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Abstract

This paper presents Yinyang K-means, a new algorithm for K-
means clustering. By clustering the centers in the initial stage, it
leverages efficiently maintained lower and upper bounds between a
point and centers, it more effectively avoids unnecessary distance
calculations than prior algorithms do. It significantly outperforms
the classic K-means and the prior known alternatives (Elkan’s,
Hamery’s and Drake’s accelerated algorithms) consistently across
all experimented data sets, cluster numbers, and machine configu-
rations. The consistent superior performance—plus its simiplicity,
elastic control of space cost, and guarantee in producing the same
clustering results as the standard K-means does—makes Yinyang
K-means a drop-in replacement of the classic K-means with an or-
der of magnitude higher performance.

1. Introduction

K-means is a ubiquitous algorithm for clustering. Given a set of
d-dimensional data, K-means partitions the data into k sets, called
clusters, so as to minimize the within-cluster sum of square error.
Finding the optimal solution to K-means is NP-hard [1]]; however,
iterative methods based on local search, in particular, Lloyd’s al-
gorithm are often, at worst, bounded by a polynomial in the size of
the input [2]. Given an input of n data points of d dimensions and k
initial clusters, Lloyd’s algorithm gives a greedy, two-step iterative
solution. In the assignment step, the algorithm assigns all points to
the closest cluster and in the update step the algorithm updates the
each of the k cluster centers to the centroid of the points assigned
to that cluster. When n, k, or d are large, K-means is slow due to
its linear dependence on n, k, and d in the assignment and update
steps.

Various prior efforts try to improve its speed through three gen-
eral techniques, approximation[4}, [7, [12H14], structural optimiza-
tion [9, [11], and incremental optimization [3} |6l I8]. Each of these
efforts have made significant contributions. But due to their respec-
tive limitations, the classic Lloyd’s algorithm remains the dom-
inant choice in practice. The appoximation methods use various
trade-offs to approximate the output of K-means; without preserv-
ing the semantics of K-means, they cannot be used as drop in re-
placements for the exact algorithm. The other two classes of meth-
ods try to avoid some distance computations through either special
data structures (e.g., KD-Tree [9} [11]]) or the triangular inequality
of distances [5? , |6]. They lack performance consistency: meth-
ods on KD-Tree, for instance, cannot work well when d is greater

than 20 [9], while the method on triangular inequality either cannot
scale with k or perform inferiorly in some scenarios (detailed in
Section[5). We believe that a practical replacement of the classical
K-means must be easy to implement and have a consistent supe-
rior performance. Meanwhile, to inherit the level of trust K-means
has gained through its decades of usage, it is better to preserve the
semantics of the classic K-means.

This paper introduces Yinyang K-means, an enhanced K-means
that meets all the conditions. The key is in its careful but efficient
maintainence of the upper bound of the distance from one point to
its assigned cluster center, and the lower bound of the distance from
the point to other cluster centers. The interplay between the two
kinds of bounds forms a filter, through which, Yinyang K-means
avoids unnecessary distance calculations effectively. Yinyang K-
means features a space-conscious elastic design to adaptively tap
into the maximal power of the filter under various space constraints.
The name of the method is inspired by the ancient Chinese philos-
ophy, in which, yin and yang are concepts used to describe how
apparently contrary forces work complementarily to form a har-
mony. The carefully maintained lower bound and upper bound in
Yinyang K-means are respectively the yin and yang of the distance
filter. Their continuous, efficient evolvement and interplay form the
key for Yinyang K-means to work effectively.

Experiments on a spectrum of problem settings and machines
show that Yinyang K-means excels in all the cases, outperforming
the standard K-means by an order of magnitude and the fastest prior
known K-means algorithm by 1.2X to 90X. Its simplicity, elasticity,
semantics preservation, and consistent superior performance make
it a practical replacement of the standard K-means.

2. Yinyang K-means

This section describes the Yinyang K-means algorithm and de-
scribes the optimizations to both the assignment and the update
steps. These optimizations rely on the use of the triangle inequal-
ity with careful tradeoffs between the cost incurred in performing
distance calculations and the space required to apply the triangle
inequality.

Let d(a,b) represent the distance between a and b in some
metric, such as the Euclidean metric. The triangular inequality
states that d(a, ¢) < d(a,b) + d(b, ¢). In the context of K-means,
given a point z and two cluster centers b and c, the triangular
inequality gives a way to bound the (unknown) distance between x
and c given the distance between = and b and the distance between

2015/1/10



b and c:
|d(z,b) — d(b,c)| < d(z,c) < d(x,b) + d(b,c)

In particular, if b and ¢ represent centers of the same cluster in two
consecutive iterations, the bounds above can be used to approxi-
mate d(x, ¢) as shown below.

2.1 Optimizing the Assignment Step

The Yinyang K-means algorithm uses the triangle inequality to
generate distance bounds between on point to a group of clusters,
and based on the size of the group, the application of the triangle
inequality results in three optimizations: global filtering, group
filtering, and per-cluster filtering. These three optimizations differ
in the tradeoff between the gain in distance-calculation reduction
and the space overhead required to apply them.

We first introduce some notations for the following detailed
discussion. Let C be the set of cluster centers and ¢ be one cluster in
the set. For a given point z, let b(x) (for “best of z”") be the cluster
to which the point is assigned to. Let C’, ¢, and b’ (x) represent the
corresponding entities in the next iteration respectively. Let §(c)
represent d(c, ¢’)—that is, the shift of cluster center due to the
center update.

2.1.1 Global Filtering

Global filtering identifies whether a point x changes its cluster in
an assignment step with a single comparison. For each point z, the
algorithm maintains an upper bound d(z,b(x)) < wub(z) and a
global lower bound Ib(z) < d(z,c), Ve € C — b(x). One way
to initialize these bounds is to use the distance to the best cluster
center as the upper bound and the distance to the second-closest
cluster center as the lower bound.

Lemma 1 (Global-Filtering Condition). A point x in the cluster
b = b(x) does not change its cluster after a center update if

Ib(z) — max d(c) > ub(z) + 4(b)

Proof. Consider a cluster ¢ € C'—b. Let ¢’ be its new cluster center
after a center update. Let b’ be the new cluster center of the cluster
b. The proof follows from the fact that the r.h.s above is a new upper
bound on d(x, b") and the L.h.s is a new lower bound on d(z, ¢) for
all other clusters ¢’.

By triangle inequality, we have d(x, ') > d(z, c) — d(c, ')
d(z,c) — 6(c) > d(z,c) — maxcec 6(c). Similarly, d(x,b")
d(z,b) + §(b) < ub(z) + 6(b). Thus d(z, ") < d(z, ).

CIA 1

Essentially, Lemma [1] states that it is unnecessary to change
the cluster assignment of a point unless the cluster centers drift
drastically. Applying this lemma requires computing the Js for each
cluster at the end of each iteration, which requires O (k*d) time and
O(k) space, in addition to maintaining an upper and lower bounds
for each point requiring O(n) space.

One challenge in applying the lemma, of course, is to efficiently
maintain the upper and lower bounds across iterations. The proof
of the lemma already suggests a way to do so: Ib'(z) = Ib(z) —
maxcec 6(c) and ub’(x) = ub(z) + §(b). This update requires no
need to compute the distances between any point and any center. It
is employed in the algorithm.

Despite its simplicity in terms of additional space and time
required, our experiments (Secton [5) show that the global filtering
alone is sufficient to reduce 69.6% of the distance calculations on
average.

2.1.2 Group Filtering

Our experiments also suggest that the efficiency of global filtering
can dramatically reduce in the presence of big-movers — cluster

centers that drift dramatically in a center update. Even a single big-
mover reduces the lower-bound for all points, making the global-
filtering ineffective.

This section provides group filtering, a method similar to the
global filtering but having the effects of these big-movers re-
duced. Group filtering partitions the k clusters into ¢ groups
G = {G1,Gq,...,G}, where each G; € G contains a set of
clusters. This partitioning is done once before the beginning of
the first iteration. It then applies the global filtering condition to
each group. Specifically, for each group (e.g., G;) it keeps a group
lower bound Ib(z, G;) < d(z,c), Yc € G; — b(zx) for each point
x. Similar to global-filtering, Ib(x, G;) is initialized with the dis-
tance to the closest cluster in G; other than b(z) and updated by
W' (z,G;) = Wb(z,G;) — maxeea, 0(c). If W' (x, Gi) > ub'(z),
where ub’(x) is the new upper bound computed in the global-
filtering optimization, then a variant of Lemma [I] shows that x is
not assigned to any of the clusters in G;. If G; has no big-movers
in an iteration, then all its clusters can be filtered in the assignment
step.

The paramter ¢ provides a design knob for controlling the space
overhead and redundant distance elimination. Group filtering re-
duces to global filtering when ¢ is set to 1. When ¢ increases, the
filter uses more space for more lower bounds, and spends more
time on maintaining the lower bounds, but meanwhile limits the
effects of big movers more and hence avoids more distance calcu-
lations. Our experiments show that when k/40 < ¢ < k/10, the
method gives competitive results. Our design further considers the
amount of available memory: ¢ is set to k/10 if space allows; 0.w.,
the largest possible value is used. This space-conscious elastic de-
sign helps tap into the benefits of Yinyang K-means under various
space pressure as Section [3] will show. There are various ways to
partition the & clusters into ¢ groups, for instance, randomly divid-
ing them to ¢ groups. Our investigation shows that clustering on the
initial centers is a good choice. Compared to random distribution, it
benefits more from the locality of the centers and thus, yields better
performance. Such partition is a one-time job, only needed at the
beginning the first iteration. Repartitioning, while feasible, did not
help as observed in our experiments.

2.1.3 Local Filtering

If a group of cluster centers go through the group filter, one of the
centers could be the new best center for the data point of interest.
Rather than computing the distances from that point to each of
those centers, we design a local filter to further avoid unnecessary
distance calculations.

Lemma 2 (Local-Filtering Condition). A center ¢ € G cannot
be the closest center to a point T if there is a cener p' # ¢’ (p’ does
not have to be part of G;) such that

d(z,p) < lb(z,Gy) — 6(c).

Proof. This lemma follows from the triangle inequality. d(z, ¢’) >
d(z,c) — d(c, ") > Ib(x, G;) — &(c) > d(z,p’). Thus, the point
p’ is closer to x than ¢’ is. O

The lemma allows us to skip the distance calculations for cen-
ters that meet the condition. When a center goes through the local
filter, our algorithm computes its distance to the point . The small-
est distance of all the centers in G will then be used to update the
group lower bound Ib(z, G}).

When applying the local filter, it is tempting to use the so-far-
found closest center as p’. Even though it taps into the full potential
of the filter, our experiments found that using the so-far-found
second closest center as p’ consistently gives better overall speed of
Yinyang K-means (up to 1.6X speedup): The slightly more distance
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calculations it entails help tighten the group lower bounds, which
in turn reinforce the group filter in the next iteration.

It is worth noting that the local filter requires no extra lower
bounds than what the group filter maintains, and hence adds no
extra space overhead.

2.2 Optimizing the Center Update Step

The update step computes the new center for each cluster. With
the assignment step gets optimized, this step starts to weigh sub-
stantially, but no prior work has optimized it. We enhance it also
by leveraging the fact that only some points change their clusters
across iterations. Rather than averaging across all points in a clus-
ter, it avoids some points by reusing the old centers as follows:

d=(exVI=( Y 9+

yeVv—ov

ooV

y' evV/ -0V

where, V'’ and V represent a cluster in this and the previous iter-
ation, OV is VN V', c and ¢’ are the old and new centers of the
cluster. All variables on the righthand side of the formula are just
side product of the optimized assignment step.

This new update algorithm involves fewer computations than
the default update if and only if less than half points have changed
their clusters. An implementation can check this condition in each
iteration and use the new algorithm when it holds. However, in our
experiments on real data sets, we have never seen an violation of
the condition.

3. Algorithm

Putting the group filter, local filter, and new center update algorithm
together, we get the complete Yinyang K-means as follows.

e Cluster the initial centers into ¢ groups, {G;|i = 1,2,--- ,t}
by running K-means on just those centers. We found no need
for that K-means to converge; five iterations are enough for
it to produce reasonable groups while incurring no much time
overhead.

e Run the standard K-means on the points for the first iteration,

record one upbound ub(x) and ¢ lower bounds {lb(x, G1), Ib(z, G2), .

for each point z as described in Section 2.1.2}
e Repeat until convergence:

= Update centers based on Section compute drift of each
center, and record the maximum drift for each group.

* Group filtering: For each point z, update ub(z) and Ib(z, G;)
as shown in Section Assign the temporary global
lower bound as Ib(x) = minf_; Ib(x, G;). If Ib(x) >=
ub(z), assign b’ (z) with b(x). Otherwise, tighten ub(z) =
d(z,b(z)) and check the condition again. If it fails, find
groups for which {b(z, G;) < ub(z), and pass = and these
groups to per-cluster filtering.

= Per-cluster filtering: for each point  and remaining group
Gi. Update lb(z, G;) according to Section[2.1.3] and update
b(z) and ub(x) if the point assignment changes.

4. Comparison

The work closest to ours are the prior known accelerated K-means
by Elkan [6] and Drake [5]. They also uses triangle inequality to
avoid some distance calculations, but differs from our algorithm
in some critical aspects. Compared to Elkan, our algorithm shows
great advantage in the efficiency of the non-local filter (group/-
global filter). Figure [T] shows that intuitively. Figures[I] (a) and (b)
depict the Voronoi diagrams in two consecutive iterations of K-
means. It is easy to see that if a point (e.g., the “x”) is in the grey

area in Figure (1] (b), its cluster assignment needs no update in it-
eration j+1. Elkan’s algorithm tries to approximate the overlapped
Voronoi areas with spheres as the disk in Figure|l| (c) shows. The
radius of the sphere is half of the shortest distance from the cen-
ter to all other centers. In contrast, the lower and upper bounds
maintained at each point make Yinyang K-means approximate the
overlapped areas much better, and hence more effective in avoid-
ing unnecessary distance calculations. Our experiments show that
the group filter in Yinyang K-means helps avoid at least two times
(over 80X in most cases) more distance calculations than the non-
local filter in Elkan’s algorithm; details in Section[5]

Elkan’s algorithm mitigate the inefficiency through a local filter,
which however requires k lower bounds for each point and a series
of condition checks, entailing large space and time cost as TablelT]
shows. The cost causes the algorithm to fail or perform inferiorly
in some scenarios, as next section will show.

Drake’s algorithm tries to save time and space cost of the local
filter of Elkan’s algorithm, by maintaining the lower bounds for
each point to its ¢ cloest centers. However, this design still suffers
from “big movers”, as different points have different set of ¢ cloest
centers. Besides, to maintain the increasing order of these ¢ bounds
across iteration, they sacrifice additional tightness, which further
reduces the efficency of their filters. As a result, their algorithm
only yields better performance for a limited region of k£ and d,
compared to Elkan’s algorithm.

In comparison, Yinyang K-means overcomes these limitations
through its space-conscious elasticity and more effective design of
the filters. Moreover, Elkan’s and Drake’s algorithm is only for the
assignment step, while Yinyang K-means also optimizes the center
update step.

5. Experiments

To demonstrate the efficacy of Yinyang K-means, we evaluate our
approach on a variety of large, real world data sets and compare
it with three other methods: the fastest prior known K-means al-
gorithm (Elkan [6]), Drake [S] and standard K-means. All three
algorithms are implemented in Graphlab [10]] and can run in paral-
lel, We run all three algorithms on the same data set with the same
rar{gg’qiﬂé;n&allected initial center seeds, and thus all algorithms con-
verge to the same clustering result after the same number of itera-
tions.

We use eight real world large data sets, four of which are taken
from the UCI machine learning repository [3l], while the other
four are commonly used image data sets[14} [15]. Their size and
dimensionality are shown in the leftmost columns in Table 2] (n for
number of points, d for dimensions, k& for number of clusters). We
experiment with two machines, one with 16GB memory and the
other with 4GB memory, detailed in Tables[2]and[3]

Consistent Speedup on the Assignment Step The experiments
demonstrate that Yinyang K-means provides consistent speedup
over both standard K-means, Elkan’s and Drake’s algorithm. By
consistent, we mean that our approach scales well with the size
of the data (n), dimensionality of the data (d), and the number
of clusters (k), and performs well under different levels of space
pressure. This is because of the more effective filter design, and its
space-conscious elasticity for trading off compute (by eliminating
redundant distance computations) with space (the number of lower
bounds maintained per point) so that Yinyang K-means is always
able to fit in core memory.

The middle several columns of Table [2] show the speedups of
the assignment step by the Elkan’s, Drake’s algorithm and Yinyang
K-means. In order to investigate how each algorithm scales, we test
various number of clusters (k) from 4 to 10,000. To keep a cluster
having a meaningful size, we limit k£ to no greater than 256 for
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(a) iteration i

(b) iteration i+1

(c) approx. of overlapped areas

| C
ALY .X

) A
L am===="""]s 9
N ~~~C

Il
=-a ~

A &

by our alg.

by Elkan’s alg.

Figure 1. The Voronoi diagrams in two consecutive iterations of k-means, and the approximation of the overlapped areas. The shown
approximation by our algorithm is when all centers are treated as in one group (i.e., t=1); when £ > 1, more distance calculations are
avoided. (Triangles for centers; circles for points; broken and solid lines for cluster boundaries, in the two iterations respectively.)

Table 1. Cost Comparison («: the fraction of points passing the non-local filter, and Drake’s algorithm does not have a local filter)

Algorithm | space cost — time cost . .
lower bounds maintainence non-local filtering | local filtering
Yinyang K-means | O(nxt) | O(nxt) O(n) On*xaxk)
Elkan’s [6] | O(n k) | O(n* k) O(k? x d+n) Om*axk)
Drake’s [3] | O(n *t) On*xtxa+nxkxlogt*(1—a)) | Onxt) —

the first two data sets for their small sizes. The “elastic” column in
Table [2] and Table [3] report the speedup of Yinyang K-means over
the standard K-means, where, on the 16GB machine, the algorithm
selects t = k/10 for all cases, while on the 4GB machine, as a
reaction to the smaller space, when & = 10, 000, it automatically
reduces the value of ¢ except for the two small ones (100 for data
set IV and 500 for others) so that all its executions fit in memory.
Table [3] does not show results on data set VII because it cannot fit
in memory even in the case of the standard K-means.

Elkan’s algorithm, which directly keeps & local lower bounds
for each point, is still one of the fastest known exact K-means.
In comparison, our results show that Yinyang K-means gives con-
sistent and significant speedup. The consistency manifest in three
aspects. First, unlike Elkan’s algorithm which often fails (marked
with “-”) for running out of memory when k is large due to its
n x k space overhead, Yinyang K-means scales with k and shows
even greater speedup for larger £ values. Second, when the amount
of available memory becomes smaller as Table [3] shows, Yinyang
K-means still produces substantial speedups on all data sets and
k values thanks to its elastic control of ¢, while Elkan’s algorithm
fails to run in even more cases. Finally, when d is small as in the
third data set, Elkan’s algorithm runs slower than the standard K-
means. It is because to detect an unnecessary distance calculation,
in most cases, Elkan’s algorithm requires 6 * k£ condition checks
per point, the time overhead incurred by which is even compari-
ble to the distance calculations on that point. The more effective
group filter in Yinyang K-means ensures that for most points, only
t condition checks are sufficient per point, and hence gives up to
9X speedups for that data set.

Drake’s algorithm maintains one upper bounds and ¢ lower
bounds — ¢ — 1 lower bounds for the first t — 1 closest centers, and
one for all other centers. As they mentioned in the paper, this design
can beat Elkan’s algorithm in the intermediate dimentionality 20 <
d < 120 for intermediate k, e.g. k = 50. Our technique, on the
other hand, shows good speedup in all the cases. Our speedup over
Drake’s algorithm stems from three sources: First is “big mover”.
As the k closest centers for different points are different, Drake’s

algorithm cannot afford to calculate the maximum movement of the
(k—t+1) farthest centers and instead uses the maximum movement
of all centers for updating the last lower bound, which makes their
technique suffer from “big movers”. Second is the uniformity. The
last lower bound in Drake’s is used for too many clusters (k—t+1).
If this lower bound is smaller than the upper bound, then distance to
all clusters are recalculated. In comparison, our technique provides
a much more balanced scheme. Moreover, Drake’s algorithm does
not have local filtering. We discussed how lower bound for group
of clusters can be used to generate per cluster lower bound, which
further mitigates the problem of “big movers” and eliminate more
redundant distance calculation.

Need to mention, we also check on other algorithm, that is
also based on triangle inequality, Hamerly’s algorithm [8]. It only
maintains one lower bound and one upper bound across iteration,
similar as the ¢ = 1 case described in our paper. But they do
not have any group filtering and local fiterling, or optimization for
center update. So it is overall performance is even worse than our
t = 1 case, let alone the elastic method. And due to the space limit,
we did not include the exact performance for this method.

The carefully designed group filtering of Yinyang K-means
contributes substantially to the speedup. As Table ] shows, the
filter helps avoid more than 69% of distance calculations for all
the data sets, while the Elkan’s non-local filter avoids less than
33% for three data sets and less than 10% for the other data sets.
Drake’s algorithm, as a comparison, gives a mediate filter power.
On average, its non-local filter avoids 68% distance calculations.

We also inverstigate works in the area of approximation algo-
rithm [4} [13]. Our work is orthogonal to those previous studies
and can be used in a complementary maner. The clustering results
from our algorithm are guaranteed to be the same as the results
from the original Lloyd’s algorithm. Maintaining the semantics of
the original Lloyd’s approach is powerful because the great num-
ber of practical uses of the Lloyd’s algorithm can directly adopt
our algorithm without worrying about any changes in the output. In
terms of quantitative comparison, Sohler’s work is a pure theoreti-
cal paper. Although it offers excellent theoretical results, it gives no
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Table 2. Time and speedup on an Ivybridge machine (16GB memory, 8-core i7-3770K processor)
(“-” indicates that the algorithm fails to run for out of memory)

No. Assignment Overall Speedup

Data Set n d K . Standgrd Speedup over.Standard of Yinyang

iter | time/iter Yinyang K-means over
(ms) Elkan | Drake | t =1 [ elastic Standard | Elkan | Drake
Z 50 27 129 | 197 | 2.08 2.03 1.14 1.09 | 1.07
L Kegg | gspa | g 16 | 52 9.9 162 | 213 | 248 2.48 1.61 136 | 1.12
Network : 64 | 68 28.0 178 | 221 | 2.55 337 2.61 198 | 1.56
256 | 59 89.6 189 | 1.63 | 2.23 4.98 4.86 3.60 | 3.98
Z 16 31 460 | 434 | 468 463 1.13 107 | LI
IL Gassen- | | 4pq | oo | 16 | 54 5.4 284 | 201 | 270 270 1.41 107 | 127
sor : 64 | 66 | 203 508 | 3.08 | 3.17 5.49 3.29 1.82 | 228
256 | 55 84.3 648 | 206 | 301 | 1028 5.40 185 | 472
Z 24 10.1 072 | 123 | 136 136 .13 124 | 1.17
ML Road | ,3ps | 4 64 | 154 | 800 085 | 342 | 4.10 3.85 3.63 382 | 1.12
Network : 1,024 | 161 | 16473 | 125 | 2.14 | 4.08 8.45 1359 | 1271 | 521
10,000 | 74 | 16256.1 - 1.88 | 2.80 9.63 12.57 - 6.84
4 6 1820 | 1.88 | 1.94 | 2.08 2.08 1.10 1.04 | 1.04
Iv. US 64 | 56 | 21764 | 357 | 456 | 485 8.47 5.40 243 | 2.14
Census 25E6 | 68 | 004 | 154 | 376039 | 023 | 296 | 356 | 24.89 2345 | 8953 | 633
Data 10,000 | 152 | 432976 - 1.64 | 2.90 3.05 5.70 - 2.15
4 55 | 1110 | 244 | 288 | 3.02 3.02 1.83 141 | 1.04
V. Cal| e | g | 64 |314] 14326 | 552 | 507 | 564 | 1021 8.65 179 | 126
tech101 1024 | 369 | 228168 | 556 | 3.62 | 338 | 21.99 233 | 641 | 571
10,000 | 129 | 316850 - 325 | 3.2 | 2024 2223 - 6.74
4 145 | 468 285 | 338 | 3.6 3.69 2.40 165 | 1.05
VI sgs | s | 64 | 232 s858 | 527 | 457 | 429 6.81 6.16 188 | 1.76
NotreDame 1024 | 149 | 93341 | 566 | 2.82 | 228 | 1044 1069 | 325 | 4.19
10,000 | 47 | 126815 - 235 | 232 | 1081 11.53 - 527
Z 103 | 2770 | 667 | 758 | 820 820 324 190 | 121
. 64 | 837 | 41134 | 1423 | 739 | 632 | 1526 13.89 | 193 | 1.93
VILTiny | 1E6 | 384 | 554 | 488 | 64078.8 | 1602 | 437 | 294 | 2364 | 2321 | 278 | 5.14
10,000 | 146 | 781537 - 345 | 235 | 1551 16.13 - 5.96
Z 62 | 1137 | 263 | 286 | 3.17 3.17 1.94 146 | 1.10
VIL Uk | g | og | 6 | 506 | 14311 | 575 | 736 | 661 | 1321 1085 | 312 | 1.72
bench 1,024 | 517 | 227874 | 595 | 428 | 342 | 2341 2426 | 685 | 5.18
10,000 | 208 | 316299 - 392 | 309 | 2850 32.18 - 6.32

Table 3. Overall speedup over standard K-means on a Core2 machine (4GB mem, 4-core Core2 CPU)

(*: not a meaningful setting for the small data size; -: out of memory)

Data Set I II 111 v \Y VI VIII

k=4 Yinyang | 1.35 | 1.10 | 1.09 1.13 1.97 2.60 2.05

Elkan 1.09 | T.08 | 0.90 1.06 1.30 1.44 1.32

Drake 1.26 | 1.05 1.05 1.08 1.79 2.44 1.82

k=64 Yinyang | 2.34 | 291 | 2.79 5.23 8.12 5.75 10.39

Elkan 133 1229 | 097 2.25 3.52 3.23 343

Drake 2.04 | 1.67 | 2.31 4.42 3.17 2.96 3.28

k=1024 Yinyang * * 8.98 | 20.41 | 22.64 | 10.64 | 27.34
Elkan * * 1.20 - - 3.52 -

Drake * * 2.18 3.18 3.26 2.48 3.79

k=10,000 | Yinyang * * 1474 | 639 | 17.87 | 820 | 28.11
Elkan * * - - - - -

Drake * * 2.01 1.68 2.58 1.73 3.02
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Table 4. Unnecessary distance calculations detected by the non-local filter of Elkan’s algorithm and the group filter of Yinyang K-means

(k = 64)
DataSet | I i T v v VI VI | VIO
Yinyang | 69.3% | 71.0% | 88.5% | 85.1% | 81.7% | 77.9% | 82.0% | 86.2%
Elkan | 31.1% | 32.5% | 32.6% | 9.2% | 05% | 2.0E-6 | 1.6E-6 | 1.4%
Drake | 64.2% | 58.6% | 69.3% | 71.7% | 73.6 % | 68.1% | 62.9% | 71.7%

Table S. Yinyang K-means accelerates the center update step by many times (*: not a meaningful setting for the small data size)

Data Set I 1I 111

I\Y%

\4

VI

VII

VIII

k=4 | 24 | 32

k=64 | 9.6 | 20.1
k=1024 | * | *
k=10,000 | * | *

2.1
8.4
107.0
62.5

1.8
8.0
59.9
79.7

4.1
11.0
97.0
66.2

4.3
9.8
43.1
27.5

9.0
15.4
106.6
50.8

4.0

11.9
114.3
100.4

empirical evaluation. We compared our method with mini-bath K-
means [13]. In general, to get the same accuracy level, mini-bath K-
means takes around 10X or more iterations. In general, mini-batch
k-means shows better performance for small &, and our method be-
comes better when k gets larger.

Optimization of Center Update K-means is a two step, iterative
algorithm. As time complexity of the center update step is less than
that of the assignment step, prior work focuses only on improving
the assignment step. But with that step optimized, the update step
starts to appear prominent in time. Table [5] reports the speedup
obtained by the optimization described in Section The speedup
ranges from 1.8X to over 100X; substantial speedup show up when
k is large because the time cost of center update calculation, instead
of the launching process itself, becomes prominent.

Overall Speedup The rightmost three columns in Table |2| report
the overall speedup of Yinyang K-means over the standard K-
means, Elkan’s algorithm and Drake’s algorithm, in terms of end-
to-end execution time. Yinyang K-means is the fastest in all cases.
It is an order of magnitude faster than the standard K-means in
most cases, and several times of faster than Elkan’s and Drake’s
algorithm.

Sensitivity Study on t The parameter ¢ determines the number
of lower bounds maintained per point in Yinyang K-means. This
parameter allows automatically balancing redundant computation
and the memory and time costs of maintaining such bounds.

Figure 2] shows the averaged assignment times for Yinyang K-
means as a function of ¢. For legibility, it includes the results on
the four image data sets only; similar results show on other data
sets. As t increases, the performance of Yinyang K-means first im-
proves and then reaches optimal around ¢ = k/10 after which per-
formance decreases. This is because although increasing ¢ produces
tighter lower bounds which eliminates redundant distance calcula-
tions, it does so by using more space (O(n*t), which at some point
adversely impacts performance. We empirically observe ¢ = k/10
across all our data sets is a good balance, hence the design of the
aforementioned policy on selecting the value for ¢ in Yinyang K-
means. It is worth mentioning that even when ¢ is 1 (when the group
filter reduces to global filter), Yinyang K-means still consistently
outperforms the standard K-means on all data sets in all settings,
as shown by the “t=1” column in Table 2] which demonstrates the
benefits of the new way to approximate the overlapped Voronoi ar-
eas.

Overall, the experiments confirm that Yinyang K-means is
consistently faster than both the standard K-means, Elkan’s and
Drake’s algorithms, regardless of the dimensionality and size of

12000 k=1,024

= Caltech 101
--NotreDame
Tiny
-+ Ukbench
8000

4000 3

CPU times (ms/iter)

1 4 16 o4

256 1024

Figure 2. Averaged CPU times of assignment step for Yinyang K-
means as a function of ¢.

the data sets, the number of clusters, and the machine configura-
tions. It accelerates both the assignment and center update steps in
K-means, and auotmatically strikes a good tradeoff between space
cost and performance enhancement.

6. Conclusion

This study demonstrates that Yinyang K-means gives consistent
significant speedup compared to standard implementation and the
prior known fastest alternative. Its elastic design makes it automat-
ically maximize its performance under a given space constraint. It
preserves the semantic of the original K-means. These appealing
properties, plus its simplicity, make it a practical replacement of
the standard K-means as long as triangle inequality holds.
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