
Platys: An Active Learning Framework for
Place-Aware Application Development and Its

Evaluation

Pradeep K. Murukannaiah Munindar P. Singh

Abstract

We introduce a high-level abstraction of location called place. A place is not nec-
essarily centered on physical space, and derives its meaning from a user’s activities and
social context. In this manner, place can facilitate improved user experience compared
to traditional representation of location, which is spatial coordinates. We propose
Platys framework as a way to address the special challenges of place-aware applica-
tion development. The crux of Platys is a middleware that 1. learns a model of places
specific to each user via active learning, a machine learning paradigm, to reduce the
user-effort required for training the middleware, and 2. exposes the learned user-spe-
cific model of places to applications at run time, insulating application developers from
dealing with low-level sensors and nuances in how users perceive places.

We evaluated Platys via two studies. First, we applied Platys’ active learning ap-
proach to learn a model of places for each of 10 users from the user’s place labels and
sensor data collected from an Android phone. Compared with two supervised and two
unsupervised place learning approaches, we found that Platys 1. requires fewer place
labels than traditional supervised approaches to learn a user’s places with desired ac-
curacy, and 2. learns places with higher accuracy than unsupervised approaches.

Second, we conducted a developer study to evaluate Platys’ efficiency in assist-
ing developers and its effectiveness in enabling usable applications. In this study, 46
developers employed Platys or the Android location API to develop a place-aware
application. Our results indicate that application developers employing Platys, when
compared to those employing the Android API, 1. develop a location-aware applica-
tion faster and perceive reduced difficulty and 2. produce applications that are easier
to understand (for developers) and potentially more usable and privacy preserving (for
application users).

1 Introduction
Location awareness is an important feature of mobile applications including search, social
networking, and games. In many cases, a user would not even notice that an application

1

is location-aware. As Weiser [1999] observed, “the most profound technologies are those
that disappear.”

Weiser’s vision leads to three major questions that we seek to address in this paper.

1. What are the levels of abstraction (or granularity) at which a mobile application could
employ the location information?

2. What are the implications of the chosen level of abstraction on the process of location-
aware application development?

3. How does the chosen level of location abstraction affect the quality of the applications
produced both from the perspectives of application developers and end-users?

In current practice, most location-aware applications represent location as position, i.e.,
spatial coordinates (usually latitude and longitude). We imagine that position is popular
because it matches existing location acquisition techniques including Global Positioning
System (GPS), and cellular and WiFi triangulation Küpper [2005]. Current mobile devices
provide hardware (built-in sensors) and software (programming interfaces to the sensors)
support for position acquisition. Thus, developing a position-aware application is natural
for an application developer.

1.1 From Position to Place
Applications employ location in some typical ways:

1. Explicit. Using the information as is, as below:

• Informative. An application can provide a user’s location information explicitly, e.g.,
it may display the location in a calendar or tag location on a photo.

• Social disclosure. An application can disclose a user’s location to the social contacts
of the user, e.g., on a social network site or in a text message.

• Commercial disclosure. An application can disclose a user’s location to a third party
for a commercial purpose, e.g., to obtain a coupon for a nearby coffee shop.

2. Implicit. An application can automate a task based on the user’s location. For example,
consider a personalization task such as changing the ringer mode of the phone or for-
warding text messages to email, which can be performed automatically depending upon
where the user is.

3. Prediction. An application can analyze a user’s location (typically, location history) to
discover interesting patterns and predict a future location. The future location could
then be used for one of the above purposes.

2

Whether an application employs location for the user to benefit from the location per-
sonally (for information or task execution), or exploits location to share it with others (for
social or commercial purpose), what is a desirable level of abstraction at which to do so?
We doubt it would be position; spatial coordinates do not have an inherent meaning for
the user. Instead, we imagine that a notion such as home, office, restaurant, and park is
more natural. We term this level of location abstraction place. Employing place instead of
position has three implications on location-aware applications.

• By presenting location in a way that is natural to users, place can enhance usability, i.e.,
the ease with which a user can exercise an application Ryan and Gonsalves [2005].

• Place opens up new avenues for intelligent location-aware applications including social
networks Murukannaiah and Singh [2012], personal assistants desJardins et al. [2005],
pervasive and social games Magerkurth et al. [2005], recommender systems Wang et al.
[2012], and virtual worlds Hendaoui et al. [2008].

• Place can enhance location privacy Duckham and Kulik [2006] by providing users an
easier means for controlling the extent to which their location information is shared,
e.g., by sharing the information that a user is in a class instead of sharing the physical
location of the specific class.

1.2 Place-Aware Application Development
Although place offers potential benefits as a location abstraction, place-aware application
development is quite challenging.

First, how can a place-aware application represent and reason about the places that a
user may care for? In general, developers cannot determine the needs of each potential
user. For example, a model yielding home, office, and elsewhere might suffice for a user,
but another user might want a model that distinguishes multiple offices. Additionally, a
user’s location needs often change over time.

Second, each developer may employ a distinct place model imposing an unnecessary
burden the user. For example, an application may model a class to include regular lectures
and guest lectures whereas another application may differentiate the two events as taking
place in a lecture hall and a seminar hall, respectively.

Third, we need to provide architectural support for developing a place-aware applica-
tion including means for modeling and acquiring place information.

1.3 Contributions and Organization
We make two main contributions. First, we propose the Platys framework for place-aware
application development. The framework incorporates a middleware providing the archi-
tectural support necessary for place-aware application development (Section 3). Before

3

describing the middleware, we synthesize a conceptual metamodel based on various place-
related constructs (Section 2). Second, we describe Platys Reasoner, a key component
of the middleware, which reasons about places from sensor data (Section 4). Platys Rea-
soner is novel in that it 1. reasons about a user’s places subjectively, enhancing the user
experience delivered by place-aware applications, 2. prompts the user to label places only
if required, reducing the user effort involved in training the reasoner, and 3. makes realistic
assumptions that sensors readings for place recognition will be from multiple sources and
intermittent.

We evaluate Platys via two studies involving real users.

1. A user study finds that Platys Reasoner is effective for place recognition, reducing user
effort and enhancing place recognition accuracy (Section 5).

2. A developer study finds that Platys framework is effective for place-aware application
development, reducing development time and effort, and potentially enhancing the us-
ability of location-aware applications (Section 6).

We summarize the related work in Section 7, identify some directions for future re-
search in Section 8, and conclude in Section 9.

2 A Conceptual Metamodel of Place
The notion of place has been studied under constructs such as place attachment, place iden-
tity, sense of place, and semantic location. Gieryn [2000] identifies geographic location,
material form, and meaning and value as three features of a place. Scannell and Gifford
[2010] describe the meaning of a place using a tripartite model involving people (individu-
als or groups), place characteristics (social or physical), and processes (behavior, cognition,
or affect). The interactionist theory of place attachment suggests that the meaning given
by an individual to a physical site comprises the individual’s memories of interactions as-
sociated with that site (interactional past) as well as future experiences perceived as likely
(interactional future) Goel et al. [2011], Kyle and Chick [2007], Milligan [1998]. Harrison
and Dourish [1996] distinguish space and place by a phrase that “we are located in space,
but we act in place.”

We synthesize (as Lewicka [2011] advocates) various place-related constructs as an
informational entity that can be computed and employed in mobile applications. Figure 1
shows our conceptual metamodel, which can be used to model each place of interest to a
user via its relationships with one or more of the following entities.

• Space. The spatial aspects of a place include one or more positions and the environment,
including physical artifacts such as console and TV, and physical characteristics such as
noise level, ambient light, and temperature.

4

interacts
with

Place

Social CircleActivity

Position Action Social
Contact

Space

Environment

Mobile
Device User

maps to occurs at gathers at

observed at senses performs
senses

carries

Figure 1: A conceptual metamodel relating place to space, activities, and social circles.

• Activity. A place derives its meaning from the activities that occur there. For example, a
user’s home might be a place of entertainment, rest, and eating, whereas a research lab
might be associated with activities such as writing a paper. Thus, a set of activities can
be used to specify a place of interest to a user.

• Social circle. The places of interest to a user are often occupied by his or her social
contacts. The user is likely to perceive a logical group of such contacts as a social circle
Murukannaiah and Singh [2012]. For example, home is occupied by family members,
workplace by colleagues, and classrooms by classmates. Thus, a place can also be
described by the social circle associated with it.

We make three assumptions about modeling of places.

1. A place can be completely specified by any combination of space, activity, and social
circles. This assumption opens up interesting possibilities for spatially overlapping,
dispersed, and space-less places. For example, two classrooms in different corners of a
college campus can be the same place specified by the unique set of activities that take
place in a classroom; the same coffee shop may be two different places—a caffeine fix
and a meeting place—differentiated by the social circles involved; an Internet chat room
might have no spatial aspects, but can be specified via activities or social circles.

2. A places is ego-centric, e.g., workplace of a physician and that of a software engineer
can each be modeled as comprising different sets of activities.

3. Places can be computed from space, activities, and social circles. Typical spatial aspects
such as the position, temperature, and noise level can be sensed directly from a user’s

5

device. Activities and social circles can be computed from observable actions and in-
teractions of a user. Examples of observable actions include URLs visited, applications
used, and physical movement, and that of observable interactions include emails, text
messages, and phone calls.

The notion of context is related to place. In contrast to context, which is defined as
“any relevant information” Dey et al. [2001], we base place on three contextual attributes:
space, user activities, and social circles. In doing so, we make explicit what is that we
seek to compute (recognize) and the corresponding assumptions. This helps 1. developers
determine if Platys provides the abstractions they desire, and 2. end-users train Platys ap-
propriately (we imagine that asking a user about his or her space, activities, or social circles
is clearer than asking about context).

3 Platys: Framework for Place-Aware Application Devel-
opment

As shown in Figure 2, Platys framework consists of sensors, a middleware, and applica-
tions. The middleware is its key component. In a nutshell, 1. a user interacts with the
middleware and trains it about places of interest, 2. the middleware learns to recognize
places of interest to each user from low-level sensor data, and 3. multiple applications in-
teract with the middleware to know the user’s places.

Platys Framework

Platys Middleware

Sensor

User

Platys Reasoner

Tagging
Subsystem

Application
Manager

Platys-Aware Application

Event and Action
Logger

Figure 2: Platys framework consists of a middleware, sensors, and applications.

6

3.1 Platys Middleware
Let us consider the benefits of a middleware. We hypothesize that developing location-
aware application employing a high-level abstraction such as place can be time-consuming.
Thus, providing an off-the-shelf component that simplifies place-aware application devel-
opment can be valuable. However, networking, coordination, delegation, and heterogeneity
Emmerich [2000], Issarny et al. [2007] are inevitable requirements for building such a com-
ponent because 1. data for reasoning about a user’s places come from sensors on multiple
devices, e.g., smart phone, tablets, and an increasing variety of wearable devices, and 2. the
sensors, place reasoner, and place-aware applications may all reside on different hosts.

The Platys middleware is responsible for 1. efficiently gathering data from multiple
low-level sensors; 2. computing high-level concepts such as places, activities, and social
circles from low-level data specific to each user; and 3. exposing the learned high-level
concepts to place-aware applications as per a user’s needs.

Figure 3 shows the architecture of the Platys middleware consisting of four subsystems.
The figure also shows the platform for which we have implemented each components. Each
subsystem may be potentially hosted on any of a user’s personal device. The subsystems
communicate asynchronously via a shared information store.

Personal Computer

Android Phone

Shared Information Store
(Dropbox Sync API)

Place Labels

Sensor Data
Place Model

(Semi-supervised)

Tagging Subsystem
(Android Activity)

Event & Action Logger
(Android Service)

Application Manager
(Android Service)

Platys Reasoner
(Apache Daemon)

API (Android IDL)

Figure 3: Platys middleware’s subsystems. The subsystems are loosely coupled and com-
municate asynchronously via a shared information store. Each of a user’s personal devices
can host one or more of the subsystems.

The event and action logger aggregates data from multiple sources. Smart phones and
wearable devices are ideal for hosting this component since they are equipped with sensors
such as GPS sensors, accelerometer, gyroscope, Bluetooth, WiFi, camera, and microphone.
In addition, the logger collects data from sources such as a user’s call log, browsing history,

7

email, SMS, and calendar. A user can control what sensors and data sources to use and at
what frequency to collect the data.

For Platys to make sense of the sensor data, the tagging subsystem helps a user train
Platys on the relevant place, activity, and social circle. Since smart phones are always with
a user, they are ideal to deliver notifications prompting the user to tag. Figure 4b shows the
user interface from our Android implementation of the tagging subsystem. The user may
ignore any prompt or delay responding.

The Platys reasoner builds a machine learning model to associate user tags with sensor
data. In a typical scenario, the user tags places for a training period and the reasoner
subsequently predicts the places, activities and social circles. Further, the reasoner assigns a
confidence level to its predictions in order to enable active learning (Section 4). A resource-
rich device such as a user’s personal computer (compared to a mobile device) is ideal for
hosting the reasoner.

Platys-aware applications interact with the application manager to acquire a user’s
places, activities, and social circles. The application manager respects privacy preferences
specified by a user as shown in Figures 4c and 4d. An instance of the application manager
must be hosted on each device which hosts place-aware applications.

(a) The home screen
shows the reasoner’s
predictions about a
user’s current place.

(b) A user tags the cur-
rent or a recently past
place, activities, or so-
cial circles.

(c) The user can ap-
prove, trash, or block
a pending application
from here.

(d) The user can set
fine-grained privacy
policies for a Platys
application from here.

Figure 4: Screenshots from the Platys middleware’s subsystems.

3.2 Platys-Aware Application Development
A typical workflow of how a user, a Platys-aware application, and the Platys middleware
interact with each other is shown in Figure 5. Platys-aware application development tack-
les the challenges in discussed in Section 1. First, it provides a communication channel

8

between application developers and users. With Platys, what users tag is what an appli-
cation can see: A user trains the Platys middleware to recognize places of interest; the
Platys middleware learns to recognize the tagged places and exposes them to applications.
Thus, an application can rely on the Platys to provide places of interest to each of its users.
Further, a user can tag new places and Platys automatically updates the places it exposes to
the applications. Code snippets of how an application interacts with the middleware are
shown in Appendix B.

Second, Platys exposes places uniformly across all applications. Since each Platys-
aware application employs places exposed by Platys, the user avoids the burden of under-
standing multiple place models.

Third, Platys provides users fine-grained control on privacy. In current practice, a user’s
control on privacy is typically at the level of all locations or none. However, a user’s will-
ingness to disclose location depends on who is requesting, why, and the details requested
Smith et al. [2005]. Platys supports such fine-grained privacy policies.

Figure 5: Interactions between a user, a Platys-aware application, and the Platys middle-
ware. The user tags places on an ongoing basis; the application is installed and registered;
the middleware continually sends place updates to the application as needed.

4 Platys Reasoner
Now we describe how our middleware recognizes places of interest to a user. The Platys
tagging subsystem collects place labels from an end-user and the event and action logger
collects raw data from sensors. Then, the task of the Platys Reasoner is to recognize places
(corresponding to a user’s labels) from raw sensor readings.

This task can be addressed via a traditional machine learning paradigm. Specifically,
unsupervised learning techniques seek to learn patterns in the sensor data, not requiring
place labels. Typically, such approaches learn what we call as staypoints—sets of posi-
tions within a certain radius or those where a user stays for a certain duration Hariharan
and Toyama [2004], Montoliu and Gatica-Perez [2010], Zheng et al. [2011]. Although

9

staypoint-based approaches do not require labeling, they have the following shortcomings.
One, staypoints do not capture subjective nuances in how users perceive places since: (a) no
fixed values for radius and duration yield desired places for all users, and (b) staypoints ex-
clude interesting possibilities in terms of spatially overlapping and dispersed places. Two,
a staypoint does not carry an inherent meaning. A user may eventually need a symbolic
name (hence labeling) to distinguish staypoints Lin et al. [2010]. Three, staypoint-based
approaches, often, require frequent sensor readings to find patterns in the unlabeled data.
For example, Ashbrook and Starner [2002] and Zhou et al. [2007] scan GPS every second
and minute, respectively. However, sensing consumes battery power—a limited resource
on mobile devices.

Alternatively, supervised learning techniques exploit user-provided place labels. A tra-
ditional classifier such as logistic regression or support vector machine (SVM) Hastie et al.
[2001] can be learned from sensor data treating place labels as class labels. Typically, train-
ing a classifier requires several training instances per class to produce good classification
accuracy. However, acquiring training instances is challenging because place labeling re-
quires user effort. Requiring each user to label each place of interest several times is not
practically viable. Additionally, sensor readings are likely to be (a) intermittent (all sensor
readings may not be available when a user labels a place, e.g., GPS reception is limited in-
doors), and (b) infrequent (since sensing frequently can drain battery). Thus, many training
instances constructed from sensor data are likely to be sparse (missing feature values).

The Platys Reasoner seeks to address the shortcomings of the above approaches. Specif-
ically, it combines two machine learning paradigms: (1) active learning Settles [2012] to
reduce the labeling effort, and (2) semi-supervised learning Zhu et al. [2009] to efficiently
deal with intermittent and infrequent sensor data. Next, we explain these paradigms and
how Platys Reasoner employs them for place recognition. We provide a formal description
of the problem and solution (with pseudocode) in Appendix A.

4.1 Intuition: Active and Semi-supervised Learning
As an example, Alex is a Platys user. Figure 6a captures Alex’s routine on a typical day:
Alex is at home in the morning, during lunch, and evening; he works from his lab during
a morning session and an afternoon session. As shown, Alex has labeled the two places,
twice each, and there are sporadic sensor readings throughout. For simplicity (and without
loss of generality), we consider only two sources of sensor readings. Let G(t) and W (t),
and PL(t), respectively be the GPS reading, WiFi scan result, and place label at time t.
However, not all sensor readings may be available at each time; e.g., only WiFi scan result
is available at 9:30 (GPS reception being poor indoors).

Now, we consider the questions: Given historical data (labels and sensor readings), and
W (14:00) = {w4, w8}, what is Alex’s place at 14:00? Similarly, given historical data and
G(17:15) = {g3}, what is his place at 17:15?

In general, an unsupervised approach cannot answer the above question because it does
not employ place labels. In contrast, a traditional supervised approach may not be accurate

10

Home

09:30

Lab

09:00 11:30

Lab

11:15 12:00

Home

14:00

???

08:30 09:15 10:10 12:30 17:15

???

{w1 w2, w3} {w5, w6, w7} {w6, w7}{…} {w1} {w4, w8}{w4, w5} {w6, w7, w8} {w2, w3}

{g1} {…} {g2} {g3} {g3}

Time:

Place Label:

WiFi:

GPS:

Ground Truth: Home Lab LabHome Home

User labeled data points Unlabeled data points Data points for place prediction

11:45

{…}

(a) Streams of sensor data (time not to scale). Only two sources are considered for brevity.

Home Lab Lab Home ??? ???Place Label:

(b) Active learning intelligently prompts a user to assign place labels.

Home Lab Lab Home ??? ???Place Label:

Data points with Platys Reasoner assigned labels

Lab Lab HomeHome Lab Lab

(c) Semi-supervised learning exploits place labels and latent structure in the unlabeled data.

Figure 6: An illustration of the place recognition problem and intuitions behind Platys
Reasoner’s techniques: active and semi-supervised learning

given few and incomplete training instances. For example, a traditional classifier does not
predict places any better than random guessing for Alex. The reason is that the instances to
be predicted, i.e., W (14:00) = {w4, w8}, and G(17:15) = {g3} have nothing in common
with the training instances.

The Platys Reasoner employs a classifier, albeit with additional steps in learning to
address the challenges of traditional classification. Platys Reasoner’s additional steps are
motivated by the following intuitions.

1. Can we employ fewer training instances than traditionally required to train a classifier to
achieve a desired accuracy? Yes, if we control what those training instances are (same
number, though). For example, given PL(8:30) = home and W (8:30) = {w1, w2, w3},
it is not useful to label PL(12:00) as home, when W (12:30) = {w1}. Instead, it would
be better if we asked Alex to label at 12:30 as shown in Figure 6b. Then, we could cor-
rectly predict PL(17:15) as home, unlike a traditionally trained classifier which could
only guess randomly with original labels.

2. Can we exploit both labeled and unlabeled instances for training to achieve a better
classification accuracy than training with labeled instances alone? Yes, if we exploit
the hidden structure in the unlabeled data. For example, given that PL(9:30) = lab
and W (9:30) = {w5, w6, w7}, we notice that W (9:15) = {w4, w5} and W (10:10) =
{w6, w7, w8} overlap with W (9:30). From this, we can assign PL(9:15) = lab and
PL(10:10) = lab as shown in Figure 6c, and then train a classifier. Such a classifier
would predict PL(14:00) as lab correctly, enhancing the classification accuracy.

11

4.2 Place Recognition Pipeline
Platys Reasoner incorporates the above intuitions by employing active and semi-supervised
learning techniques, as shown in Figure 7. The reasoner operates in training and prediction
modes. In the training mode, Platys starts from sporadic streams of sensor data. The active
learner chooses a few instances from the pool of unlabeled data and asks a user to label
them. The active learner chooses only from recently sensed data so that the user would
remember what labels to use. The semi-supervised learning module picks up from where
the active learner leaves off—with a few labeled instances and many unlabeled instances.
The semi-supervised learner exploits the structure in unlabeled data and assigns place labels
to several previously unlabeled instances. Finally, the reasoner trains a classifier from all
labeled instances (user assigned and inferred). Once the place classifier is trained, given
an unlabeled sensor reading, Platys Reasoner predicts the user’s place at the time of the
reading.

Pool of Unlabeled and Intermittent Sensor Data Instances

Active
Learning

Sensor 1 Sensor 2 Sensor 3 …

Prompt the
User to Label

A Few Labeled
Instances

Infer New Labels and
Filter Non-places

Several Labeled
Instances

Training

Semi-Supervised
Learning

A Traditional
Classifier Place Classifier

Label

Prediction

Map Sensor
Readings to Places

Figure 7: Platys Reasoner learns a place classifier from unlabeled sensor data.

4.2.1 Active Learning

Given a pool of unlabeled instances (from recent past) and all labeled instances (histori-
cal), our objective is to choose an instance which, if labeled, would be most beneficial in
improving our classifier. Platys Reasoner adapts a technique called uncertainty sampling
Settles [2012]:

1. Choose the latest unlabeled instance, if there is no labeled instance. Otherwise, perform
the following steps.

12

2. Train a classifier from labeled instances alone.

3. Predict a place label for each unlabeled instance.

4. Find the classifier’s confidence for each prediction.

5. Prompt the user to label the place for an instance predicted with least confidence.

Any classifier can be employed in the above as long as the confidence of predictions
can be measured. We employ logistic regression and SVM in our analyses (Section 6). For
logistic regression, the probability with which an instance is predicted as belonging to a
class indicates the confidence. For SVM, the decision value, i.e., the distance of the in-
stance being predicted from the separating hyperplane of the trained model, is an indicator
of confidence Vlachos [2004].

Active learning is a continual process. As long as there are unlabeled instances that the
active learner is uncertain about, it asks the user to label them. The process is robust and
uses whatever information it has—a user may ignore a labeling request or proactively label
a place.

4.2.2 Semi-Supervised Learning

The objective of semi-supervised learning is to exploit unlabeled sensor readings, given
a few readings with place labels. It is effective since sensor readings tend to form well-
separated clusters Eagle and Pentland [2006]. We employ this intuition in a semi-supervised
technique called self training Zhu et al. [2009]. Complementary to the active learner, which
asks the user when in doubt, the semi-supervised learner teaches itself from its own confi-
dent predictions. The technique operates as follows.

1. Train a classifier from sensor readings with user-assigned place labels.

2. Predict a place label for each unlabeled sensor reading via the above classifier.

3. Retrain a classifier from both original and newly inferred labels.

A potential problem is that the above approach assigns a place label to each sensor
reading whereas some sensor readings may belong to none of the labeled places. Such
readings correspond to uninteresting or novel places. Thus, we seek to filter such “noisy”
sensor readings before training the final classifier. A simple strategy to filter out noisy
sensor readings is to not assign a place label to an instance if the prediction confidence
is below a threshold (in the second step above). However, how do we find an optimal
threshold? Again, manually fixing a threshold across all places (similar to fixing staypoints’
radius or duration) is not desirable—characteristics of different places may vary. Instead,
we eliminate noisy readings by iteratively clustering sensor readings as follows.

1. Find the mean similarity between inferred instances and original (user-assigned) in-
stances of each place (we employ similarity metrics described in Appendix A.3).

13

2. Eliminate a sensor reading from a place if the reading’s similarity to original instances
is less than the mean similarity for the corresponding place.

3. Repeat the above steps until the difference in the number of instances eliminated in two
consecutive iterations is negligible.

The result of the above process is a tightly-knit clusters of sensor readings such that at
least one instance in each cluster has a place label. Now, we assign the same label to all
instances in a cluster and train the final place classifier.

4.3 Platys Social: Recognizing Ego-Centric Social Circles
The place recognition pipeline described above is generic in the sense that it can incorporate
multiple sensors. Sensors available on a typical mobile device today provide clues about a
place’s spatial attributes (e.g., via ambience sensors Azizyan et al. [2009]) and the activity
component (e.g., via accelerometer Kwapisz et al. [2011]). However, how do we recognize
the third component of our place metamodel—social circles?

Traditionally, community detection Fortunato [2010] from online social networks (OSNs)
is used for recognizing social circles. However, such an approach is not suitable for our
setting because of the following reasons. First, community detection from an OSN pre-
supposes that the global network structure is known. However, such information is not
available to end-users. Second, communities detected from an OSN are typically much
coarser than social circles in real life, e.g., all of a users friends from college are likely
to be in one OSN community (based on mutual acquaintanceship), whereas the user may
perceive multiple social circles within the college community.

Platys Social Murukannaiah and Singh [2012] is our approach for recognizing ego-
centric social circles of a user. The approach is based on the intuition that a user is likely
to perceive a set of contacts (other users) as a social circle if the user meets those contacts
together, regularly. We employ Bluetooth technology to identify spatial proximity between
users because of its short range and widespread availability on mobile devices. However,
many contacts of a user are not likely to be Bluetooth discoverable. Thus, social circles so
discovered are likely to be sparse. We address this problem by incorporating information
from the user’s real life interactions as follows.

1. Construct a contact co-occurrence graph based on the spatial proximity between the
contacts observed over time. Each contact of a user is a node in the graph. There is an
edge between two contacts if the user meets the two contacts together. The weight of an
edge is proportional to the frequency of meetings.

2. Extend the co-occurrence graph to incorporate information from interactions via emails,
phone calls, and instant messages. That is, add an edge between two contacts if the user
included both contacts in an interaction. If an edge already exists, update the weight
according to frequency of co-occurrence.

14

3. Detect communities from the co-occurrence graph and treat each community as a social
circle. We employ the weighted clique percolation method Palla et al. [2005] to detect
overlapping communities since social circles are likely to overlap.

Although Platys Social employs community detection, a difference from traditional
approaches is that it detects communities in a graph constructed from real life proximity
and interactions. Further, Platys Social incorporates only the local information about a user
available to the Platys middleware.

5 End-User Study
We evaluated Platys Reasoner via a user study. We analyzed the accuracy with which the
reasoner recognizes places of interest to a user and its efficiency in doing so.

5.1 Data Acquisition
No available datasets were adequate for our evaluation. We created our own dataset based
on real traces collected from 10 users. Each user carried an Android phone installed with
Platys middleware as his or her primary phone for three to 10 weeks. The middleware
collected a user’s place labels and recorded GPS, WiFi, and Bluetooth readings. The study
was approved by our university’s Institutional Review Board (IRB).

Platys Reasoner’s objective is to exploit infrequent and intermittent data. The middle-
ware invoked sensors only when a user labeled a place (a few times a day). However, the
middleware, a background service, always listened to the sensors. Thus, the middleware
received data from a sensor even when other applications invoked that sensor.

In real use, Platys Reasoner learns and predicts places continually. However, we dis-
abled the reasoner’s learning modules during data acquisition, enabling users to label places
without any bias and to avoid the possibility that if the reasoner were to begin predicting a
place accurately, the user might stop labeling that place, thereby providing us insufficient
ground truth for evaluation. The middleware reminded users to label their current place at
random intervals. Thus, we captured how a user naturally labels places, which we use as a
baseline to evaluate active learning.

Table 1 summarizes the data we acquired. Our dataset contains a variety of users (one
faculty member, one postdoc, and eight graduate students from two departments; seven
male and three female), differing in their mode of transportation (drive or walk), mobility
across states and countries, and frequencies of sensor data collection.

5.2 Evaluation Metrics
We treat place recognition as a classification problem and evaluate its performance via
precision = TP

TP+FP
, recall = TP

TP+FN
, and F-measure = 2× precision×recall

precision+recall , where TP ,
TN , FP , and FN refer to true and false positives and negatives.

15

Table 1: Summary of the data acquired in user study.

User Study All Unique GPS WiFi Bluetooth
days labels labels scans/day scans/day scans/day

A 70 173 18 19 140 73
B 38 63 9 11 79 87
C 68 82 14 7 19 21
D 37 128 9 199 763 0
E 48 32 4 10 129 44
F 24 40 3 22 50 0
G 70 340 11 9 323 65
H 63 38 6 113 408 37
I 21 36 9 5 208 45
J 21 56 9 12 220 3

Mean 45 94 9 41 234 38

Typically, these metrics apply to a binary classification problem. However, place recog-
nition involves multiple classes (each place is a class). Thus, we use the one-versus-the-
rest strategy Bishop [2006] in which we calculate a per-class F-measure for each place
as a class, treating rest of the places as another class. Then, we assess the overall place
recognition accuracy by averaging the per-class F-measures.

5.3 Comparison with Two Traditional Classifiers (Supervised)
Platys Reasoner employs a traditional classifier and the benefits it offers arise due to active
and semi-supervised learning enhancements. We evaluated the benefits of each enhance-
ment on logistic regression and SVM.

5.3.1 Active Learning

To evaluate the claim that Platys Reasoner’s active learner reduces place labeling burden,
first, we temporally ordered all labeled instances corresponding to a user. Recall that our
learning algorithms were disabled during data acquisition so that the order in which labels
were assigned was user controlled or random if the user simply labeled when the middle-
ware reminded the user to. Retrospectively, we want to check what would have happened
had the places been labeled according to the active learner’s expectations. Thus, for a given
number of labels n, we trained a traditional classifier employing n labeled instances in the
order that (1) the user labeled them, and (2) the active learner would have expected the user
to label them. We used the rest of the labeled instances for testing.

Figure 8 shows a comparison of F-measure, averaged across users, of the two classifiers
and their active learning versions (semi-supervised learner was not used in these compar-

16

isons). We stop at n = 7 since eight is the maximal number such that each user labeled at
least two places eight times in our dataset (we need at least two classes to train a classifier
and at least one labeled instance to test).

1 2 3 4 5 6 7
0.3

0.4

0.5

0.6

0.7

Number of labels trained with

F-
M

ea
su

re
(a

ve
ra

ge
d

ac
ro

ss
us

er
s)

Logistic regression
Logistic regression +

Active learning

1 2 3 4 5 6 7
0.3

0.4

0.5

0.6

0.7

Number of labels trained with

F-
M

ea
su

re
(a

ve
ra

ge
d

ac
ro

ss
us

er
s)

SVM
SVM + Active learning

Figure 8: Platys Reasoner’s active learner compared with two traditional classifiers.

We found a difference in the baseline and active learning versions of the classifiers
with as few as three labels. For example, at n = 3, an active learning version of logistic
regression performs on par with the corresponding baseline at n = 6. This supports our
claim that an active learner can significantly reduce a user’s place-labeling effort.

5.3.2 Semi-Supervised Learning

We claim that Platys Reasoner’s semi-supervised learner, which employs both labeled and
unlabeled instances, recognizes places with better accuracy than a traditional classifier
which employs labeled instances only. We evaluated this claim via SVM. As shown in
Figure 9 (left), the semi-supervised SVM achieves a higher F-measure than SVM.

1 2 3 4 5 6 7
0.3

0.4

0.5

0.6

0.7

0.8

Number of labels trained with

F-
M

ea
su

re
(a

ve
ra

ge
d

ac
ro

ss
us

er
s)

SVM
Semi-supervised SVM

1 2 3 4 5 6 7
0.3

0.4

0.5

0.6

0.7

0.8

Number of labels trained with

F-
M

ea
su

re
(a

ve
ra

ge
d

ac
ro

ss
us

er
s)

Semi-supervised SVM
Semi-supervised SVM +

Active learning

Figure 9: Platys Reasoner’s semi-supervised and active learning compared for SVM.

Our place-recognition pipeline employs both semi-supervised and active learning tech-
niques. Figure 9 (right) demonstrates the complimentary benefits of the two techniques.

17

First, with a few place labels (n ≤ 3 in our dataset), active learning improves the semi-
supervised SVM’s F-measure noticeably. Next, with several place labels (accordingly,
more sensor readings), semi-supervised SVM’s F-measure is in par with its active learning
version. That is, whereas active learning is valuable in the initial phases of training, semi-
supervised learning can compensate for a user’s non-compliance to place labeling requests
in later phases of training.

5.4 Comparison with Two Staypoint-Based Approaches (Unsupervised)
We compared Platys Reasoner with two staypoint-based approaches Hariharan and Toyama
[2004], Zheng et al. [2011]. However, the comparison was nontrivial for three reasons.
First, a staypoint-based approach requires fixed values for place radius and duration. Since
the optimal values for these parameters are not obvious, we varied them from 〈3 minutes,
20 m〉 to 〈1 day, 96 km〉.

Second, a staypoint-based approach does not distinguish one staypoint from another.
Thus, it can only predict whether a data instance belongs to a staypoint or not. To make
a fair comparison, we implemented a variant of Platys Reasoner called Place-or-not that
distinguished whether a data instance belongs to one of the labeled places or not (and call
the version that recognizes specific places as Which-place).

Finally, a staypoint-based approach requires several sensor readings to perform well.
Although the approach itself does not require labels, our evaluation requires labels as
ground truth. Since only a few sensor readings are labeled in our dataset, we requested
our users to provide additional ground truth. Six of the original 10 users did so. For each
of the six users, we provided a web-based (large-screen) interface showing sensor read-
ings and asked the user to indicate whether the user was in one of labeled places or not at
the corresponding time. To assist users in recalling this information, the interface showed
GPS coordinates on a map, provided other sensor readings at that time as well as the user’s
previous and next labeled place.

Figure 10 compares the F-measures for Platys Reasoner and two staypoint-based ap-
proaches. Our findings are three fold.

(1) Place-or-not performs better than both staypoint approaches we compared with. The
F-measures for Platys Reasoner, unlike those of staypoint approaches, are straight lines
since since they do not depend on place radius and duration.

(2) The parameters 〈30 minute, 200 m〉 used by Zheng et al. [2011] are reasonable, but not
optimal for all users (dots in the figure indicate individually optimal values).

(3) Place-or-not is an upper bound on Which-place. However, in most cases, the two F-
measures are close. That is, once Platys identifies a user to be in one of the labeled
places, in most cases it correctly identifies which place the user is in.

18

0.4

0.6

0.8

1

3 mins
20 m

30 mins
200 m

3 hours
1.2 km

1 day
96 km

A
B

C

D

E

F

Place Radius and Duration (log scale)

F-
M

ea
su

re
(a

ve
ra

ge
d

ac
ro

ss
us

er
s)

Platys Reasoner (Place-or-not)
Platys Reasoner (Which-place)
Staypoint Zheng et al. [2011]
Staypoint at optimal place radius and
duration for each user A–F

0.4

0.6

0.8

1

3 mins
20 m

30 mins
200 m

3 hours
1.2 km

1 day
96 km

A
B C

D

E F

Place Radius and Duration (log scale)

F-
M

ea
su

re
(a

ve
ra

ge
d

ac
ro

ss
us

er
s)

Platys Reasoner (Place-or-not)
Platys Reasoner (Which-place)
Staypoint Hariharan and Toyama [2004]
Staypoint at optimal place radius and
duration for each user A–F

Figure 10: Platys Reasoner compared with two staypoint-based approaches.

6 Developer Study
We now evaluate Platys as application development platform. We evaluate the platform
from the perspectives of two kinds of stakeholder—application developers and end-users.
We evaluate the:

1. efficiency of the middleware in assisting developers with respect to time and effort, and

2. effectiveness of the middleware in enabling high-quality place-aware applications from
both the developer and end-user perspectives.

6.1 Study Design
Our study design terminology is adapted from Juristo and Moreno [2001]. For convenience,
we summarize the key terms (with their mapping to our study) in Table 2.

6.1.1 Study Unit

The unit of our study was the location-aware application to be developed. We conceived
an application called the Ringer Manager Service (RMS) that automatically sets the ringer
mode of a user’s mobile phone based on location. The functional requirements of the
application were the following.

• RMS must continually monitor a user’s location.

• RMS must provide a user a means of assigning a ringer mode (loud, vibrate, or silent) to
locations of interest.

19

Table 2: A brief description of the study-design terminology we adopt.

Term Description Examples in our study

Study unit An object on which the study
is being conducted.

A location-aware appli-
cation.

Subject A participant in the study. A developer exercising
an approach.

Parameter A characteristic held invariant
throughout the study.

Complexity of the soft-
ware to be developed.

Response variable A variable measuring the out-
come of a study.

Usability of the product,
development time.

Factor A characteristic studied that
affects a response variable

Development platform

Alternatives The different values of a fac-
tor studied.

Android location man-
ager vs. Platys middle-
ware.

Undesired variation A characteristic that we wish
to keep invariant, but cannot.

Programming experi-
ence of the subjects.

• RMS must automatically adjust the ringer mode of a user’s phone according to the user’s
setting for the current location, setting it to a default if the user has not specified a ringer
mode for the current location.

• RMS must also act as a notification manager in the scenario when a user’s phone is
in silent mode and the user misses a call by sending a notification to the caller. The
notification should contain location information, e.g., “Sorry for missing your call; I am
in a lecture hall right now.”

So that it is representative of a variety of location-aware applications, the RMS was
designed to use location for multiple purposes—informative, task execution, and social
disclosure. In addition to the functional requirements, we also specified a set of require-
ments to enhance the usability and privacy of RMS:

• RMS should be able to capture ringer mode settings for as many locations of interest to
a user as possible.

• RMS should accommodate the changing location needs of a user.

• RMS should equip users with utmost control on privacy.

• RMS should be usable by a variety of users. Thus, developers should avoid making
assumptions that won’t generalize to a wide variety of users.

20

The usability requirements were specified at a fairly high level to encourage developers
to use their natural intuitions in addressing them. Note that a generic notion of usability of a
mobile application depends on several factors. Our focus here was to evaluate the usability
of RMS specific to its location-aware aspects.

Next, we divided the experimental unit into four subunits. Each subunit represented an
essential step in the development of RMS.

1. Preparation (prep). Setting up the development environment, familiarizing with the
application specification, and acquiring the necessary background knowledge.

2. Location representation and acquisition (loc). Representing the location at a suitable
level of abstraction and developing techniques for acquiring it.

3. Core functionality (core). Implementing the functionality of (a) providing users an op-
tion to set the ringer mode, (b) automatically changing the ringer mode based on the
location, and (c) sending a notification to a caller on a missed call when the phone is
silent.

4. Usability and privacy (usability). Enhancing the usability and privacy of RMS.

6.1.2 Subjects

Our study involved 46 students enrolled in a graduate-level computer science course (36
graduate, four undergraduate, and six online graduate; 27 male and 19 female). The study
was approved by our university’s IRB. Subjects earned points (counting toward the course
grade) for completing the study. However, participation in the study was not mandatory.
Nonparticipants were offered an alternative task to earn points equivalent to what they
would earn by participating in the study.

6.1.3 Study Mechanics

We asked each subject to develop RMS from the functional and usability requirements.
In addition to developing the application, subjects were asked to keep track of the time
and effort they expended for development by answering a time and effort survey after each
development session. The survey asked what subtasks each subject worked on during a
session, how long he or she spent on each of those subtasks, and how difficult he or she felt a
particular subtask was. The subjects reported time in hours and minutes, and difficulty on a
scale of very easy, easy, medium, difficult , and very difficult . Finally, the subjects were
asked to produce a document describing how they addressed the usability requirements in
their application.

6.1.4 Parameters

We identified the following as the parameters of the study.

21

• Requirements: For uniformity, all subjects were given both functional and usability re-
quirements, which remained unchanged, for the most part, during the study. Minor
changes and clarifications were announced via a website and all subjects notified via
email.

• Deliverables: The deliverables of the project were the same for all subjects: time and
effort surveys, source code of the project, and a document describing the usability and
privacy-enhancing features of the application.

• Study duration: All subjects were given a four-week period to submit all deliverables
(we allowed one additional week for one subject for medical reasons).

• Software tools: All subjects were required to use Eclipse 3.6+ as the development plat-
form and Android Development Tools (ADT) plug-in for developing Android applica-
tions at API level 10.

• Development device: Each subject was provided with an Android development phone
for the duration of the study unless he or she opted to develop on a suitable personal
Android device.

6.1.5 Response Variables

Table 3 summarizes the responses variables we analyzed. For each subject, the timesubtask
was calculated as the sum of times reported by the subject for the subtask across multiple
sessions. Here, effortsubtask is the arithmetic mean of effort ratings reported by the subject
for the subtask across multiple sessions.

We analyzed the overall time and effort required to develop RMS from two perspectives—
including and excluding the preparation time. We defined the following variables: timeRMS

as the sum of timesubtask for each subtask; effortRMS as the arithmetic mean of effortsubtask
for each subtask; and timeRMS−prep and effortRMS−prep as above but respectively exclud-
ing timeprep and effortprep. The motivation was to compare subjects in terms of their expe-
rience in location-aware application development. A developer needs to perform the prepa-
ration subtask only for the first location-aware application he or she develops. Since most
of our subjects were inexperienced in location-aware development, we used timeRMS−prep
and effortRMS−prep as indicators of the time and effort expended by experienced location-
aware developers.

Next, we analyzed the quality of the applications produced from two perspectives.

1. Developers. We employed the following well-known software metrics McCabe [1976],
Pressman [2005] as indicators of the quality of the software modules produced.

• MCC: McCabe’s cyclomatic complexity indicates the number of “linear” segments
(i.e., sections of code with no branches) in a code fragment. This is an indicator of the
psychological complexity of a code fragment. We measured the MCC of the project
as the mean of MCC for each method in the project.

22

Table 3: A description of the response variables we analyzed. The subtask variable in the
table can take values prep, loc, core, and usability.

Response variable Study unit Description

timesubtask subtask
timeRMS RMS Development time reported by subjects.
timeRMS−prep RMS after prep

effortsubtask subtask
effortRMS RMS Perceived effort as reported by subjects.
effortRMS−prep RMS after prep

MCC

RMS

McCabe’s cyclomatic complexity.
NoLM Number of levels per method.
NoS Number of statements.
NoM Number of methods (for a fixed NoS).

usability RMS
Extent to which an RMS implementa-
tion meets usability and privacy require-
ments.

• NoLM : The number of levels per method reflects the number of logical branches
each method has on average. The metric is a key indicator of code readability. We
measured the NoLM of the project as the mean of the NoLM for each method in the
project.

• NoS: The number of statements in a project is an indicator of the general maintain-
ability of the code. We measured NoS as the sum of non-comment and non-blank
lines inside method bodies of a project.

• NoM : The number of methods in a project (for a fixed NoS) is an indicator of the
modularity of the code.

2. End-users. We performed a qualitative analysis of each application (end product) pro-
duced. The objective of the analysis was to understand the techniques employed by each
subject to meet the usability and privacy requirements outlined earlier. The techniques
employed by an application allude to the potential usability problems associated with
the application.

6.1.6 Factors and Alternatives

Our objective was to study the effect of the location abstraction employed—position or
place. The abstraction a developer employs depends on the location acquisition platform
available. We divided subjects into two equal sized groups as follows. The Control Group
employed the Android SDK Android Open Source Project [2012] for location acquisition,

23

which provides position information from GPS or the network. The Platys Group employed
the Platys middleware as Murukannaiah [2012] for location acquisition platform, which
provides place information.

The choice of Android SDK as the alternative of Platys is motivated by two factors.
First, the Android SDK is the de facto standard platform for developing location-aware
Android applications. Thus, our findings could be of interest to a large developer com-
munity. Second, although platforms with similar objectives as Platys are described in the
literature (reviewed in Section 7), none are available for easy deployment on the Android
platform to enable a fair comparison with Platys.

6.1.7 Undesired Variations

We identified three sources of undesired variation and sought to mitigate the associated
risks as follows.

• Subjects’ experience: Differences among subjects’ programming experiences is inevitable
in our setting. A subject’s programming experience can influence the time and effort he
or she expends on a programming task. To minimize the risks associated with the dif-
ference in subjects’ skill sets, we conducted a prestudy survey asking subjects about
their experience in general, Android, and location-aware programming. We assigned
approximately an equal number of subjects at each level of experience to the Control
and the Platys Groups. Assignment within each level of experience was completely ran-
dom, though. However, most of our subjects (86%) were new to developing mobile
or location-based applications. Thus, each subject was required to complete a simple
location-based Android programming exercise prior to the study to acquire basic knowl-
edge of Android programming.

• Communication between subjects: We noticed that communication among subjects across
the Control and Platys Groups could influence a subject’s 1. strategies for enhancing us-
ability and privacy of RMS, and 2. survey responses to the perceived effort, if the subject
figured out whether he or she belonged to Platys or Control Group. In order to minimize
the risks associated with this factor, the groups were called Group 1 and Group 2. Fur-
ther, we strongly discouraged subjects from communicating with each other about the
task. All communication between the subject and the researchers were through one-to-
one channels (email or meetings) instead of a message board. Although the requirements
for both groups were the same, we provided group-specific guidelines accessible only to
the group members.

• Different levels of formalization: The level of formalism and the resources available for
developing Platys-aware applications is small compared to that of developing position-
aware applications with Android SDK. Although we exposed a descriptive API and sam-
ple programs for Platys, minor changes to the API were inevitable during the study,
especially in the early parts.

24

6.2 Analyses Performed
At the end of the study, we verified the submissions and found 12 submissions to be in-
complete (seven from Control and five from Platys Group). An incomplete submission did
not address each functional requirement. Our results are based on 34 complete submis-
sions, which comprise of 16 Control and 18 Platys subjects. Our analyses considered the
following statistics:

• mean of the sample for t-test;

• variance of the sample for F -test; and

• average rank of the sample for Wilcoxon’s ranksum-test (typically, difference in aver-
age ranks of two samples indicate a difference in corresponding medians).

For each statistic, we tested the null hypothesis HNull against the alternative hypothesis
HPlatys or HNeither described in Table 4. We use Platys and Control subjects to refer to
the two samples studied and Platys and Control developers to refer to the corresponding
populations.

Table 4: Null and alternative hypotheses. Each test verified the null hypothesis (HNull)
against one of the alternative hypotheses (HPlatys or HNeither).

ID Hypothesis

HNull There is no difference in the statistic for Platys and Control developers.
HPlatys The statistic for Platys developers is less than that for Control developers.
HNeither There is a difference in the statistic for Control and Platys developers.

All tests accommodated samples of unequal sizes. The t-tests were conducted assuming
unequal variance between the two populations (also called Welch’s t-test). For t-tests, we
verified that the corresponding samples passed the Kolmogorov-Smirnov normality test. A
one-tailed or two-tailed test was conducted depending on whether the null hypothesisHNull

was tested against the alternative hypothesis HPlatys or HNeither, respectively Freund and
Perles [2004], Hollander and Wolfe [1999].

6.3 Results and Discussion: Time and Effort
Figures 11 and 12 compare the development times and effort ratings reported by Control
and Platys subjects during the development of RMS. We also summarize the results of
hypothesis testing in the figure (to the right of each plot). We compared difference in means
(µ) and variances (σ2) for times reported, and median (x̃) for effort ratings. Comparisons
involving < and 6= indicate the alternative hypotheses HPlatys and HNeither, respectively.
Highlighted are the significant differences (∗∗ and ∗ indicate sufficient evidence to reject
the null hypothesis at 5% and 10% significance levels, respectively).

25

10 20 30 40

P

C

timeRMS (hours)

µP < µC

(p =
0.113)σ2
P < σ2

C

(p =
0.657) 0 20 40 60 80 100

C

P

effortRMS (% responses)

x̃P < x̃C
(p =
0.281)

10 20 30 40

P

C

timeRMS−prep (hours)

µP <
µC ∗ ∗
(p =
0.007)
σ2
P < σ2

C

(p =
0.297) 0 20 40 60 80 100

C

P

effortRMS−prep (% responses)

x̃P < x̃C ∗
∗
(p =
0.010)

Figure 11: Comparison of the time (left) and effort expended (right) by Platys (P) and
Control (C) subjects to develop RMS, highlighting significant differences.

We now discuss the motivations behind our hypotheses and whether the observations
supported our hypotheses. In case of inconsistencies, we discuss if an undesired variation
could have influenced the result.

6.3.1 Preparation

As part of the preparation for RMS development, each developer must become familiar
with the functional and usability specifications of RMS, and set up the development envi-
ronment. Other than these steps, the only other task for a Control developer is to become
familiar with the Android location API. However, a Platys developer must install the Platys
middleware, and become familiar with both the Platys place API and AIDL (Android In-
terface Definition Language) to interact with the middleware.

Clearly, a Platys developer must perform more preparatory work than a Control devel-
oper. Thus, we hypothesized that Platys developers would expend more time and effort
for preparation (HControl). Not surprisingly, the observations supported our hypothesis.
The difference in variances was not surprising, either, considering the fact that Control
developers have noticeably less preparatory work to do. However, these results are not dis-
couraging. The important question is whether the extra cost expended by Platys developers
for preparation pays off elsewhere.

6.3.2 Location representation and acquisition

The simplest approach for a Control developer to do is to represent location as position
and acquire position information from the Android location API. For a Control developer
who wishes to abstract location at a higher level than position, the location representation

26

0 5 10 15 20

P

C

timeprep (hours)

µP 6=
µC ∗ ∗
(p =
0.001)
σ2
P 6= σ2

C ∗
∗
(p =
0.001) 0 20 40 60 80 100

C

X

effortprep (% responses)

x̃X 6=
x̃C ∗ ∗
(p =
0.013)

0 5 10 15 20

P

C

timeloc (hours)

µP <
µC ∗
(p =
0.081)
σ2
P < σ2

C ∗
∗
(p =
0.011) 0 20 40 60 80 100

C

P

effortloc (% responses)

x̃P < x̃C
(p =
0.138)

0 5 10 15 20

P

C

timecore (hours)

µX 6= µC

(p =
0.311)σ2
X 6= σ2

C

(p =
0.577) 0 20 40 60 80 100

C

X

effortcore (% responses)

x̃P 6= x̃C ∗
(p =
0.088)

0 5 10 15 20

P

C

timeusability (hours)

µP <
µC ∗ ∗
(p =
0.021)
σ2
P < σ2

C ∗
∗
(p =
0.018) 0 20 40 60 80 100

C

X

effortRMS (% responses)

x̃P < x̃C ∗
∗
(p =
0.021)

Figure 12: Comparison of the time (left) and effort expended (right) by Platys (P) and
Control (C) subjects to develop RMS’ subtasks, highlighting significant differences.

and acquisition time is likely to be high. For a Platys developer who is acquainted with
the Platys middleware, representation and acquisition come at a low cost. That is, a Platys
developer can represent location as place and acquire place by interacting with the Platys
middleware. Thus, we hypothesized that Platys developers would spend less time and
effort for representing and acquiring location (HPlatys). The difference in the means and
variances of the times reported by Control and Platys subjects supported our hypothesis.

Further, we observed that all Platys subjects represented location as place, whereas
Control subjects used a variety of techniques to represent location. We summarize the
major techniques employed by Control subjects to represent location below.

27

• A pair of spatial coordinates with a fixed radius for each location. Four subjects imple-
mented this technique (25%).

• A pair of spatial coordinates with a configurable radius for each location. Two subjects
implemented this technique (12.5%).

• A conceptual unit (i.e., a location with a logical name) backed by a pair of spatial coordi-
nates. However, the list of conceptual units is preconfigured by the developer, e.g., one of
the preconfigured list was home and office. Three subjects implemented this technique
(18.75%).

• A conceptual unit backed by a pair of spatial coordinates and a user can add any number
of conceptual units. Seven subjects implemented this technique (43.75%).

We noticed that 75% of the Control subjects attempted to represent location at an
abstraction higher than position. This explains why Control subjects spent significant
amounts of time for representing and acquiring location and points toward the need for
architectural support to represent and acquire location as a high-level abstraction.

Further, there was insufficient evidence to reject the null hypothesis for difference in
the effort ratings (although the median effort rating for Platys subjects was smaller). This
outcome could be explained by the different levels of formalization between the Platys and
the Android APIs. Since the Platys middleware is not a commercial product, we encoun-
tered unanticipated patterns of middleware usage from the subjects, which required minor
changes to the middleware in early stages of the study. Working with a middleware that
changed, albeit slightly, might have made development more difficult for Platys subjects.

6.3.3 Core functionality

Given that developers who have already represented location know how to acquire it at the
desired level of abstraction, the core functionality to be implemented by Control and Platys
developers is the same. Thus, we hypothesized that there is no difference in the time and
effort expended by Control and Platys developers for implementing the core functionality
(HNeither).

The results pleasantly surprised us. Although the difference in times reported were not
significant between Control and Platys subjects (p = 0.311), the efforts reported by Platys
subjects were significantly less than those of Control subjects (p = 0.088). This leads us
to conjecture (for future study) that a better representation of location can lead to reduced
effort in implementing the core functionality.

6.3.4 Usability

The Platys middleware seeks to support usable location-aware applications. To assist de-
velopers in enhancing the usability and privacy of a location-aware application, the Platys
middleware provides developers with access to places and activities, social circles, and

28

privacy policies. Further, the Platys middleware notifies applications of newly added and
stale places so that they can adapt to the changing location needs of a user. However, for a
Control developer, incorporating such features involves a nontrivial investment of time and
effort. Thus, we hypothesized that Platys developers would spend less time and effort for
enhancing usability than Control developers (HPlatys). The observations supported our hy-
potheses for the difference in mean and variance of times reported as well as the difference
in median effort expended. In each case, the null hypothesis was rejected at a significance
level of about 2%.

6.3.5 Ringer Management Service

From the perspective of inexperienced location-aware developers, Platys developers would
spend extra time and effort in preparation but that expense would pay off in representation
and acquisition, and enhancing usability. Thus, we hypothesized that Platys developers
would do at least as well as Control developers, if not any better (HNeither). The observa-
tions supported our hypothesis. Further, the p-values obtained indicate that the time and
effort expended by Platys developers would be smaller (although not significantly).

From the perspective of experienced location-aware developers, Platys developers gain
some advantages over Control developers. Thus, we hypothesized that Platys developers
would do better than Control developers in time spent and effort expended (HPlatys). The
observations supported our hypotheses about mean time and median effort at about 1%
significance level.

However, the observations didn’t support our hypothesis that the variance in time re-
ported would be smaller for Platys developers than Control developers (for both inexperi-
enced and experienced developers). Further investigation revealed that a significant amount
of variance in times reported by Platys subjects originates from the variance in times for
the core functionality task. Such variance could arise because of the fact that subjects had
no incentive to submit the deliverables early. The Platys subjects would have spent more
time on the core task while Control subjects spent some of their time on other aspects of
the project.

6.4 Results and Discussion: Software Metrics
In this and the next section, we analyze the quality of the applications produced. In order to
understand quality from developers’ perspective, we analyzed well-known software metrics
(computed from the source code of the applications developed by subjects). Because place
is a high-level abstraction and the Platys middleware supports representing and reasoning
about place, we hypothesized that applications (software modules) produced by Platys de-
velopers are easier to comprehend (MCC), easier to read (NoLM), shorter (NoS), and
more modular (NoM), i.e., HPlatys for each software metric we analyzed.

The boxplots in Figure 13 compare the software metrics of the RMS applications de-
veloped by Control and Platys subjects (computed from the source code). The figure also

29

2 3 4

P

C

MCC

µP <
µC ∗ ∗
(p =
0.001)
σ2
P < σ2

C ∗
∗
(p =
0.002) 1.5 2 2.5

P

C

NoLM

µP <
µC ∗ ∗
(p =
0.001)
σ2
P < σ2

C

(p =
0.101)

500 1,000 1,500

P

C

NoS

µP < µC

(p =
0.272)σ2
P < σ2

C ∗
(p =
0.072) 5 10 15

P

C

NoM (for NoS = 100)

µP < µC

(p =
0.725)σ2
P < σ2

C

(p =
0.705)

Figure 13: Comparison of the software code metrics for the RMS implementations pro-
duced by the Platys (P) and Control (C) subjects. Also shown are the results of hypothesis
testing, highlighting significant differences (to the right of each plot).

summarizes the results of hypothesis testing for each metric. Our observations support
HPlatys for both MCC and NoLM at less than 1% significance level. This indicates that
applications developed by Control developers, who employ position abstraction, are likely
to be harder to comprehend than those developed by Platys developers.

However, the results were not according to our intuition for NoS and NoM . Although
each metric was slightly better for Platys subjects, the evidence was not significant to reject
the null hypothesis (at 5% significance level) in either case. It was surprising that the
amount of code produced was not significantly different across groups although Control
subjects spent more time in doing so than Platys subjects.

An analysis of the variance (also summarized in Figure 13) revealed that the variance in
NoS for Control subjects was significantly higher than that for Platys subjects. This vari-
ance could result from the varying extents to which Control implementations met usability
requirements (since the analyzed applications meet all functional requirements) We con-
jecture that the mean code size of Control implementations would be higher if all Control
implementations met all usability requirements (Section 6.5).

Our results about NoM for code sizes are inconclusive. RMS implementations of Con-
trol subjects were at least as modular as those by Platys subjects. However, whether this
would continue to hold had all Control subjects addressed usability requirements effec-
tively (which would increase the code sizes) remains to be verified.

30

6.5 Results and Discussion: Usability
In order to understand quality from end-users’ perspective, we performed a qualitative eval-
uation of the usability of RMS applications developed by Control and Platys subjects. To do
so, we analyzed the usability description document submitted by each subject and verified
the claimed features by testing the subject’s application. In the process we discovered fea-
tures that were not claimed, but implemented, which could potentially affect the usability
of RMS. Table 5 summarizes, in three categories, major techniques employed by subjects
to address the usability requirements. Next, we discuss potential impact these techniques
may have on the usability of RMS.

Table 5: A summary of the techniques implemented by Control and Platys subjects to
address the usability requirements.

Category Technique Implemented Control Platys
(% sub.) (% sub.)

Visualization

Logical names as a list. 56.25 77.78
Logical names on a map. 6.25 22.22
Unlabeled markers on a map. 25.00 0.00
Spatial coordinates as a list. 12.50 0.00

Evolution
Notify new and stale locations automatically. 0.00 83.33
Users manually add new locations. 81.25 0.00
No support for evolution. 18.75 16.77

Privacy

Specify a policy for each social circles. 0.00 77.78
Specify a policy for each contact. 18.75 0.00
Share with anyone in the contact list. 6.25 0.00
Ask user each time before sharing. 62.50 11.11
Specify to share with all or none. 12.50 11.11

6.5.1 Visualization

An RMS implementation must display locations of interest to a user for informative pur-
poses, e.g., for showing ringer modes associated with locations. Most Platys subjects
showed locations as a list of previously tagged places (and some marked the place on a
map when clicked). Note that showing places on map is not always a viable option for
Platys-based RMS implementations since 1. not all places may have a spatial component;
2. a user may configure the Platys middleware to not share spatial coordinates with RMS
at all.

Interestingly, RMS implementations of more than half of the Control subjects also visu-
alized location as logical names (as a list or on a map). However, techniques implemented
by other Control subjects could potentially reduce usability, e.g., both unlabeled markers

31

and the list of spatial coordinates reduce the memorability of the user interface and a list of
spatial coordinates may not be intelligible.

6.5.2 Evolution

As a user visits different locations, RMS should enable the user to set (or reset) an appro-
priate ringer mode for each location. The Platys middleware notifies registered applications
of new locations tagged by the user as well as locations that have become stale. Most Platys
subjects implemented RMS so as to take advantage of these notifications and prompt the
user to add (or delete) ringer modes for new (or stale) locations. A few Platys subjects
ignored these notifications and didn’t address the requirement of evolving RMS as the lo-
cation needs of a user change.

The RMS implementations by most Control subjects provided a user an option to man-
ually add locations as needed, but only 37.5% of them provided an option to delete stale
locations. Requiring the user to manually add each location can be time consuming (as
opposed to automated support). Further, being unable to delete stale locations can easily
clutter the user interface. The rest of the Control subjects’ implementations preconfigured
the list of locations (e.g., home, office, and restaurant) allowing a user to neither add nor
delete locations. Such preconfigured lists don’t necessarily generalize to a variety of RMS
users.

6.5.3 Privacy

The Platys middleware provides a user an option to specify which of the user’s locations
are to be shared and with whom (one or more social circles). A majority of Platys subjects
implemented RMS to consult the Platys middleware (through appropriate method calls)
before sharing the location with a caller. In contrast, a majority of the RMS implementa-
tions by Control subjects consulted the user before sharing location. Although this option
is privacy preserving, it is too intrusive. Asking a user each time before sharing location
defeats the very purpose of RMS to automatically notify callers. The other options imple-
mented by Control subjects were also suboptimal: specifying a policy for each contact is
time consuming, and automatically sharing location with anyone in the contact list is too
coarse. Finally, none of the RMS implementations by Control subjects enabled a user to
specify the granularity at which location is to be shared (e.g., logical names only, include
spatial coordinates, and so on).

For Platys subjects, addressing the usability requirements, for the most part, was a mat-
ter of employing the Platys API appropriately. As indicated above, a majority of Platys
subjects succeeded in doing so. Control subjects attempted to address the usability require-
ments in a variety of ways. However, many of the techniques implemented by Control sub-
jects could potentially impact the usability negatively. The shortcomings outlined above
indicate that despite the extra time and effort expended, the usability enhancing features
implemented by Control subjects were not as effective as those implemented by Platys
subjects.

32

7 Related Work
Existing works on acquiring places (or a similar construct) from low-level sensors, and
providing engineering support for developing place-aware applications typically lie at dif-
ferent ends of a spectrum. Platys seamlessly integrates the two providing an end-to-end
solution, as well as offering distinct advantages. Below, we identify related works in both
areas.

7.1 Place Models
To realize a conceptual model of location in a development environment to support a vari-
ety of location-aware applications is challenging. Ranganathan et al.’s 2004 MiddleWhere
middleware realizes a hierarchical model of location involving points, lines, and polygons
backed by physical coordinates. Stevenson et al.’s 2010 LOC8 framework realizes a model
of location consisting of a granularity (coordinates or symbolic names) and spatial rela-
tionships (containment, adjacency, connectedness, and overlap). Ye et al. [2007] describe
additional systems that realize space models. Approaches that model only space and spatial
relationships fail to capture place in its entirety.

Baldauf et al. [2007] survey several context-aware systems. Bettini et al. [2010] provide
a comprehensive view of several context modeling and reasoning techniques. Although ex-
isting context-aware systems model more than space, they largely focus on environmental
features of context. Schuster et al. [2013] survey several systems that bringing together
spatio-temporal aspects of context and online user interactions (e.g., on a social network
site). These systems capture only a fixed set of objective contexts.

The Platys middleware is novel in that it unifies space, activities, and social circles into
the notion of place. The three features of place are captured, not as independent entities,
but in a unified manner. The middleware is extensible and captures places of interest to
each user subjectively. Further, each user can control which of his places an application
can access and at what granularity. Also, Platys promotes privacy by running locally on a
user’s personal devices.

7.2 Place Acquisition
Existing techniques that seek to recognize places are predominantly unsupervised. These
approaches typically recognize staypoints, an abstraction richer than position, but cover (to
varying extents) only the spatial aspect of places.

Ashbrook and Starner [2002] collect GPS logs once per second if the user is mov-
ing beyond one mile per hour and apply a variant of k-means clustering to extract places.
Similarly, Zhou et al. [2007] learn places from one-minute frequent GPS logs, though via
density-based clustering, and obtain better accuracy than the k-means approach. NextPlace
Scellato et al. [2011] models the significance of a GPS coordinate as a Gaussian distribu-
tion based on the length of a user’s stay at the coordinate and at the coordinates next to

33

it. NextPlace considers, as places, only those coordinates that have a significance higher
than a specified threshold. Similarly, Zheng et al. [2011] and Hariharan and Toyama [2004]
extract staypoints via clustering (with fixed staypoint parameters 〈30 minute, 200 m〉) and
probabilistic approaches, respectively.

Unlike the GPS-based approaches above, Kang et al. [2005] learn places based on a
location database of WiFi access points. They sort the locations of WiFi access points
based on time; group proximate locations as a cluster; create a new cluster when a location
is far away from the current one; and ignore the clusters within a short period of time. Kang
et al.’s idea is quite similar to the GPS staypoint-based approaches. Vu et al. [2011] apply
star clustering on a co-occurrence graph of WiFi access points.

Another popular category of place-recognition approaches employ cell-towers logs. A
cell-tower, similar to a WiFi access point, broadcasts its unique identifier. Cell phones can
periodically scan for the identifiers of nearby cell-towers. Hightower et al. [2005] extract
a place by seeking a stable scan, which occurs when there is no new cell-tower or WiFi
signal seen within a certain period of time. Their approach requires highly frequent scans
(2Hz). Similarly, SensLoc Kim et al. [2010] detects a user’s entry and departure from a
place based on the stability of cell-tower signals; recognizes places using cell-tower and
WiFi signals; and, tracks movement paths between places using GPS. SensLoc conserves
power by stopping unnecessary sensor scans when a user has no movement, as detected by
an accelerometer.

7.3 Place-Aware Application Development
Below, we identify location and context-aware systems that include architectures, method-
ologies, programming frameworks, tools, and techniques.

CARISMA Capra et al. [2003] is a context-aware reflective middleware that provides
primitives to handle context changes using policies and to resolve conflicts that arise with
them. The middleware is mainly evaluated for computational performance. Its usability
is informally evaluated by a single subject. Capra et al. identify the need for studying the
amount of work required by application engineers to develop a context-aware application
as an important future work—this is what we study.

Topiary Li et al. [2004] is a prototyping tool for location-enhanced applications that
seeks to enable interaction designers (with limited expertise on location acquisition tech-
niques) to prototype location-aware applications. We envision a Topiary-like tool to be
an application of the Platys middleware so that the tool could receive context components
from Platys (unlike the fixed, built-in, context components of Topiary). Topiary is infor-
mally evaluated for understandability, ease-of-use, and usefulness.

LIME (Linda in a Mobile Environment) Murphy et al. [2006] consists of a coordination
model and middleware for dealing with mobility of hosts and agents. The crux of LIME
is the idea of transiently maintaining a tuple space of context data, which could potentially
simplify application design. The LIME middleware supports both private and grouped tuple
spaces. In contrast, Platys maintains each user’s place information privately. However,

34

Platys could enable coordination at the level of social circles (compared to LIME groups
which represent agents colocated on a host). LIME is evaluated informally through two
case studies and presents results as “lessons learned.”

TOTA (Tuples On The Air) Mamei and Zambonelli [2009] consists of a middleware
and a programming approach. The middleware facilitates generation of context tuples by
applications, and propagation and maintenance of such tuples according to application spe-
cific rules. A major objective of the middleware is to alleviate developers from dealing
with low-level issues such as representing context and network dynamics. TOTA is eval-
uated via simulation for performance metrics such as the propagation time and number of
maintenance operations required under various circumstances.

OPEN Guo et al. [2011] is an ontology-based programming framework for prototyping
context-aware applications. The major objective of OPEN is to cater to developers ranging
from novices (e.g., as in end-user programming) to experts. Accordingly, OPEN consists
of three programming modes. Its evaluation compares the programming modes with each
other for relative accuracy and ease of use.

Hermes Buthpitiya et al. [2012] is a context-aware application development toolkit that
seeks to reduce the overhead of context-aware application development associated with
sensing, aggregating, and inferencing context information. Hermes provides an intuitive
description of how it could reduce the overhead, but no empirical evidence. Like Hermes,
the Platys middleware is loosely coupled. However, Platys middleware implements the
place reasoner as one widget rather than several context widgets that Hermes employs.
We conjecture that a unified treatment of place enhances the intelligibility and simplifies
design.

Kulkarni et al. [2012] describe a programming framework for context-aware applica-
tion development that requires an application developer to produce domain-specific mod-
els of an application in terms of policies regarding activities, roles, objects, and reactions.
Next, a generic middleware generates an execution environment consisting of specialized
application-specific components. Kulkarni et al. evaluate for the efficiency (time required)
of the generative process and report the number of automatically generated components
(of testbed applications) as a potential indicator of the development work the middleware
could reduce.

The works mentioned above seek to simplify location-aware or context-aware appli-
cation development but do not evaluate the effectiveness for developers empirically. In-
stead, the evaluations consider metrics such as computational time. Although establishing
such characteristics is important, equally important for engineering are the benefits the
approaches offer to the developers and end-users.

To the best of our knowledge, the Platys developer study is the first of its kind in that
it quantifies the efficiency and effectiveness of a location-aware middleware from the per-
spectives of application developers and end-users. The study analyzes the implications (to
developers) of employing the middleware at the granularity of the subtasks of the devel-
opment process. Further, it highlights the potentially superior user experience place-aware
applications could offer to an end-user. From our experience, we understand that such

35

studies are difficult to design, control, and conduct. The analyses we performed could be
valuable to location-aware applications’ researchers and developers alike.

8 Directions
We describe three directions in which our work can be extended.

8.1 Enhancing the Platys middleware
The Platys middleware can be extended in two ways.

1. Two major concerns about place recognition are the user effort it involves and the battery
power it consumes. Platys addresses the first via active learning. To address the second
concern, Platys adopts an extreme solution by collecting sensor readings passively (only
when another application invokes a sensor). Whereas this approach conserves power,
it may yield suboptimal place recognition accuracy. Platys can benefit from adaptive
sensing techniques such as sensor suppression and substitution Zhuang et al. [2010].
We defer the task of studying the tradeoff between place recognition accuracy and power
consumption to future work.

2. Platys enables a user to specify fine-grained application-centric privacy policies. That
is, a user can specify for each application, the places and the underlying attributes the
application can access. In contrast, Tiwari et al. [2012] describe a context-centric
approach in which a user can specify “bubbles” of contextual events and applications
that can execute within each bubble. The hierarchical place model that Platys builds
can be used to construct bubbles described by Tiwari et al. However, the implications
of application-centric and context-centric approaches on user experience remain to be
studied.

8.2 Usability Evaluation of Place-Aware Applications
We performed a qualitative evaluation of the usability of RMS applications. However, Duh
et al. [2006] observe that several critical usability related problems can only be uncovered
in a field study with end users. Such a user study must control factors such as device type,
interface type, application type, and contexts in which tasks are performed. Ryan and Gon-
salves [2005] conducted a field study and found that location (position) can significantly
affect the usability of a mobile application. But how different abstractions of location such
as position and place can affect usability remains to be studied. The results from our qual-
itative evaluation of usability can provide valuable guidelines in specifying hypotheses for
a usability study involving real users.

36

8.3 Requirements Engineering and Formal Verification of Place-Aware
Applications

Two important directions for place-aware application development research that we didn’t
address in this paper are requirements engineering and formal verification. As Salifu et al.
[2007] describe, a challenge with engineering place-aware applications is that the moni-
toring (changes in place) and switching (application behavior) requirements of such ap-
plications are rarely made explicit. Yet, modeling and analyzing location variability Ali
et al. [2013] during requirements phase is valuable in that inconsistencies and conflicts in
location-based requirements can be detected early. However, we understand that specifying
a complete set of place-based requirements during design is difficult since places of interest
to a user are often unknown a priori and are subject to evolution. In such circumstances,
automated discovery, at run time, of fault patterns Sama et al. [2010] could be a viable op-
tion. We will explore the possibility of incorporating such options in the Platys middleware
in future.

9 Conclusion
Intelligent location-aware applications are being widely adopted. Yet, these applications
are often developed in an ad hoc manner and yield suboptimal user experiences. Platys
seeks to address this problem and establishes through empirical evidence, for the first time,
the benefits of place-aware application development.

Platys introduces place, a high-level abstraction of location that contrasts with posi-
tion understood as geospatial coordinates. Employing location at the granularity of place
can enable intelligent applications as well as enhance the usability and privacy-preserving
aspects of a location-aware application. The Platys-aware application development plat-
form addresses the challenges of providing a communication channel between the users of
a location-aware mobile application and its developers, providing a uniform place model
across applications, and providing the architectural support necessary for representing and
reasoning about places.

The results of our empirical evaluation indicate that developers employing the Platys
middleware spend significantly less time and effort than those not employing the mid-
dleware for representing and acquiring location, and enhancing the usability and privacy
aspects of the application. Although developers employing the Platys middleware expend
extra time and effort for acquiring the necessary background knowledge about the Platys
middleware, the middleware pays off in other aspects of location-aware application devel-
opment. Moreover, preparation is a one-time cost: a developer who employs Platys to
develop several location-aware applications can save significant time and effort over the
course of multiple applications. Our evaluation of the applications produced in the devel-
oper study indicate that location-aware applications produced using Platys are potentially
1. more usable and privacy-preserving from an end-user’s perspective, and 2. easier to com-
prehend from a developer’s perspective.

37

Acknowledgments
We thank the National Science Foundation for partial support under grant 0910868 and
Chung-Wei Hang for useful discussions.

References
ALI, R., DALPIAZ, F., AND GIORGINI, P. 2013. Reasoning with contextual requirements:

Detecting inconsistency and conflicts. Information and Software Technology 55, 1, 35–
57.

ANDROID OPEN SOURCE PROJECT. 2012. Android Developers Guide: Obtaining user
location. http://developer.android.com/guide/topics/location/
obtaining-user-location.html.

ASHBROOK, D. AND STARNER, T. 2002. Learning significant locations and predicting
user movement with GPS. In Proceedings of the 6th International Symposium on Wear-
able Computers (ISWC). IEEE Computer Society, Seattle, WA, 101–108.

AZIZYAN, M., CONSTANDACHE, I., AND ROY CHOUDHURY, R. 2009. SurroundSense:
Mobile phone localization via ambience fingerprinting. In Proceedings of the 15th An-
nual International Conference on Mobile Computing and Networking. ACM, New York,
261–272.

BALDAUF, M., DUSTDAR, S., AND ROSENBERG, F. 2007. A survey on context-aware
systems. International Journal of Ad Hoc and Ubiquitous Computing 2, 4, 263–277.

BETTINI, C., BRDICZKA, O., HENRICKSEN, K., INDULSKA, J., NICKLAS, D., RAN-
GANATHAN, A., AND RIBONI, D. 2010. A survey of context modelling and reasoning
techniques. Pervasive and Mobile Computing 6, 2, 161–180.

BISHOP, C. M. 2006. Pattern Recognition and Machine Learning. Springer, Secaucus,
NJ.

BUTHPITIYA, S., LUQMAN, F., GRISS, M., XING, B., AND DEY, A. K. 2012. Her-
mes – A context-aware application development framework and toolkit for the mobile
environment. In Proceedings of the 26th International Conference on Advanced Infor-
mation Networking and Applications Workshops. IEEE Computer Society, Washington,
DC, 663–670.

CAPRA, L., EMMERICH, W., AND MASCOLO, C. 2003. CARISMA: Context-aware re-
flective middleware system for mobile applications. IEEE Transactions on Software
Engineering 29, 10, 929–945.

38

DESJARDINS, M., EATON, E., AND WAGSTAFF, K. 2005. A context-sensitive and user-
centric approach to developing personal assistants. In Working Notes of the AAAI Spring
Symposium on Persistent Assistants. AAAI, 98–100.

DEY, A. K., ABOWD, G. D., AND SALBER, D. 2001. A conceptual framework and
a toolkit for supporting the rapid prototyping of context-aware applications. Human-
Computer Interaction 16, 2, 97–166.

DUCKHAM, M. AND KULIK, L. 2006. Location privacy and location-aware computing.
In Dynamic and Mobile GIS: Investigating Changes in Space and Time, J. Drummond,
R. Billen, E. João, and D. Forrest, Eds. CRC Press, Boca Raton, FL, Chapter 3, 34–51.

DUH, H. B.-L., TAN, G. C. B., AND CHEN, V. H.-H. 2006. Usability evaluation for
mobile device: A comparison of laboratory and field tests. In Proceedings of the 8th
Conference on Human-Computer Interaction with Mobile Devices and Services. ACM,
New York, 181–186.

EAGLE, N. AND PENTLAND, A. S. 2006. Reality mining: Sensing complex social sys-
tems. Personal and Ubiquitous Computing 10, 4, 255–268.

EMMERICH, W. 2000. Software engineering and middleware: A roadmap. In Proceedings
of the Conference on the Future of Software Engineering. ACM, New York, 117–129.

FORTUNATO, S. 2010. Community detection in graphs. Physics Reports 486, 3–5, 75–174.

FREUND, J. E. AND PERLES, B. M. 2004. Statistics: A First Course. Prentice Hall, Upper
Saddle River, NJ.

GIERYN, T. F. 2000. A space for place in sociology. Annual Review of Sociology 26, 1,
463–496.

GOEL, L., JOHNSON, N. A., JUNGLAS, I., AND IVES, B. 2011. From space to place:
Predicting users’ intentions to return to virtual worlds. Management Information Systems
Quarterly 35, 3, 749–771.

GOOGLE. 2013. Google Places API. https://developers.google.com/
places/.

GUO, B., ZHANG, D., AND IMAI, M. 2011. Toward a cooperative programming frame-
work for context-aware applications. Personal and Ubiquitous Computing 15, 3, 221–
233.

HARIHARAN, R. AND TOYAMA, K. 2004. Project Lachesis: Parsing and modeling lo-
cation histories. In Proceedings of the 3rd International Conference on Geographic
Information Science. Springer, 106–124.

39

HARRISON, S. AND DOURISH, P. 1996. Re-place-ing space: The roles of place and space
in collaborative systems. In Proceedings of the 10th ACM Conference on Computer
Supported Cooperative Work. ACM, New York, 67–76.

HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. 2001. The Elements of Statistical
Learning. Springer, New York.

HENDAOUI, A., LIMAYEM, M., AND THOMPSON, C. W. 2008. 3D social virtual worlds:
Research issues and challenges. IEEE Internet Computing 12, 1, 88–92.

HIGHTOWER, J., CONSOLVO, S., LAMARCA, A., SMITH, I. E., AND HUGHES, J. 2005.
Learning and recognizing the places we go. In Proceedings of the 7th International
Conference on Ubiquitous Computing. Springer, 159–176.

HOLLANDER, M. AND WOLFE, D. A. 1999. Nonparametric Statistical Methods. Wiley,
New York.

ISSARNY, V., CAPORUSCIO, M., AND GEORGANTAS, N. 2007. A perspective on the
future of middleware-based software engineering. In Proceedings of the Conference on
the Future of Software Engineering. IEEE Computer Society, Washington, DC, 244–258.

JURISTO, N. AND MORENO, A. M. 2001. Basics of Software Engineering Experimenta-
tion. Kluwer Academic Publishers, Boston/Dordrecht/London.

KANG, J. H., WELBOURNE, W., STEWART, B., AND BORRIELLO, G. 2005. Extract-
ing places from traces of locations. SIGMOBILE Mobile Computing Communications
Review 9, 3, 58–68.

KIM, D. H., KIM, Y., ESTRIN, D., AND SRIVASTAVA, M. B. 2010. SensLoc: sensing
everyday places and paths using less energy. In Proceedings of the 8th Conference on
Embedded Networked Sensor Systems. ACM, 43–56.

KULKARNI, D., AHMED, T., AND TRIPATHI, A. 2012. A generative programming frame-
work for context-aware CSCW applications. ACM Transactions on Software Engineer-
ing and Methodology 21, 2, 1–35.

KÜPPER, A. 2005. Location-Based Services: Fundamentals and Operation. John Wiley
and Sons, Chichester, UK.

KWAPISZ, J. R., WEISS, G. M., AND MOORE, S. A. 2011. Activity recognition using
cell phone accelerometers. SIGKDD Explorations 12, 2, 74–82.

KYLE, G. AND CHICK, G. 2007. The social construction of a sense of place. Leisure
Sciences 29, 3, 209–225.

LEWICKA, M. 2011. Place attachment: How far have we come in the last 40 years?
Journal of Environmental Psychology 31, 3, 207–230.

40

LI, Y., HONG, J. I., AND LANDAY, J. A. 2004. Topiary: A tool for prototyping location-
enhanced applications. In Proceedings of the 17th Annual ACM Symposium on User
Interface Software and Technology. ACM, New York, 217–226.

LIN, D. 1998. An information-theoretic definition of similarity. In Proceedings of the
15th International Conference on Machine Learning. Morgan Kaufmann, Madison, WI,
296–304.

LIN, J., XIANG, G., HONG, J. I., AND SADEH, N. M. 2010. Modeling people’s place
naming preferences in location sharing. In Proceedings of the 12th International Confer-
ence on Ubiquitous Computing (UbiComp). ACM Press, Copenhagen, Denmark, 75–84.

MAGERKURTH, C., CHEOK, A. D., MANDRYK, R. L., AND NILSEN, T. 2005. Per-
vasive games: Bringing computer entertainment back to the real world. Computers in
Entertainment 3, 3, 4–4.

MAMEI, M. AND ZAMBONELLI, F. 2009. Programming pervasive and mobile computing
applications: The TOTA approach. ACM Transactions on Software Engineering and
Methodology 18, 4, 1–56.

MCCABE, T. J. 1976. A complexity measure. IEEE Transactions on Software Engineer-
ing 2, 308–320.

MILLIGAN, M. J. 1998. Interactional past and potential: The social construction of place
attachment. Symbolic Interaction 21, 1, 1–33.

MONTOLIU, R. AND GATICA-PEREZ, D. 2010. Discovering human places of interest
from multimodal mobile phone data. In Proceedings of the 9th International Conference
on Mobile and Ubiquitous Multimedia. ACM Press, 12:1–12:10.

MURPHY, A. L., PICCO, G. P., AND ROMAN, G.-C. 2006. LIME: A coordination model
and middleware supporting mobility of hosts and agents. ACM Transactions on Software
Engineering and Methodology 15, 3, 279–328.

MURUKANNAIAH, P. K. 2012. Platys Developers Guide. http://research.csc.
ncsu.edu/mas/platys/usage_dev.html.

MURUKANNAIAH, P. K. AND SINGH, M. P. 2012. Platys Social: Relating shared places
and private social circles. IEEE Internet Computing 16, 3, 53–59.

PALLA, G., DERÉNYI, I., FARKAS, I. J., AND VICSEK, T. 2005. Uncovering the overlap-
ping community structure of complex networks in nature and society. Nature 435, 7043,
814–818.

PRESSMAN, R. S. 2005. Software Engineering: A Practitioner’s Approach 6th Ed. Mc-
Graw Hill, New York.

41

RANGANATHAN, A., AL-MUHTADI, J., CHETAN, S., CAMPBELL, R., AND MICKUNAS,
M. D. 2004. MiddleWhere: A middleware for location awareness in ubiquitous comput-
ing applications. In Proceedings of the 5th ACM/IFIP/USENIX International Conference
on Middleware. Springer-Verlag, New York, 397–416.

RYAN, C. AND GONSALVES, A. 2005. The effect of context and application type on
mobile usability: An empirical study. In Proceedings of the 28th Australasian Confer-
ence on Computer Science. Australian Computer Society, Inc., Darlinghurst, Australia,
115–124.

SALIFU, M., YU, Y., AND NUSEIBEH, B. 2007. Specifying monitoring and switching
problems in context. In Proceedings of the 15th IEEE International Requirements Engi-
neering Conference. IEEE Computer Society, Los Alamitos, CA, 211–220.

SAMA, M., ELBAUM, S., RAIMONDI, F., ROSENBLUM, D. S., AND WANG, Z. 2010.
Context-aware adaptive applications: Fault patterns and their automated identification.
IEEE Transactions on Software Engineering 36, 5, 644–661.

SCANNELL, L. AND GIFFORD, R. 2010. Defining place attachment: A tripartite organiz-
ing framework. Journal of Environmental Psychology 30, 1, 1–10.

SCELLATO, S., MUSOLESI, M., MASCOLO, C., LATORA, V., AND CAMPBELL, A. T.
2011. NextPlace: A spatio-temporal prediction framework for pervasive systems. In
Proceedings of the 9th International Conference on Pervasive Computing. Springer,
152–169.

SCHUSTER, D., ROSI, A., MAMEI, M., SPRINGER, T., ENDLER, M., AND ZAM-
BONELLI, F. 2013. Pervasive social context: Taxonomy and survey. ACM Transactions
on Intelligent Systems and Technology 4, 3, 1–22.

SETTLES, B. 2012. Active Learning. Morgan & Claypool.

SMITH, I., CONSOLVO, S., LAMARCA, A., HIGHTOWER, J., SCOTT, J., SOHN, T.,
IACHELLO, G., AND ABOWD, G. D. 2005. Social disclosure of place: From loca-
tion technology to communication practice. In Proceedings of the 3rd International
Conference on Pervasive Computing. Springer-Verlag, 134–151.

STEVENSON, G., YE, J., DOBSON, S., AND NIXON, P. 2010. LOC8: A location model
and extensible framework for programming with location. IEEE Pervasive Comput-
ing 9, 1, 28–37.

TAN, P.-N., STEINBACH, M., AND KUMAR, V. 2006. Introduction to Data Mining. Pear-
son, Boston.

TIWARI, M., MOHAN, P., OSHEROFF, A., ALKAFF, H., SHI, E., LOVE, E., SONG, D.,
AND ASANOVIĆ, K. 2012. Context-centric security. In Proceedings of the 7th USENIX
Conference on Hot Topics in Security. USENIX Association, Berkeley, CA, 9–9.

42

VLACHOS, A. 2004. Active learning with Support Vector Machines. M.S. thesis, Univer-
sity of Edinburgh.

VU, L., DO, Q., AND NAHRSTEDT, K. 2011. Jyotish: Constructive approach for context
predictions of people movement from joint Wifi/Bluetooth trace. Pervasive and Mobile
Computing 7, 6, 690–704.

WANG, X., ROSENBLUM, D., AND WANG, Y. 2012. Context-aware mobile music recom-
mendation for daily activities. In Proceedings of the 20th ACM International Conference
on Multimedia. ACM, New York, 99–108.

WEISER, M. 1999. The computer for the 21st century. Mobile Computing and Communi-
cations Review 3, 3, 3–11.

YE, J., COYLE, L., DOBSON, S., AND NIXON, P. 2007. A unified semantics space
model. In Proceedings of the 3rd International Conference on Location- and Context-
Awareness. Springer-Verlag, Berlin, 103–120.

ZHENG, Y., ZHANG, L., MA, Z., XIE, X., AND MA, W.-Y. 2011. Recommending friends
and locations based on individual location history. ACM Transactions on the Web 5, 1,
1–29.

ZHOU, C., FRANKOWSKI, D., LUDFORD, P. J., SHEKHAR, S., AND TERVEEN, L. G.
2007. Discovering personally meaningful places: An interactive clustering approach.
ACM Transactions on Information Systems 25, 3, 1–31.

ZHU, X., GOLDBERG, A. B., BRACHMAN, R., AND DIETTERICH, T. 2009. Introduction
to Semi-Supervised Learning. Morgan & Claypool.

ZHUANG, Z., KIM, K.-H., AND SINGH, J. P. 2010. Improving energy efficiency of lo-
cation sensing on smartphones. In Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services. ACM, New York, 315–330.

A Place Recognition via Active and Semi-Supervised Learn-
ing

Platys Reasoner seeks to recognize places of interest to a user from intermittent sensor
readings and user-provided place labels. In this section, we formulate the place recognition
problem and describe the techniques employed by Platys Reasoner to address the problem.
We also provide the pseudocode for our algorithms.

43

A.1 Problem Formulation
We formulate place recognition as a machine learning problem. Further, we assume that
the following sensor readings are available. These are the same sensors we employed in
our user study (Section 6).

GPS scan results G = {g1, . . . , g|G|}, where each gi is a latitude-longitude pair.

WiFi scan results W = {w1, . . . , w|W |}, where each wi = {w1
i , . . . , w

|wi|
i } is a set of

access points (APs) found in a scan and each wj
i contains a MAC identifier and a received

signal strength indicator (RSSI).

Bluetooth scan results B = {b1, . . . , b|B|}, where each bi is a set of Bluetooth devices
(BtDs) found in a scan and each bji contains a MAC identifier and an RSSI.

Google Places GP = {gp1, . . . , gp|G|}, where each gpi = {gp1i , . . . , gp
|gpi|
i } is a set of

Google places corresponding to a gi ∈ G retrieved from a web service Google [2013] and
each gpji contains the name a point of interest (POI) and its distance to gi.

Place labels PL = {pl1, . . . , pl|PL|}, where each pli is a user-assigned place label.

Further, each data item above is timestamped. Let T = {t1, . . . , tmax} be the ordered
set (ti ≤ ti+1) of all timestamps such that at least one data item is associated with each
ti. Further, let G(ti) be the GPS scan results at ti (which can be null if GPS reading is not
available at ti). Assume similar definitions for W (ti), B(ti), GP (ti), and PL(ti). Further,
let I(ti) = PL(ti)∪G(ti)∪W (ti)∪B(ti)∪GP (ti) be the set of all sensor readings at ti.
Now, the place-recognition problem is as follows.

Given G, W , B, GP , P , and t > tmax: I(t) 6= ∅ and PL(t) = null, what is PL(t)?

A.2 Solution Overview
Platys Reasoner addresses the place recognition problem via a classification technique. In
order to do so, the reasoner prepares data as shown in Algorithm 1. In general, Platys Rea-
soner can employ any classifier in this algorithm (as long as the confidence of predictions
can be inferred). We demonstrate this idea via a 1-Nearest Neighbor (1NN) classifier be-
cause of its simplicity Tan et al. [2006]. Training a 1NN classifier is trivial—each labeled
instance is representative of the corresponding class. Predicting from a 1NN classifier in-
volves finding a class whose instances are most similar to the unlabeled instance (being
predicted), when compared to instances of other classes. In order to do so, we employ the
similarity measures defined next.

44

Algorithm 1 Place classifier: Trains a classifier from labeled instances.
Require: G, W , B, GP , PL, t

1: I ← ∅ . Training instances
2: for all p ∈ P do
3: Ipli ← pl . Class label
4: ti ← PL′(pl)
5: ADDFEATURES(Ii, G(ti),W (ti), B(ti), GP (ti))
6: end for
7: Pmodel ← TRAIN(I) . Any generic classifier
8: ADDFEATURES(Itest, G(t),W (t), B(t), GP (t))
9: plt ← PREDICT(Pmodel, Itest)

10: return plt . Place at time t

1: function ADDFEATURES(i, g, w, b, gp)
2: ig ← g . GPS features
3: iw ← w . WiFi features
4: ib ← b . Bluetooth features
5: igp ← gp . Google Place features
6: end function

A.3 Similarity Measures
In our setting, an instance (whether labeled or unlabeled) consists of GPS, WiFi, Bluetooth,
and POI features. However, some feature values may be null due to the intermittent nature
of data. Given two instances, our objective is to return a value in [0, 1] indicating the extent
to which the two instances are similar (1 meaning most similar).

We define the similarity between (1) features corresponding to different sensors (e.g.,
WiFi and GPS), and (2) a feature value of null and anything else to be 0 since there is
no meaningful comparison in these cases. We describe computation of similarity between
individual features of the two instances as follows.

1. The GPS similarity of two instances with GPS features Ig1 and Ig2 is

sim(Ig1 , I
g
2) =

1

1 + d(Ig1 , I
g
1)
, (1)

where d(Ig1 , I
g
1) is the Euclidean distance (in km) between the two coordinates.

2. The WiFi similarity of two instances with WiFi readings Iw1 and Iw2 is the cosine sim-
ilarity between the normalized RSSI values ([0, 1]) of the corresponding access points
(APs). If an instance contains an AP but the other doesn’t, the missing AP is added to
the latter with its RSSI treated as 0.

sim(Iw1 , I
w
2) =

Iw1 � Iw2
‖Iw1 ‖ × ‖Iw1 ‖

, (2)

45

where � is the dot product operator and ‖Iw‖ is the length of the vector Iw.

3. The Bluetooth similarity between two instances with Bluetooth features sim(Ib1, I
b
2) is

calculated similarly to that between WiFi features, as described above.

4. The POI similarity between two instances with Google places Igp1 and Igp2 depends on
the frequency of the overlapping POIs. We adapt Lin [1998] to measure the similarity
as follows.

sim(Igp1 , I
gp
2) =

2× IC(Igp1 ∩ I
gp
2)

IC(Igp1) + IC(Igp2)
, (3)

where IC(Igp) = −
∑

poi∈gp logProb(poi). Prob(poi) =
npoi∑
p∈gp np

is the probability
of visiting a POI, where npoi is the number of occurrences of a POI. Our intuition here
is that matching a rarer POI (e.g., Lake Johnson Nature Park) is more valuable than
matching a more frequent POI (e.g., Raleigh).

5. Finally, the overall similarity between two instances I1 and I2 as the maximum similar-
ity based on any of the above features.

sim(I1, I2) = max
f∈{g,w,b,gp}

sim(If1 , I
f
2). (4)

We chose the above measures intuitively. However, the 1NN classifier or Platys Rea-
soner is not tied to these specific measures. Next, we describe the techniques Platys Rea-
soner employs for place place recognition on top a traditional classifier.

A.4 Active Learning
Platys Reasoner employs an active learning technique called uncertainty sampling Settles
[2012]. This technique, first, builds a model of places from the given labeled instances.
Given a model of places and a pool of unlabeled instances, the active learner asks the user
to label an instance for which the learner is least confident (among all unlabeled instances)
of predicting a place. Algorithm 2 illustrates the uncertainty sampling technique. First,
it builds a dataset consisting of labeled and unlabeled instances. Note that if there are no
labeled instances, the algorithm arbitrarily selects an instance and asks the user to label it.
Next, the algorithm employs the similarity function we defined earlier to predict labels and
the similarity value as the confidence.

A.5 Semi-supervised Learning
Platys Reasoner employs a semi-supervised technique called self training Zhu et al. [2009]
to exploit both labeled and unlabeled instances. In contrast to the active learner which
asks the user to teach, the semi-supervised learner teaches itself from its own confident
predictions. Algorithm 3 illustrates self training. Similar to the active learning algorithm,

46

Algorithm 2 Uncertainty sampling: Choose an unlabeled instance for labeling.
Require: G, W , B, GP , PL, T . Few labels or none
Require: sim() . Similarity function

1: L,U ← ∅ . Labeled and unlabeled instances
2: BUILDDATASET(L,U,G,W,B,GP, PL, T)
3: if L 6= ∅ then
4: for all u ∈ U do
5: usim ← maxl∈L sim(l, u)
6: end for
7: uuncertain ← minu∈U u

sim

8: else
9: uuncertain ← Remove first instance from U

10: end if
11: return uuncertain . An instance to label

1: function BUILDDATASET(L,U,G,W,B,GP, PL, T)
2: i, j ← 0
3: for all t ∈ T do
4: if PL(t) 6= ∅ then
5: Lpl

i ← PL(t)
6: addFeatures(Li++, G(t),W (t), B(t), GP (t))
7: else
8: addFeatures(Uj++, G(t),W (t), B(t), GP (t))
9: end if

10: end for
11: end function

Algorithm 3 Self training: Infer labels for unlabeled instances.
Require: G, W , B, GP , PL, T . Few labels
Require: sim() . Similarity function

1: L,U ← ∅ . Labeled and unlabeled instances
2: BUILDDATASET(L,U,G,W,B,GP, PL, T)
3: while U 6= ∅ do
4: u← Remove first instance from U
5: lnearest ← maxl∈L sim(u, l)
6: upl ← lplnearest . 1-nearest neighbor
7: Li++ ← u
8: end while
9: return L . All labeled instances

47

Algorithm 4 Iterative clustering: Filter instances not belonging to any labeled place.
Require: PL, I , L . All labeled instances

1: for all pl ∈ PL do
2: Ipl ← I(PL′(pl) . Originally labeled pl
3: Lpl ← L(PL′(pl)) . Assigned to pl
4: ε, ε′ ← 0.5 . Similarity
5: δ = 0.01 . Convergence threshold
6: repeat
7: ε← avgl∈Lpl,i∈Iplsim(l, i)
8: for all l ∈ Lpl do
9: if avgi∈Iplsim(l, i) < ε then

10: remove(l, Lpl) . Filter out
11: end if
12: ε′ ← avgl∈Lpl,i∈Iplsim(l, i)
13: end for
14: until |ε− ε′| > δ . until convergence
15: end for
16: return L . Several labeled instances

we first build labeled and unlabeled instances. Next, we assign an unlabeled instance to a
class based on the similarity of the instance to the class’ instances.

The self-training algorithm assigns each unlabeled instance a place label. However, a
user may not have labeled all places he visits. Also, not all (sets of) positions might be of
interest to a user. Thus, assigning a place label (p ∈ P) to each unlabeled instance can
mislead the learning algorithm. In order to address this problem, we consider an iterative
clustering algorithm that filters out sensor readings that belong to none of the user’s la-
beled places. Algorithm 4 illustrates the iterative clustering technique. Our intuition is to
find an appropriate similarity boundary for each place such that the boundary groups suffi-
ciently similar data instances as belonging to the corresponding place. Then, we filter out
instances outside the boundary. Our approach begins with a fairly large similarity boundary
(with similarity, ε = 0.5); iteratively clusters a set of instances; and reduces the similar-
ity boundary (i.e., increases ε) based on the mean similarity (ε′) of the currently clustered
instances until the boundary converges.

B Platys-Aware Application Development on Android
Platys currently supports place-aware application development on the Android platform
(API level 10 and above). We briefly describe the steps involved in developing a Platys-
aware Android application. First, a user installs the Platys middleware on an Android
device and trains it to recognize place of his or her interest. Then, other applications on that
device can interact with the middleware via interprocess communication (IPC) to acquire

48

place information.
Platys middleware exposes an interface (Listing 1) defined in Android Interface Def-

inition Language (AIDL) declaring the functions a Platys-aware application can invoke
Murukannaiah [2012]. Both the middleware and application must include a copy of the in-
terface. The Android SDK Tools auto-generate an abstract implementation of the interface
that acts as a stub (Listing 2) on each end. The stub insulates developers from dealing with
low-level details such as finding the remote process, and marshalling and unmarshalling
data objects exchanged between the application and middleware. Further, the middleware
defines a service (Listing 3) that returns a concrete implementation of the stub when an
application binds with the middleware.

Listing 1: The Platys middleware exposes an inerface defined in AIDL to applications.
i n t e r f a c e I P l a t y s M i d d l e w a r e R e m o t e S e r v i c e {

/∗ ∗ R e g i s t e r s t h e a p p l i c a t i o n and r e t u r n s a p r i v a t e key . ∗ /
S t r i n g r e g i s t e r A p p l i c a t i o n (S t r i n g name , S t r i n g d e s c r i p t i o n) ;

void u n r e g i s t e r A p p l i c a t i o n (S t r i n g p r i v a t e K e y) ;

/∗ ∗ S t a t u s can be pending , approved , t r a s h e d , or b l o c k e d ∗ /
S t r i n g g e t A p l i c a t i o n S t a t u s (S t r i n g p r i v a t e K e y) ;

/∗ ∗ C u r r e n t p l a c e or n u l l i f n o t p r i v i l e g e d ∗ /
S t r i n g g e t C u r r e n t P l a c e (S t r i n g p r i v a t e K e y) ;

L i s t < S t r i n g > g e t C u r r e n t A c t i v i t i e s (S t r i n g p r i v a t e K e y) ;

L i s t < S t r i n g > g e t S o c i a l C i r c l e s (S t r i n g p r i v a t e K e y ,
S t r i n g connect ionName) ;

L i s t < S t r i n g > g e t S h a r a b l e S o c i a l C i r c l e s (S t r i n g p r i v a t e K e y ,
S t r i n g p l a c e O r A c t i v i t y N a m e)

/ / . . .
}

Listing 2: Android SDK Tools auto-generate a stub based on the AIDL interface exposed
by the middleware.
p u b l i c s t a t i c a b s t r a c t c l a s s Stub ex tends Bi nd e r implements
I P l a t y s M i d d l e w a r e R e m o t e S e r v i c e {

/∗ ∗ Local−s i d e IPC i m p l e m e n t a t i o n s t u b c l a s s . ∗ /
/ / . . .

}

49

Listing 3: A service on the middleware returns a concrete implementation of the stub when
an application binds with the middleware.
p u b l i c c l a s s P l a t y s M i d d l e w a r e R e m o t e S e r v i c e ex tends S e r v i c e {

/ / . . .
@Override
p u b l i c I B i n d e r onBind (I n t e n t i n t e n t) {

re turn new I P l a t y s M i d d l e w a r e R e m o t e S e r v i c e . S tub () {
/∗ ∗ A c o n c r e t e i m p l e m e n t a t i o n o f

I P l a t y s M i d d l e w a r e R e m o t e S e r v i c e ∗ /
/ / . . .

}
}

}

Next, since the application also has a copy of the stub, it can bind to the middleware’s
service as if it is a local service (Listing 4).

Listing 4: An application can bind to the middleware’s service and receive a concrete
implementation of the stub.
p r i v a t e I P l a t y s M i d d l e w a r e R e m o t e S e r v i c e mServ ice = n u l l ;
S e r v i c e C o n n e c t i o n mConnect ion = new S e r v i c e C o n n e c t i o n () {

@Override
p u b l i c vo id o n S e r v i c e C o n n e c t e d (ComponentName className ,

I B i n d e r s e r v i c e) {
mServ ice = I P l a t y s M i d d l e w a r e R e m o t e S e r v i c e . S tub

. a s I n t e r f a c e (s e r v i c e) ;
}
@Override
p u b l i c vo id o n S e r v i c e D i s c o n n e c t e d (ComponentName className) {

mServ ice = n u l l ;
}

} ;

Once bound, the application can interact with the middleware as follows.

1. Register with the middleware providing a unique name. The middleware returns a pri-
vate the application should use in all future communication.

2. Check the status of the application; if approved, continue to next steps.

3. Query for the user’s place, activity, or social circles as need be. The middleware returns
the corresponding value or null according to the user’s privacy policies.

4. The middleware sends asynchronous messages when the user’s places or privacy poli-
cies change so that the application can update local caches without polling.

50

5. Unregister the application if place information is not needed anymore.

51

