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Abstract
This paper introduces an abstraction to enable unified treatment to
distance-related problems. It offers the first set of principled under-
standing to automatic algorithmic optimizations to such problems.
It describes TOP, the first software framework that is able to auto-
matically produce optimized algorithms either matching or outper-
forming manually designed algorithms for solving distance-related
problems.

1. Introduction
A class of important problems involve certain kinds of distance
calculations. They appear in various domains, including machine
learning (e.g., KMeans, KNN), graphics (e.g., shortest path), im-
age processing (e.g., 3D construction), scientific simulation (e.g.,
N-body simulation), and so on. Due to the different natures of the
various problems, their distance calculations differ in many aspects,
such as their definitions, patterns, constraints, purposes, and con-
texts of the distance calculations. None the less, calculation of the
distances among a large number of points is typically the perfor-
mance bottleneck in solving these problems.

Researchers in those domains have devoted decades of efforts to
create some clever algorithms to optimize the distance calculations.
These efforts have been problem-specific. The resulting algorithm
works for one problem but not others, while coming up with such
algorithms usually take the domain experts lots of deep thinking,
theoretical analysis, and empirical measurements. It is evidenced
by the large number of papers published in the premium venues in
those domains; each of them describes just one particular design of
such algorithms. For instance, in the recent 10 years of top machine
learning conferences, there are more than 20 papers on developing
algorithms to optimize distance calculations for KMeans (e.g., [5,
10, 10, 16, 25–27]).

The objective of this work is to replace the need for such man-
ual efforts with an automatic framework. We present Triangular
OPtimizer (TOP), a framework that enables automatic algorithmic
optimization for various distance-based problems. With TOP, users
only need to use a set of API to specify the distance problem; TOP
can then automatically create an optimized algorithm for minimiz-
ing the distance calculations in solving the problem. TOP is ap-
plicable to all problems involving distance-based calculations that
meets the Triangular Inequality condition (explained later), regard-
less of the domains, definition of distances, distance calculation
patterns, usage of the distances, and so on. Its result matches or
outperforms the algorithms manually designed by the domain ex-
perts. With TOP, decades of manual efforts by the domain experts

could have been saved; it makes it much easier to create optimized
algorithms to solve new distance-based problems.

The key insight underlying TOP is that all previous algorith-
mic inventions for optimizing distance calculations in the various
domains are essentially just variations of the usage of triangular in-
equality to avoid unnecessary distance calculations. Accordingly,
we propose a simple abstraction to formalize various distance-
related calculations in a unified manner. The abstraction allows a
systematic examination of all kinds of scenarios related with dis-
tance computations, which in turn, leads to a spectrum of algo-
rithmic optimizations along with some automatic mechanisms for
selecting the best optimizations based on certain properties of the
problem. We turn all these findings into a runtime library, the in-
vocations of which in a program would automatically enable effec-
tive avoidance of unnecessary distance calculations for an arbitrary
distance-related problem (that meets the triangular inequality con-
dition).

Along with the library, we equip TOP with a set of API and
a compilation module. Through the API, programmers can easily
specify the distance problem, based on which, the compiler mod-
ule derives important properties of the problem, and inserts neces-
sary calls to the runtime library such that at runtime, unnecessary
distance calculations can be effectively detected and avoided.

Our experiments show that TOP is able to produce algorithms
that match or beat the algorithms that have been designed by do-
main experts. It is able to generate new algorithms for problems on
which no prior work has applied triangular inequality optimizations
and achieves 237X speedups.

Overall, this work makes the following major contributions:

• Abstraction: It offers an abstraction that unifies various distance-
related problems to enable the first systematic study over them
as a single class.
• Algorithmic Optimizations: It develops the first set of princi-

pled analysis on how triangular inequality should be applied to
a spectrum of distance-related problems, presents seven crys-
talized principles, reduces the optimization design into two
key questions (landmark selection and comparison ordering),
and reveals a strand of insights in effective design of distance-
related optimizations.
• TOP Framework: It builds the first software framework that is

able to automatically apply algorithmic optimizations on the fly
for distance-related problems.
• Results: It shows that the automatic framework can yield algo-

rithms that match or outperform manually designed ones. Some
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Figure 1. Example distance problems.

of the algorithms have never been proposed for the distance-
related problems by domain experts.

2. Examples for Intuition
To help convey the intuition behind TOP for optimizing distance
calculations, we first describe two example problems that involve
distance calculations and point out some unnecessary distance cal-
culations in them.

KMeans is a popular clustering technique. It tries to group some
points into K clusters. It runs iteratively. It starts with K initial
centers. In each iteration, it labels every point with the center that
is closest to it, and then uses the average location of the points in a
cluster to update its center. It stops when the centers stop changing
across iterations. In the default KMeans algorithm, each iteration
has to compute the distances between every point and every center
in order to find the center closest to every point. It is not necessary.
Consider Figure 1 (a), where, c′1 is the center of point q in the
previous iteration and c′1 gets updated into c1 at the end of the
previous iteration; c′2 and c2 are the centers of another cluster in
the two iterations. If we can quickly get the upper bound of the
distance between q and c1, denoted as d(q, c1), and the lower bound
of d(q, c2), we may compare them first. If the former is smaller than
the latter, we can immediately conclude that c2 is not possible to be
the new center for x and avoid computing d(q, c2). That condition
often holds as only a few points actually switch their clusters in
most iterations of KMeans. The lower bound and upper bound can
be more efficiently obtained than the exact distances. For instance,
the upper bound of d(q, c1) can be obtained through triangular
inequality on d(q, c′1) and d(c1, c

′
1), two already known distances;

we will elaborate on this point in Section 4.
P2P is a second example. It is a graphic problem that tries to find

the shortest path between two points in a directed graph. During the
search for the shortest path among all paths between the two points,
one can avoid a path if the lower bound of its length is greater than
the length of the shortest path encountered so far.

3. Unifying Abstraction
Although both involve some kind of distance calculations, the two
examples described in the previous section differ in many aspects,
including their domains (machine learning versus graph process-
ing), natures of problem (iteratively putting points into groups ver-
sus finding a path in a graph), ways distances are calculated, and
purposes and constraints of distance calculations. It is hence not
a large surprise that even though both problems involve unneces-
sary distance calculations, no research has tried to find commonal-
ities in the two problems and provide a general solution for them
or other distance-related problems. Our survey finds many papers
that have been published on proposing new algorithmic designs for
helping each of the two problems avoid unnecessary distance cal-
culations ([5, 7] for KMeans, [11, 15] for shorestPath). Similarly,

we have seen such problem-specific manual efforts in many other
distance-related problems, even for some problems residing in the
same domain (e.g., KNNjoin [23, 30] and KNN [14, 28]).

Despite the differences among these problems, they are all re-
lated with distance calculations. A key view motivating this study
is that if we can have an abstraction to which such distance-related
problems can all map, we may be able to derive an automatic
approach to automatically creating optimized algorithms for such
problems through analyses and manipulations at that abstraction
level.

Abstraction In this work, we instroduce the notion of abstract
distance-related problem. It is defined as follows:

An abstract distance-related problem is an abstract form of the
problems that aim at finding some kind of relations between two
sets of points, a query set and a target set; the relations are about
a certain type of distances defined between the two sets of points
under a certain set of constraints. We denote such a problem with
a five-element tuple (Q,T,D,C,R). We explain the five elements
as follows:

• Q: the query set of points. It may contain one or more points
in a space of a certain dimension. It is the central entity of the
relations of interest.
• T: the target set of points. It is the other party of the relations of

interest.
• D: a type of distance between points.
• C: constraints related with the problem. They can be about the

connectivity between Q and T, available memory in the system,
or some other conditions. A special condition is whether the
distance problem of interest involves many iterations of update
on Q or T. If so, we call the problem an iterative distance
problem.
• R: the relation of interest between Q and T. It is about the

distances between those points, such as the lower bound of the
distance, the closest targets to a query point, and so on.

Mappings from the Concrete The abstraction unifies various
distance-related problems into a single form, making automatic al-
gorithmic optimizations possible. Table 1 presents how six impor-
tant distance-related problems in various domains can be mapped
to the abstraction form. Each of the six problems has been ex-
tensively studied in its specific domain, but they have never been
treated together in a unified manner. We next explain them and the
mapping briefly.

KNN is a problem that tries to find the K target points that
are closest to a query point. The first row in Table 1 shows how
it maps to our abstract distance-related problem. As shown in the
“instantiation” part of the table, we use “x” for a single point (the
query), and “S” for a point set (the target). The distance could be
Euclidean or other distances, the constraint is that the memory cost
should be within a given budget, and the relation of interest is to
find K points from S that are closest to x. KNNjoin is similar to
KNN except that its Q is a set of query points.

We have described KMeans in the previous section. It maps to
our abstraction well. The set of points to cluster is Q, the center
set in each iteration is T (the superscript in St in Table 1 stands
for iterative update of centers), its constraints include the iterative
property besides the memory limit, and the relation of interest is
the closest target for a query point.

ICP is a technique for mapping the pixels in a query image
with the pixels in a target image. It is an iterative process. In each
iteration, it maps each pixel in a query image with a pixel in the
target image that is the most similar to the query pixel, and then
transforms the query image in a certain way.

As the previous section describes, P2P is a graphic problem that
tries to find the shortest path between two points (one in Q, the
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Table 1. Six Important Distance-Related Problems
Problem Domain Description Instantiation

KNN Data Mining Finding the K nearest neighbors of a query
point

Q={x}, T=S, D*: Euclidean, C: mem<M, R: K points in S closest
to x

KNNjoin Data Mining Finding the K nearest neighbors of each
query point

Q=S1, T=S2, D*: Euclidean, C: mem<M, R: K points in T closest
to each point in Q

KMeans Data Mining Clustering query points into K groups Q=S1, T=St, D*: Euclidean, C: mem<M & repeated invocations,
R: the point in T that is closest to each point in Q

ICP Image Processing Matching two images Q=S1
t, T=S2, D*: Euclidean, C: mem<M & repeated invocations,

R: the point in T that is closest to each point in Q
P2P Graphics Finding the shortest path between two points

on a directed graph
Q=S1, T=S2, D: path length, C: mem<M & graph connectivity, R:
lower bound of the distance between query and target

Nbody Physics Simulate movements of particles caused by
their interactions

Q=St, T=St, D: Euclidean, C: mem<M & repeated invocations, R:
set of points in T that are no farther than r from a query point

S, S1, S2 are all sets of points, which may be identical or different; superscript t means that the set could get dynamically updated; x is one point; D* can be defined as other types
of distance; r is a constant give beforehand.

other in T) in a directed graph. Q and T are two sets of points on
that graph, the graph connectivity is a special kind of constraint
for it, the relation of interest is the lower bound of the path length
between two points.

Many algorithms have been manually designed specifically for
each of the five problems for avoiding unnecessary computations:
KNN [8, 14, 19, 28], KNNjoin [4, 9, 23, 30, 32], KMeans [5, 7, 16,
25], ICP [12], P2P [11, 15].

Nbody is a technique for simulating the movement of many
particles. It has many variations. The one used in this study is as
follows. In each time step, it computes the forces imposed on a
particle by all particles located within a certain range of the query
point, and then updates the position of the particles accordingly. Its
Q and T are the same, the set of particles, which gets updated in
each iteration.

4. Algorithmic Optimizations
With the abstraction offering a unified representation of the vari-
ous distance-related problems, it becomes possible to extract the
essence of the various manually designed optimizations to those
problems, and reason about the principled ways for optimizing
distance-related problems.

An important insight from this work is that all the previously
proposed solutions are essentially just certain capitalization of tri-
angular inequality in the context of the specific problem. In this sec-
tion, we first give a formal presentation of triangular inequality—
the fundamental vehicle for all the optimizations, and then discuss
some basic conditions under which triangular inequality could help
avoid unnecessary distance calculations for distance-related prob-
lems. After that, we present seven principles we attain for effective
capitalization of triangular inequality, which serve as the founda-
tion for TOP, our automatic algorithmic optimization framework.

4.1 Triangular Inequality (TI): Concepts and Implications
We give the formal definition of TI as follows:

Definition 1. Let a, b, c represent three points and d(a, b) repre-
sent the distance between a and b; triangular inequality (TI) states
that d(a, c) ≤ d(a, b) + d(b, c).

Although TI does not hold for all kinds of distances, it holds
for many common ones (e.g., Euclidean distance). It provides an
easy way to compute both the lower bound and upper bound of
the distance between two points as follows. Figure 2 offers the
illustration.

|d(a, b)− d(b, c)| ≤ d(a, c) ≤ d(a, b) + d(b, c) (1)
Formula 1 offers the fundamental connection between TI and

distance-related problems. Intuitively, if the lower or upper bound
of the distance between two points could be used in place of their

ca

b

|d(a,b) - d(b,c)|  d(a,c)  d(a,b) + d(b,c) 
Figure 2. Illustration of distance bounds obtained from Triangular
Inequality with b serving as a landmark.

exact distance in solving a distance-related problem, the bounds
provided by Formula 1 may save the calculation of their exact
distance.

But how the saving could help may not be immediately clear.
As the formula shows, to get either the upper or lower bound of
the distance between two points “a” and “c” in order to save the
calculation of the distance d(a, c), we need two distances d(a, b)
and d(b, c). So at the first glance, there seems to be no benefits
but extra cost to use the bounds. However, when we consider the
context of distance-related problems, the benefits become easy to
see. It relates with the concepts of landmark and distance reuses
that we introduce next.

Landmarks and Distance Reuses Recall that in the distance-
related problem this paper defines earlier, there are two sets of
points, Q and T . Suppose that the objective is to find out the
upper bounds of the Euclidean distances between every point in
Q and every point in T. We compare two methods. The first directly
computes all the distances between the two point sets; there would
be O(|Q| ∗ |T |) distances to compute. The second picks a point
x (e.g., randomly selected from Q or T), computes the distances
between x and every point in Q and T, and then applies TI to obtain
the upper bounds: d(q, t) ≤ d(q, x) + d(t, x). The number of
distance computations would be O(|Q|+ |T |), much smaller than
in the first method when |Q| and |T | are non-trivial. We call x an
intermediate point or a landmark. Using more than one landmark
can help tighten the obtained bounds (to be elaborated in the next
section.)

We further examine the reasons for the saving. Fundamentally,
the saving comes from reuses of the distances between a point and
a landmark. The computations of the upper bounds between each
point in Q and a point t in T all use d(t, x) (i.e., |Q| reuses), and
similarly, the computations between a point q in Q and each point
in T reuses d(q, x) by |T | times. We call such reuses spatial reuses,
formally defined as the reuse of distances across points.

3 2015/1/10



Besides spatial reuse, temporal reuse can also help exploit TI
for distance-related problems. As mentioned in Section 3, some
distance-related problems involve iterative update to either Q or T.
It is possible to use the counterpart (q′) of a point in the previous
iteration as the landmark for that point (q) in the current iteration. If
the distance between q′ and a target point t, d(q′, t), and the move-
ment of the point between the two iterations, d(q′, q), are known
(or properly estimated), the bounds of d(q, t) can be computed with
TI directly; no extra distance calculations would be needed. Such
distance reuses across iterations are called temporal reuses.

4.2 Principles for Optimization Designs
With landmarks and distance reuses, one can better understand the
underlying reasons for TI to be able to help with distance-related
problems. But to tap into the full potential of TI, it is essential
to design the optimization to fit the given problem. Given that
distance-related problems may vary in every component listed in
Section 3, there is no single design that fits all. This section presents
a set of design principles obtained throughout our research.

Applicability First of all, we list the basic conditions a distance-
related problem should meet such that TI optimizations can apply:

• Problem Condition The solution of the distance-related prob-
lem must involve some kinds of comparisons of distances
among points.
• Distance Condition The definition of the distance involved in

the comparisons must obey triangular inequality.

The Problem Condition comes from the inequality nature of TI,
while the Distance Condition is necessary for TI to hold. Many
distance-related problems, including all the example problems dis-
cussed in Section 3, meet the conditions.

Design Objective and Dimensions There are two primary con-
siderations when designing a TI optimization: optimization quality
and cost. The quality is about how much computation the optimiza-
tion can help avoid. It is determined by both the tightness of the
distance bounds offered by TI (i.e., how close the bounds are to
the exact distance) and the way the bounds are used in solving the
distance-related problem. The cost is mainly about the space and
time overhead introduced by the TI optimizations. TI optimizations
usually require some computations and auxiliary space to work.
The objective of TI optimization design is to maximize the quality
while minimizing the time overhead and confining the space cost
to an acceptable level (e.g., below a memory budget).

One of the most important findings in this work is that al-
though the best design of TI optimizations is different for differ-
ent distance-related problems, a systematic approach is possible to
be developed to automatically determine the appropriate design for
a given problem. Moreover, the many aspects in the design of TI
optimizations can be crystallized into two dimensions: how land-
marks are defined and how they are used in distance comparisons.
We next explain each of the two dimensions, along with seven prin-
ciples for design of TI optimizations, which are the foundation of
our framework TOP.

4.2.1 First Dimension: Landmark Definition
Definition of landmarks determines the tightness of the computed
distance bounds, as well as the cost of TI optimizations. We first
explain some principles for effective definitions of landmarks, and
then provide the whole taxonomy of definitions applicable to each
category of distance-related problems.

Principle I: A good landmark for a pair of points should be close
to either of the two points. That would help make the computed
bounds close to the exact distance. We prove it as follows. Appar-
ently, the closer lower bound and upper bound are to each other,

the tighter the bounds are. According to the definition of TI, for
two points a and b and a landmark c, the upper bound of the dis-
tance d(a, b) through TI is d(a, c)+d(b, c), while the lower bound
is |d(a, c) − d(b, c)|. Their difference is 2 ∗min(d(a, c), d(b, c)).
Therefore, the closer the landmark c is to either a or b, the tigher
the bounds are.

Principle II: Having more than one landmark can help TI tighten
bounds, if the closestLandmark information is given. ClosestLand-
mark information is about which landmark is closest to each point
of interest. This principle directly follows Principle I: More land-
marks, more choices, and the closestLandmark information allows
TI to operate on the landmark that produces the tightest bound
among all landmarks. In some cases, such information is easy to
obtain and free to get, but in some other cases, it requires some
computations to obtain, which could add extra cost to TI optimiza-
tions. Priniple IV will elaborate on this point.

Principle III: A landmark hierarchy can help strike a good trade-
off between cost and quality. Principle II says that more landmarks
could help tighten bounds, but they could also increase the time and
space overhead. A landmark hierarchy help address the dilemma
by having more than one levels of landmarks. The bottom level has
a relatively larger number of landmarks while a higher level has
fewer; each landmark at a higher level represents a group of lower-
level landmarks. Use of the fine-grained landmarks at the bottom
level may help obtain a tight bound in some critical situation, while
use of the coarse-grained landmarks at the higher levels in other
situations may help reduce the space and time overhead.

Figure 3 exemplifies the benefits of a landmark hierarchy. What
it shows is a small step in KMeans clustering that tries to find the
center closest to a query point q. Centers get updated in each iter-
ation of KMeans. In Figure 3, we use a broken-line circle to rep-
resent the location of a center in the previous iteration—which, we
call the ghost of the center. For instance, C′

1 is the ghost of C1 in
Figure 3. A possible landmark hierarchy is to use the ghosts of all
centers as the low-level landmarks, and treat a group of low-level
landmarks that are nearby as a high-level landmark. For instance,
the broken-line oval at the top of Figure 3, G′

2, is a high-level land-
mark corresponding to the two low-level landmarks it contains. The
usage of the two levels of landmarks is as follows. The low-level
landmark C′

1 is used to compute the upper bound of the distance
between q and C1, the new position of the center that was closest
to q in the previous iteration; the bound is UpBound(q, C1) =
d(q, C′

1) + d(C′
1, C1). A high-level landmark is used to compute

the lower bound of the distance between q and the group of centers
corresponding to the landmark; the bound, LowBound(q,Gi), is
computed as the difference between LowBound(q,G′

i) and the
maximal distance that the centers in G′

i have moved since the previ-
ous iteration. If UpBound(q, C1) < LowBound(q,Gi), no cen-
ter in Gi is impossible to be the center closest to q, and hence, no
need to compute the distances between q and those centers. This
example uses the low-level landmarks to ensure the tightness of
UpBound(q, C1) because it is used in the comparisons with all
lower bounds. It uses the high-level landmarks for lower bounds
calculation to reduce the space and time overhead: Fewer lower
bounds LowBound(q,G′

i) need to be recorded than using low-
level landmarks for lower bounds computations, and also, fewer
lower bounds need to be updated across iterations. The example
demonstrates the potential benefits of having a landmark hierarchy.

Principle IV: For iterative distance-related problems in which the
locations of points in Q or T change slowly across iterations, the
locations of the points in the previous iteration shall be considered
as landmarks for the current iteration. We call the counterpart of a
point in the previous iteration as the ghost of the point in this itera-
tion. Using ghosts as landmarks has two advantages. First, it natu-
rally leverages temporal reuse of distances because the distances (or
distance bounds) from ghosts to some points are typically known
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in the previous iteration. These distances can be useful in the com-
putation of distance bounds in the current iteration (as illustrated
in Figure 3.) Second, the ClosestLandmark information comes for
free: The ghost of a point is usually the landmark close if not closest
to that point when points move slowly across iterations.

Principle V: For non-iterative problems or the first iteration of
an iterative problem, using some landmarks to leverage spatial
reuse is often beneficial. One method is to cluster point in Q or
T to create such landmarks. An alternative is to randomly select
some points in Q or T as the landmarks. Although it can create
the landmarks faster than clustering, the random method needs
to pay the cost to find out the ClosestLandmark information. In
comparison, such information comes with the clustering process
in the first method. The clustering method finds landmarks better
representing the points and hence is able to give tighter bounds. The
clustering can be lightweight; we just run KMeans for 5 iterations
and use the centers as the landmarks in our experiments.

Taxonomy of Landmark Definitions Guided by those five princi-
ples, we come up with a taxonomy of landmark definitions, shown
in Figure 4. The graph shows the classifications of various distance-
related problems into five categories based on whether the problem
is iterative, whether Q equals T, and which point set gets updated
across iterations (if the problem is iterative). A set of landmark def-
initions suite each of the categories. We explain each of them as
follows and then discuss how they are selected for a given distance-
related problem.

• 1L1M, 1L2M, 2L1M, 2L2M: In these definitions, “L” stands for
“level”, “M” stands for “landmarks”. In all of them, there are
a number of landmarks created through simple clustering as
Pinciple V mentions, and these landmarks are at a low fine-
grained level.
In “1L1M”, the computation of the bounds of the distance be-
tween a query point and a target point is through one landmark
(just like what Figure 2 shows), which shall be close to the

target point. In “1L2M”, the computation is through two land-
marks, one shall be close to the query point, the other close to
the target point, as illustarted in Figure 5. Both “1L1M” and
“1L2M” leverage spatial reuses of the distances between points
and landmarks and between landmarks. They differ in the num-
ber of distances needed to compute. To compute the bounds
between all pairs of query and target points, “1L1M” requires
(m∗z+n) distances (z for the number of landmarks): It needs
to compute the distance from every query point to every land-
mark, and the distance from every target to its closest landmark.
On the other hand, “1L2M” requires (m+n+zq ∗zt) distances
(zq and zt for the numbers of landmarks closest to queries and
targets respectively) since it needs the distance from each query
or target to only its closest landmark, and the distances be-
tween query-side landmarks and target-side landmarks. When
landmarks are much fewer than queries and targets, “1L2M”
needs fewer distances. However, the bounds given by “1L2M”
are usually not as tight as “1L1M” gives.
The landmark definitions in “2L1M” and “2L2M” are similar to
those in “1L1M” and “1L2M”, except that they also use high-
level coarse-grained landmarks in addition to the low-level fine-
grained landmarks. As explained in Principle III, the landmark
hierarchy may offer better tradeoff between cost and benefits
than the 1-level definitions do. The difference between “1L1M”
and “1L2M” is just whether one or two landmarks are used in
bounds computation. Although it is possible to have a hierarchy
with more than two levels of landmarks, we have not observed
much extra benefit with that increased complexity.
All these four definitions leverage spatial reuses. They suite
non-iterative distance problems as well as the first iteration of
iterative distance problems. The rest of definitions are specific
to other iterations of iterative distance problems.
• Tghost, Qghost: These two definitions use either the ghosts of

targets or queries as the landmarks, depending on which set gets
updated across iterations (and hence has ghosts). As Principle
IV mentions, using ghosts as landmarks for iterative problems
have some special advantages: the distances (bounds) from
landmarks to points are often known and the ClosestLandmark
information is often available.
• Tghost2L, Qghost2L: These two definitions are similar to

Tghost and Qghost except that a set of high-level landmarks
are introduced to complement the low-level landmarks to lower
the space and time overhead (just like the differences between
2L1M and 1L1M mentioned earlier.)
• Tset: In the Tset definition of landmarks, points in the target set
T are used as landmarks. The bounds of the distance between
q and a target point t is obtained by applying TI to q, t, and
L(q), where, L(q) is a target point close to q. This definition
works when it is known which target is close to which query
point. An example is KMeans, in which, every iteration deter-
mines the center closest to each query point. Although the cen-
ters may move across iterations, the movement is often small.
As a result, the closest center to a query point in iteration l usu-
ally remains close (if not closest) to that query point in itera-
tion l+1. This definition is not applicable to non-iterative prob-
lems because the CloseLandmark information is not available in
those problems. Usage of this definition for TI requires compu-
tation of d(q, L(q)) and d(t, L(q)); there are |Q| computations
of d(q, L(q)), and |T | ∗ |T | computations of d(t, L(q)). When
|T | << |Q|, the amount is still much less than the pair-wise
distances between Q and T.
• Tset+Tghost, Tset+Tghost2L: These two definitions are a com-

bination of Tset and Tghost or Tghost2L. The idea is to apply
TI first to Tset landmarks. If the bounds are not sufficient to
avoid the distance computation for a pair of query and target,
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q t

L1 L2

d(q,t)  d(L1,L2)-d(q,L1)-d(L2,t)
d(q,t)  d(q,L1)+d(L1,L2)+d(L2,t)

Figure 5. Illustration of how two landmarks can be used for com-
puting lower and upper bounds of distances.

Tghost or Tghost2L are then used for attaining tighter bounds
for that pair. Such a combination could be beneficial because
checks with Tset are faster to do while the bounds from Tset
are not very tight. The combination gets the best of both worlds.
Tghost2L is preferred over Tghost if space is an issue.
• TQghost2M, TQghost2L2M: TQghost2M is similar to TQghost

except that to compute the bounds of a distance, it uses two
landmarks: One is the ghost of the query, the other is the ghost
of the target. The usage of this landmark definition needs to
have the distances or their bounds between every pairs of query
and target recorded in each iteration, which could incur large
space and time overhead. TQghost2L2M includes high-level
landmarks to lower the space and time cost (in a vein similar
to 2L1M versus 1L1M mentioned earlier).
These two definitions apply only when Q=T or Q and T both get
update across iterations since in other cases, either the query or
the target has no ghost. On the other hand, the definitions that
apply to the other cases do not apply to these two cases because
those definitions all assume that either the target or the query
remains unchanged across iterations.

Selecting Landmark Definitions As Figure 4 shows, multiple
landmark definitions may apply to a distance-related problem, and
one definition can have many possible configurations (e.g., number
of landmarks).

For a given distance-related problem, the suitable landmark
definition should have an acceptable space cost and at the same time
minimize the time for solving the problem. Space cost includes
the space for storing landmarks and distances or bounds from
points to landmarks. It is mainly determined by the size of the
problem and the number of landmarks the definition uses. Given
such information, the cost can be computed analytically; during
our explanation of the taxonomy of definitions, we have already
mentioned the space cost required by them.

Execution time is more complicated. The TI optimization helps
avoid some distance calculations between queries and targets, but
also introduces time overhead, including the time for computing
distance bounds between queries and targets, distances (or bounds)
from landmarks to queries or targets, and extra comparisons among
bounds and distances for avoiding distance calculations. The ben-
efits and costs depend on the size of the problem, the number of
landmarks, but also the locations or distributions of the queries and
targets. It is more difficult to compute the time cost and benefit
analytically. One option is to use runtime sampling to model the
distributions of the points, based on which, it infers the amount of
distance computations each definition may avoid and estimates the
time benefits and cost accordingly. Due to its complexity, we leave
this option for future study. In this work, we instead use a sequence
of rules obtained empirically for definition selection. These rules
are not intended for optimal selections, but offer a simple way to
make good selections in practice.

The rules together form a selection algorithm. For lack of space,
we omit a thorough discussion to the Appendix, where the type and
number of landmarks are decided.

4.2.2 Second Dimension: Comparison Order
Besides landmark definition, another important dimension for TI to
work effectively is how the bounds TI produces are used, particu-
larly, the order of using the bounds for distance comparison. For
example, one wants to find a target closest to a query q. Let dmin

be the shortest distance currently found between q and targets. For
a target t, before computing d(q, t), one can first check whether the
lower bound of d(q, t) (obtained through TI) is larger than dmin

and skip computing d(q, t) if so. In this example, the comparison
order refers to the order in which the targets are checked. If the
order is an ascending order of the lower bounds of d(q, t) among
all t, the check can stop immediately when it encounters one target
whose lower bound is greater than dmin: All the remaining targets
must have lower bounds greater than dmin as well because of the
ascending comparison order.

Our analysis gives the following two principles regarding com-
parison order. They help not just save distance comparisons, but
avoid computing unnecessary lower bounds at the first place. The
principles apply to a set of targets that share a landmark—that is,
the landmark used would be the same if one wants to apply TI to
compute the distance bounds between a query point and each of
the targets. An example is when Tset is used as landmarks for
KMeans. For a given query, all targets share the same landmark
(i.e., the landmark closest to the query).

Principle VI: When the objective of distance comparisons is to
find the targets closest to the query, the comparison order should
be the ascending order of the distances from the targets to the
landmark if the landmark is closer to the query than to the targets,
and should be the descending order of the distances otherwise.

Principle VII: When the objective of distance comparison is to
find the target farthest from the query, the comprison order should
be the descending order of the distances from the targets to the
landmark.

Principle VI ensures that the order is the same as the ascending
order of the lower bound of the distances from target to query.
To see it, one just need to notice that the lower bound equals
d(l, t) − d(l, q) if the landmark is closer to the query, and equals
d(l, q) − d(l, t) otherwise (where l for landmark, t for target, and
q for query). Principle VII ensures that the order is the same as
the descending order of the upper bound of distances from target
to query. It is because the upper bound equals d(l, t) + d(l, q) no
matter where l is.

When the two principles are used for distance comparison,
many targets that are impossible to be the closest or farthest could
be skipped from consideration. If a target is skipped from consid-
eration, its distance from the query need not get computed, and at
the same time, the computation of the lower bound of the distance
from it to the query can be also skipped since the two principles use
the distance from targets to landmarks rather than the lower bounds
for ordering.

5. TOP Framework
To translate the abstraction and optimizations into applicable tools,
we design a software framework named TOP (which stands for
triangular optimization). TOP consists of three components: a set
of API that users can use to formally define a particular distance-
related problem, a runtime library that implements the principles
and rules for creating optimized algorithms to fit the user-defined
distance problem, and a compiler module that helps the runtime
obtain necessary information.

5.1 API
Due to the space limit, we leave the API section to Appendix. With
our API, users can easily define their distance-related problem in
a way that it can be analyzed and handled by the TOP compiler

6 2015/1/10



module and runtime. The key point of these API is to express the
algorithm in terms of the five components we defined before: query
set Q, target set T, constraints C, distance definition D, and inter-
point relations of interest R.

5.2 Runtime Library
The runtime library consists of three parts. The first part is for se-
lecting and configuring landmark definitions. At its core is a func-
tion pickLandmarkDef that implements the algorithm for selecting
and configuring landmark definitions as what was shown in Fig-
ure 9 in Section 4. Runtime invocation of this function will de-
termine the landmark definition suiting the particular problem in-
stance. The second part is for materializing the TI optimizations. It
contains a set of functions that implement the TI-based optimiza-
tions for the various kinds of relations listed at the bottom part of
the TOP API. For each of the relation, a number of versions are
created with each as an optimized algorithm based on one type of
landmark definition. Each of them records necessary bounds or dis-
tances for the TI to work, and applies TI by drawing on the land-
marks to avoid as many distance computations as possible. These
first two parts of the TOP runtime library form the low-level API
of TOP. The third part of the library is the implementations of the
TOP API in Figure 10, which we call the high-level API. The im-
plementation of each high-level API at the bottom section of Fig-
ure 10 contains some condition checks such that it invokes the cor-
rect TI-optimized algorithm by calling the right low-level API func-
tion contained in the second part of the library.

For instance, the second part of the library contains 15 func-
tions that each implements a TI-based algorithm to find the clos-
est targets for a query point. They all try to use TI to estimate
the lower bound of the distance between a query point and a tar-
get and avoid computing their distances if the lower bound is
larger than the current minimum distance. They differ in what land-
marks are used for getting the lower bounds, and in the opera-
tions related with the maintainence of the landmarks. Invocation of
TOP findClosestTargets selects one of them based on the category
of the current problem and the definition of the landmarks that has
been selected. For the KMeans example shown in Figure 11, one
of the versions corresponding to the four definitions in category 2
will be selected depending on the result of the function pickLand-
markDef.

The versions in the library subsume existing manually designed
problem-specific algorithms that leverage TI. They often go beyond
them thanks to the taxonomy we obtain through this systematic
treatment to distance-based problems. Section 6 will show that
the outcome from TOP optimizations either match or beat prior
manually designed algorithms.

5.3 Compiler Module
The main functionalities of the compiler module are two-fold. First,
it inserts invocations of some low-level API calls (e.g., pickLand-
markDef) into the original program. Second, it analyzes the code
to determine whether the problem is iterative and which data set
gets updated across iterations. It passes these information to the
runtime library by inserting several low-level API calls before the
invocation of pickLandmarkDef. In the similar way, it helps inform
the TOP runtime library other necessary information (e.g., size and
dimensionality of data sets) that are collected at runtime. The im-
plementation of the compiler is based on LLVM [20].

6. Evaluation
TOP is an powerful automatic tool that can be applied to various of
distance related problems. To demonstrate its efficacy, we ran it on
six algorithms and compared their performance with the manually
optimized versions developed in previous paper. Both the generated
algorithm from TOP and manually optimized versions are in C++.

Table 2. Averaged Ratio of Eliminated Compuations
Problem TOP Previous Works

KNN 92.98% 92.98%
KNNjoin 95.56% 95.55%
KMeans 92.84% 96.83%

ICP 99.63% 97.53%
P2P 93.22% 93.22%

Nbody 99.44% 0

For each problem, we tested both versions on the same set of
inputs, most of which are coming from those used in previous
paper. As each pair of algorithms follow the same semantics and
would generate the same results when same inputs and running
configurations are used, the quality of results is not a problem here.
Instead, we would focus on the performance of algorithms.

6.1 Efficiency
Triangle inequality optimization, as we discussed, is to eliminate
redundant computations in the program. For some of them, like
KNN, kmeans, it is to remove unnecessary distance computations
through high quality lower bound and upper bound computations.
While for others, like P2P, it is to accelerate the search process
with good estimation of the distance(path) between two points. In
our experiments, we report both the left computations, and average
running times for both set of algorithms. The concept of computa-
tions can be different for different algorithms, for example, for Knn,
Kmeans, KNN, ICP, Nbody, it is the number of distance computa-
tions; and for P2P, it is the number of visited vertices. Measurement
of such computations is machine-independent and a good measure
of algorithm performance, especially when these computations are
the most time consuming part in the original algorithm. We also re-
port the average running times of both set of algorithms to provide a
better understanding of practical performance when the algorithms
are ran on a specific machine, where the amount of computation
and memory sources are limited.

6.1.1 Pruned Computations
Table 2 gives the averaged ratio of computations that are elimi-
nated by our TOP framework and previous works, where the de-
fault non-optimized version is used as the baseline. In particular,
the default implementation of P2P is based on Dijstra’s algorithm
to compute the shortest path between two points. As we did not find
any previous work for Nbody, we set its previous work is set to be
the same as the default version. Table 2 shows that generally both
versions demonstrate great ability to eliminate redundant computa-
tions. Among them, TOP and previous works of KNN [28], KN-
Njoin [23] , P2P [11] give similar pruning power; TOP performs
better for ICP [12] and Nbody; while Previous work on Kmeans
[7] shows better ability to remove redundant distance compuations.
Figure 6 further shows the exact computations being carried out
for these six problems. Each point in the figure stands for one par-
ticular input setting and its performance under the manually opti-
mized version and our TOP framework. The reference line indicates
where both versions carry out the same number of computations. In
other words, points above the refline suggests where the manually
optimized version eliminates more computations than that gener-
ated by our TOP framework, and vice versa. With further analysis
of the generated codes, we found that the better performance for
ICP and Nbody comes from good usage of both spatial and tem-
poral optimization, especially the latter, where historical informa-
tion are recorded and used to further enhance eliminate redundant
distance computations. For Kmeans, the manually optimized ver-
sion from paper also records the distances from previous iteration,
which obeys the basic rule of our temporal optimization, however,
it requires large memory space, in that it has to record the distance
from every query point to every target point (cluster center) from
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Figure 7. Speedup of averaged running time over default imple-
mentations

previous iteration, and as a consequence, limits its applicability. For
inputs with larger k — the size of the target set, such overhead can
be much larger than the original input size and can not fit in the
memory. Points on the y-axis of figure 6 is a result of such case. On
the other hand, our version from TOP framework takes the memory
size of the specific machine into account. And through grouping, it
reduces the space overhead and enhance the applicability.

6.1.2 Running times
Figure 7 shows the running times for six pairs of algorithms under
the same set of inputs, which are used in figure 6. As expected,
these two figures show close correlations, and five out of six algo-
rithms give the same trend of performance. However, such trend
gets reversed for Kmeans, where our TOP shows shorter running
time for most of the inputs. With further test and analysis, we found
the reason of good performance of our TOP version as follows. Due
to the strong pruning of both our and the manually optimized ver-
sion, most of the distance computations get pruned, and as a re-
sult, distance computation is no longer the dominate cost of the op-
timized version. In comparison, updating these historic distances,
along with comparisons between the upper and lower bounds be-
come an important cost. With grouping, our TOP framework re-
duces such costs and improves the overall performance.

6.1.3 Elasticity
Temporal optimization provides good ways to pick up the interme-
diate point set, and further, through reusing of the historic distance
results, it shows great power of pruning redundant computations.

Generally speaking, the more distance information we maintained
across iterations, the more redundant computations we can elim-
inate. However, with more distances maintained across iterations,
we need more space to store them, and more cost to update and
check them. Fortunately, our grouping strategy provides a solution
to strike a balance between the pruning power and the overhead.
Figure 8 shows the overall running times as the function of the
number of groups of the query set, and each curve in the figure
stands for the performance of one special input. As expected, fig-
ure 8 demonstrates that by increasing the number groups, the over-
all running time first decreases, then increases when the number of
groups further increases. Three iterative algorithms, ICP, Kmeans
and Nbody, for which temporal optimization are applied, give the
same trend of performance changes. In our TOP framework, the
number of groups are decided automatically, based on the size of
memory and size of the query and target set. On average, the run-
ning time based on such strategy is within 13% percentage from
the best performance by varying the number of groups.

We also carried out two case studies to show how different
algorithmic option affect the performance. Due to the space limit,
we put two of them into the Appendix.

7. Related Work
Triangle inequality has been used for many distances related prob-
lems, like the six algorithms we discussed in the paper. For lack
of space, we omit a thorough discussion of all the previous works.
And our discussion will focus on these six algorithms and the ver-
sion we used in the paper for comparison.

K nearest neighbor (KNN) queries is an important problem in
spatial databases, e.g., road networks. Many researches has focused
on this problem to accelerate the search process. Generally, these
existing work are based on either different kinds of tree structures
[18, 21], or triangle inequality [14, 28]. In [28], Xueyi relies on
the latter and compares his algorithm to the previous k-d tree and
ball tree implementations, and shows better overall performance.
In particular, it uses Kmeans to partition the target point set. And
the distance from the query point to the target point are estimated
through the landmark in each partition based on triangle inequality.

Knnjoin can be regarded as a combination of the k nearest
neighbor query and the join operation, and it is widely adopted by
many data mining applications as a primitive operation. To compute
distances among a large amount data is an important problem and
has been investigated through various perspectives [23, 30, 31]. In
[23], Lu suggests to partition both query and target into groups and
compute bounds of distance between query and target point through
landmarks they are assigned to, based on triangle inequality. As
a result, instead of computing the exact distance between every
pair of query and target points, bounds of distances are used as
substitutions when possible.

KMeans, as a method of clustering multidimensional data, has
been used in various areas, e.g. bioinformatics, astrophysics, vector
quantization, and computer vision. Various prior efforts try to im-
prove naive kmeans [22], both in terms of speed and cluster quality,
as discussed in [1, 7, 17, 24]. Among them, Kanungo’s work [17]
based on k-d tree and Elkan’s work [7] based on triangle inequality
are the two main branch that focus on improving the speed. The
former is good for lower dimensional data, while the later shows
good performance across inputs with all dimensional data. In the
paper, we use Elkan’s algorithm as the previous work for compar-
ison. Elkan uses the triangle inequality to to compute one upper
bound and k lower bounds per each data point. By recording and
efficiently updating these bounds across iteration, it avoids calcu-
lating the explicit distance between a point and a center, whenever
the lower bound is larger than the upper bound, and results in sig-
nificantly acceleration of kmeans.

Iterative Closest Point Algorithm (ICP) is is the most widely
utilized range data processing method. It iteratively finds the best
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mapping between two overlapping surfaces and uses the mapping
to guide the transformation. One of the main drawbacks of the
algorithm is its quadratic time complexity O(n2) with the number
of points n. Various of previous work has been used to accelerate
the process [12, 13] . In [12], Greenspan demonstrates how to uses
triangle inequality to find the mapping between two sets of points
efficiently and their results are better than previous strategy based
on k-d tree and Elias methods. In their implementation, each query
point uses its best mapping — closest target point from last iteration
as the bridge, to estimate its distance to other query points. As the
query set is fixed across iteration, the cost of computing distances
among target point can be amortized.

Point to point (P2P) shortest path problem is a fundamental
problem with numerous applications, e.g. providing driving direc-
tions for GPS devices. Traditional way to search for the shortest
path is based on Dijkstra’s algorithm [3]. Obviously it is not a ef-
fective solution, later work tries to improve the efficiency by re-
ducing the number vertices along the search path. Lower bounds of
path between two vertices are found important and are utilized in
different works to accelerate the search process [11, 15]. In [11],
Andrew uses A*, combined with lower bounds computations based
on triangle inequality to improve the efficiency and achieves great
speedup, and this is also the one we used for comparison.

Nbody simulation [6] studies the evolution of a dynamical
system of multiple particles, under the influence of physical forces.
It has been used for various problems in the area of physics and
astronomy. Due to the large number of particles in the system,
computations of interactions between every two particles would be
huge and sometimes unaffordable. Various of previous work has
been done to improve its speed [2, 29]. In particular, when the
force are short-ranged, it is possible to use the neighbor list, which
includes all points within a certain radius to guide the simulation.
Previous work to accelerate neighbor list computation process is
based on cell lists [29], which is similar to tree structure used in
previous algorithms. We did not find any previous work based on
triangle inequality and findings here could be a good alternative
solution.

8. Conclusion
This paper presents an effort to enable automatic algorithmic opti-
mizations for distance-related problems. It develops the first set of
principled analysis on how triangular inequality should be applied
to a spectrum of distance-related problems. The resulting frame-
work TOP is able to produce algorithms that either match or beat
manually designed algorithms for a list of important problems.
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A. Appendix
A.1 Landmark Selection
Based on the rules we learn, we develop a selection algorithm as
show in Figure 9. For category 1, the algorithm uses 2-level land-
marks if the platform is a distributed system, and 1-level otherwise.
The number of top-level landmarks in the 2-level case equals the
number of computing nodes on the platform. Regarding whether
TI should be applied with one or two landmarks each time, the
algorithm first examines how many landmarks the space budget
allows if the one-landmark scheme is used. If it is too few (less
than

√
(|Q|)), the one-landmark scheme is unlike to offer tight

distance bounds, and the two-landmark scheme should used. Be-
cause the two-landmark scheme does not require as many distances
to be stored as one-landmark scheme requires, the space budget
could allow more landmarks created and hence offer tighter dis-
tance bounds.

For category 2, the algorithm first decide whether Tset should
be used. Since Tset needs the computation of the distances between
every pair of targets, it applies only when |T | is small (less than
0.01∗ |Q|). After that, the algorithm tries to decide whether Tghost
or Tghost2L should be used in case that the bounds from Tset are
not tight enough. One condition is whether there are enough space
for Tghost. If so, d, the number of dimensions of the data space,
is checked. Tghost is used only if d is large enough (no smaller
than 1000). Otherwise, Tghost2L is used. The condition on d comes
from the following reason. Tghost may avoid more distance calcu-
lations than Tghost2L does because it always use low-level land-
marks for bound computations. However, it adds more bound com-
putations and distance checks than Tghost2L does—Tghost2L do
bound computations and distance checks only once for a group of
rather than every low-level landmarks. So, Tghost is better only if a
distance calculation is much more costly than a bound computation
or check. The cost of a distance calculation is mainly determined
by the number of dimensions of the data space, hence the condi-
tion. Treatment to category 3 is the same as to category 2 except
that Qghost or Qghost2L rather than Tghost or Tghost2L is used.

For categories 4 and 5, the main question is whether 1-level or
2-level landmarks should be used. The conditions to check are the
same as those checked for determining the number of landmark
levels in category 2.

After the type of landmark definition is determined, function
“configure” sets up the number of landmarks to generate. For cat-
egory 1, the number of low-level landmarks is 2

√
|Q| for the

query set and 2
√
|T | for the target set. Such numbers come from

previous domain-specific explorations [23, 28], which each stud-
ies only a specific distance-related problem, but finds the same
choice of the number of landmarks that works well. If two lev-
els are used, the number of landmarks at the top level equals the
number of computing nodes in the distributed system. For the
other categories, the number of low-level landmarks either equal
to |T | or |Q| since the landmarks are just their ghosts. When the 2-
level scheme is used, the number of the top-level landmarks equals√

2 ∗
√
|X| ∗ |X|/10, where X should be replaced with T or Q

depends on which set the landmarks are created for. This formula
is a combination of the considerations for the spatial and temporal
reuses. Recall that for iterative problems, we exploit spatial reuse
for the first iteration and temporal reuse for the future iterations.
The first part of the formula, 2 ∗

√
|X|, is the best number of land-

marks for it (as discussed in category 1, which leverages only spa-
tial reuse). The second part of the formula, |X|/10, is a generally
good choice for temporal reuse as discovered in our experiments.
The formula is to get a geometric mean of the two.
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input: query set Q, target set T , number of dimensions of the data
space d, space budget Budget, category of the problem cat.
if cat==1 then

// to use 1-level or 2-level landmarks
L=1;
if distributedPlatform then

L=2;
end if
// to use 1 or 2 landmarks as intermediate points
M=1;
nMax=maxLandmarks(Budget, cat, L, M, |T |, |Q|);
if nMax<

√
|Q| then

M=2;
end if

end if
if cat== (2 ‖ 3) then

// to decide whether Tset is to be used
useTset=false;
if |T | < 0.01 ∗ |Q| then

useTset=true;
end if
// to select Tghost/Qghost or Tghost2L/Qghost2L
if cat==2 then

spaceNeeds = estimateSpaceCost(Tghost, |T |,
|Q|,useTset);

else
spaceNeeds = estimateSpaceCost(Qghost, |T |,
|Q|,useTset);

end if
L=1;
if spaceNeeds>Budget ‖ d<1000 then

L=2;
end if

end if
if cat==(4 ‖ 5) then

// to select TQghost2M or TQghost2L2M
spaceNeeds = estimateSpaceCost(TQghost2M, |T |, |Q|);
L=1;
if spaceNeeds>Budget ‖ d<1000 then

L=2;
end if

end if
// to set the number of landmarks based on space budget
configure(Budget, cat, L, M, |T |, |Q|);

Figure 9. Algorithm for selecting landmark definitions.

A.2 API
We introduce a small set of API, with which, users can easily define
their distance-related problem in a way that it can be analyzed and
handled by the TOP compiler module and runtime. The API in
our current implementation is intended to be used with C or C++
languages; it can be easily modified to work with other languages.

As Section 3 lists, there are five components of a distance-
related problem: query set Q, target set T, constraints C, distance
definition D, and inter-point relations of interest R. The API con-
tains entries for specifying each of them, as summarized in Fig-
ure 10. It includes some predefined structures for a data point and a
point set. It has a cost matrix structure TOP costMat for expressing
connection constraints among points (e.g., points in a graph). Let
M be a TOP costMat; if M [i, j] >= 0, there is an edge from
point i to point j with edge weight equaling M [i, j]; otherwise,
no edge between them. It is symmetric if the graph is undirected.
There are some other structures defined for representing sparse ma-
trices or graphs, which are not shown in Figure 10. There are some
APIs to faciliate users in constructing cost matrices which are omit-

Predefined structures:
TOP_point, TOP_pointSet, TOP_costMat, …

API for Constraints:
TOP_update (TOP_pointSet S, int * changedFlag, …);
some facilities for cost matrix construction;

API for Distance:
TOP_defDistance (enum); 
TOP_defDistance (TOP_point, TOP_point, TOP_costMat);

API for Relation:
TOP_getLowerBound (TOP_pointSet, TOP_pointSet, TOP_costMat);
TOP_getUpperBound (TOP_pointSet, TOP_pointSet, TOP_costMat);
TOP_findClosestTargets (int, TOP_pointSet, TOP_pointSet, TOP_costMat);
TOP_findFarthestTargets (int, TOP_pointSet, TOP_pointSet, TOP_costMat);
TOP_findTargetsWithin (float, TOP_pointSet, TOP_pointSet,TOP_costMat);
TOP_findTargetsBeyond (float, TOP_pointSet, TOP_pointSet, TOP_costMat);

Figure 10. Core APIs defined in TOP.

/*Goal: Cluster points in S into K classes with T containing all cluster centers
S: a set of query point to cluster.
T: a set of target point, that is, the cluster centers.
N: a set of index of points. |N|=|S|.*/

… // declarations
TOP_defDistance(Euclidean);
T = init();
changedFlag = 1;
while (changedFlag){
      N = TOP_findClosestTargets(1, S, T);
      TOP_update(T, &changedFlag, N, S);
}

Figure 11. KMeans written in TOP API.

ted in Figure 10. In addition, the API for constraints contains a
TOP update function, which users may implement to update a point
set S. Its returned value in ”changedFlag” indicates whether the
point set gets actually updated. This function helps compiler and
runtime determine whether the distance problem iteratively updates
a point set and which set it is. The API for distance definition in-
cludes a function to specify the distance in the problem if it is one
of a set of predefined distances (Euclidean etc.) that are amenable
to TI. It has another function which users may implement to de-
fine their own distances. It would be the users’ responsibility to
ensure that the distance is amenable to TI. Automatic inference of
the property could be possible, but not in the current implementa-
tion of TOP yet. The final part of the API is for specifying the kind
of relations of interest between query points and target points. TOP
currently includes four basic relations: get the lower bound of a dis-
tance, get the upper bound of a distance, find a certain number of
targets that are closest or farthest to a query point, find all the tar-
gets that reside within or beyond a certain distance from the query
point. There are some variations of some of the API functions that
are elided in Figure 10 (e.g., using a sparse cost matrix). Using the
API to define a distance problem is simple. Figure 11 illustrates
the usage of TOP API by showing the important part of KMeans
written in the API.

A.3 Case studies:
A.3.1 Spatial vs Temporal Optimization for ICP
Among our investigation, there is no prior study that combines the
spatial and temporal optimization for a single problem. But upon
our investigation, we found two advantages of such combinations:
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Figure 12. Averaged number of distance computations per itera-
tion with spatial and temporal optimization

first, it reduces the starting-up cost for transitional usage of tem-
poral optimization. Take Kmeans as example, the manually opti-
mization version from previous paper does not optimize the first
iteration, where distances from every query and target points are
calculated. Its main purpose is to get a tight bound of these dis-
tances and improve the pruning power of later iterations. But we
find that for those far-away target points, there is no need to get
such tight bounds anyways, in that, the slightly relaxed bounds,
obtained from spatial optimization, would already give great prun-
ing power. Second, temporal optimization is great to apply when
the changes of query/target set are small across iteration, this can
be easily satisfied for most iterative algorithm, especially for their
later iterations. However, for the first one or several iterations, it is
still common that the changes of query/target set is relative large,
and as a result, the performance of temporal optimization is not
as good as spatial optimization. Figure 12 shows a case study of
the ICP algorithm, where both spatial and temporal optimization
are used. We found that for inputs we tested, our TOP framework
chooses spatial optimization for the first iteration and temporal op-
timization for the later iterations. And three bars in figure 12 shows
the averaged number of distances per iteration for the default, our
spatial and temporal optimization. Here default refers to the naive
implementation, where distance between every query and target
points are computed. It shows that the spatial optimization removes
over 90% percentage of distance computations, but still maintains
a good quality of bounds for later temporal optimization, for which
there is less than one distance computation for each query point on
average.

A.3.2 Ordering inside Group for KNN
As discussed, ordering of points inside each group could be ben-
eficial in that the transverse of points can be terminated earlier. In
figure 13, we studied how ordering would affect the performance
for KNN. We compared the averaged running time of two ver-
sions on a set of inputs: first one is automatically selected version
from our TOP, where points inside each group is ordering descend-
ing based on its distance to the landmark; second is the one we
manually implemented, for which only the maximum distance is
recorded for each landmark. Figure 13 shows that by adding this
ordering, the first version outperforms up to 3.89X better than the
second version. Besides, we tried three options of k —the number
of neighbors— for each input. It can be seen that speedup decreases
with increasing of k. It is easy to understand, in that the possibility
for a point to be one of the k nearest neighbor increases with larger
k. And based on our empirical study, we find that the speedup di-
minishes when k reaches the size of group.

Due to the space limit, we will not show how the dimension
d of point affect the ordering here. But the conclusions are as
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Figure 13. Running times as a function of the number of groups/-
landmarks

the follows: speedup gained from ordering would decrease with
increasing d, and such speedup would diminish when d reaches√
n, where n is the size of target set. Reasons are as follows: with

ordering, the most we can save is O(n) bounds computations and
comparisons, while the number of distance computations at least
is O(2

√
n), where 2

√
n is the number of landmarks. When the

cost on distance computations is much larger than cost of bounds
computations, then ordering would not help.

12 2015/1/10


	Introduction
	Examples for Intuition
	Unifying Abstraction
	Algorithmic Optimizations
	Triangular Inequality (TI): Concepts and Implications
	Principles for Optimization Designs
	First Dimension: Landmark Definition
	Second Dimension: Comparison Order


	TOP Framework
	API
	Runtime Library
	Compiler Module

	Evaluation
	Efficiency
	Pruned Computations
	Running times
	Elasticity


	Related Work
	Conclusion
	Appendix
	Landmark Selection
	API
	Case studies:
	Spatial vs Temporal Optimization for ICP
	Ordering inside Group for KNN



