140MB/s, 100MB/s, and 75MB/s respectively for the three
datasets.

In summary, the data scaling results showed that Balanced
and CPU-intensive applications scale proportionally to the
increase in dataset size. But, IO-intensive applications do
not. The resource usage analysis showed significant decrease
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Figure 1: Network usage of IO-intensive application terasort.

in network throughput for IO-intensive applications, whereas
other applications did not show such decrease. CPU uti-
lization and IO throughput for all applications were fairly
similar. This suggests that IO-intensive applications suffer
slowdown with increase in dataset size due to the decrease
in overall network throughput.

V. PARALLELISM AND OVERLAP

Our previous study on a 10-node cluster shows that IO-
intensive application performanace is better with lower map
task parallelism, Balanced applications with higher, and
CPU-intensive with medium map task parallelism [8]. In
this work, we repeat this systematic study of performance
of applications for different CCS values on a large cluster.
Additionally, we also study the effect of map and reduce
overlap by changing the values of slowstart (SS). As men-
tioned before in Section II-B, a high CCS may result in
CPU or IO bottleneck due to too much parallelism, whereas
a low CCS results in too little parallelism resulting in
underutilization of CPU and IO resources. Similarly, a high
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(a) Terasort.
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(b) Rankedinvertedindex.
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(c) Wordcount.
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(d) Invertedindex.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 8  12  16  20  24  28  32  36

N
o

rm
a

liz
e

d
 p

e
rf

CCS

SS-75

SS-75

SS-25
SS-5 SS-25 SS-25

(e) Termvectorperhost.
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(f) Grep.
Figure 2: Best performing combinations of CCS and SS for all six applications.

SS value, which has less overlap between map and reduce
tasks, can result in excess time spent copying data after map
tasks have completed as well as increase in overhead to
store intermediate data. In contrast, a low SS value can start
reduce tasks too early leading to starvation of the reduce
tasks. As reduce tasks do not process the data until output
of all map tasks are available, they occupy containers that
decreases the effective parallelism for map computation and
lowers utilization.

Figure 2 shows the normalized performance values for
CCS and SS combinations for all six applications for the

small dataset. The normalized performance value for a CCS
and SS combination is the relative completion time when
compared to the fastest time. For the experiments, CCS
values range from 12 to 32 in increments of 4. CCS values
below 12 and above 32 are not included in this paper
because they never were the best case. SS values used in the
experiments are 5, 25, 50, 75, and 100. The default value
of SS in Hadoop is 5 and the maximum value for SS is
100. The CCS value is shown on the x-axis. Each vertically
aligned point represents a test at that CCS with a different
SS value. The best performing SS value for each CCS is
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labelled in the figure. For readability, other points are not
labelled. The y-axis cuts off at 50% slowdown. Points > 1.5
are not plotted. The performance effects of these parameters
are explained below.

IO-intensive. Figures 2a and 2b show the best CCS
and SS values for IO-intensive applications terasort and
rankedinvertedindex. For terasort, CCS of 16 and 24 perform
best with SS at 100 and 5, respectively. For rankedinverte-
dindex, the best CCS and SS values are 24 and 5. A SS
of 5 lowers the map task parallelism because reduce tasks
occupy containers that would otherwise go to maps. On the
other hand, when SS is 100, there is no map and reduce
overlap, therefore map tasks occupy all the containers.
IO-intensive applications perform better with lower map
task parallelism [8]. Therefore, these applications have best
performance in two cases – low SS with high CCS and high
SS with low CCS. The figure shows this behavior.

Balanced. Figures 2c, 2d, and, 2e show the best
CCS and SS values for Balanced applications wordcount,
invertedindex, and termvectorperhost. For wordcount, the
best CCS and SS values are 28 and 50. For invertedindex,
they are 20 and 50. For termvectorperhost, they are 20 and
25. These values show the best CCS is either 20 or 28 and
best SS is either 25 or 50. This suggests that Balanced region
applications have best CCS values close to the number of
CPU threads and SS values in the medium range.

CPU-intensive. Figures 2f shows the best CCS and SS
values for CPU-intensive application grep. It has the best
CCS and SS of 20 and 75. The best CCS of CPU-intensive
region is comparable to Balanced region but the best SS
value is higher at 75. As the reduce input of grep is
very small, there is no benefit with early shuffle. Therefore
the best SS is higher. CPU-intensive applications perform
better with map parallelism close to the number of CPU
threads [8]. Therefore, with CCS 20, map parallelism is
close to the number of CPU threads of 24. One interesting
observation is for CCS of 28 and 32 where the best SS is 5.
This happens because, as discussed earlier, starting reduce
tasks early decreases map task parallelism. With SS 5, the
effective map task parllelism for CCS of 28 and 32 is closer
to that at 20.

In summary, all six values of CCS and all five SS used in
the experiments were best for at least one application. This
indicates that applications have different suitable levels of
parallelism and overlap. Therefore, it is necessary to know
how to select these values to obtain best performance. Our
findings show that, IO-intensive applications terasort and
rankedinvertedindex have best performance for lower CCS,
higher SS and higher CCS, lower SS. Balanced applications
wordcount, invertedindex, and termvectorperhost have best
performance for medium CCS and SS values. CPU-intensive
application grep has best performance for medium CCS
value and higher SS value.

Applications #maps #reduces 2GB 3GB 4GB 5GB 6GB 7GB
terasort 359559 6000 M M O P P X

rankedinvertedindex 335355 6000 M M O P P X
wordcount 317661 1200 M O P X X X

invertedindex 317661 1200 M O P X X X
termvectorperhost 317661 1200 M O P P X X

grep 317661 7 M M O X X X
M: failure during map
O: failure during map and reduce overlap
P: partial failure
X: Successful completion

Table VI: Different memory sized AM for medium dataset.

Applications INFO WARN ERROR
Count % Count % Count %

terasort 26416168011 99.98 3235387 0.01 32059 0.00012
rankedinvertedindex 24921335221 99.98 2995487 0.01 31203 0.00013

wordcount 25842415754 99.99 2968107 0.01 708 0.000003
invertedindex 25879040993 99.99 2966992 0.01 31409 0.00012

termvectorperhost 27540728526 99.99 2971957 0.01 807 0.000003
grep 27563866911 99.99 2979514 0.01 383 0.000001

Table VII: Number and percentage of INFO, WARN, and
ERROR log messages for large dataset.

VI. EXPERIENCES ON THE LARGE CLUSTER

Our study of AWB helped to shed light on issues that
are not apparent in smaller clusters. This section describes
two experiences gained from the study of AWB. These
experiences show issues related to application performance
in a large cluster.

A. Application master sizing

As described in Section II-A, an AM negotiates for con-
tainers with resourcemanager and coordinates the execution
of map and reduce tasks in the allocated containers. When
processing large datasets, an AM may run out of memory
due to the tracking needs for the large number of map
and reduce tasks. Table VI shows the completion status for
medium dataset by AM size. The CCS and SS settings are 16
and 50. The default memory size of AM is 2GB. For 2GB,
AMs of all applications fail during map phase. They run
out of memory. For 3GB also all applications fail. However,
three of them fail due to out of memory exceptions during
overlap of map and reduce phase. If an AM fails, YARN will
run it one more time. We denote a run that succeeds on an
AM restart as a partial failure. For 4GB, three applications
partially fail. For the three applications, the second time
AM is run, the applications complete successfully. 1 All
applications run successfully consistently only for 7GB AM
size. Our study shows that, appropriately sizing AM is
crucial to successful completion of an application.

1The partial failure is an empirically observed result and was not
consistently repeatable. A “P” in the table indicates at least one time a
partial failure was observed. It does not imply the result is always a partial
failure.
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B. Log aggregation

Map tasks, reduce tasks, and application master generate
logs during execution. YARN aggregates these logs by
copying them from nodemanagers to HDFS. There are eight
log levels in Hadoop, which in order of increased verbosity
are OFF, FATAL, ERROR, WARN, INFO, DEBUG, TRACE
and ALL. The default verbosity level is INFO. For a large
cluster such as AWB, the log level of INFO produces large
amount of log information. The log size for large dataset is
5TB and small is 50GB. Having large amount of log helps
to troubleshoot an application. On the other hand, it creates
an overhead of storage and HDFS traffic that may interfere
with the application reading and writing operations.

Table VII shows the breakdown of the log types when
using INFO log level for large dataset. With INFO log level,
an application produces logs with INFO, WARN, ERROR,
and FATAL levels. Each application generates around 26
billion INFO log lines, which is around 99.99% of the total
log data. Next smaller log type is WARN, which is around
0.01%. The number of ERROR logs are very less, around
one thousandth of a percentage. This shows that INFO log
level is highly verbose, whereas as the next log level WARN
is highly sparse. This suggests that an intermediate log level
that provides relevant troubleshooting information may be
necessary to reduce the log data size.

VII. CONCLUSION

In this paper, we evaluated three different aspects of
running a MapReduce application on the 540-node Pivotal’s
AWB Hadoop cluster. The first evaluation shows that the
CPU and IO characteristics of an application determines
in whether an application may or may not scale when
the datasize increases. We found that Balanced and CPU-
intensive applications scale proportionally to the increase
in data size, whereas IO-intensive applications do not. The
resource usage analysis shows that for IO-intensive appli-
cations the slowdown is caused by decrease in network
throughput. The second evaluation shows applications re-
quiring different amounts of parallelism (CCS) and overlap
(SS) to minimize completion time. The third evaluation
shows two observations - the application master memory
size is determined by the dataset size and the default log
level of INFO produces large log size and is not suitable for
a large cluster. Our findings in this paper thus have helped
to understand data scaling behavior, performance effects of
parallelism and overlap, and expected issues when running
MapReduce applications in a large cluster.
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