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Figure 1: Soft shadowing of a 100,000 polygon scene, using 64 depth maps of 5122 resolution on an NVIDIA GTX Titan. Light
samples are distributed over an area light source using random Poisson disc distribution. Left: depth maps generated by brute
force rasterization in 4.85 ms. Right: depth maps generated by synchronized fragment reprojection in 0.48 ms.

Abstract

This paper presents a practical approach for producing many unique depth maps of a scene in a single geometry
pass without any additional rasterization. We use this method to accelerate the performance of soft shadowing
algorithms for geometrically complex scenes. Physically accurate Monte-Carlo style soft shadowing algorithms
typically require prohibitive amounts of rasterization to produce many depth maps from slightly differing view-
points. Due to the similarity between viewpoints, much of the depth computation is redundant. We leverage this
observation by rasterizing a single central depth map and then reprojecting central depth map fragments into
different view spaces, producing new depth maps. Since fragment reprojection is a function of the number of frag-
ments stored in the central depth map, performance is only weakly linked to scene geometry. This produces speeds
comparable to Percentage Closer Soft Shadows (PCSS) and quality comparable to Monte-Carlo style brute force
rasterization. Our method is more general and easier to use than PCSS, at the cost of higher memory usage.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

As a perceptually important visual effect, shadows have been
an active research topic in the graphics community for sev-
eral decades. Important visual cues encoded in shadows
were identified as early as Renaissance painters and stud-
ied more recently by cognitive psychologists [DK96]. Shad-

ows provide both static and dynamic visual clues about the
location, shape, and arrangement of objects in an environ-
ment, as well as various characteristics about relevant light
sources [MKD98].

Shadows are created by the complex interaction of light
with objects and the environment. Light energy is constantly
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absorbed and scattered as it collides with surfaces. Repro-
ducing this behavior is especially challenging at real time
speeds. Since the first shadow research was presented in the
late 1970’s [Cro77, Wil78] much research, along with hard-
ware and software advancements, has been done to improve
shadow rendering. Unfortunately, a comprehensive solution
for producing accurate real time soft shadows in fully dy-
namic environments has yet to be found [SLSW13].

The primary task of soft shadowing algorithms is solv-
ing for the visibility factor: the proportion of an area light
visible to each point on a receiving surface [ESAW11]. Ac-
curately solving the visibility factor requires: 1) identify-
ing geometry which occludes the light source as viewed
from each point on a receiving surface and 2) determin-
ing how much of the light source each occluder obscures.
While many clever approximations for the visibility fac-
tor exist [Fer05, DL06, GBP06, SSMW09], the most accu-
rate rasterization-based methods produce a large number of
depth maps to determine occlusion.

Modern graphics hardware is well tailored for efficiently
generating a single depth map. Unfortunately, Monte-Carlo
techniques require a large number of depth maps (64 - 256)
to achieve acceptable quality [ESAW11]. Critically, the in-
formation stored in the various depth maps is often simi-
lar, if not identical, producing redundant computation. Com-
pounding this problem, the caching structures of modern
graphics processors are designed for throughput and are
ineffective at keeping previous depth computations readily
available.

We present a new approach, called Fragment Reprojec-
tion, which improves the performance of Monte-Carlo style
soft shadowing algorithms by addressing the depth map gen-
eration bottleneck. Our method:

1. Leverages the similarity of information in the depth maps
2. Restructures depth computations to avoid rasterization
3. Harnesses GPGPU capabilities of recent GPU hardware
4. Produces all necessary depth maps without additional

passes over the scene geometry

The performance of our approach is a function of the
number of fragments stored in a single central depth map.
This produces a performance curve that is weakly linked
to scene geometry, yielding speeds comparable to Percent-
age Closer Soft Shadows (PCSS) and quality comparable to
Monte-Carlo style brute force rasterization. Our approach is
more general and easier to use than PCSS, at the cost of
higher memory usage. Since our method performs rasteri-
zation only for the central view, some light leaking artifacts
and slight umbra over-estimation exist (see Figure 1).

2. Related Work

Soft shadowing has been an active area of research for sev-
eral decades. As such there are a multitude of approaches

for solving the soft shadowing problem. We limit our related
work discussion to the main categories of image-space soft
shadowing techniques that inspired this work.

Monte-Carlo Sampling: The most accurate soft shad-
owing approaches employ sampling techniques which dis-
tribute randomly positioned samples across an area light.
Each light sample is then used as an eye location and geom-
etry between the eye and the receiver is rasterized [HH96].
The visibility factor is then calculated by performing stan-
dard shadow mapping for each depth map and accumulating
the results on the graphics hardware. The visual quality is ex-
cellent, since occlusion is correctly represented for each light
sample; however, the large amount of rasterization per frame
is prohibitively slow for all but very small scenes [ESAW11].
Due to the extensive amount of sampling, these approaches
are often referred to as ‘brute force’.

Temporal Reprojection: Another category of soft shadow
algorithms is built upon the insight that rendered frames are
often similar, or even identical, over a period of time. This
approach distributes rasterization work over many frames at
the cost of requiring multiple frames to resolve the correct
solution. The use of temporal reprojection was recently pre-
sented as a method to iteratively refine hard and soft shad-
ows [SJW07,SSMW09]. Utilizing a history buffer, these ap-
proaches store shadow mapping results over a few frames,
and reproject the results into the current frame. While tem-
poral coherence techniques achieve real time speeds, the vi-
sual quality is limited to the initial unrefined solution when
there is little similarity between frames.

Backprojection: Employing a more physically based ap-
proach, backprojection algorithms look toward an area light
from each point on a receiver and evaluate how much of the
light source is visible. They accomplish this using a depth
map, rasterized from the center of an area light, as an ap-
proximation of occluding geometry. The depth map is sam-
pled over an area to search for occluding fragments, which
are then reprojected onto the area light. The proportion of
the area light not covered by the reprojected fragments rep-
resents the amount of light energy reaching the current point
on the receiver [GBP06]. For large penumbrae, the amount
of depth map searching is rather high, requiring significant
amounts of interaction with texture resources.

Adaptive Filtering: Filtering based algorithms perform
shadow mapping and apply a variable amount of filtering
to shadow edges to simulate penumbra and contact hard-
ening. Adaptive filtering techniques often make major as-
sumptions about the occluding geometry or ignore the ge-
ometry completely. For example, PCSS assumes there is
only one parallel planar occluder in order to use the paral-
lel planes equation for penumbra width estimation [Fer05].
While filtering approaches require significantly less mem-
ory, their approximations are incorrect for the majority of
situations [ESAW11].
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3. Algorithm

We propose an algorithm which improves the performance
of Monte-Carlo sampling based approaches by generating
many depth maps without additional geometry passes or
rasterization. Since light sample views are typically very
similar, the fragments of their associated depth buffers will
also be similar. We take advantage of this similarity by re-
projecting rasterized depth fragments of a single light view
into many different light views, thus closely approximating
rasterization output. Our algorithm is easy to implement and
integrate since depth rasterization and shadow mapping are
common features of nearly all real time rendering engines.
The algorithm is as follows:

Step 1: Central Depth Rasterization
Render a depth map from the center of the area light.

Step 2: Fragment Reprojection
For every fragment of the central depth map:

• Construct the fragment’s post projection 3D location
• Reproject the 3D location into another light sample view
• Store the reprojected fragment depth in a buffer
• Repeat for many views

Step 3: Shadow Mapping
Perform shadow mapping, averaging shadow comparisons
from the generated depth maps.

3.1. Implementation

Previously, graphics hardware did not allow for the gener-
alized access to computation and storage resources required
to perform fragment reprojection. Specifically, threads dis-
patched for the specialized shader stages (vertex, pixel)
could not write to arbitrary locations of dynamically se-
lected memory resources. The introduction of the Geome-
try shader enabled the rasterizer to output to multiple render
targets; however, the input order of primitives had to be re-
tained [AMHH08]. In practical terms, this meant primitives
were stored and sorted in an intermediate form - often in off-
chip video memory. This severely limited the performance
of Geometry shader code.

With the recent introduction of graphics hardware struc-
tures to support GPGPU computation, many of these road-
blocks have been removed. The computation pipeline, ex-
posed by APIs such as DirectCompute and CUDA, provides
the general access to hardware resources we require. Parallel
execution is defined by a new threading model and threads
have access to new memory resources that support writing to
arbitrary locations. Additionally, this model allows for more
explicit control over how threads are created and executed
by GPU processors.

In conversations with our NVIDIA collaborators, it was
pointed out that the Pixel shader stage has also been given

access to the new GPGPU memory resources. To evaluate
the performance differences, we implemented fragment re-
projection in both Compute and Pixel shaders.

3.1.1. Compute Shader Fragment Reprojection

By interleaving graphics tasks with the computation
pipeline, we have implemented our algorithm in three
passes: 1) rasterization of the central depth map, 2) fragment
reprojection in the compute shader, and 3) a final eye pass to
perform shadow mapping and shading.

Since the depth values produced by reprojection depend
on the rasterized central depth fragments, a depth bias should
not be added during central depth rasterization. Instead, it is
added after fragment reprojection. Figure 2 shows self shad-
owing caused by incorrect depth biasing versus correct shad-
ing from post-reprojection bias.

Figure 2: Left: self shadowing due to adding depth bias be-
fore reprojection. Right: depth bias added after reprojection.

3.1.2. Pixel Shader Fragment Reprojection

The Pixel shader allows our algorithm to complete in two
steps. Fragment reprojection occurs in the Pixel shader stage
of our central depth rasterization step. In order to perform
fragment reprojection efficiently, the correct depth should
be resolved for each fragment before the associated Pixel
shader executes. The graphics pipeline performs z-buffering
after the Pixel shading stage; however, graphics APIs of-
ten include methods to expedite z-buffering. In Direct3D 11,
this is enabled through a shader semantic called [early-
depthstencil]. Alternatively, Pixel shader fragment re-
projection can be implemented in three steps, much like its
Compute counterpart, instead using a full screen pass to trig-
ger Pixel shaders for the Fragment Reprojection step.

3.2. Thread Synchronization

During fragment reprojection, many depth fragments may
reproject to the same pixel location of a destination depth
map. Since fragment reprojection threads are executed in
parallel, a race condition will exist between shader threads
attempting to write to the same location.

To evaluate the impact of unsynchronized threads, we im-
plemented the algorithm both with and without thread syn-
chronization. In the unsynchronized case, the last thread that
attempts to write to the destination depth map will succeed.
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Figure 3: Performance comparison of brute force rasterization (red), synchronized (solid blue) and unsynchronized (dashed
blue) fragment reprojection, and PCSS (green) for each of our test environments.

In the synchronized case, so called "atomic operations" are
used to ensure requests to read and write from memory are
executed in the order they are received. To ensure the clos-
est fragment is stored in each depth map, threads perform
an atomic minimum operation on the reprojected depth and
the value currently stored in memory. In this way, compute
thread synchronization is analogous to z-buffering in the
graphics pipeline.

4. Results

To evaluate our algorithm, we use two benchmarks: 1) brute
force rasterization, representing high visual quality at the ex-
pense of low speed and 2) PCSS, representing lower quality
at practical speeds. We chose PCSS as a practical perfor-
mance benchmark due to its inclusion in recent high pro-
file games [Bur13]. PCSS’s performance is a function of the
number of texture samples used in the occluder search and
filtering steps, since it only uses a single light sample. We
tuned the sampling amount for the best quality possible.

Our tests were run on an Intel i7-930 2.8GHz CPU,
NVIDIA GTX Titan GPU, and Direct3D 11. We created
four scenes with occluders of differing geometric complex-
ity. The ‘Window’ is 780 triangles, the ‘Shanty Town’ is
23,500 triangles, and the ‘Stanford Dragon’ is 100,000 tri-
angles. Our large test scene contains ten Stanford Dragons,
for a total of 1 million triangles. We use Poisson disc random
distribution for selecting area light sample locations, 32 bit
depth buffers, and 2x2 hardware percentage closer filtering.
The number of light samples is varied between 16, 32, and
64 samples.

All scene geometry fits within the GPU’s L2 cache. This is
a best case scenario for brute force rasterization, since only
the first request for geometry will fetch from video memory.
As a result, brute force rasterization exhibits a linear per-
formance curve, where the number of rasterized triangles is
inversely proportional to the speed of processing. In typical
real time applications, this scenario is often not the case. The
L2 cache will be filled and evicted many times, forcing more
interaction with video memory.

4.1. Performance

As shown in Figure 3, the performance of both synchronized
and unsynchronized fragment reprojection perform signif-
icantly better than best case brute force rasterization and
PCSS when scene geometry is at least 100,000 triangles.
Fragment reprojection begins to improve performance when
scene geometry is at least 23,000 triangles. As the scene
geometry becomes more complex, fragment reprojection is
anywhere from 10× to 20× faster than best case rasteriza-
tion. As demonstrated by the 1 million triangle scene, frag-
ment reprojection’s performance curve is only weakly de-
pendent on geometric complexity and the number of light
samples.

4.1.1. Pixel Shader Fragment Reprojection

Performance of fragment reprojection using the three pass
Pixel shader is comparable to its Compute shader counter-
part. When the depth complexity of a scene is high, Pixel
shader reprojection is slower using the two pass [early-
depthstencil] approach. It appears that expedited z-
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Figure 4: The visual difference between the brute force rasterization reference and synchronized fragment reprojection, using
64 samples and 5122 resolution depth maps. Lighter areas indicate percentage difference between the images.

buffering is not reliable, since Pixel shaders are being ex-
ecuted for fragments before z-buffering is complete. Addi-
tionally, the output merger would be a natural choice for per-
forming synchronization of Pixel shader threads; however,
the output merger is not compatible with GPGPU memory
resources.

4.1.2. Synchronization and GPU Limitations

Synchronizing compute threads imposes a performance cost.
Part of this cost is due to threads waiting for memory re-
sources to be available during atomic operations. The bulk of
the synchronization cost; however, comes from a limitation
in the GPU hardware. Unfortunately, most modern GPUs
only support atomic operations on integer format memory
resources while the sampling and filtering hardware require
floating point memory resources. Practically, this means if
threads are synchronized we must either: 1) copy the integer
resource to a floating point resource or 2) manually imple-
ment sampling and filtering of the integer memory resource
in the final shading pass. Since manual filtering of integer
resources is especially slow, and we can perform an opti-
mized copy of GPU texture memory, we’ve found copying
is a better option. Hardware supported floating point atomic
operations would eliminate this unnecessary overhead from
the synchronization cost.

4.2. Quality

The quality of fragment reprojection is very good. Support
for large penumbrae is automatic and requires no tweaking.
Figure 4 visualizes the differences between the brute force
rasterization reference and synchronized fragment reprojec-
tion. Dark areas indiciate no difference, while lighter areas
indicate the percentage of difference. We have also com-
puted the normalized Root Mean Squared Error (RMSE). As
shown in Figure 6, RMSE values for fragment reprojection
are lower than PCSS for the Window and Stanford Dragon,

but slightly higher for the Shanty Town due to light leaking
artifacts.

4.2.1. Light Leaking

Fragment reprojection does not perform rasterization from
each light sample’s view. Consequently, depth maps pro-
duced during reprojection can both introduce newly oc-
cluded fragments and miss newly visible fragments that
would have been generated during rasterization. As we ob-
serve with the Shanty Town, the inability to generate the
exact fragments for light views in a high depth complexity
scene lowers the achievable accuracy.

If light samples are positioned far enough away from the
central light view, gaps are produced in the reprojected depth
maps (Figure 5). These gaps are the cause of erroneously lit
areas of shadow in the final image. To reduce these gaps, we
adjust how the central light view is sampled. Increasing the
resolution of the central light view, to ensure it is higher than
the reprojection depth maps, generates additional fragments
for each reprojection depth map pixel. These extra samples
help fill depth map gaps.

Figure 5: Left: rasterized depth map. Right: depth map pro-
duced by fragment reprojection.

These additional fragments are the primary cause of um-
bra over-estimation in the final image, which increases the
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Figure 6: Comparison of final shadowing. Top: Window, Middle: Shanty Town, Bottom: Stanford Dragon
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RMSE. However, it is well known that RMSE is not a good
measure of perceived difference. As shown in Figure 6, vi-
sual differences caused by umbra over-estimation are less
noticable than the filtering approach used in PCSS.

4.2.2. Temporal Aliasing

Increasing the resolution of the central light depth map in-
creases the number of threads competing for the reprojec-
tion depth map memory resource. Increasing the depth com-
plexity of the scene increases the probability that competing
threads will store highly variable depth values. From this re-
lationship we observe that thread synchronization is not nec-
essary when scene depth complexity is low. In this case, the
competition of threads for a memory resource is irrelevant,
since each reprojected fragment’s depth will be very similar.
However, in scenes with high depth complexity, lack of syn-
chronization creates objectionable temporal aliasing. Tem-
poral aliasing is fixed by synchronizing threads and storing
the closest fragment.

4.3. Limitations

The primary limitation of fragment reprojection is support
for large area light sources. As an area light’s size increases,
light samples are positioned farther away from the central
light view. This increases gaps in the reprojected depth maps,
causing light leaking. Additionally, storing depth maps for
every light view can use a large amount of memory. For
32-bit 5122 resolution depth maps, each area light sample
will use 1MB of memory. Due to GPU limitations, synchro-
nization of compute threads using the copy-to-float approach
doubles this cost. Fortunately, memory contraints are rapidly
becoming less of a concern since modern game consoles and
new GPUs include 3 to 8 GB of dedicated GPU memory.

5. Conclusions

We have presented a new, practical approach for accelerat-
ing the generation of many unique depth maps. We use this
approach to improve the performance of Monte-Carlo style
soft shadowing algorithms. By leveraging the similarity be-
tween depth maps, we avoid rasterization by reprojecting
depth map fragments from a single rasterized view into many
view spaces. The performance of our approach is a function
of the number of fragments stored in the central depth map
and produces a performance curve that is only weakly linked
to scene geometry.

Fragment reprojection is easily integrated into existing
rendering engines since it can be implemented with either
Compute or Pixel shaders. Our contribution is an easier to
use, more general method than PCSS with comparable speed
and better quality. Our approach requires no tweaking and
supports large penumbrae automatically, at the cost of higher
memory usage.

5.1. Future Work

Since the quality of fragment reprojection depends heav-
ily on the initial sampling of the scene, we are exploring
more effective sampling methods to support reprojection.
Improved initial scene sampling will reduce or eliminate
light leaking artifacts and further improve quality. Given the
performance savings of fragment reprojection, we are also
interested in applying reprojection to other multi-view ef-
fects including omni-directional soft shadows and environ-
ment mapping.
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