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ABSTRACT 
Proactive security review and test efforts are a necessary 
component of the software development lifecycle. Resource 
limitations often preclude reviewing the entire code base. Making 
informed decisions on what code to review can improve a team’s 
ability to find and remove more vulnerabilities. Automated attack 
surface approximation is a technique that uses crash dump stack 
traces to predict what code may contain exploitable 
vulnerabilities. The goal of this research is to help software 
development teams prioritize security efforts by approximating the 
attack surface of a software system via stack trace analysis. We 
explore the attack surface approximation approach using Firefox 
stack traces. We also generate a vulnerability prediction model 
using metrics such as frequency of appearance, code churn, and 
unique authors. We create an attack surface approximation at the 
file level, in which the 8.4% of the files that were part of the 
attack surface approximation contained 72.1% of the 
vulnerabilities seen for the Firefox product. We observed a recall 
for vulnerability prediction of 0.8 and a precision of 0.04. We 
generate a decision tree based on churn, author count, and our 
attack surface approximation metric to guide practitioners in 
prioritizing code for security review. These results corroborate 
previous work that showed crash dump stack traces can be used as 
a metric to prioritize security efforts. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – Process Metrics, 
Product Metrics. 

General Terms 
Management, Measurement, Documentation, Experimentation, 
Security. 

Keywords 
stack traces, attack surface, prediction models 

1. INTRODUCTION 
The attack surface of a system can be used for determining which 
parts of a system could have exploitable vulnerabilities. If data 
cannot be passed to a vulnerability from outside a system, perhaps 
precious engineering hours working on finding and fixing 
vulnerabilities should be spent elsewhere. The Open Web 
Application Security Project (OWASP) defines the attack surface 

of a system as the paths in and out of a system, the data that 
travels those paths, and the code that protects the paths and the 
data.1 Items not on the attack surface of a system are unreachable 
by outside input, and therefore less likely to be exploited [1]. 
Vulnerability detection and removal techniques, such as security 
reviews and penetration testing, can then be prioritized to the 
attack surface rather than the entire codebase. Reducing the 
amount of code to be inspected may help improve the economics 
of security assessments and allow for more proactive reviews of 
potentially vulnerable code. Previous efforts to determine the 
attack surface of a system have used API scanning techniques 
[41], but these techniques require a large amount of manual effort 
from practitioners. 

Automated attack surface approximation (ASA) [1] is an 
approach to identifying code in a software system that is 
contained on the attack surface through crash dump stack trace 
analysis. Depending upon the granularity of the analysis, these 
units could be binaries, files, or methods. In ASA, all code found 
in the stack traces from crash dumps is classified as being on the 
attack surfaced of a system. By definition, code that appears in 
stack traces caused by outside activity is on the attack surface. 
Crash dumps may be a useful metric for determining where 
security vulnerabilities might be in code, because they represent 
code that has been involved in a failure. Crash dumps are 
sometimes used by attackers to determine where security 
vulnerabilities might be and/or to create a denial of service. Using 
crash dump stack traces as a metric for proactive security 
hardening efforts may help security professionals find them before 
the attackers do. 

The goal of this research is to help software development teams 
prioritize security efforts by approximating the attack surface of a 
software system via stack trace analysis. In this work, we look at 
two methods of approximating the attack surface of a system. The 
first is a binary classification (on/off) as performed in previous 
work [1]. The second counts the number of occurrences of code in 
stack traces, allowing for a priority system for performing security 
reviews. Furthermore, we also developed a Vulnerability 
Prediction Model (VPM) to guide practitioners in these 
prioritization efforts. Finally, we generate a decision tree based on 
code metrics and stack trace appearances from ASA to help guide 
prioritization efforts when deciding what code to review. 

We explore the following research questions: 

RQ1: How effective is the attack surface approximation 
approach in predicting the location of vulnerabilities? 

                                                                    
1https://www.owasp.org/index.php?title=Attack_Surface_Analysis_ 
Cheat_Sheet&oldid=156006 

 
 
 
 
 



RQ2 How can we improve Vulnerability Prediction Model 
performance with attack surface approximation? 

RQ3: How could a decision tree with attack surface 
approximation be used to prioritize security efforts? 

In this paper, we build an ASA for Firefox, based on stack traces 
from the Firefox historical crash dump stack trace defect 
repository2. A set of scripts parses the information in the traces. To 
assess ASA, we compared the set of known security vulnerabilities 
from Mozilla’s bug database3 during the same time period against 
the files identified as part of the approximation. We replicate the 
Windows 8 ASA [1] and apply it to Mozilla Firefox. 

We include the following as contributions in this paper: 

• An evaluation of the effectiveness of attack surface 
approximation for an open source application that 
corroborates with an earlier attack surface approximation 
study on a proprietary product. 

• A vulnerability prediction model that uses the attack 
surface approximation 

• A decision tree approach for aiding in the selection of 
which files to inspect and/or test. 

The rest of the paper is organized as follows: Section 2 discusses 
background and related work, Section 3 presents our research 
methodology, Section 4 presents our case study, Section 5 
discusses the results and the meaning of each, Section 6 presents 
limitations and threats to validity, and Section 7 summarizes and 
discusses future work. 

2. BACKGROUND AND RELATED WORK 
In this section, we provide a brief overview of related work and 
the previous study done in the area of attack surfaces and defect 
prediction. 

2.1 Attack Surface 
As mentioned previously, The Open Web Application Security 
Project (OWASP) defines the attack surface of a system as the 
paths into and out of a system, the data that travels those paths, 
and the code that protects the paths and the data. The attack 
surface definition also includes “the sum of all paths for 
data/commands into and out of the application.” Howard et al. 
[17] provided a definition of attack surface using three 
dimensions: 1) targets and enablers, 2) channels and protocols, 
and 3) access rights. Not all areas of a system may be directly or 
indirectly exposed to the outside. Some parts of a complex 
software system, e.g. Windows OS, may not be reachable or 
exploitable by an attacker. In Figure 1, we present a graphical 
representation of what the attack surface of a system is. The nodes 
with the thick dark arrows pointing at them are the entry points 
into a system, showing where an outsider can pass input into a 
system. The remaining shaded nodes and arrows represent the 
path outside input takes through the system, with data eventually 
terminating in the center of the system. These central nodes are 
typically crash handlers in our analysis due to inspecting stack 
traces. 

Manadhata et al. [32] describe how an attack surface might be 
approximated by looking at Application Program Interface (API) 

                                                                    
2 https://crash-analysis.mozilla.com/crash_analysis 
3 https://bugzilla.mozilla.org/ 

entry points. However, the Manadhata approach does not cover all 
exposed code, as the authors mention. Specifically, internal flow 
of data through a system could not be identified. While the 
external points of a system are a useful place to start, they do not 
encompass the entirety of exposed code in the system. Internal 
points within the system could also contain security vulnerabilities 
that the reviewer should be aware of. Further, their approach to 
measuring attack surfaces required expert judgment of security 
professionals to determine if code is security relevant. 

In a previous ASA study [1], researchers found a correlation 
between binaries that appear on stack traces generated by the 
system and historical vulnerabilities discovered by security 
professionals have been fixed in code. The correlation could be 
useful to security professionals when targeting security reviews of 
codebases. By targeting security efforts to binaries in the ASA 
instead of the entire codebase, security professionals could save 
engineering hours. The researchers created the ASA by parsing 
stack traces from Windows 8 OS, and including any binaries 
involved in a stack trace in their approximation. They evaluated 
the effectiveness of their approach by comparing the 
approximation against the location of historical vulnerabilities in 
Windows 8 OS. In that study, 48.4% of shipped binaries seen in at 
least one crash dump stack trace in Windows 8 OS contained 
94.8% of the vulnerabilities seen over the same time period [1]. 

However, the industrial study has a few limitations. First, the 
approximation was only performed at the binary level of the 
application. A single binary could contain thousands of files, 
making the metric difficult to act on. Second, The industrial study 
only looked at an operating system. To address these concerns, we 
construct an ASA using stack traces at the file level instead of the 
binary level. We also perform the approximation on an open 
source application instead of an operating system. 

 
Figure 1. A visual representation of what an attack surface 
is for a system. The shaded area is the attack surface, where 
input flows through the system. 
 

 

 

 



2.2 Exploiting Crash Dumps 
The use of crash dumps, including stack traces from the crashes, 
is becoming used more frequently for identifying defects and 
vulnerabilities4 [22][24]. Liblit and Aiken [18] introduced a 
technique automatically reconstructing complete execution paths 
using stack traces and execution profiles. Later, Manevich et al. 
[19] added data flow analysis information on Liblit and Aiken’s 
approach to explain program failures. Other studies use stack 
traces to localize the exact fault location [20][21][22]. An 
increasing number of empirical studies use bug reports and crash 
dumps to cluster bug reports according to their similarity and 
diversity, e.g. Podgurski et al. [23] were among the first to take 
this approach. Other studies followed [24][25]. Not all crash 
dumps are precise enough to allow for clustering. Guo et al. [26] 
used crash dump information to predict which bugs will get fixed. 
Bettenburg et al. [27] assessed the quality of bug reports to 
suggest better and more accurate information for helping 
developers to fix the bug. 

With respect to vulnerabilities, Huang et al. [28] used crash 
dumps to generate new exploits while Holler et al. [29] used 
historic crashes reports to mutate corresponding input data to find 
incomplete fixes. Kim et al. [30] analyzed security bug reports to 
predict “top crashes”—those few crashes that account for the 
majority of crash dumps—before new software releases. 

2.3 Defect and Vulnerability Prediction 
Models 
The goal of defect prediction models (DPMs) is to identify code 
that is most likely to contain defects. For example, Nagappan and 
Ball [3] showed that code churn metrics can be used to predict 
defect density, the number of defects per line of code. Later, 
Zimmermann et al. [4] used code dependency information and 
network metrics to classify defect prone code. Other studies used 
change-related [1], developer-related [5], organizational [6], 
process [7], change dependency [8], and test [9] metrics to build 
DPMs. Hall et al. [10] presented a systematic literature review of 
DPMs and showed that model-building methodology impacts 
prediction accuracy. 

Vulnerability Prediction Models (VPMs) predict code with the 
highest chance of containing vulnerabilities. Studying VPMs for 
Microsoft Windows, Zimmermann et al. [11] concluded that 
vulnerabilities are not as simple to predict as defects. A study on 
Mozilla’s Firefox web browser showed that, on Firefox, fault 
prediction model and the vulnerability prediction model provided 
similar prediction performance [12]. In general, many VPMs 
presented in the literature are based on the same basic principles 
as DPMs, with adjustments to account for the relative rarity of 
security vulnerabilities. Transferring the concept of DPMs to 
VPMs, many studies use complexity, code churn, or static-alert 
measurements to predict vulnerabilities [13][14][15]. Published 
VPMs [16] have had challenges achieving precision and recall 
rates that DPMs have been able to achieve, presumably due to the 
relative rarity of vulnerabilities. As a result, VPMs may not be 
considered for practical use. 

Another limitation of VPM’s is the number of metrics found in 
the models, many which are unreasonable to collect for open 
source projects or smaller development shops. The Zimmermann 
                                                                    
4 http://www.crashlytics.com/blog/its-finally-here-announcing-

crashlytics-for android/ 

VPM used in the 2014 study used 29 metrics in 6 categories [1]. 
Many of these metrics, such as McCabe complexity metrics, 
security reset metrics, and number of paths through a system are 
not collected by many teams. 

In the previous ASA study [1], a Vulnerability Prediction Model 
(VPM) was also constructed using the files identified as being on 
the attack surface of Windows 8 OS. The VPM showed 
statistically significant improvements over a control setup with all 
files considered potentially vulnerable. The researchers found that 
it could predict vulnerabilities with a precision of .69 and recall of 
.05 for source files [1]. While the model has a high precision, and 
therefore high likelihood of an identified vulnerability being a true 
positive, only 5% of the total number of vulnerabilities were 
predicted by the VPM. For a prediction model to have a practical 
impact for practitioners, the recall figures must improve. 

2.4 Defect Prediction and SMOTE  
A study conducted by Lessmann et al. [37] compared 21 different 
learners for software defect prediction. They found Random 
Forest to be the best classifier. Random Forest is a form of 
ensemble learning scheme. It works by constructing a number of 
decision trees at the training time.  

Random Forests, like other predictors, tend to perform poorly if 
there is an imbalance in classes during the training phase. When 
dealing with highly imbalanced datasets, prediction models tend 
to fail. For these imbalanced datasets, prediction models will tend 
to predict that everything falls on the majority side of the dataset. 
For example, if vulnerabilities only occur in 1% of the codebase, 
99% of the code therefore doesn’t have a vulnerability. The 
prediction model can then declare that there are no vulnerabilities 
in the code and have a 99% success rate. While that may be a 
“good” statistical result, it is not a useful result for the user of the 
model if they are interested in the minority set of the data – in that 
case, the searcher wants to find minority part of the dataset, and 
does not care about predicting the majority set at all. 

Sampling schemes are commonly used to adapt machine learning 
tools to handle the class imbalance and to prevent 
misclassification of items in the dataset. Pelayo and Dick [38] 
found that the Synthetic Minority Over-sampling Technique 
(SMOTE) [35] can be used to improve the recognition of defect 
prone modules in a software system. 

3. RESEARCH METHODOLOGY 
In this section, we discuss our research methodology to answer 
our three research questions. 

3.1 Attack Surface Approximation (ASA) 
To create our ASA, we first select a collection of stack traces 
from the software system we are analyzing. These stack traces are 
chosen from a set period of time. For some organizations, taking 
every stack trace for a time period may be infeasible. For the sake 
of practicality, a random sampling may be appropriate, as the 
number of crashes received by these organizations may reach into 
the hundreds of millions. Some organizations may only keep a 
sampling of their stack traces from user crashes because of the 
scale issue. We also collect data on security vulnerabilities for the 
system in the same time period the  



 stack traces were chosen from. Vulnerability data is gathered for 
the entire product, not just those in code found in stack traces. For 
stack trace parsing, we isolate the binary, file, or function that is 
seen on each line of each stack trace, recording  each one that was 
seen and how many times it has been seen in a stack trace.  

 To accomplish this task, we created a toolset to parse each 
individual stack trace in sequence, and extract the individual code 
elements that appear on each line. The tool then outputs the 
frequency in which each unique code element appears in a stack 
trace from the parsed set. To tie stack trace appearances to the 
codebase, we generate a list of all source code files from the 
system under inspection and combine that list with the list of 
appearances in stack traces. This process is visualized in Figure 2. 

We collect several pieces of data for use in the evaluation of our 
ASA. We first identify all unique files present in the codebase 
under evaluation. We then identify all files in the codebase, and 
count each reference to a file in each stack trace we parse. Files 
are identified via source code analysis first, such as pulling the 
master repository for the project.  

In addition to the list of files on the ASA, We count the number of 
those files that have security vulnerabilities. After we have these 
two counts, we can calculate the percentage of files that are 
considered to be on the ASA at that point, along with the 
percentage of files with security vulnerabilities on the ASA. 

3.2 Practical Prioritization 
Narrowing down the number of decisions to be made when 
selecting files for review is beneficial. Decision trees can help 
practitioners make these decisions by providing a visualization of 
best splits of the data based on the given metrics. By limiting the 
space that security reviewers need to handle, they can make better 
use of their limited time to find vulnerabilities. 

We construct a decision tree for files based on three metrics: (1) 
number of appearances in stack traces, (2) number of times a file 
was changed (code churn), and (3) the number of unique authors 

that changed that file. These metrics were chosen because they are 
readily available for most organizations. If an organization is 
using source control, these metrics will be available. By 
performing a series of best splits on the dataset when trying to 
predict vulnerabilities, we can generate a decision tree that 
practitioners can use when trying to decide what files to inspect or 
test. The goal is to find splits that provide a set of files with a high 
percentage of vulnerabilities, giving practitioners a place to start. 

The decision trees were generated in JMP Pro 11 by SAS5 using 
the decision tree package. We made use of the “Best Split” 
functionality within JMP, which has the decision tree split on the 
highest G^2 score for a split of a specific table. The G^2 score is a 
representation of how good the split point is in creating two 
distinct datasets with the greatest difference in density of the 
dependent variable. Best splits were used to find the highest 
densities of vulnerabilities in the system. 

3.3 VPM Construction 
As discussed in Section 2.4, we have used Random Forests with 
SMOTE as our vulnerability prediction model. For our model, the 
independent variables were the classification of code as having a 
vulnerability, while the dependent variables are code churn, 
number of unique authors, and ASA. The Random Forest 
Classifier was taken from the SciKit Learn toolkit [40]. Our 
Random Forest used 10 trees to build the forest. As a criterion to 
measure the quality of split, the Gini impurity measure was used. 
The Gini impurity is defined as how often a randomly chosen 
element would be incorrectly labeled if it were done randomly. As 
previously mentioned, the SMOTE technique was used in 
conjunction with Random forests. SMOTE is an over and under 
sampling technique which over samples the minority class and 
under samples the majority class. 

                                                                    
5 http://www.jmp.com/en_us/software/jmp-pro.html 

 
Figure 2. The flowchart describes how different inputs travel through the set of scripts to create our attack surface approximation. 



In SMOTE, over sampling works by introducing synthetic 
examples for each minority class. We choose a sample (say a) and 
finding its N nearest neighbors. For this study we used N = 5 
because choosing one nearest neighbor limits the diversity of the 
synthetic samples. Another sample is then randomly picked from 
among those 5 nearest neighbors (say b). Then a new instance, c, 
is generated by an interpolation between samples a and b. This 
process is repeated until a desired amount of samples are 
obtained. For under sampling, existing samples are randomly 
removed from the majority class population until there are equal 
numbers of majority and minority class samples.  

4. FIREFOX CASE STUDY 
In this section, we discuss the choice of data sources for this study 
along with domain-specific methodology concerns. 

4.1 Data Collection 
To perform our study, we needed to collect stack traces from a 
software system. We chose to use Mozilla’s Firefox product as 
our data source, due to the availability of stack traces and security 
vulnerability history for the system. Mozilla only makes security 
vulnerability details available once the vulnerability has passed 
out of public use in all versions of Firefox. Because of that policy, 
vulnerability information is only available from before 2012. 
Therefore, we could not make use of Mozilla’s primary stack 
trace data website, Mozilla Crash Reports6, as it only keeps full 
stack traces from crashes for approximately 6-7 months. Instead, 
we made use of the historical dumps at https://crash-
analysis.mozilla.com/crash_analysis/. The historical dataset 
contains approximately 10% of the crashes seen by the crash 
reporting system, sorted by day. Storing 10% of the crashes seen 
each day in the historical database keeps data storage 
requirements lower for the company. We performed our analysis 
on crashes occurring from May 2010 to March 2012 due to the 
available security data. Crash dumps from the historical dataset do 
not contain the entirety of the stack trace. Only the topmost 
filename is included in each trace. While the Firefox stack traces 
provide less detail than the Windows stack traces, observing only 
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the last file seen on the stack trace may be another approximation 
technique that eliminates more files from the attack surface. We 
explore the impact on the completeness of ASA, with the metric 
for completeness being the number of vulnerabilities seen on the 
approximation. 

We further pruned the dataset to only crashes on the first day of 
every month in the time period to reduce the dataset. In the end, 
1,013,770 occurrences of files in stack traces were recorded. 
Examples of the file format seen in the historical dumps can be 
seen in Figure 3.  

To collect our security data, we parsed security reports from 
Mozilla’s security advisory blog from the same May 2010 to 
March 2012 period. Each security report presented by Mozilla has 
an associated diff or bug report, indicating what files were 
changed as part of the security fix. As mentioned previously, part 
of the reasoning behind selecting this time period was the 
availability of these security reports. Mozilla does not always 
release security bug details for newer vulnerabilities for a variety 
of reasons, such preventing the exploit from becoming more 
widespread. Mozilla makes vulnerability details available later 
after they are confident the issue has been resolved for their users. 

Code churn and unique authors data were obtained from the 
Mozilla source code. Mozilla uses Mercurial7 to manage their 
source code, which also maintains a change history and a 
historical information for the codebase. We pulled a snapshot of 
the codebase at the end of our study period (March 2012). We 
then extracted the history of each individual file seen in the 
codebase via the following command: 

$	
   hg	
   log	
   -­‐d	
   "may	
   2010	
   to	
   mar	
   2012"	
   <path_to_firefox>	
   +	
  
<file_path>	
  

After extracting these statistics, we see a list of historical change 
information, as seen in Figure 4. We counted the total number of 
occurrences of changes to create our Churn metric, and the total 
number of unique email addresses and names for our Unique 
metric. These metrics were included in our results, an example of 
which can be seen in Figure 5. 

4.2 Analysis 
We construct a decision tree based on our collected metrics: the 
number of times a file was seen in a stack trace, the number of 
unique authors, and the number of times a file was changed, as 
seen in Figure 4. Using SAS’s JMP Pro 11, a series of best splits 
on the dataset when trying to predict vulnerabilities, we can 
generate a decision tree that practitioners can use when trying to 
decide what files to inspect. The goal is to find splits that provide 
a set of files with a high percentage of vulnerabilities, giving 
practitioners a place to start. CrashAmount, Unique, and Churn 
were our independent variables for the decision tree, while 
Security, or whether there was a vulnerability seen historically in 
that file, was the dependent variable. 
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hg:hg.mozilla.org/releases/mozilla-
1.9.2:view/src/nsViewManager.cpp: 
448d0d2d310c 
hg:hg.mozilla.org/releases/mozilla-
1.9.2:xpcom/threads/nsThread.cpp: 
28ef231a65a3 
hg:hg.mozilla.org/releases/mozilla-
1.9.1:layout/generic/nsFrame.cpp: 
c307a617e5a5 
hg:hg.mozilla.org/releases/Mozilla-
1.9.2:nsprpub/pr/src/md/windows/w95s
ock.c:28ef231a65a3 
hg:hg.mozilla.org/releases/mozilla-
1.9.1:objfirefox/dist/include/string
/nsAlgorithm.h:c307a617e5a5 
Figure 3. Examples of files seen in the topmost_filename field 
in the Firefox crash dumps.  
 



In the version of SMOTE for this study, we over sample the 
minority class in the training data to have at least 500 samples. 
Likewise, we under sample the majority class so that only 500 
samples remain. The set number of samples ensures an equal 
distribution of classes in training dataset. The purpose of the 
distribution is to improve learning on the training sets and 
improve the predictive power of the prediction model in terms of 
recall, or coverage of the vulnerabilities in the dataset. 

5. RESULTS AND DISCUSSION 
In this section, we present our results and discuss what each of the 
results means for security professionals. 

5.1 Attack Surface Approximation (RQ1) 
RQ1: How effective is the attack surface approximation 
approach in predicting the attack surface of a new system, as 
measured by recall and precision? 

Our attack surface approximation results for the Mozilla Firefox 
product can be seen in Table 1. After applying ASA, we see that 
8.4% of files (predicted by ASA as attack surface) contain 72.1% 
of the historical vulnerabilities seen over the same period of time 

as the time period from which the stack traces are analyzed. The 
initial study on Windows 8 found that 48.4% of binaries contained 
94.8% of historical vulnerabilities when filtering on binaries with 
a minimum of one appearance on a stack trace. 

In addition to our baseline threshold of one occurrence on a stack 
trace, we explore other minimum thresholds for inclusion on the 
attack surface approximation. Table 1 shows that the precision of 
our approximation increases as we increase minimum thresholds. 
We split the analysis into five different sections: a simple on/off 
metric if any stack trace contains that file, and several cutoffs for 
minimum number of appearances at 10, 30, 77, and 140. As the 
number of times code appears on a stack trace increases, the 
likelihood that that code contains vulnerabilities increases. A 
graph representation of the correlation is presented in Figure 6. 

These results suggest that code that appears frequently in stack 
traces is not only more likely to have defects, but is also more 
likely to have vulnerabilities as well. When we consider how 
crashes occur, it may make sense. If the program is crashing, that 
means that unexpected events or input has taken place within a 
system and is not being handled properly. From the result, we 
conclude that the automated attack surface approximation 

changeset:   43376:ebc6875a1ec4 
user:        L. David Baron <dbaron@dbaron.org> 
date:        Tue Jun 08 22:28:14 2010 -0700 
summary:     Use macros for frame state so that it's easy to change 
the size and easier to read the constants.  (Bug 570837)  r=roc 
 
changeset:   41687:b830eb32915d 
user:        Zack Weinberg <zweinberg@mozilla.com> 
date:        Sat May 01 14:40:16 2010 -0700 
summary:     Bug 562093: Add reflow tracing for InitConstraints, 
InitOffsets, InitFrameType. r=dbaron 
 
changeset:   41671:985cdfad1c7e 
user:        Markus Stange <mstange@themasta.com> 
date:        Sat May 01 12:40:22 2010 +0200 
summary:     Bug 550889 - Don't pass negative values to 
SetComputedWidth/Height in nsFrame::BoxReflow. r=bzbarsky 
Figure 4. An example of data output by the “hg log <x>” command on a file in the Mozilla Firefox codebase 
 

	
   Name CrashAmount Churn Unique Security 	
  

	
   js/src/jsgc.cpp 79705 708 49 1 	
  

	
   layout/generic/nsFrame.cpp 73405 291 55 1 	
  

	
   js/src/jsobj.cpp 71040 1041 62 1 	
  

	
   js/src/xpconnect/src/xpcnative.cpp 51309 161 28 1 	
  

	
   xpcom/io/nsLocalFileWin.cpp 41783 59 22 1 	
  

	
   layout/generic/nsObjectFrame.cpp 39853 276 58 1 	
  

	
   modules/plugin/base/src/ns.cpp 37226 31 14 1 	
  

	
   js/src/jstracer.cpp 36076 855 56 1 	
  

	
   js/src/jsapi.cpp 35671 1019 82 1 	
  

	
   js/src/jsinterp.cpp 28912 993 55 1 	
  

	
   Figure 5. A subset of the final dataset used for analysis (some names shortened). 	
  



approach may be useful in limiting the scope of code that 
developers need to review while missing a minimal number of 
potentially flawed areas. 

We have also improved the granularity of attack surface 
approximation compared to the previous study [1], in addition to 
the quantitative improvements in coverage and specificity. By 
performing attack surface approximation at the file level, we 
provide more actionable results for practitioners. While a single 
binary file could contain thousands of individual files for 
developers to review, files are typically a more manageable 
workload for a developer, depending on the development 
practices of the organization using attack surface approximation. 

Attack surface approximation on Mozilla’s Firefox 
product identified 8.4% of the files in the 
codebase, which contained 72.1% of the 
vulnerabilities seen. These results show 
improvement over the Windows 8 study, which 
identified 48.4% of the binaries that contained 
94.8% of the vulnerabilities. 
 

5.2 Decision Trees (RQ2) 
RQ2: How could a decision tree constructed from the attack 
surface approximation be used to prioritize security efforts? 

 Individual decision trees could provide practical direction to 
testers. A decision tree modeling the properties of security 
vulnerabilities in a software system could be useful for 
prioritizing security assessment efforts. The splits in a decision 
tree would represent properties that indicate where security 
vulnerabilities appear more frequently. By focusing on branches 
where vulnerability density is higher, security professionals can 
use their time more efficiently. 

Figure 7 represents a decision tree generated by SAS’s JMP Pro 
11, with splits created on the “best” split possible. In the figure, 
the number on the left is the number of files not containing 
vulnerabilities, while the number on the right is the number of 
files with at least one vulnerability. 

 In the decision tree, we can make several observations. The first 
split is not done on our stack trace metric, but rather on unique 
developers who modified the file over our time period. We 
hypothesize that the first unique split is created because of the 
number of files that were not modified or did not have historical 
data in source control. By splitting off at less than three unique 

authors, he decision tree is creating an “active file” partition that 
had several unique authors making modifications over the time 
period. 

 The second split in each branch is our stack trace frequency 
metric. Here we see two splits, one at 1, and one at 77. The split at 
1 stack trace appearance is consistent with previous studies. The 
split on code seen in at least 77 unique stack traces (along with 
additional minor splits not shown in the figure for space 
considerations) indicates that as stack trace appearances increase, 
so does the likelihood of a vulnerability being present, as shown 
in Table 1. 

The third split is on unique developers who modified a file. The 
27 Unique split supports an earlier experiment by Meneely and 
Williams [36] that many developers changing the same code can 
have a negative effect on code quality from a security perspective. 
Supporting existing research is a good indication of the quality of 
ASA. 

The churn metric is also noticeably absent from our splits. While 
previous studies have cited code churn as a key metric for defect 
and vulnerability prediction, it does not appear to make a 

 Table 1. Results of our attack surface approximation analysis  

 
Stack Traces files flaws %files %flaws Precision Recall 

 
 

>= 1 4998 282 8.4% 72.1% 0.056 0.721 
 

 
>= 10 2691 239 4.5% 61.1% 0.089 0.611 

 
 

>= 30 1853 210 3.1% 53.7% 0.113 0.537 
 

 
>= 77 1244 187 2.1% 47.8% 0.150 0.478 

 
 

>= 140 969 162 1.6% 41.4% 0.167 0.414 
 

 
All 59437 391 - - - - 

 
  

 
Figure 6. Graph of precision (Y-Axis) vs. minimum number of stack 
trace occurrences to be included in the attack surface approximation 
(X-Axis) 
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difference when generating a single best tree when stack traces are 
involved. Stack trace count may be a better metric when 
considering vulnerabilities. 

As we move to the right on our decision tree, we see an increasing 
density of vulnerabilities in the remaining splits. For practitioners, 
moving from right to left on the tree gives them a place to start 
when performing inspections. Practitioners can start at the far 
right child of the tree, and then iteratively move left step-by-step, 
stopping to inspect files at each terminating leaf. In summary, we 
have provided an automated prioritization scheme for security 
inspections for teams working on software in the field. In our 
example, files that would be looked at first are those that were 
involved in more than 77 crashes and changed by 27 or more  

unique authors. The next set of code to be evaluated would be 
those that were involved in more than 77 crashes and changed by 
more than 3 but less than 27 unique authors, et cetera. 

Decision trees could help software developers 
prioritize their security efforts.  

 
 
 

5.3 VPM PERFORMANCE O (RQ3) 
RQ3: Do over-sampling and under-sampling techniques 
improve Vulnerability Prediction Model performance when 
restricted to the attack surface approximation? 

To verify the performance of Random Forest with and without 
sampling, a 10-way cross validation study was conducted. Table 2 
shows the results of using oversampling and undersampling to 
handle class imbalance in the vulnerability space. 

We observe a significant improvement in recall rates after 
preprocessing the data with SMOTE. Specifically, recall 
improved by an order of magnitude from 0.08 to 0.80 after 
SMOTEing. However, the precision scores decreased from 0.24 to 
0.04. Recall measures the probability that the classifier predicts a 
vulnerability, given that there is indeed a vulnerability present. 
Precision depends on the prevalence of vulnerabilities in the 
dataset. Due the lack of sufficient vulnerabilities in the test 
samples, precision is usually quite low. Therefore, with regards to 
our application, recall is a more meaningful measure and the 
efficacy of the classifier can be evaluated using the recall rate. 

Recall is the better metric to use when working in the 
vulnerability prediction space. Menzies et al. showed that in 
software engineering datasets with large negative/positive ratios, 
like the vulnerability space, “it is often required to lower precision 
to achieve higher recall” [39]. Because of the value of finding 

 
Figure 7. The decision tree generated by our best splits for vulnerabilities. The left number is the number of files without 
security vulnerabilities, the right number is the files with security vulnerabilities. 
 

 Table 2. Results of the application of the SMOTE technique to our dataset  
 Before Sampling After Sampling  
 Measure Median  IQR Measure Median  IQR 	
  
 Precision  0.26 0.25 Precision  0.04 0.02 	
  
 Sensitivity (Recall)  0.08 0.07 Sensitivity (Recall)  0.8 0.07 	
  
 Accuracy  0.99 0 Accuracy  0.87 0.01 	
  
 Specificity  1 0 Specificity  0.87 0.01 	
  
 F 0.12 0.1 F 0.08 0.03 	
  
 	
   	
  



vulnerabilities, with a single flaw possibly costing organizations 
significant amounts of money, coverage of vulnerabilities is far 
more important than accuracy. While limiting the set of code to 
be inspected is good, our goal should be to limit the amount of 
vulnerabilities that are missed when restricting the set of code to 
be looked at, otherwise our model will not be practical for 
practitioners. 

Our VPM performs well when optimizing for 
vulnerability coverage, with a recall of 0.80 
and precision of 0.04. 

6. LIMITATIONS 
One of the limitations of our previous work was that the ASA 
approach was only tested on Microsoft Windows and that the 
approach may not have been generalizable. We have 
demonstrated the value of ASA on Mozilla Firefox, but smaller 
software systems with fewer stack traces may not work as well 
with the approach. Both ASA studies have been done on industry 
leading codebases. Future studies could determine how ASA 
performs on smaller codebases. 

In the absence of an oracle for the complete attack surface, we 
cannot assess the completeness of our approximation. Our 
determination of accuracy currently is based only on known 
vulnerabilities, which may introduce a bias towards code 
previously seen to be vulnerable. While basing our effectiveness 
on historical vulnerabilities may be a good assumption, further 
exploration is needed. ASA outputs, as expected, an 
approximation, and it cannot identify latent vulnerabilities 
directly. 

While previous studies with VPMs [11][12] have analyzed 
software at multiple levels, this work focuses on the file level 
based on practitioner feedback and the availability of data. We 
cannot claim that attach surface approximation’s effectiveness 
will remain the same as the level of granularity changes. 

7. SUMMARY 
In this study, we have shown that ASA with stack traces works for 
Firefox. We add the results of this study to our prior results that 
the approach is effective for commercial operating systems. As a 
result, we have shown that this approach is generalizable. We can 
address concerns about ASA overfitting for certain types of 
software systems by adding additional studies on different types 

of systems. 

By moving granularity to file level in this study, we have made 
the approximation more actionable for developers.  Files are more 
efficient for locating potentially vulnerable when compared with 
binaries. We have improved on the state of the art in VPM’s with 
recall increasing tenfold after using oversampling and 
undersampling techniques. Additionally, we explored decision 
trees as a visualization technique of the important metrics in 
vulnerability prediction. 

8. FUTURE WORK 
In the previous study [1], we had explored graph representations 
of stack traces using the order of appearance of code in the trace. 
For future work, we would like to construct similar graph 
representations of the trace. A standalone tool or plugin integrated 
with a modern IDE such as Eclipse is one method for making this 
representation useful to practitioners. 

Mock examples of the types of graph representations we could 
create are in Figure 8. In these examples the single central node is 
the file the developer is currently viewing, while the surrounding 
nodes are the files (with names) that are seen on stack traces 
immediately before or following the currently viewed file. By 
showing these known failing data paths to the developer, they can 
focus their triaging efforts on these paths, excluding any paths that 
crashes were not seen on. By following the visualization, the 
developer focuses their effort on code that has a higher probability 
of containing security defects. 

In addition to the simple visualization of the graph representation 
of the stack traces, graph shape analysis is another methodology 
we plan to explore to further narrow our scope of code that could 
contain security vulnerabilities. In particular, do certain shapes of 
incoming and outgoing nodes result in more frequent sightings of 
vulnerabilities? We hypothesize that certain shapes, such as many 
files calling into one file but that file only calling out to few files, 
may exhibit more vulnerabilities than other areas. 

ASA currently looks at the code entities themselves as possible 
locations for security vulnerabilities. The code entities themselves 
may not the interesting metric from a security perspective. The 
relationships between code entities may do a better job of 
pointing out potential vulnerabilities. Many common vulnerability 
types are the result of bad data handling, including SQL injection 
attacks and buffer overflow attacks. Future work may be prudent 
to examine the relationships between files (or other code entities 

 
Figure 8. Sample graph representations of a system. The central node is the file the user is currently viewing, while the outside nodes are files  
that appear right before or after the currently viewed file in at least one stack trace. 
 



at various levels of granularity) and determine which relationships 
appear in crashes most frequently. These bad handoffs may point 
us towards where vulnerable code lives. 

Currently, our approach for the VPM is to use a simple weighting 
scheme on counts of vulnerabilities, along with a few easily 
collected metrics for the codebase. By finding additional metrics 
within the stack traces, such as variable contents, register 
contents, etc. we may find additional ways to narrow our set of 
attack surface entities. 
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