
Strengthening the Evidence that Attack Surfaces Can Be
Approximated with Stack Traces
Christopher Theisen, Rahul Krishna, Laurie WIlliams

Department of Computer Science
North Carolina State University

{crtheise, rkrish11, lawilli3 }@ncsu.edu

ABSTRACT
Proactive security review and test efforts are a necessary
component of the software development lifecycle. Resource
limitations often preclude reviewing the entire code base. Making
informed decisions on what code to review can improve a team’s
ability to find and remove more vulnerabilities. Automated attack
surface approximation is a technique that uses crash dump stack
traces to predict what code may contain exploitable
vulnerabilities. The goal of this research is to help software
development teams prioritize security efforts by approximating the
attack surface of a software system via stack trace analysis. We
explore the attack surface approximation approach using Firefox
stack traces. We also generate a vulnerability prediction model
using metrics such as frequency of appearance, code churn, and
unique authors. We create an attack surface approximation at the
file level, in which the 8.4% of the files that were part of the
attack surface approximation contained 72.1% of the
vulnerabilities seen for the Firefox product. We observed a recall
for vulnerability prediction of 0.8 and a precision of 0.04. We
generate a decision tree based on churn, author count, and our
attack surface approximation metric to guide practitioners in
prioritizing code for security review. These results corroborate
previous work that showed crash dump stack traces can be used as
a metric to prioritize security efforts.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Process Metrics,
Product Metrics.

General Terms
Management, Measurement, Documentation, Experimentation,
Security.

Keywords
stack traces, attack surface, prediction models

1. INTRODUCTION
The attack surface of a system can be used for determining which
parts of a system could have exploitable vulnerabilities. If data
cannot be passed to a vulnerability from outside a system, perhaps
precious engineering hours working on finding and fixing
vulnerabilities should be spent elsewhere. The Open Web
Application Security Project (OWASP) defines the attack surface

of a system as the paths in and out of a system, the data that
travels those paths, and the code that protects the paths and the
data.1 Items not on the attack surface of a system are unreachable
by outside input, and therefore less likely to be exploited [1].
Vulnerability detection and removal techniques, such as security
reviews and penetration testing, can then be prioritized to the
attack surface rather than the entire codebase. Reducing the
amount of code to be inspected may help improve the economics
of security assessments and allow for more proactive reviews of
potentially vulnerable code. Previous efforts to determine the
attack surface of a system have used API scanning techniques
[41], but these techniques require a large amount of manual effort
from practitioners.

Automated attack surface approximation (ASA) [1] is an
approach to identifying code in a software system that is
contained on the attack surface through crash dump stack trace
analysis. Depending upon the granularity of the analysis, these
units could be binaries, files, or methods. In ASA, all code found
in the stack traces from crash dumps is classified as being on the
attack surfaced of a system. By definition, code that appears in
stack traces caused by outside activity is on the attack surface.
Crash dumps may be a useful metric for determining where
security vulnerabilities might be in code, because they represent
code that has been involved in a failure. Crash dumps are
sometimes used by attackers to determine where security
vulnerabilities might be and/or to create a denial of service. Using
crash dump stack traces as a metric for proactive security
hardening efforts may help security professionals find them before
the attackers do.

The goal of this research is to help software development teams
prioritize security efforts by approximating the attack surface of a
software system via stack trace analysis. In this work, we look at
two methods of approximating the attack surface of a system. The
first is a binary classification (on/off) as performed in previous
work [1]. The second counts the number of occurrences of code in
stack traces, allowing for a priority system for performing security
reviews. Furthermore, we also developed a Vulnerability
Prediction Model (VPM) to guide practitioners in these
prioritization efforts. Finally, we generate a decision tree based on
code metrics and stack trace appearances from ASA to help guide
prioritization efforts when deciding what code to review.

We explore the following research questions:

RQ1: How effective is the attack surface approximation
approach in predicting the location of vulnerabilities?

1https://www.owasp.org/index.php?title=Attack_Surface_Analysis_
Cheat_Sheet&oldid=156006

RQ2 How can we improve Vulnerability Prediction Model
performance with attack surface approximation?

RQ3: How could a decision tree with attack surface
approximation be used to prioritize security efforts?

In this paper, we build an ASA for Firefox, based on stack traces
from the Firefox historical crash dump stack trace defect
repository2. A set of scripts parses the information in the traces. To
assess ASA, we compared the set of known security vulnerabilities
from Mozilla’s bug database3 during the same time period against
the files identified as part of the approximation. We replicate the
Windows 8 ASA [1] and apply it to Mozilla Firefox.

We include the following as contributions in this paper:

• An evaluation of the effectiveness of attack surface
approximation for an open source application that
corroborates with an earlier attack surface approximation
study on a proprietary product.

• A vulnerability prediction model that uses the attack
surface approximation

• A decision tree approach for aiding in the selection of
which files to inspect and/or test.

The rest of the paper is organized as follows: Section 2 discusses
background and related work, Section 3 presents our research
methodology, Section 4 presents our case study, Section 5
discusses the results and the meaning of each, Section 6 presents
limitations and threats to validity, and Section 7 summarizes and
discusses future work.

2. BACKGROUND AND RELATED WORK
In this section, we provide a brief overview of related work and
the previous study done in the area of attack surfaces and defect
prediction.

2.1 Attack Surface
As mentioned previously, The Open Web Application Security
Project (OWASP) defines the attack surface of a system as the
paths into and out of a system, the data that travels those paths,
and the code that protects the paths and the data. The attack
surface definition also includes “the sum of all paths for
data/commands into and out of the application.” Howard et al.
[17] provided a definition of attack surface using three
dimensions: 1) targets and enablers, 2) channels and protocols,
and 3) access rights. Not all areas of a system may be directly or
indirectly exposed to the outside. Some parts of a complex
software system, e.g. Windows OS, may not be reachable or
exploitable by an attacker. In Figure 1, we present a graphical
representation of what the attack surface of a system is. The nodes
with the thick dark arrows pointing at them are the entry points
into a system, showing where an outsider can pass input into a
system. The remaining shaded nodes and arrows represent the
path outside input takes through the system, with data eventually
terminating in the center of the system. These central nodes are
typically crash handlers in our analysis due to inspecting stack
traces.

Manadhata et al. [32] describe how an attack surface might be
approximated by looking at Application Program Interface (API)

2 https://crash-analysis.mozilla.com/crash_analysis
3 https://bugzilla.mozilla.org/

entry points. However, the Manadhata approach does not cover all
exposed code, as the authors mention. Specifically, internal flow
of data through a system could not be identified. While the
external points of a system are a useful place to start, they do not
encompass the entirety of exposed code in the system. Internal
points within the system could also contain security vulnerabilities
that the reviewer should be aware of. Further, their approach to
measuring attack surfaces required expert judgment of security
professionals to determine if code is security relevant.

In a previous ASA study [1], researchers found a correlation
between binaries that appear on stack traces generated by the
system and historical vulnerabilities discovered by security
professionals have been fixed in code. The correlation could be
useful to security professionals when targeting security reviews of
codebases. By targeting security efforts to binaries in the ASA
instead of the entire codebase, security professionals could save
engineering hours. The researchers created the ASA by parsing
stack traces from Windows 8 OS, and including any binaries
involved in a stack trace in their approximation. They evaluated
the effectiveness of their approach by comparing the
approximation against the location of historical vulnerabilities in
Windows 8 OS. In that study, 48.4% of shipped binaries seen in at
least one crash dump stack trace in Windows 8 OS contained
94.8% of the vulnerabilities seen over the same time period [1].

However, the industrial study has a few limitations. First, the
approximation was only performed at the binary level of the
application. A single binary could contain thousands of files,
making the metric difficult to act on. Second, The industrial study
only looked at an operating system. To address these concerns, we
construct an ASA using stack traces at the file level instead of the
binary level. We also perform the approximation on an open
source application instead of an operating system.

Figure 1. A visual representation of what an attack surface
is for a system. The shaded area is the attack surface, where
input flows through the system.

2.2 Exploiting Crash Dumps
The use of crash dumps, including stack traces from the crashes,
is becoming used more frequently for identifying defects and
vulnerabilities4 [22][24]. Liblit and Aiken [18] introduced a
technique automatically reconstructing complete execution paths
using stack traces and execution profiles. Later, Manevich et al.
[19] added data flow analysis information on Liblit and Aiken’s
approach to explain program failures. Other studies use stack
traces to localize the exact fault location [20][21][22]. An
increasing number of empirical studies use bug reports and crash
dumps to cluster bug reports according to their similarity and
diversity, e.g. Podgurski et al. [23] were among the first to take
this approach. Other studies followed [24][25]. Not all crash
dumps are precise enough to allow for clustering. Guo et al. [26]
used crash dump information to predict which bugs will get fixed.
Bettenburg et al. [27] assessed the quality of bug reports to
suggest better and more accurate information for helping
developers to fix the bug.

With respect to vulnerabilities, Huang et al. [28] used crash
dumps to generate new exploits while Holler et al. [29] used
historic crashes reports to mutate corresponding input data to find
incomplete fixes. Kim et al. [30] analyzed security bug reports to
predict “top crashes”—those few crashes that account for the
majority of crash dumps—before new software releases.

2.3 Defect and Vulnerability Prediction
Models
The goal of defect prediction models (DPMs) is to identify code
that is most likely to contain defects. For example, Nagappan and
Ball [3] showed that code churn metrics can be used to predict
defect density, the number of defects per line of code. Later,
Zimmermann et al. [4] used code dependency information and
network metrics to classify defect prone code. Other studies used
change-related [1], developer-related [5], organizational [6],
process [7], change dependency [8], and test [9] metrics to build
DPMs. Hall et al. [10] presented a systematic literature review of
DPMs and showed that model-building methodology impacts
prediction accuracy.

Vulnerability Prediction Models (VPMs) predict code with the
highest chance of containing vulnerabilities. Studying VPMs for
Microsoft Windows, Zimmermann et al. [11] concluded that
vulnerabilities are not as simple to predict as defects. A study on
Mozilla’s Firefox web browser showed that, on Firefox, fault
prediction model and the vulnerability prediction model provided
similar prediction performance [12]. In general, many VPMs
presented in the literature are based on the same basic principles
as DPMs, with adjustments to account for the relative rarity of
security vulnerabilities. Transferring the concept of DPMs to
VPMs, many studies use complexity, code churn, or static-alert
measurements to predict vulnerabilities [13][14][15]. Published
VPMs [16] have had challenges achieving precision and recall
rates that DPMs have been able to achieve, presumably due to the
relative rarity of vulnerabilities. As a result, VPMs may not be
considered for practical use.

Another limitation of VPM’s is the number of metrics found in
the models, many which are unreasonable to collect for open
source projects or smaller development shops. The Zimmermann

4 http://www.crashlytics.com/blog/its-finally-here-announcing-

crashlytics-for android/

VPM used in the 2014 study used 29 metrics in 6 categories [1].
Many of these metrics, such as McCabe complexity metrics,
security reset metrics, and number of paths through a system are
not collected by many teams.

In the previous ASA study [1], a Vulnerability Prediction Model
(VPM) was also constructed using the files identified as being on
the attack surface of Windows 8 OS. The VPM showed
statistically significant improvements over a control setup with all
files considered potentially vulnerable. The researchers found that
it could predict vulnerabilities with a precision of .69 and recall of
.05 for source files [1]. While the model has a high precision, and
therefore high likelihood of an identified vulnerability being a true
positive, only 5% of the total number of vulnerabilities were
predicted by the VPM. For a prediction model to have a practical
impact for practitioners, the recall figures must improve.

2.4 Defect Prediction and SMOTE
A study conducted by Lessmann et al. [37] compared 21 different
learners for software defect prediction. They found Random
Forest to be the best classifier. Random Forest is a form of
ensemble learning scheme. It works by constructing a number of
decision trees at the training time.

Random Forests, like other predictors, tend to perform poorly if
there is an imbalance in classes during the training phase. When
dealing with highly imbalanced datasets, prediction models tend
to fail. For these imbalanced datasets, prediction models will tend
to predict that everything falls on the majority side of the dataset.
For example, if vulnerabilities only occur in 1% of the codebase,
99% of the code therefore doesn’t have a vulnerability. The
prediction model can then declare that there are no vulnerabilities
in the code and have a 99% success rate. While that may be a
“good” statistical result, it is not a useful result for the user of the
model if they are interested in the minority set of the data – in that
case, the searcher wants to find minority part of the dataset, and
does not care about predicting the majority set at all.

Sampling schemes are commonly used to adapt machine learning
tools to handle the class imbalance and to prevent
misclassification of items in the dataset. Pelayo and Dick [38]
found that the Synthetic Minority Over-sampling Technique
(SMOTE) [35] can be used to improve the recognition of defect
prone modules in a software system.

3. RESEARCH METHODOLOGY
In this section, we discuss our research methodology to answer
our three research questions.

3.1 Attack Surface Approximation (ASA)
To create our ASA, we first select a collection of stack traces
from the software system we are analyzing. These stack traces are
chosen from a set period of time. For some organizations, taking
every stack trace for a time period may be infeasible. For the sake
of practicality, a random sampling may be appropriate, as the
number of crashes received by these organizations may reach into
the hundreds of millions. Some organizations may only keep a
sampling of their stack traces from user crashes because of the
scale issue. We also collect data on security vulnerabilities for the
system in the same time period the

 stack traces were chosen from. Vulnerability data is gathered for
the entire product, not just those in code found in stack traces. For
stack trace parsing, we isolate the binary, file, or function that is
seen on each line of each stack trace, recording each one that was
seen and how many times it has been seen in a stack trace.

 To accomplish this task, we created a toolset to parse each
individual stack trace in sequence, and extract the individual code
elements that appear on each line. The tool then outputs the
frequency in which each unique code element appears in a stack
trace from the parsed set. To tie stack trace appearances to the
codebase, we generate a list of all source code files from the
system under inspection and combine that list with the list of
appearances in stack traces. This process is visualized in Figure 2.

We collect several pieces of data for use in the evaluation of our
ASA. We first identify all unique files present in the codebase
under evaluation. We then identify all files in the codebase, and
count each reference to a file in each stack trace we parse. Files
are identified via source code analysis first, such as pulling the
master repository for the project.

In addition to the list of files on the ASA, We count the number of
those files that have security vulnerabilities. After we have these
two counts, we can calculate the percentage of files that are
considered to be on the ASA at that point, along with the
percentage of files with security vulnerabilities on the ASA.

3.2 Practical Prioritization
Narrowing down the number of decisions to be made when
selecting files for review is beneficial. Decision trees can help
practitioners make these decisions by providing a visualization of
best splits of the data based on the given metrics. By limiting the
space that security reviewers need to handle, they can make better
use of their limited time to find vulnerabilities.

We construct a decision tree for files based on three metrics: (1)
number of appearances in stack traces, (2) number of times a file
was changed (code churn), and (3) the number of unique authors

that changed that file. These metrics were chosen because they are
readily available for most organizations. If an organization is
using source control, these metrics will be available. By
performing a series of best splits on the dataset when trying to
predict vulnerabilities, we can generate a decision tree that
practitioners can use when trying to decide what files to inspect or
test. The goal is to find splits that provide a set of files with a high
percentage of vulnerabilities, giving practitioners a place to start.

The decision trees were generated in JMP Pro 11 by SAS5 using
the decision tree package. We made use of the “Best Split”
functionality within JMP, which has the decision tree split on the
highest G^2 score for a split of a specific table. The G^2 score is a
representation of how good the split point is in creating two
distinct datasets with the greatest difference in density of the
dependent variable. Best splits were used to find the highest
densities of vulnerabilities in the system.

3.3 VPM Construction
As discussed in Section 2.4, we have used Random Forests with
SMOTE as our vulnerability prediction model. For our model, the
independent variables were the classification of code as having a
vulnerability, while the dependent variables are code churn,
number of unique authors, and ASA. The Random Forest
Classifier was taken from the SciKit Learn toolkit [40]. Our
Random Forest used 10 trees to build the forest. As a criterion to
measure the quality of split, the Gini impurity measure was used.
The Gini impurity is defined as how often a randomly chosen
element would be incorrectly labeled if it were done randomly. As
previously mentioned, the SMOTE technique was used in
conjunction with Random forests. SMOTE is an over and under
sampling technique which over samples the minority class and
under samples the majority class.

5 http://www.jmp.com/en_us/software/jmp-pro.html

Figure 2. The flowchart describes how different inputs travel through the set of scripts to create our attack surface approximation.

In SMOTE, over sampling works by introducing synthetic
examples for each minority class. We choose a sample (say a) and
finding its N nearest neighbors. For this study we used N = 5
because choosing one nearest neighbor limits the diversity of the
synthetic samples. Another sample is then randomly picked from
among those 5 nearest neighbors (say b). Then a new instance, c,
is generated by an interpolation between samples a and b. This
process is repeated until a desired amount of samples are
obtained. For under sampling, existing samples are randomly
removed from the majority class population until there are equal
numbers of majority and minority class samples.

4. FIREFOX CASE STUDY
In this section, we discuss the choice of data sources for this study
along with domain-specific methodology concerns.

4.1 Data Collection
To perform our study, we needed to collect stack traces from a
software system. We chose to use Mozilla’s Firefox product as
our data source, due to the availability of stack traces and security
vulnerability history for the system. Mozilla only makes security
vulnerability details available once the vulnerability has passed
out of public use in all versions of Firefox. Because of that policy,
vulnerability information is only available from before 2012.
Therefore, we could not make use of Mozilla’s primary stack
trace data website, Mozilla Crash Reports6, as it only keeps full
stack traces from crashes for approximately 6-7 months. Instead,
we made use of the historical dumps at https://crash-
analysis.mozilla.com/crash_analysis/. The historical dataset
contains approximately 10% of the crashes seen by the crash
reporting system, sorted by day. Storing 10% of the crashes seen
each day in the historical database keeps data storage
requirements lower for the company. We performed our analysis
on crashes occurring from May 2010 to March 2012 due to the
available security data. Crash dumps from the historical dataset do
not contain the entirety of the stack trace. Only the topmost
filename is included in each trace. While the Firefox stack traces
provide less detail than the Windows stack traces, observing only

6 https://crash-stats.mozilla.com/home/products/Firefox

the last file seen on the stack trace may be another approximation
technique that eliminates more files from the attack surface. We
explore the impact on the completeness of ASA, with the metric
for completeness being the number of vulnerabilities seen on the
approximation.

We further pruned the dataset to only crashes on the first day of
every month in the time period to reduce the dataset. In the end,
1,013,770 occurrences of files in stack traces were recorded.
Examples of the file format seen in the historical dumps can be
seen in Figure 3.

To collect our security data, we parsed security reports from
Mozilla’s security advisory blog from the same May 2010 to
March 2012 period. Each security report presented by Mozilla has
an associated diff or bug report, indicating what files were
changed as part of the security fix. As mentioned previously, part
of the reasoning behind selecting this time period was the
availability of these security reports. Mozilla does not always
release security bug details for newer vulnerabilities for a variety
of reasons, such preventing the exploit from becoming more
widespread. Mozilla makes vulnerability details available later
after they are confident the issue has been resolved for their users.

Code churn and unique authors data were obtained from the
Mozilla source code. Mozilla uses Mercurial7 to manage their
source code, which also maintains a change history and a
historical information for the codebase. We pulled a snapshot of
the codebase at the end of our study period (March 2012). We
then extracted the history of each individual file seen in the
codebase via the following command:

$	 hg	 log	 -‐d	 "may	 2010	 to	 mar	 2012"	 <path_to_firefox>	 +	
<file_path>	

After extracting these statistics, we see a list of historical change
information, as seen in Figure 4. We counted the total number of
occurrences of changes to create our Churn metric, and the total
number of unique email addresses and names for our Unique
metric. These metrics were included in our results, an example of
which can be seen in Figure 5.

4.2 Analysis
We construct a decision tree based on our collected metrics: the
number of times a file was seen in a stack trace, the number of
unique authors, and the number of times a file was changed, as
seen in Figure 4. Using SAS’s JMP Pro 11, a series of best splits
on the dataset when trying to predict vulnerabilities, we can
generate a decision tree that practitioners can use when trying to
decide what files to inspect. The goal is to find splits that provide
a set of files with a high percentage of vulnerabilities, giving
practitioners a place to start. CrashAmount, Unique, and Churn
were our independent variables for the decision tree, while
Security, or whether there was a vulnerability seen historically in
that file, was the dependent variable.

7 https://www.mercurial-scm.org/

hg:hg.mozilla.org/releases/mozilla-
1.9.2:view/src/nsViewManager.cpp:
448d0d2d310c
hg:hg.mozilla.org/releases/mozilla-
1.9.2:xpcom/threads/nsThread.cpp:
28ef231a65a3
hg:hg.mozilla.org/releases/mozilla-
1.9.1:layout/generic/nsFrame.cpp:
c307a617e5a5
hg:hg.mozilla.org/releases/Mozilla-
1.9.2:nsprpub/pr/src/md/windows/w95s
ock.c:28ef231a65a3
hg:hg.mozilla.org/releases/mozilla-
1.9.1:objfirefox/dist/include/string
/nsAlgorithm.h:c307a617e5a5
Figure 3. Examples of files seen in the topmost_filename field
in the Firefox crash dumps.

In the version of SMOTE for this study, we over sample the
minority class in the training data to have at least 500 samples.
Likewise, we under sample the majority class so that only 500
samples remain. The set number of samples ensures an equal
distribution of classes in training dataset. The purpose of the
distribution is to improve learning on the training sets and
improve the predictive power of the prediction model in terms of
recall, or coverage of the vulnerabilities in the dataset.

5. RESULTS AND DISCUSSION
In this section, we present our results and discuss what each of the
results means for security professionals.

5.1 Attack Surface Approximation (RQ1)
RQ1: How effective is the attack surface approximation
approach in predicting the attack surface of a new system, as
measured by recall and precision?

Our attack surface approximation results for the Mozilla Firefox
product can be seen in Table 1. After applying ASA, we see that
8.4% of files (predicted by ASA as attack surface) contain 72.1%
of the historical vulnerabilities seen over the same period of time

as the time period from which the stack traces are analyzed. The
initial study on Windows 8 found that 48.4% of binaries contained
94.8% of historical vulnerabilities when filtering on binaries with
a minimum of one appearance on a stack trace.

In addition to our baseline threshold of one occurrence on a stack
trace, we explore other minimum thresholds for inclusion on the
attack surface approximation. Table 1 shows that the precision of
our approximation increases as we increase minimum thresholds.
We split the analysis into five different sections: a simple on/off
metric if any stack trace contains that file, and several cutoffs for
minimum number of appearances at 10, 30, 77, and 140. As the
number of times code appears on a stack trace increases, the
likelihood that that code contains vulnerabilities increases. A
graph representation of the correlation is presented in Figure 6.

These results suggest that code that appears frequently in stack
traces is not only more likely to have defects, but is also more
likely to have vulnerabilities as well. When we consider how
crashes occur, it may make sense. If the program is crashing, that
means that unexpected events or input has taken place within a
system and is not being handled properly. From the result, we
conclude that the automated attack surface approximation

changeset: 43376:ebc6875a1ec4
user: L. David Baron <dbaron@dbaron.org>
date: Tue Jun 08 22:28:14 2010 -0700
summary: Use macros for frame state so that it's easy to change
the size and easier to read the constants. (Bug 570837) r=roc

changeset: 41687:b830eb32915d
user: Zack Weinberg <zweinberg@mozilla.com>
date: Sat May 01 14:40:16 2010 -0700
summary: Bug 562093: Add reflow tracing for InitConstraints,
InitOffsets, InitFrameType. r=dbaron

changeset: 41671:985cdfad1c7e
user: Markus Stange <mstange@themasta.com>
date: Sat May 01 12:40:22 2010 +0200
summary: Bug 550889 - Don't pass negative values to
SetComputedWidth/Height in nsFrame::BoxReflow. r=bzbarsky
Figure 4. An example of data output by the “hg log <x>” command on a file in the Mozilla Firefox codebase

	 Name CrashAmount Churn Unique Security 	

	 js/src/jsgc.cpp 79705 708 49 1 	

	 layout/generic/nsFrame.cpp 73405 291 55 1 	

	 js/src/jsobj.cpp 71040 1041 62 1 	

	 js/src/xpconnect/src/xpcnative.cpp 51309 161 28 1 	

	 xpcom/io/nsLocalFileWin.cpp 41783 59 22 1 	

	 layout/generic/nsObjectFrame.cpp 39853 276 58 1 	

	 modules/plugin/base/src/ns.cpp 37226 31 14 1 	

	 js/src/jstracer.cpp 36076 855 56 1 	

	 js/src/jsapi.cpp 35671 1019 82 1 	

	 js/src/jsinterp.cpp 28912 993 55 1 	

	 Figure 5. A subset of the final dataset used for analysis (some names shortened). 	

approach may be useful in limiting the scope of code that
developers need to review while missing a minimal number of
potentially flawed areas.

We have also improved the granularity of attack surface
approximation compared to the previous study [1], in addition to
the quantitative improvements in coverage and specificity. By
performing attack surface approximation at the file level, we
provide more actionable results for practitioners. While a single
binary file could contain thousands of individual files for
developers to review, files are typically a more manageable
workload for a developer, depending on the development
practices of the organization using attack surface approximation.

Attack surface approximation on Mozilla’s Firefox
product identified 8.4% of the files in the
codebase, which contained 72.1% of the
vulnerabilities seen. These results show
improvement over the Windows 8 study, which
identified 48.4% of the binaries that contained
94.8% of the vulnerabilities.

5.2 Decision Trees (RQ2)
RQ2: How could a decision tree constructed from the attack
surface approximation be used to prioritize security efforts?

 Individual decision trees could provide practical direction to
testers. A decision tree modeling the properties of security
vulnerabilities in a software system could be useful for
prioritizing security assessment efforts. The splits in a decision
tree would represent properties that indicate where security
vulnerabilities appear more frequently. By focusing on branches
where vulnerability density is higher, security professionals can
use their time more efficiently.

Figure 7 represents a decision tree generated by SAS’s JMP Pro
11, with splits created on the “best” split possible. In the figure,
the number on the left is the number of files not containing
vulnerabilities, while the number on the right is the number of
files with at least one vulnerability.

 In the decision tree, we can make several observations. The first
split is not done on our stack trace metric, but rather on unique
developers who modified the file over our time period. We
hypothesize that the first unique split is created because of the
number of files that were not modified or did not have historical
data in source control. By splitting off at less than three unique

authors, he decision tree is creating an “active file” partition that
had several unique authors making modifications over the time
period.

 The second split in each branch is our stack trace frequency
metric. Here we see two splits, one at 1, and one at 77. The split at
1 stack trace appearance is consistent with previous studies. The
split on code seen in at least 77 unique stack traces (along with
additional minor splits not shown in the figure for space
considerations) indicates that as stack trace appearances increase,
so does the likelihood of a vulnerability being present, as shown
in Table 1.

The third split is on unique developers who modified a file. The
27 Unique split supports an earlier experiment by Meneely and
Williams [36] that many developers changing the same code can
have a negative effect on code quality from a security perspective.
Supporting existing research is a good indication of the quality of
ASA.

The churn metric is also noticeably absent from our splits. While
previous studies have cited code churn as a key metric for defect
and vulnerability prediction, it does not appear to make a

 Table 1. Results of our attack surface approximation analysis

Stack Traces files flaws %files %flaws Precision Recall

>= 1 4998 282 8.4% 72.1% 0.056 0.721

>= 10 2691 239 4.5% 61.1% 0.089 0.611

>= 30 1853 210 3.1% 53.7% 0.113 0.537

>= 77 1244 187 2.1% 47.8% 0.150 0.478

>= 140 969 162 1.6% 41.4% 0.167 0.414

All 59437 391 - - - -

Figure 6. Graph of precision (Y-Axis) vs. minimum number of stack
trace occurrences to be included in the attack surface approximation
(X-Axis)

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

0	 50	 100	 150	

Pr
ec
is
io
n	

Minimum	 number	 of	 stack	 trace	
occurences	

difference when generating a single best tree when stack traces are
involved. Stack trace count may be a better metric when
considering vulnerabilities.

As we move to the right on our decision tree, we see an increasing
density of vulnerabilities in the remaining splits. For practitioners,
moving from right to left on the tree gives them a place to start
when performing inspections. Practitioners can start at the far
right child of the tree, and then iteratively move left step-by-step,
stopping to inspect files at each terminating leaf. In summary, we
have provided an automated prioritization scheme for security
inspections for teams working on software in the field. In our
example, files that would be looked at first are those that were
involved in more than 77 crashes and changed by 27 or more

unique authors. The next set of code to be evaluated would be
those that were involved in more than 77 crashes and changed by
more than 3 but less than 27 unique authors, et cetera.

Decision trees could help software developers
prioritize their security efforts.

5.3 VPM PERFORMANCE O (RQ3)
RQ3: Do over-sampling and under-sampling techniques
improve Vulnerability Prediction Model performance when
restricted to the attack surface approximation?

To verify the performance of Random Forest with and without
sampling, a 10-way cross validation study was conducted. Table 2
shows the results of using oversampling and undersampling to
handle class imbalance in the vulnerability space.

We observe a significant improvement in recall rates after
preprocessing the data with SMOTE. Specifically, recall
improved by an order of magnitude from 0.08 to 0.80 after
SMOTEing. However, the precision scores decreased from 0.24 to
0.04. Recall measures the probability that the classifier predicts a
vulnerability, given that there is indeed a vulnerability present.
Precision depends on the prevalence of vulnerabilities in the
dataset. Due the lack of sufficient vulnerabilities in the test
samples, precision is usually quite low. Therefore, with regards to
our application, recall is a more meaningful measure and the
efficacy of the classifier can be evaluated using the recall rate.

Recall is the better metric to use when working in the
vulnerability prediction space. Menzies et al. showed that in
software engineering datasets with large negative/positive ratios,
like the vulnerability space, “it is often required to lower precision
to achieve higher recall” [39]. Because of the value of finding

Figure 7. The decision tree generated by our best splits for vulnerabilities. The left number is the number of files without
security vulnerabilities, the right number is the files with security vulnerabilities.

 Table 2. Results of the application of the SMOTE technique to our dataset
 Before Sampling After Sampling
 Measure Median IQR Measure Median IQR 	
 Precision 0.26 0.25 Precision 0.04 0.02 	
 Sensitivity (Recall) 0.08 0.07 Sensitivity (Recall) 0.8 0.07 	
 Accuracy 0.99 0 Accuracy 0.87 0.01 	
 Specificity 1 0 Specificity 0.87 0.01 	
 F 0.12 0.1 F 0.08 0.03 	
 	 	

vulnerabilities, with a single flaw possibly costing organizations
significant amounts of money, coverage of vulnerabilities is far
more important than accuracy. While limiting the set of code to
be inspected is good, our goal should be to limit the amount of
vulnerabilities that are missed when restricting the set of code to
be looked at, otherwise our model will not be practical for
practitioners.

Our VPM performs well when optimizing for
vulnerability coverage, with a recall of 0.80
and precision of 0.04.

6. LIMITATIONS
One of the limitations of our previous work was that the ASA
approach was only tested on Microsoft Windows and that the
approach may not have been generalizable. We have
demonstrated the value of ASA on Mozilla Firefox, but smaller
software systems with fewer stack traces may not work as well
with the approach. Both ASA studies have been done on industry
leading codebases. Future studies could determine how ASA
performs on smaller codebases.

In the absence of an oracle for the complete attack surface, we
cannot assess the completeness of our approximation. Our
determination of accuracy currently is based only on known
vulnerabilities, which may introduce a bias towards code
previously seen to be vulnerable. While basing our effectiveness
on historical vulnerabilities may be a good assumption, further
exploration is needed. ASA outputs, as expected, an
approximation, and it cannot identify latent vulnerabilities
directly.

While previous studies with VPMs [11][12] have analyzed
software at multiple levels, this work focuses on the file level
based on practitioner feedback and the availability of data. We
cannot claim that attach surface approximation’s effectiveness
will remain the same as the level of granularity changes.

7. SUMMARY
In this study, we have shown that ASA with stack traces works for
Firefox. We add the results of this study to our prior results that
the approach is effective for commercial operating systems. As a
result, we have shown that this approach is generalizable. We can
address concerns about ASA overfitting for certain types of
software systems by adding additional studies on different types

of systems.

By moving granularity to file level in this study, we have made
the approximation more actionable for developers. Files are more
efficient for locating potentially vulnerable when compared with
binaries. We have improved on the state of the art in VPM’s with
recall increasing tenfold after using oversampling and
undersampling techniques. Additionally, we explored decision
trees as a visualization technique of the important metrics in
vulnerability prediction.

8. FUTURE WORK
In the previous study [1], we had explored graph representations
of stack traces using the order of appearance of code in the trace.
For future work, we would like to construct similar graph
representations of the trace. A standalone tool or plugin integrated
with a modern IDE such as Eclipse is one method for making this
representation useful to practitioners.

Mock examples of the types of graph representations we could
create are in Figure 8. In these examples the single central node is
the file the developer is currently viewing, while the surrounding
nodes are the files (with names) that are seen on stack traces
immediately before or following the currently viewed file. By
showing these known failing data paths to the developer, they can
focus their triaging efforts on these paths, excluding any paths that
crashes were not seen on. By following the visualization, the
developer focuses their effort on code that has a higher probability
of containing security defects.

In addition to the simple visualization of the graph representation
of the stack traces, graph shape analysis is another methodology
we plan to explore to further narrow our scope of code that could
contain security vulnerabilities. In particular, do certain shapes of
incoming and outgoing nodes result in more frequent sightings of
vulnerabilities? We hypothesize that certain shapes, such as many
files calling into one file but that file only calling out to few files,
may exhibit more vulnerabilities than other areas.

ASA currently looks at the code entities themselves as possible
locations for security vulnerabilities. The code entities themselves
may not the interesting metric from a security perspective. The
relationships between code entities may do a better job of
pointing out potential vulnerabilities. Many common vulnerability
types are the result of bad data handling, including SQL injection
attacks and buffer overflow attacks. Future work may be prudent
to examine the relationships between files (or other code entities

Figure 8. Sample graph representations of a system. The central node is the file the user is currently viewing, while the outside nodes are files
that appear right before or after the currently viewed file in at least one stack trace.

at various levels of granularity) and determine which relationships
appear in crashes most frequently. These bad handoffs may point
us towards where vulnerable code lives.

Currently, our approach for the VPM is to use a simple weighting
scheme on counts of vulnerabilities, along with a few easily
collected metrics for the codebase. By finding additional metrics
within the stack traces, such as variable contents, register
contents, etc. we may find additional ways to narrow our set of
attack surface entities.

9. ACKNOWLEDGEMENTS
Any opinions expressed in this report are those of the author(s)
and do not necessarily reflect the views of North Carolina State
University. We also thank the Realsearch research group for
providing helpful feedback on this work. We also thank Rahul
Pandita and Patrick Morrison for sharing research into security
defect locations in the Mozilla Firefox product.

10. REFERENCES
[1] C. Theisen, K. Herzig, P. Morrison, B. Murphy, and

L. Williams, “Approximating Attack Surfaces with
Stack Traces”, in Companion Proceedings of 37th
ICSE, 2015.

[2] R. Moser, W. Pedrycz and G. Succi, "A comparative
analysis of the efficiency of change metrics and static
code attributes for defect prediction," in Proceedings
of the 30th ICSE, 2008.

[3] N. Nagappan and T. Ball, "Use of relative code churn
measures to predict system defect density," in.
Proceedings of the 27th ICSE, 2005.

[4] T. Zimmermann and N. Nagappan, "Predicting
defects using network analysis on dependency
graphs," in Proceedings of the 30th ICSE, 2008.

[5] M. Pinzger, N. Nagappan and B. Murphy, "Can
developer-module networks predict failures?," in
Proceedings of the 16th ACM SIGSOFT FSE, 2008.

[6] N. Nagappan, B. Murphy and V. Basili, "The
Influence of Organizational Structure on Software
Quality: An Empirical Case Study," in Proceedings of
the 30th ICSE, 2008.

[7] A. E. Hassan, "Predicting faults using the complexity of
code changes," in Proceedings of the 31st ICSE, 2009.

[8] K. Herzig, S. Just, A. Rau and A. Zeller, "Predicting
Defects Using Change Genealogies," in Proceedings of
the 24th IEEE ISSRE, 2013.

[9] K. Herzig, "Using Pre-Release Test Failures to Build
Early Post-Release Defect Prediction Models," in
Proceedings of the 25th IEEE ISSRE, Neaples, 2014.

[10] T. Hall, S. Beecham, D. Bowes, D. Gray and S.
Counsell, "A Systematic Literature Review on Fault
Prediction Performance in Software Engineering,",
IEEE Transactions on Software Engineering, vol. 38,
pp. 1276--1304, 2012.

[11] T. Zimmermann, N. Nagappan and L. Williams,
"Searching for a Needle in a Haystack: Predicting
Security Vulnerabilities for Windows Vista," in
Proceedings of the 3rd ICST, 2010.

[12] Y. Shin and L. Williams, "Can traditional fault
prediction models be used for vulnerability prediction?,"
Empirical Software Engineering, vol. 18, pp. 25--59,
2013.

[13] M. Gegick, L. Williams, J. Osborne and M. Vouk,
"Prioritizing software security fortification throughcode-
level metrics," in Proceedings of the 4th ACM workshop
on Quality of protection, 2008.

[14] Y. Shin, A. Meneely, L. Williams and J. Osborne,
"Evaluating Complexity, Code Churn, and Developer
Activity Metrics as Indicators of Software
Vulnerabilities," Software Engineering, IEEE
Transactions on, vol. 37, pp. 772--787, 2011.

[15] I. Chowdhury and M. Zulkernine, "Using complexity,
coupling, and cohesion metrics as early indicators of
vulnerabilities," Journal of Systems Architecture, vol.
57, pp. 294--313, 2011.

[16] S. Neuhaus, T. Zimmermann, C. Holler and A. Zeller,
"Predicting vulnerable software components," in
Proceedings of the 14th ACM conference on Computer
and communications security, 2007.

 [17] M. Howard, J. Pincus and J. M. Wing, "Measuring
Relative Attack Surfaces," in Computer Security in the
21st Century, Springer US, 2005, pp. 109-137.

[18] B. Liblit and A. Aiken, "Building a Better Backtrace:
Techniques for Postmortem Program Analysis,"
University of California, Berkeley, Berkeley, 2002.

[19] R. Manevich, M. Sridharan, S. Adams, M. Das and Z.
Yang, "PSE: Explaining Program Failures via
Postmortem Static Analysis," in Proceedings of the 12th
ACM SIGSOFT Twelfth International Symposium on
Foundations of Software Engineering, Newport Beach,
CA, USA, 2004.

[20] W. Jin and A. Orso, "F3: Fault Localization for Field
Failures," in Proceedings of the 2013 International
Symposium on Software Testing and Analysis, 2013.

[21] R. Wu, H. Zhang, S.-C. Cheung and S. Kim,
"CrashLocator: Locating Crashing Faults Based on
Crash Stacks," in Proceedings of the 2014 International
Symposium on Software Testing and Analysis, 2014.

[22] S. Wang, F. Khomh and Y. Zou, "Improving bug
localization using correlations in crash reports," in
Mining Software Repositories (MSR), 2013 10th IEEE
Working Conference on, 2013.

[23] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun and B. Wang, "Automated support for classifying
software failure reports," in Software Engineering,
2003. Proceedings. 25th International Conference on,
2003.

[24] Y. Dang, R. Wu, H. Zhang, D. Zhang and P. Nobel,
"ReBucket: A Method for Clustering Duplicate Crash
Reports Based on Call Stack Similarity," in Proceedings
of the 34th International Conference on Software
Engineering, 2012.

[25] S. Kim, T. Zimmermann and N. Nagappan, "Crash
graphs: An aggregated view of multiple crashes to

improve crash triage," in Dependable Systems Networks
(DSN), 2011 IEEE/IFIP 41st International Conference
on, 2011.

[26] P. J. Guo, T. Zimmermann, N. Nagappan and B.
Murphy, "Characterizing and Predicting Which Bugs
Get Fixed: An Empirical Study of Microsoft Windows,"
in Proceedings of the 32th International Conference on
Software Engineering, 2010.

[27] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R.
Premraj and T. Zimmermann, "What makes a good bug
report?," in SIGSOFT '08/FSE-16: Proceedings of the
16th ACM SIGSOFT International Symposium on
Foundations of software engineering, 2008.

[28] S.-K. Huang, M.-H. Huang, P.-Y. Huang, H.-L. Lu and
C.-W. Lai, "Software Crash Analysis for Automatic
Exploit Generation on Binary Programs," Reliability,
IEEE Transactions on, vol. 63, pp. 270-289, March
2014.

[29] C. Holler, K. Herzig and A. Zeller, "Fuzzing with Code
Fragments," in Proceedings of the 21st USENIX
Conference on Security Symposium acmid = 2362831,
2012.

[30] D. Kim, X. Wang, S. Kim, A. Zeller, S. Cheung and S.
Park, "Which Crashes Should I Fix First?: Predicting
Top Crashes at an Early Stage to Prioritize Debugging
Efforts," Software Engineering, IEEE Transactions on,
vol. 37, no. 3, pp. 430-447, 2011.

[31] Building Security In Maturity Model (BSIMM)
[32] Manadhata, P., Wing, J., Flynn, M., & McQueen, M.

(2006, October). Measuring the attack surfaces of two
FTP daemons. In Proceedings of the 2nd ACM
workshop on Quality of protection (pp. 3-10). ACM.

[33] Younis, A.A., Malaiya, Y.K., Ray, I., “Using Attack
Surface Entry Points and Reachability Analysis to
Assess the Risk of Software Vulnerability
Exploitability” In Proc. of IEEE 15th International
Symposium on High-Assurance Systems Engineering, p.
1-8, 2014

[34] Shin, Y. and Williams, L., Can Fault Prediction Models
and Metrics be Used for Vulnerability Prediction?,
Empirical Software Engineering, Vol. 18, No. 1, pp. 25-
59, 2013.

[35] N. Chawla, V. Nitesh, et al. "SMOTE: synthetic

minority over-sampling technique."Journal of artificial
intelligence research 16.1 (2002): 321-357.

[36] A. Meneely, and L. Williams. "Secure open source
collaboration: an empirical study of linus'
law." Proceedings of the 16th ACM conference on
Computer and communications security. ACM, 2009

[37] S. Lessmann, B. Baesens, C. Mues and S. Pietsch,
“Benchmarking classification models for software
defect prediction: A proposed framework and novel
findings.” in IEEE Transactions on Software
Engineering, 34(4), 485-496, 2008.

[38] L. Pelayo and S. Dick, “Applying novel resampling
strategies to software defect prediction.” Annual
Conference of the North American Fuzzy Information
Processing Society - NAFIPS, 69-12, 2007.

[39] T. Menzies, A. Dekhtyar, J. Distefano, and J.
Greenwald, “Problems with Precision: A Response to
"Comments on 'Data Mining Static Code Attributes to
Learn Defect Predictors.'"” IEEE Trans. Softw. Eng. 33,
9 (September 2007), 637-640. 2007

[40] Scikit-learn: Machine Learning in Python, Pedregosa et
al., JMLR 12, pp. 2825-2830, 2011.

[41] K. Madahata and J. Wing, “An attack surface metric.”
Software Engineering, IEEE Transactions on 37.3
(2011): 371-386

