
 

 

Mapping the Field of Software Security Metrics
 

Patrick Morrison, David Moye, and Laurie Williams 
Department of Computer Science 

North Carolina State University 
Raleigh, NC USA 

{pmorrison, cdmoye, lawilli3}@ncsu.edu 
 

Abstract— While security, or its absence, is a property of 
running software, many aspects of software requirements, 
design, implementation, and testing contribute to the presence 
or absence of security in the finished product. Assessing 
whether a given piece of software meets a set of security 
objectives is a multi-dimensional problem, and we do not yet 
have a clear picture of all of the dimensions. The goal of this 
research is to support researcher and practitioner use of security 
measurement by cataloging available metrics, their validation, 
and the subjects they measure through conducting a systematic 
mapping study. Our study began with 1,561 papers and 
narrowed down to 63 papers reporting on 346 metrics. For 
each metric, we identify the subject being measured, how the 
metric has been evaluated by researcher(s), and how the 
metric is being used. Approximately 85% of security-specific 
metrics have been proposed and evaluated solely by their 
authors. Approximately 40% of the metrics are not 
empirically evaluated, and many artifacts and processes 
remain unmeasured. Approximately 15% of the metrics focus 
on the early stages of development or on testing (1.5%). At 
present, despite the abundance of metrics found in the 
literature, those available give us an incomplete, disjointed, 
hazy view of software security. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – complexity 

measures, performance measures, process measures, product 
metrics.  

Index Terms—Metrics, Measurement, Security 

I. INTRODUCTION 
Software system stakeholders seek assurance that their 

interests, communications and data are secure. McGraw [1] 
defines software security as “engineering software so that it 
continues to function correctly under malicious attack.” 
While security, or its absence, is a property of running 
software, many aspects of the engineering practices of 
software requirements, design, implementation, and testing 
contribute to the ultimate presence, or absence, of security 
in the finished product. Some fundamental security 
questions asked by development organizations can be 
answered with security metrics: 

• Are we on track to release a secure product? 
• How secure is the software I am considering 

including in my system? 
• Does this system meet compliance obligations? 

While we are not in a position to answer the posed 
questions directly, we can summarize the concerns that 
have been identified to date by examining the use of 

metrics for security during the software development 
lifecycle.  

Providing useful metrics for the security of a software 
system is a difficult undertaking [2]. Pfleeger and 
Cunningham [3] consider dimensions ranging from the 
specification of systems to protocol verification to the 
psychology of software designers, users and attackers, 
suggesting that a range of metrics is needed to properly 
represent security for assessment and prediction.  

Comprehensive approaches to providing security in 
software are likely to rely on comprehensive measurement 
of security in software. As shown by industrial schemes 
like Microsoft’s Security Development Lifecycle [4], the 
SafeCode initiative1, and the Cigital “Building Security In 
Maturity Model2”, security must be addressed at every 
phase of software development. Researchers seek theories 
to explain security properties, and empirical validation of 
measurements of those properties. Both groups require an 
understanding of the available software security metrics.  

The goal of this research is to support researcher and 
practitioner use of security measurement by cataloging 
available metrics, their evaluation, and the subjects they 
measure through summarizing the scholarly literature. 

A summary of the state of the literature offers 
perspective on what has been accomplished, and what 
remains to be accomplished. We focus specifically on 
software, and the artifacts, processes and people involved 
in its development. For example, we do not consider 
measures of network, biometric, or cryptographic security. 

According to Budgen [5], systematic mapping studies 
are “intended to ‘map out’ the research that has been 
undertaken rather than to answer a detailed research 
question.” As a means of identifying the security properties 
to be measured, and the concerns involved in engineering 
secure software, we conduct a systematic mapping study of 
the metrics that have been applied to measuring the security 
of software during and after its development. 

To assess the extent of the field of software security 
metrics and their evaluation and use, we pose the following 
research questions: 

RQ1: What software security metrics have been 
proposed in the scholarly literature? 

                                                             
1 http://www.safecode.org/ 
2 http://bsimm.com/ 



 

 

RQ2: What is being measured by software security 
metrics?  

RQ3: How are software security metrics evaluated in 
the literature? 

RQ4: What phases of the software development 
lifecycle are measured by software security metrics? 

Our initial search yielded a set of 1,561 papers. We 
narrowed the set to 63 papers that propose, evaluate and/or 
report on security metrics for software development. Our 
study provides context to software security researchers for 
evaluating existing and new security metrics for software 
development, and provides practitioners an inventory of 
security metrics for software development. 

Our contributions include: 
• A classification scheme for software development 

security metrics 
• A summary of the metrics used to evaluate the 

security properties of software and its 
development 

• Raw data related to software security metrics.  
The remainder of this paper is organized as follows: 

Section II provides a glossary and background information 
on metrics. Section III presents related work. Section IV 
describes the methodology we followed in executing the 
mapping study. Section V provides our summarization of 
the data collected. Section VI reports on Limitations, and 
Section VII presents our discussion of the results. 

II. BACKGROUND 
To provide grounding for the topic of security metrics 

in software development, our mapping study, and our 
classification scheme, this section presents a glossary of 
metric-related terms, and literature on software metrics 
generally, and specifically on software security metrics. 

A. Definitions 
Attack – An intentional act by which an entity attempts 

to evade   security services and violate the security policy 
of a system; A method or technique used in an assault [6]. 

Indicator: Any observable characteristic that correlates 
with a desired security property [7]. 

Measure: A way to ascertain or appraise value by 
comparing it to a norm; To apply a metric [8]. 

Measurement: The process by which numbers or 
symbols are assigned to attributes of subjects in the real 
world in such a way as to describe them according to 
clearly defined rules [9]. 

Metric: A quantitative measure of the degree to which a 
system, component, or process possesses a set attribute 
[10]. 

Security Measure: Assigns to each measured object a 
security indicator value from an ordinal scale according to 
well-defined measurement protocol [7]. 

Risk: The combination of the probability of an event 
and its consequence3. 

Security metric: A security measure and an associated 
set of rules for the interpretation of the measured data 
values [7]. 

Software security: We adopt McGraw’s notion of 
“engineering software so that it continues to function 
correctly under malicious attack” [1]. For our notion of 
malicious attack, we also reference the IEEE definition of 
software security: “Protection of information and data so 
that unauthorized persons or systems cannot read or modify 
them and authorized persons or systems are not denied 
access to them.”3 

Software system: A software-intensive system for which 
software is the only component developed or modified4. 

Vulnerability: A flaw or weakness in a system's design, 
implementation, or operation and management that could 
be exploited to violate the system's security policy [6]. 

B. Software Metrics 
Within the field of software engineering, few agree on 

the use of the words “metric” and “measure.” For the 
purposes of this review, we are liberal in the definitions we 
accept from the literature. A good metric should be 
conceptually specific, quantitatively measurable, practically 
attainable, consistently measured without subjective 
criteria, and time-dependent [11]. However, even when 
metrics appear to be useful, difficulties arise attempting to 
validate metrics and determine their overall usefulness and 
practicality [12]. In addition, metrics are not valuable if the 
results of applying them cannot be understood effectively. 
Security metrics are no exception [13]. 

C. Software Security Metrics 
What is a security metric?  Jansen [8] quotes and 

discusses three variant definitions from the literature. To 
frame the text of this paper, we adopt Rudolph and 
Schwarz’s [7] definition for a security metric “a security 
measure with an associated set of rules for the 
interpretation of the measured data values“. Rudolph and 
Schwarz define a set of attributes for describing security 
metrics, including the “Target” the metric measures, the 
lifecycle “Phase” when the metric is measured, and 
whether the metric is prescriptive or goal-oriented. 
Prescriptive metrics characterize the quality with which a 
process step within the development lifecycle is performed. 
Goal-oriented metrics measure the quality of the product.  

We supplement the Rudolph and Schwartz framework 
with notions taken from Savola’s [14] security metrics 
taxonomy, which characterizes security metric properties 
and applications. At a high level, Savola provides three 
categories of metrics: 

                                                             
3 ISO/IEC 16086 (IEEE Std 16085-2006) - Systems and Software 

Engineering - Life Cycle Processes - Risk Management 
4 IEEE Std 1362-1998 - IEEE Guide for Information Technology - System 

Definition - Concept of Operations (ConOps) Document 



 

 

• Organizational metrics describe attributes of 
organizational programs and processes. 

• Technical metrics describe software artifacts, e.g., 
requirements, specifications, designs, code.  

• Operational metrics describe running systems and their 
environments.  

III. RELATED WORK 
Verendel [15] presents a survey focused on measuring 

operational security, addressing the ability to “function 
correctly under malicious attack.” Our mapping study 
additionally considers the engineering of secure software, 
seeking measurements of the process, tools, people, and the 
software produced. Rudolph and Schwarz [7] surveyed 
scholarly articles on “security indicators”, where an 
indicator is defined as “an observable characteristic that 
correlates with a desired security property.” In addition to 
what Rudolph and Schwarz studied, we seek to characterize 
the subjects being measured. Meneely, Smith, and Williams 
[18] review metric validation, and suggest a scheme for 
choosing validation criteria. We only consider validation in 
terms of the high-level approach chosen by the researchers, 
e.g., User Study, Theoretical, or Opinion.  

IV. METHODOLOGY 
We subdivide how we approach the mapping study into 

four components: our search strategy for identifying papers, 
our selection criteria for including papers, our classification 
scheme for collecting data on each metric, and our 
procedure for extracting metric information from each 
paper.  

A. Search Strategy 
In this section, we lay out the process used to conduct 

our systematic mapping study.  
1) Databases 

We based our selection of online databases on the most 
common databases used in Software Engineering 
Systematic Literature Reviews (SLRs), and in Systematic 
Mapping Studies (SMSs), and on sources used in previous 
software security metric literature reviews [7], [15]. The 
data sources in this study include online databases, 
conference proceedings, and academic journals. The list is 
as follows: ACM Digital Library, IEEE Xplore, and 
Elsevier. 

2) Search terms and strategy 
For each research question, we selected the terms the 

first and second authors agreed on as most relevant. 
TABLE 1. RESEARCH QUESTION KEYWORDS 

Research 
Question 

Keyword 

RQ1 “software”, “security”, “measure”, 
“metric” 

RQ2 RQ1 terms 
RQ3 RQ1 terms + “validate” 
RQ4 RQ1 terms  

 

 

 
TABLE 2. KEYWORD SYNONYMS 

Keyword Synonym(s) 
software “application” 
security “vulnerability” 
measure “measurement”, “measure”, “indicator”, 

“attribute”, “property” 
metric “measurement”, “measure”, “indicator”, 

“attribute”, “property” 
validate “validation”, “evaluate”, “evaluating”, 

“evaluation”, “quantify”, “quantifying”, 
“quantification”, “quantified”, 
“quantitative”, “assess”, “assessment”, 
“measure”, “measurement”, “appraisal”, 
“analyze”, “measuring”, “analysis”, 
“assurance”, “scoring” 

 

For each term associated with a research question, we 
identified synonyms in the titles and abstracts of previous 
surveys [7], [15] of security measures and metrics.  

The organization of the research questions is that RQ2, 
RQ3, and RQ4 are subsets of RQ1. We created database 
search phrases based on RQ1 and collected studies based 
on those search phrases, filtering from the set collected for 
RQ1 to answer the other research questions.  

Our base search phrase is: 
(security OR vulnerability) AND (metric OR 

measure OR measurement OR indicator OR attribute 
OR property)  

3) Search Process Evaluation 
We followed Zhang [16] in evaluating the quality of our 

search results. An ideal search process would return all 
relevant papers (sensitivity = 1.00), and only relevant 
papers (precision = 1.0). Such a set of papers would be a 
“gold standard.” In practice, we do not know the set of 
relevant papers in advance, so we must estimate, using 
what Zhang terms a “quasi-gold standard” (QGS) which is 
a set of relevant papers in the literature, chosen prior to the 
search process. The QGS is used as a measure of how well 
each search string locates relevant papers in the absence of 
a gold standard. Zhang [16] defines sensitivity as the ratio 
of the number of returned papers retrieved to the total 
number of relevant studies. Quasi-sensitivity (QS) is the 
number of papers returned by a search to the number of 
returned papers that are present in the QGS. QS estimates 
how well the search string locates relevant papers within 
the searched corpus. By measuring the performance of the 
search in returning members of the QGS from a given 
search engine, compared with the number of QGS papers in 
the search engine, an estimate can be made of search 
performance. For example, if there are 10 of the QGS 
papers in the ACM library, and the search string returns 8 
of them, QS would be 0.8.  

The first and second authors identified a set of 39 
software development security metrics papers, developed 
by reviewed the papers collected in the previous security 
metrics literature reviews [7], [15] Each author read the 
titles and abstracts of the collected papers independently, 



 

 

and made a list of candidates. The authors then discussed 
each list, applying the following selection procedure: 

1. If both authors agreed the paper described a 
software development security metric, it was 
included in the final QGS list. 

2. If both authors agreed the paper did not describe a 
software development security metric, it was 
excluded from the final QGS list. 

3. Disagreement was discussed. If agreement could 
be reached, the appropriate action listed above was 
taken. If agreement could not be reached, the 
paper was included in the final list. 

The results of each database search were compared with 
the QGS set of papers. The quasi-sensitivity for each 
database search is reported in Table 3. 

B. Selection Criteria 
We developed a list of criteria to assess whether the 

papers found during the search process met our objectives.  
1) Inclusion Criteria 
• Primarily related to measuring software security in 

the software development process and/or its 
artifacts, for example software artifacts (e.g., 
source code files, binaries), software process (e.g., 
requirements phase, design, implementation, 
testing), and/or software process artifacts (e.g., 
design and functional specifications) 

• Measurements and/or metrics are main subject 
• Refereed paper 
• Published since 2000 

2) Exclusion Criteria 
• Sources related to sensors 
• Sources related to identity, anonymity, privacy 
• Sources related to forgery and/or biometrics 
• Sources related to network security (or vehicles) 
• Sources related to encryption 
• Sources limited to database security 
• Sources related to imagery, audio, or video 
• Sources specific to single programming languages 

3) Study Quality Assessment 
We developed a Quality Assessment Checklist for 

whether to include each paper, as follows: 
1. Is a primary or secondary goal of the paper to 

describe, define, or evaluate a metric or 
measurement of software security? 

2. Does the paper align with our inclusion criteria? 
3. Is the paper peer-reviewed? 

We also established a scoring procedure for resolving 
differences between raters when disagreement was found: 
4. Scoring 

a. Question Scoring Scale: No: 0, Partial: 0.5, Yes: 1, 
Two raters. 

b. Complete agreement 
i. “Yes” from both raters: paper is selected 

ii. “No” from both raters: paper is rejected 

c. Partial agreement – combinations between 0 and 
2. Raters discuss, find agreement, or agree to 
disagree. 
i. Agreement processed according to the rules 

for complete agreement 
ii. Papers are selected in the presence of 

unresolved disagreement. 

C. Metric Classification Scheme 
To support answering our research questions, we 

developed a set of data elements to be collected for each 
metric. We began with the Rudolph and Schwartz survey 
[7] classification scheme  (R&S indicates the element was 
defined in their framework) and the Savola security metrics 
taxonomy [14],  adapting the elements and their values to 
our goals and questions, and adding new elements where 
the original schemes did not address our questions.  

Elements linked to RQ1: 
• Metric name: the “given name” of the metric 

defined or used in the paper. (R&S) 
• Metric Category: The category values were 

synthesized extraction to summarize metric 
usages.  

Elements linked to RQ2: 
• Type: what kind of attribute is measured? (R&S) 

o Prescriptive: Measures the quality with which 
a process step within the development 
lifecycle is performed 

o Goal-oriented: Measure the quality of the 
product itself 

• Target: class of subject measured by the metric 
(R&S). 
o Product: Refers to the security of the target, 

e.g., software products or parts of them source 
code, components, systems, etc. 

o Process: Refers to security-related parts of a 
process, e.g., a development process, or a 
maintenance process. 

o Resources: Refers to security-related 
attributes of resources used by a product or 
process.  

• Subject measured: Synthesized and named based 
on assessment of extractor: “Source Code”, 
“Project”, and “Component” are examples. 

• Phase (of the development lifecycle, R&S): 
Requirements, Design, Implementation, Testing, 
Deployment, Operations 

• Unit of measurement: denotes type of 
measurement scale (e.g., Nominal, Ordinal, 
Interval, Ratio), or specific instance of 
measurement scale(e.g., Count, Probability, 
Duration, Rate, Currency, Percentage)  

Elements linked to RQ3: 
• Evaluation technique: Opinion, Theoretical, 

Academic user study, Industry user study, Reports 
from production.  



 

 

• Affect identifies how the metric value is 
measured, where “Quantitative” indicates 
objective, systematic, empirical measurements and 
“Qualitative” indicates subjective measurements 
based upon observation. 

Elements linked to RQ4: 
• Phase (of the development lifecycle, R&S): 

Requirements, Design, Implementation, Testing, 
Deployment, Operations 
 

We also collected demographic and audit information 
for each metric. For demographic purposes, we assigned 
unique paper and metric numbers to identify each metric 
and its usage across papers, and a set of sub-categories to 
track distinctions not made by our categorization scheme 
(e.g., we treat coupling and cohesion as part of the 
Dependency category), For audit purposes, we tracked the 
name of the extractor and auditor for each row, as well as 
the extraction and audit dates. 

D. Data Extraction 
The metric extractor (in the present case, the first or 

second authors) reads a paper, identifies each metric 
defined or used in the paper, and collects the data for each 
element in the metric classification scheme. 

The first author applied the extraction procedure 
described in the classification guide to every paper in the 
final set of 63 papers. The second author applied the 
extraction procedure to a sample of studies. We then 
discussed and resolved differences in classification where 
they were present.  

V. RESULTS 
This section presents our search results, and summaries 

of the data extracted from the selected papers. Based on the 
data extraction procedure, we tabulated the metrics, 
subjects, scales, evaluation means, and uses. The tabulated 
data provides an overview of “evidence clusters” and 
“evidence deserts” for software security in the software 
development process as well as detailed information about 
each metric. The results in Section V.B provide summary 
answers to the paper’s research questions based on the 
excerpts from the tabulated data. The full data set is 
presented in Appendices B, C, and D.  

A. Search Results 
The search phrases returned 1,561 papers. Of these, 173 

papers were duplicates among two or more sources. We 
measured inter-rater agreement using Cohen’s Kappa [17], 
obtaining 0.93 for the pass over titles, and 0.81 for the pass 
over the abstracts. Kappa scores over 0.8 indicate relatively 
strong agreement. Applying our inclusion and exclusion 
criteria through unanimous agreement of two raters’ 
evaluations of document titles resulted in a set of 332 
papers. 

The papers were then evaluated by reading the 
abstracts. The abstracts were then compared against the 
exclusion and inclusion criteria, reducing the source set to 

185 papers, which were evaluated based upon their full 
text.  

TABLE 3. SEARCH RESULTS 
Database Initial Search 

Results 
QS Precision 

ACM Digital Library 223 0.35 0.031 
IEEE Xplore 502 0.58 0.014 
Elsevier 836 1.0 0.012 

 

The full text for the remaining papers was inspected 
for basic compliance by giving each article a 10-minute 
review, applying the Study Quality Assessment criteria, 
yielding 78 papers, then a full-text analysis resulting in 
63 included in the final survey. We applied the two rater 
selection procedure described in Section III.1.3 for each 
pass over the set of papers. 

B. Data Extraction Results 
Applying the data extraction scheme described in 

Section IV.D, we identified 346 metrics, shown in 
Appendix A. We now address each research question from 
the perspective of the data collected. 

1) RQ1:  What software security metrics have been 
proposed in the scholarly literature? 

We identified 346 unique metrics across the 63 papers 
selected. Space does not permit a discussion of each metric, 
but several themes emerged. We have arranged these 
themes as ten metric categories. Our category titles, listed 
in Appendix A, were initially seeded from the papers 
themselves, listed in Appendix B. For example, Complexity 
(P25, P32, P34), Dependency (P25, P43), and Churn (P25) 
are used by their citing papers to summarize lists of metrics 
denoting each concept. For these cases, we identified a 
metric as belonging to the Complexity category when the 
containing paper did so, or based on past references to the 
metric in the literature. In many cases, papers compute 
variants of a basic metric, e.g., “Complexity” by averaging 
(“Average Complexity”), totaling (“Total Complexity”), or 
finding the maximum (“Maximum Complexity”) or 
minimum (“Minimum Complexity”). We place these 
variants in the base metric’s category. We followed a 
similar approach for each of the ten categories. We defined 
ten categories to summarize the kinds of metrics identified 
(metric count follows category name in parenthesis), listed 
below: 

• Churn (11): The amount of change in a measured 
subject, typically generated by counting the 
additions, deletions and changes made. 

• Complexity (22): The difficulty with which a 
subject is created, understood, and/or tested. 

• Cost (5): The expense incurred in experiencing or 
responding to a security-related loss 

• Coverage (100): The ratio (percentage) of sub-
parts of a subject to which some attribute applies, 
compared to the total number of sub-parts within 
that subject. 

• Dependency (33): The level of interconnection 
between subjects 



 

 

• Effort (23): The difficulty of attacking or 
defending some subject 

• Organization (18): Measures of the team and/or 
organization 

• Size (50): Measures of the size of the subject 
• Strength (30): Positive measures of an subject’s 

security properties 
• Weakness (55): Negative measures of an subject’s 

security properties 
a) Traditional Software Metrics: Churn, Complexity, 

Dependency, Size 
Many of the metrics identified across the categories of 

Churn, Complexity, Dependency, and Size were first 
defined and used in the broader software metrics literature. 
Application of these metrics to evaluating and predicting 
security properties is an extension of their previous use in 
defect prediction (e.g., [19]). Each of the categories will 
now be discussed. 

CHURN (TRADITIONAL) 
Typical measures of source code churn sum the number 

of lines added, deleted, or changed during some unit of 
time. In one case, (P53), only the number of lines deleted is 
tracked. “Relative Churn” (M271, P63) and “Percentage 
Interactive Churn” (M218, P63) normalize the size of the 
churn to the size of the changed file and consider 
overlapping changes between developers, respectively. 

COMPLEXITY (TRADITIONAL) 
Variants of McCabe’s Cyclomatic Complexity were the 

most commonly used metrics (20 references, nine papers). 
We summarized these as Complexity (M50). Fan In and 
Fan Out, measures of how connected a given code object is 
to other code objects, were also common (11 references, 
four papers). Beyond common complexity measures, 
“Average Service Depth” (ASD) (P45), measures the 
complexity of a service provided to users by tracking the 
number of constituent services used in providing the given 
service and relating ASD to the “attackability” of services.  

COST (SECURITY-SPECIFIC) 
Five papers consider the cost of a security breach or the 

risk of a breach in financial terms, most often in terms of 
the actual expenses incurred in recovering from a breach. 

COVERAGE (BOTH) 
In software engineering, “Coverage” typically refers to 

the percentage of the total code base that is executed when 
a test suite is run. Our notion of Coverage abstracts out the 
idea of computing the ratio of subjects (e.g., lines of code 
(LOC), number of classes or files) possessing some 
attribute (test coverage) to the total number of subjects 
(e.g., LOC, classes, or files). We observed this more 
general idea of coverage in 100 metrics, nearly 1/4 of all 
the metrics. P1 defines notions of “Classified” and 
“Critical” to describe software access to information, and 
defines a set of metrics describing the coverage of 

“Classified” and “Critical” classes, attributes related to the 
complete set of classes and attributes in the software. P23 
applies coverage to measures of security-related 
requirements, design decisions, test cases, and flaws 
identified. Several papers considered coverage of 
operational aspects of software, e.g., logging (P4, P28) and 
aspects of session management (P2, P62).  

The most security-specific categories measure aspects 
of how some subject fulfills or fails to fulfill one or more 
security properties. We have divided these into negative 
measures, termed “Weakness,” and positive measures, 
termed “Strength.” 

DEPENDENCY (TRADITIONAL) 
Beyond measures of size and complexity of individual 

software functions, measures of dependency characterize 
how software subjects connect with each other. The core 
concepts for dependency metrics are drawn from graph 
theory, and applied to software by treating software 
subjects (functions/methods, classes, objects, services) as 
nodes in the graph and relationships as edges in the graph. 
Various metrics, for example, “in degree”, “out degree”, 
and “betweenness” (P32) are computed to represent 
software attributes. There were several papers that 
measured Coupling (P1, P31, P42, P45, P48, P51, P61) 
and/or Cohesion (P61), internal software metrics that 
measure software relationships. We treated each of these as 
a form of dependency for purposes of our categorization. 

EFFORT (SECURITY-SPECIFIC) 
We identified notions of attacker, defender, and 

developer effort. The Common Vulnerability Scoring 
System (CVSS) (P9, P16, P17, P24, P60, CVSS5) provides 
ordinal classifications for indicating the difficulty an 
attacker has in reaching and exploiting a vulnerability along 
the dimensions of how the vulnerability is reached 
(“Access Vector”), whether an account compromise is 
required (“Authentication”) and how sophisticated an 
attack is required (“Access Complexity”). CVSS’s notions 
of “Confidentiality Requirement”, “Integrity Requirement”, 
and “Availability Requirement” offer similar metrics for 
indicating developer and defender effort required to 
achieve various security properties. One paper (P19) 
defines metrics for evaluating the effort put in to the design 
and inspection of security mechanisms. 

ORGANIZATION (SECURITY-SPECIFIC) 
Four papers considered measures of the size and nature 

of the team and organization developing the software. 
Three papers used the number of developers to measure the 
notion of whether “too many cooks spoil the broth” from a 
security perspective. In P25 and P63, Meneely develops 
and uses measures of how developer interactions and 
networks affect the security properties of software.  

                                                             
5 http://www.first.org/cvss/cvss-guide.html 



 

 

SIZE (TRADITIONAL) 
The most basic software measurement, Lines of Code 

(LOC), is also among the most used metrics in the security 
metrics literature (13 references, 9 papers). Other tracked 
source code elements include variable declarations and 
number of functions (P32), blank and comment lines (P43), 
and counts of variables and classes (P48, P61). One paper 
(P10) advocates counting more specific source code-level 
attributes, e.g., arithmetic expressions and array indices, as 
these attributes lie beneath buffer overflows. Extending the 
notion of defining code attributes, another paper (P1) 
defines notions of “Classified” data attributes in code and 
“Critical” classes that reference Classified data attributes. 
The most basic metrics in these papers count the number of 
these attributes present, making them “Size” metrics. 
Several papers track size metrics for attributes of software 
design (P23) and requirements (P52). Several papers 
tracked counts of attacks (P29) and vulnerabilities (P58). 

“Attack Surface Metric” (ASM) measures software size 
from an attacker’s point of view (P13). ASM counts the 
number of resources accessible to a user of the software. 
Studies have shown correlations between ASM and 
security challenges (P7, P13, P37, P38). 

STRENGTH (SECURITY-SPECIFIC) 
Metrics of software security strength (positive 

performance on security properties), like those of 
weakness, range across the development process, from 
requirements and design, to development, to operations. 
One paper (P22) attempts to operationalize measures of 
several security design principles, e.g., “Least Privilege”, 
“Compartmentalization”, and “Defense-in-Depth.” 
Subjective measures include CVSS’s “Report Confidence” 
(P17), “Independence of Verification” (P19), “risk 
control”, “software project management experience” and 
“Trustworthiness” (P46). Operational measures include 
“Vulnerability Free Days” (P18) and “Mean Time to 
Failure” (P45).  

WEAKNESS (SECURITY-SPECIFIC) 
Metrics of software security weakness (negative 

performance on security properties) range from subjective 
estimates of project, team, and process risk (P46, P56, P60) 
to measures of development (P23, P42) and operational 
weaknesses (P4) to measures of vulnerabilities found in the 
software subject (P2, P21, P23, P28, P42, P58). The CVSS 
“Confidentiality Impact”, “Integrity Impact” and 
“Availability Impact” scores, each indicting the relative 
seriousness of vulnerability’s impact on the software 
system, are representative of weakness metrics. 

2) RQ2: What is being measured by software security 
metrics? 

The metrics identified in this Mapping Study were 
categorized in three dimensions: Subject, Lifecycle Phase, 
and Target. 

We identified 13 distinct subjects (metric counts follow 
names): Source Code (175), System (123), Component 

(52), Binary (29), Software version (28), Organization (12), 
Misuse case (8), Requirements (8), Commit (7), Project (6), 
Design (4), Security mechanism (4), Network (3), 
Component inspection (2), User (1). 

We note that measures of the source code are most 
frequent, often reflecting the application of traditional 
software metrics to measuring security. Measures of 
running systems (System, Software Version) (151) 
comprise the next largest collection of metrics. Measures of 
the development process and its non-source code artifacts 
are relatively few.  

In the Target dimension, Product (383), Process (67), 
and Resources (9), metrics that measure the actual Product 
dominate both those that measure the Process and those 
that measure Resources.  

3) RQ3: How are software security metrics evaluated 
in the literature? 

Broken down by Evaluation technique, the counts were: 
Industry User Study (121, 35%), Academic User Study (85, 
25%), Opinion (61, 18%), Theoretical (51, 15%), Reports 
from production (18, 5%), Not Described (10, 3%). 
Opinion and Theoretical evaluations make up 33% of the 
evaluation techniques. 

Related to the evaluation of the metrics, is Affect, 
denoting whether a metric is Quantitative (310, 67%) or 
Qualitative (68, 15%) (86, 18% were unidentified).  

4) RQ4: What phases of the software development 
lifecycle are measured by software security 
metrics?? 

The most common lifecycle phase of development for 
metrics is Implementation (229), whereas the least common 
phase is Testing (7) (followed closely by Requirements, 
and Design). The Implementation phase is dominated by 
Size and Coverage metrics; and has relatively few metrics 
for Cost, Effort, and Strength. The Implementation phase is 
also the only phase that has metrics representing all of the 
10 categories used in this study. 

VI.LIMITATIONS 
If we have seeded our Quasi-Gold-Standard (QGS) with 

the wrong papers, we may have excluded relevant papers 
 

TABLE 4. LIFECYCLE PHASE BY METRIC CATEGORY 
 Rqt’s Design Impl. Test Ops Tot. 
Churn   15    15 
Complexity  7 41 1  49 
Dependency  12 22  1 35 
Size 5 6 48  9 68 
Organization   22   22 
Cost 1  1  4 6 
Effort 4 1 5  29 39 
Coverage 14 3 54 3 42 116 
Weakness 2 2 10 1 43 58 
Strength 2 6 6 2 20 36 
Total 28 37 224 7 148 444 

 



 

 

from our results. We drew our results from three search 
engines, ACM, IEEE, and Elsevier, limiting our selection 
of metrics papers to what is available in their indexes.  
Our QS scores were low for ACM and IEEE, suggesting 
that we may have missed relevant papers. While we 
attempted to be comprehensive in our search strings and 
result parsing, our approach may have missed papers.  
Limiting our search to the scholarly literature excluded 
existing standards as well as industry experience reports 
disseminated by other means. Software development 
organizations may choose not to report whether they are 
using metrics, limiting our observations to discussion of the 
scholarly literature.   Our metric classification scheme 
reflects our own biases in the data elements selected for 
each metric, and both the scheme and the biases of each 
author affect the values selected for each data element for 
each metric.  We attempted to reduce bias by applying our 
two rater scheme, as well as more informal discussions 
among the authors.  

Drawing inferences from the fields we classified 
depends on how accurately our choices match objective 
reality. We did not attempt a second approach, or a second 
set of extractors, to compare results, so our measures of 
validity are weak. Data elements we synthesized (Category, 
Measured Subject) are especially subject to this limitation, 
though we had two extractors check each metric-category 
assignment.  

VII.DISCUSSION 
We reported on the results associated with each 

research question in section V. Here, we offer several 
further observations. At first glance, 346 software security 
metrics appears to be an abundance of metrics, enough for 
measuring any conceivable application.  On closer 
examination, we identified opportunities for new metrics 
and evaluation of existing metrics. The most common 
‘security metrics’ are traditional software metrics, e.g. 
Complexity, Churn and Lines of Code, applied to 
measuring security. After traditional metrics, metrics that 
characterize vulnerabilities, e.g. CVSS, are well 
represented.  Attempts, like P22, to define metrics 
measuring how well code or components supports a 
security principle, e.g. ‘Least Privilege’ are a valuable 
contribution. A majority (60%) of metrics in the surveyed 
literature are evaluated through either Industry (35%) or 
Academic Studies (25%), but note that the same figures 
show that 60% of metrics have not been applied in an 
industrial setting, calling for further empirical studies. 

Most (85%) security-specific metrics have been 
proposed and evaluated solely by their authors. Few 
metrics (~15%) focus on the early stages of development or 
on testing (1.5%). Applying ideas from how 
implementation concerns are measured, e.g. metrics for 
assessing designs and test suites, and metrics for assessing 
team strength, are one possible research direction. . Many 
metrics (~40%) are not empirically evaluated, and many 
artifacts and processes remain unmeasured. Following 

through on the evaluation and use of proposed metrics is a 
natural research direction. At present, despite the 
abundance of metrics found in the literature, those available 
give us an incomplete, disjointed, hazy view of software 
security.  

ACKNOWLEDGMENTS 
Thanks to the RealSearch group for much helpful feedback 
during the development of this paper. 

REFERENCES 
[1] G. McGraw, Software Security: Building Security In. 

Addison-Wesley Professional, 2006. 
[2] “Four Grand Challenges in Trustworthy Computing.” 

Computing Research Association, Warrenton, VA, 2003. 
[3] S. L. Pfleeger and R. K. Cunningham, “Why Measuring 

Security Is Hard,” Secur. Priv. IEEE, vol. 8, no. 4, pp. 46–
54, Jul. 2010. 

[4] M. Howard and S. Lipner, The Security Development 
Lifecycle. Redmond, WA, USA: Microsoft Press, 2006. 

[5] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham, 
“Using mapping studies in software engineering,” in 
Proceedings of PPIG, 2008, vol. 8, pp. 195–204. 

[6] R. Shirey, Internet Security Glossary, Version 2. IETF, 2007. 
[7] M. Rudolph and R. Schwarz, “A Critical Survey of Security 

Indicator Approaches,” in Proceedings of the 2012 Seventh 
International Conference on Availability, Reliability and 
Security, Washington, DC, USA, 2012, pp. 291–300. 

[8] W. Jansen, W. Jansen, P. D. Gallagher, and D. Director, 
Directions in Security Metrics Research. 2009. 

[9] N. E. Fenton and S. L. Pfleeger, Software Metrics: A 
Rigorous and Practical Approach, 2nd ed. Boston, MA, 
USA: PWS Publishing Co., 1998. 

[10] “IEEE Standard Glossary of Software Engineering 
Terminology,” IEEE Std 61012-1990, pp. 1–84, Dec. 1990. 

[11] N. Pham, L. Baud, P. Bellot, and M. Riguidel, “A Near Real-
Time System for Security Assurance Assessment,” in 
Proceedings of the 2008 The Third International Conference 
on Internet Monitoring and Protection, Washington, DC, 
USA, 2008, pp. 152–160. 

[12] N. F. Schneidewind, “Methodology for Validating Software 
Metrics,” IEEE Trans Softw Eng, vol. 18, no. 5, pp. 410–
422, May 1992. 

[13] M. Ouedraogo, D. Khadraoui, H. Mouratidis, and E. Dubois, 
“Appraisal and Reporting of Security Assurance at 
Operational Systems Level,” J Syst Softw, vol. 85, no. 1, pp. 
193–208, Jan. 2012. 

[14] R. Savola, “Towards a Security Metrics Taxonomy for the 
Information and Communication Technology Industry,” in 
Proceedings of the International Conference on Software 
Engineering Advances, Washington, DC, USA, 2007, p. 60–. 

[15] V. Verendel, “Quantified security is a weak hypothesis: a 
critical survey of results and assumptions,” in Proceedings of 
the 2009 workshop on New security paradigms workshop, 
New York, NY, USA, 2009, pp. 37–50. 

[16] H. Zhang, M. A. Babar, and P. Tell, “Identifying Relevant 
Studies in Software Engineering,” Inf Softw Technol, vol. 53, 
no. 6, pp. 625–637, Jun. 2011. 

[17] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” 
Educ. Psychol. Meas., vol. 20, no. 1, pp. 37–46, 1960. 

[18] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating Defect 
Prediction Approaches: A Benchmark and an Extensive 



 

 

Comparison,” Empir. Softw Engg, vol. 17, no. 4–5, pp. 531–
577, Aug. 2012. 

[19] B. Alshammari, C. Fidge, and D. Corney, “A Hierarchical 
Security Assessment Model for Object-Oriented Programs,” 
Qual. Softw. Int. Conf. On, vol. 0, pp. 218–227, 2011. 

[20] E. A. Nichols and G. Peterson, “A Metrics Framework to 
Drive Application Security Improvement,” IEEE Secur. 
Priv., vol. 5, no. 2, pp. 88–91, 2007. 

[21] K. Hajdarevic and P. Allen, “A new method for the 
identification of proactive information security management 
system metrics,” in Information Communication Technology 
Electronics Microelectronics (MIPRO), 2013 36th 
International Convention on, 2013, pp. 1121–1126. 

[22] X. Cheng, N. He, and M. S. Hsiao, “A New Security 
Sensitivity Measurement for Software Variables,” in 
Technologies for Homeland Security, 2008 IEEE Conference 
on, 2008, pp. 593–598. 

[23] J. Pamula, S. Jajodia, P. Ammann, and V. Swarup, “A 
Weakest-adversary Security Metric for Network 
Configuration Security Analysis,” in Proceedings of the 2Nd 
ACM Workshop on Quality of Protection, New York, NY, 
USA, 2006, pp. 31–38. 

[24] S. Nasiri, R. Azmi, and R. Khalaj, “Adaptive and 
quantitative comparison of J2EE vs. .NET based on attack 
surface metric,” in Telecommunications (IST), 2010 5th 
International Symposium on, 2010, pp. 199–205. 

[25] G. Schudel and B. Wood, “Adversary Work Factor As a 
Metric for Information Assurance,” in Proceedings of the 
2000 Workshop on New Security Paradigms, New York, 
NY, USA, 2000, pp. 23–30. 

[26] K. Scarfone and P. Mell, “An analysis of CVSS version 2 
vulnerability scoring,” 2013 ACM IEEE Int. Symp. Empir. 
Softw. Eng. Meas., vol. 0, pp. 516–525, 2009. 

[27] S.-T. Lai, “An Analyzer-Based Software Security 
Measurement Model for Enhancing Software System 
Security,” in Software Engineering (WCSE), 2010 Second 
World Congress on, 2010, vol. 2, pp. 93–96. 

[28] X. Song, M. Stinson, R. Lee, and P. Albee, “An Approach to 
Analyzing the Windows and Linux Security Models,” in 
Computer and Information Science, 2006 and 2006 1st 
IEEE/ACIS International Workshop on Component-Based 
Software Engineering, Software Architecture and Reuse. 
ICIS-COMSAR 2006. 5th IEEE/ACIS International 
Conference on, 2006, pp. 56–62. 

[29] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An 
Attack Graph-Based Probabilistic Security Metric,” in 
Proceeedings of the 22Nd Annual IFIP WG 11.3 Working 
Conference on Data and Applications Security, Berlin, 
Heidelberg, 2008, pp. 283–296. 

[30] P. K. Manadhata and J. M. Wing, “An Attack Surface 
Metric,” IEEE Trans. Softw. Eng., vol. 37, no. 3, pp. 371–
386, 2011. 

[31] A. Agrawal, S. Chandra, and R. A. Khan, “An efficient 
measurement of object oriented design vulnerability,” in 
Availability, Reliability and Security, 2009. ARES’09. 
International Conference on, 2009, pp. 618–623. 

[32] Y. Shin and L. Williams, “An Empirical Model to Predict 
Security Vulnerabilities Using Code Complexity Metrics,” in 
Proceedings of the Second ACM-IEEE International 
Symposium on Empirical Software Engineering and 
Measurement, New York, NY, USA, 2008, pp. 315–317. 

[33] D. Subramanian, H. T. Le, P. K. K. Loh, and A. Premkumar, 
“An empirical vulnerability remediation model,” in Wireless 
Communications, Networking and Information Security 

(WCNIS), 2010 IEEE International Conference on, 2010, pp. 
376–380. 

[34] R. Wang, L. Gao, Q. Sun, and D. Sun, “An Improved CVSS-
based Vulnerability Scoring Mechanism,” in Proceedings of 
the 2011 Third International Conference on Multimedia 
Information Networking and Security, Washington, DC, 
USA, 2011, pp. 352–355. 

[35] J. L. Wright, M. McQueen, and L. Wellman, “Analyses of 
Two End-User Software Vulnerability Exposure Metrics,” in 
Proceedings of the 2012 Seventh International Conference 
on Availability, Reliability and Security, Washington, DC, 
USA, 2012, pp. 1–10. 

[36] V. S. Sharma and K. S. Trivedi, “Architecture Based 
Analysis of Performance, Reliability and Security of 
Software Systems,” in Proceedings of the 5th International 
Workshop on Software and Performance, New York, NY, 
USA, 2005, pp. 217–227. 

[37] O. Alhazmi, “Assessing Vulnerabilities in Software Systems: 
A Quantitative Approach,” Colorado State University, Fort 
Collins, CO, USA, 2007. 

[38] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated 
Software Architecture Security Risk Analysis Using 
Formalized Signatures,” in Proceedings of the 2013 
International Conference on Software Engineering, 
Piscataway, NJ, USA, 2013, pp. 662–671. 

[39] K. Sultan, A. En-Nouaary, and A. Hamou-Lhadj, “Catalog of 
Metrics for Assessing Security Risks of Software throughout 
the Software Development Life Cycle,” in Information 
Security and Assurance, 2008. ISA 2008. International 
Conference on, 2008, pp. 461–465. 

[40] P. Mell, K. Scarfone, and S. Romanosky, “Common 
Vulnerability Scoring System,” Secur. Priv. IEEE, vol. 4, no. 
6, pp. 85–89, Nov. 2006. 

[41] Y. Shin, A. Meneely, L. Williams, and J. . Osborne, 
“Evaluating Complexity, Code Churn, and Developer 
Activity Metrics as Indicators of Software Vulnerabilities,” 
Softw. Eng. IEEE Trans. On, vol. 37, no. 6, pp. 772–787, 
Nov. 2011. 

[42] F. T. Sheldon, R. K. Abercrombie, and A. Mili, “Evaluating 
Security Controls Based on Key Performance Indicators and 
Stakeholder Mission,” in Proceedings of the 4th Annual 
Workshop on Cyber Security and Information Intelligence 
Research: Developing Strategies to Meet the Cyber Security 
and Information Intelligence Challenges Ahead, New York, 
NY, USA, 2008, pp. 41:1–41:11. 

[43] R. Ortalo, Y. Deswarte, and M. Kaaniche, “Experimenting 
with quantitative evaluation tools for monitoring operational 
security,” Softw. Eng. IEEE Trans. On, vol. 25, no. 5, pp. 
633–650, Sep. 1999. 

[44] K. Bernsmed and I. Tøndel, “Forewarned is Forearmed: 
Indicators for Evaluating Information Security Incident 
Management,” in IT Security Incident Management and IT 
Forensics (IMF), 2013 Seventh International Conference on, 
2013, pp. 3–14. 

[45] L. Krautsevich, F. Martinelli, and A. Yautsiukhin, “Formal 
Analysis of Security Metrics with Defensive Actions,” in 
Ubiquitous Intelligence and Computing, 2013 IEEE 10th 
International Conference on and 10th International 
Conference on Autonomic and Trusted Computing 
(UIC/ATC), 2013, pp. 458–465. 

[46] J. B. Michael, M.-T. Shing, K. J. Cruickshank, and P. J. 
Redmond, “Hazard Analysis and Validation Metrics 
Framework for System of Systems Software Safety,” Syst. J. 
IEEE, vol. 4, no. 2, pp. 186–197, Jun. 2010. 



 

 

[47] S. Ghaith and M. Ó Cinnéide, “Improving Software Security 
Using Search-based Refactoring,” in Proceedings of the 4th 
International Conference on Search Based Software 
Engineering, Berlin, Heidelberg, 2012, pp. 121–135. 

[48] Y. Shin, “Investigating Complexity Metrics As Indicators of 
Software Vulnerability,” North Carolina State University, 
2011. 

[49] A. Meneely, “Investigating the Relationship Between 
Developer Collaboration and Software Security,” North 
Carolina State University, 2011. 

[50] Y. Shin and L. Williams, “Is Complexity Really the Enemy 
of Software Security?,” in Proceedings of the 4th ACM 
Workshop on Quality of Protection, New York, NY, USA, 
2008, pp. 47–50. 

[51] L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel, “k-
Zero Day Safety: A Network Security Metric for Measuring 
the Risk of Unknown Vulnerabilities,” IEEE Trans. 
Dependable Secure Comput., vol. 11, no. 1, pp. 30–44, 2014. 

[52] H. agen Hasle, Y. Kristiansen, K. Kintel, and E. Snekkenes, 
“Measuring Resistance to Social Engineering,” in 
Proceedings of the First International Conference on 
Information Security Practice and Experience, Berlin, 
Heidelberg, 2005, pp. 132–143. 

[53] P. Manadhata, J. Wing, M. Flynn, and M. McQueen, 
“Measuring the Attack Surfaces of Two FTP Daemons,” in 
Proceedings of the 2Nd ACM Workshop on Quality of 
Protection, New York, NY, USA, 2006, pp. 3–10. 

[54] K. Buyens, R. Scandariato, and W. Joosen, “Measuring the 
interplay of security principles in software architectures,” 
2013 ACM IEEE Int. Symp. Empir. Softw. Eng. Meas., vol. 
0, pp. 554–563, 2009. 

[55] W. H. Baker, L. P. Rees, and P. S. Tippett, “Necessary 
Measures: Metric-driven Information Security Risk 
Assessment and Decision Making,” Commun ACM, vol. 50, 
no. 10, pp. 101–106, Oct. 2007. 

[56] P. Anbalagan and M. Vouk, “On Reliability Analysis of 
Open Source Software - FEDORA,” in Software Reliability 
Engineering, 2008. ISSRE 2008. 19th International 
Symposium on, 2008, pp. 325–326. 

[57] L. Gallon, “On the Impact of Environmental Metrics on 
CVSS Scores,” Soc. Comput. IEEE Int. Conf. Priv. Secur. 
Risk Trust 2010 IEEE Int. Conf. On, vol. 0, pp. 987–992, 
2010. 

[58] M. C. Gegick, “Predicting Attack-prone Components with 
Source Code Static Analyzers,” North Carolina State 
University, 2009. 

[59] V. H. Nguyen and L. M. S. Tran, “Predicting Vulnerable 
Software Components with Dependency Graphs,” in 
Proceedings of the 6th International Workshop on Security 
Measurements and Metrics, New York, NY, USA, 2010, pp. 
3:1–3:8. 

[60] M. Gegick, L. Williams, J. Osborne, and M. Vouk, 
“Prioritizing Software Security Fortification Throughcode-
level Metrics,” in Proceedings of the 4th ACM Workshop on 
Quality of Protection, New York, NY, USA, 2008, pp. 31–
38. 

[61] M. Y. Liu, “Quantitative Security Analysis for Service-
oriented Software Architectures,” University of Victoria, 
Victoria, B.C., Canada, Canada, 2008. 

[62] M. Li, J. Li, H. Song, and D. Wu, “Risk Management in the 
Trustworthy Software Process: A Novel Risk and 
Trustworthiness Measurement Model Framework,” in INC, 
IMS and IDC, 2009. NCM ’09. Fifth International Joint 
Conference on, 2009, pp. 214–219. 

[63] J. Walden and M. Doyle, “SAVI: Static-Analysis 
Vulnerability Indicator,” IEEE Secur. Priv., vol. 10, no. 3, 
pp. 32–39, May 2012. 

[64] T. Zimmermann, N. Nagappan, and L. Williams, “Searching 
for a Needle in a Haystack: Predicting Security 
Vulnerabilities for Windows Vista,” in Proceedings of the 
2010 Third International Conference on Software Testing, 
Verification and Validation, Washington, DC, USA, 2010, 
pp. 421–428. 

[65] P. Parrend and S. Frenot, “Security benchmarks of OSGi 
platforms: toward Hardened OSGi,” Softw. Pract. Exp., vol. 
39, no. 5, pp. 471–499, 2009. 

[66] J. A. Wang, H. Wang, M. Guo, and M. Xia, “Security 
Metrics for Software Systems,” in Proceedings of the 47th 
Annual Southeast Regional Conference, New York, NY, 
USA, 2009, pp. 47:1–47:6. 

[67] I. Chowdhury, B. Chan, and M. Zulkernine, “Security 
Metrics for Source Code Structures,” in Proceedings of the 
Fourth International Workshop on Software Engineering for 
Secure Systems, New York, NY, USA, 2008, pp. 57–64. 

[68] A. Abdulrazeg, N. M. Norwawi, and N. Basir, “Security 
metrics to improve misuse case model,” in Cyber Security, 
Cyber Warfare and Digital Forensic (CyberSec), 2012 
International Conference on, 2012, pp. 94–99. 

[69] J. Walden, M. Doyle, G. . Welch, and M. Whelan, “Security 
of open source web applications,” in Empirical Software 
Engineering and Measurement, 2009. ESEM 2009. 3rd 
International Symposium on, 2009, pp. 545–553. 

[70] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, 
“Side-channel Vulnerability Factor: A Metric for Measuring 
Information Leakage,” SIGARCH Comput Arch. News, vol. 
40, no. 3, pp. 106–117, Jun. 2012. 

[71] T. R. Gopalakrishnan Nair, V. Suma, and P. K. Tiwari, 
“Significance of depth of inspection and inspection 
performance metrics for consistent defect management in 
software industry,” Softw. IET, vol. 6, no. 6, pp. 524–535, 
Dec. 2012. 

[72] J. A. Wang, F. Zhang, and M. Xia, “Temporal Metrics for 
Software Vulnerabilities,” in Proceedings of the 4th Annual 
Workshop on Cyber Security and Information Intelligence 
Research: Developing Strategies to Meet the Cyber Security 
and Information Intelligence Challenges Ahead, New York, 
NY, USA, 2008, pp. 44:1–44:3. 

[73] H., Ph.D. Cavusoglu, B., Ph.D. Mishra, and S., Ph.D. 
Raghunathan, “The Effect of Internet Security Breach 
Announcements on Market Value: Capital Market Reactions 
for Breached Firms and Internet Security Developers,” Int J 
Electron Commer., vol. 9, no. 1, pp. 70–104, Oct. 2004. 

[74] M. . Davidson, “The Good, the Bad, And the Ugly: Stepping 
on the Security Scale,” in Computer Security Applications 
Conference, 2009. ACSAC ’09. Annual, 2009, pp. 187–195. 

[75] M. Gegick, P. Rotella, and L. Williams, “Toward Non-
security Failures As a Predictor of Security Faults and 
Failures,” in Proceedings of the 1st International Symposium 
on Engineering Secure Software and Systems, Berlin, 
Heidelberg, 2009, pp. 135–149. 

[76] A. Younis, Y. K. Malaiya, and I. Ray, “Using Attack Surface 
Entry Points and Reachability Analysis to Assess the Risk of 
Software Vulnerability Exploitability,” in High-Assurance 
Systems Engineering (HASE), 2014 IEEE 15th International 
Symposium on, 2014, pp. 1–8. 

[77] I. Chowdhury and M. Zulkernine, “Using Complexity, 
Coupling, and Cohesion Metrics As Early Indicators of 



 

 

Vulnerabilities,” J Syst Arch., vol. 57, no. 3, pp. 294–313, 
Mar. 2011. 

[78] Y. Beres, M. C. Mont, J. Griffin, and S. Shiu, “Using 
security metrics coupled with predictive modeling and 
simulation to assess security processes,” in Empirical 
Software Engineering and Measurement, 2009. ESEM 2009. 
3rd International Symposium on, 2009, pp. 564–573. 

[79] A. Meneely, H. Srinivasan, A. Musa, A. Rodriguez Tejeda, 
M. Mokary, and B. Spates, “When a Patch Goes Bad: 
Exploring the Properties of Vulnerability-Contributing 
Commits,” in Empirical Software Engineering and 
Measurement, 2013 ACM / IEEE International Symposium 
on, 2013, pp. 65–74. 

  



 

 

APPENDIX A – METRIC NAMES AND PAPERS BY CATEGORY 

Category Definition 
Churn (11) 30-Day Churn, Churn, Freq., LinesChanged, LinesNew, Lines deleted between revisions, NumCommits, % 

Interactive Churn, Relative Churn, Repeat Freq., Tot. Churn [P25, P33, P42, P44, P48, P53, P63] 
Complexity 
(22) 

Avg. Svc. Depth, Code Complex., Complex., CountPath complex., Cyclomatic Number, Dependency 
Network Complex., Exec. Complex., Fan In, Fan Out, Henry Kafura: SLOC * (FI*FO)^2), Lack of 
Cohesion of Meth.s, MaxFanIn, MaxFanOut, MaxMaxNesting, MaxNesting, Nesting complex., # Children, 
SumCyclomaticStrict, SumEssential, SumFanIn, SumFanOut, SumMaxNesting, V-Density - McCabe 
density, Weighted Meth.s per Class [P15, P25, P32, P34, P43, P45, P48, P53, P61] 

Cost (5) Annual Loss Expectancy, Cost of Sec. breach, Remediation Impact, Risk Potential, Threat-to-impact 
transitions [P11, P16, P39, P45, P57] 

Coverage 
(100) 

Access Accuracy, Administrator & op. logs, AnomalousSessionCount, Approval Accuracy, Arc cov., Audit 
logging, Block cov., Classif. Accessor Attr. Interactions, Classif. Attrs. Interaction Weight, Classif. Class 
Data Accessibility, Classif. Instance Data Accessibility, Classif. Meth. Extensibility, Classif. Meth.s Weight, 
Classif. Mutator Attr. Interactions, Classif. Op. Accessibility, Classif. Writing Meth.s Proportion, 
Composite-Part Crit. Classes, Ctrls. against malicious code, Countermeasure-effectiveness, Cov., Cov. of 
Hazard Analysis, Crit. Class Extensibility, Crit. Dsgn. Proportion, Crit. Element Ratio, Crit. Serialized 
Classes Proportion, Crit. Superclasses Inher., Crit. Superclasses Proportion, Depth of inspect., eir - ratio 
between extern. & intern. data flow, Fail-Safe Defaults, Grant Least Priv., Hazard Analysis Achieved, 
Isolation, Least Cmn. Mech., # Catch Blocks Per Class, % High-Risk Softw. Hazards with Safety Rqts., % 
Medium-Risk Softw. Hazards with Safety Rqts., % Moderate-Risk Softw. Hazards with Safety Rqts., % 
Softw. Safety Rqts., % Softw. Safety Rqts. Traceable to Hazards, % identified corrective action not impl., % 
incidents  a recurrence of previous incidents, % increases in reported Sec. incidents,% IT assets for which 
fault tol. mechs. have been impl., % IT assets for which recovery procedures have been defined & impl., % 
IT assets for which redundancy mechs. have been impl., % new comps. deployed in the sys. all at once, % 
Org. attended Sec. training, % Org. contributing to dev., % reported incidents followed up & mitigated, % 
reported Sec. incidents where the cause of the incident was identified, % Sec. incidents related to incorrect, 
incomplete, missing or compromised audit data, % Sec. incidents related to lack of an audit capability, % 
Sec. incidents related to the ability to bypass an audit function, % Sec. incidents that exploited existing 
Vuln. with known soln.s, % servers with installed & active auto. hard-disk encryption, % sys. arch. for 
which failure modes have been thoroughly identified, % sys. changes reviewed for Sec. impacts before 
impl., % sys. for which appr. config. settings has been impl., % sys. that depends on extern. comps. that the 
Org. lacks ctrl. over, % sys. subject to risk analysis, % sys. continuously monitored for config. policy 
compliance, % sys. where permissions to install non-standard softw. is ltd. or prohibited, % sys. where the 
auth. to make config. changes is ltd. in accordance to policy, % systems with the latest appr. patches 
installed, % systems exposed at time of malware, PercentValidatedInput, Ratio Dsgn. Decisions, Ratio 
Dsgn. Flaws Related to Sec., ratio extension misuse cases extended once to the tot. # extension misuse 
cases, Ratio Impl. Err.s That Have an Impact on Sec., ratio inclusion misuse cases incl. once to the tot. # 
inclusion misuse cases, ratio misuse cases used as pre/post conditions of other misuse cases to the tot. # 
misuse cases, Ratio Patches Issued to Address Sec. Vuln., Ratio Sec. Rqts., Ratio Sec. Test Cases, Ratio 
Sec. Test Cases that Fail, Ratio Shared Resources, Ratio Softw. Changes Due to Sec. Considerations, ratio 
the # incl. Sec. Rqts. to the tot. # stated Sec. Rqts., ratio the # misuse cases that do not threaten the 
application to the tot. # misuse cases, Ratio the # Omitted Exceptions, Ratio the # Omitted Sec. Rqts., ratio 
the # the base misuse cases associated to one misuser to the tot. # base misuse cases, ratio the # unmitigated 
misuse cases that threaten the application to the tot. # misuse cases, Readability of Classif. Attrs., 
Readability via Classif. Meth.s, Readability via Crit. Classes, Secure the Weakest Link, Softw. Hazard 
Analysis Depth, Static analysis alert density, static analysis Vuln. density, Target Distribution, Unaccessed 
Assigned Classif. Attr., Uncalled Classif. Accessor Meth., Unused Crit. Accessor Class, Window of 
exposure, Writability of Classif. Attrs., Writability via Classif. Meth.s, Writability via Crit. Classes [P1, 
P17, P19, P2, P23, P24, P28, P30, P31, P39, P4, P41, P43, P44, P45, P47, P48, P51, P52, P53, P55, P58, 
P60, P62] 

Dependency 
(33) 

Avg. intern. data flow, Coupling, Coupling between comps., Coupling Between Object classes, Coupling 
Between Objects, Coupling Corruption Propagation, Crit. Classes Coupling, edf - Avg. extern. data flow, 
edfin - Avg. inc. data flow, edfin - inc. data flow of, edfout - Avg. out. data flow, edfout - out. data flow of, 
Eigenvector Centrality, Flow_ Betweenness, ie - # edges between two arbitrary nodes, Inc. closure, Inc. 
direct, InDegree, InDegree_w, Intern. data flow, Lack of Cohesion of Meth.s, Layer info, NumCalls, oir - 
ratio between Avg. out. & inc. data flow, Op. Env. Sec. Measurement, OutDegree, OutDegree_w, Out. 



 

 

closure, Out. direct, Paths, Prog. Impl. Sec. Measurement, Reflection Package Boolean, RW_ Betweenness, 
Sec. Indictor of Softw. Sys., Sec. Metrics of Arith. Expr., Sec. Metrics of Array Index, Sec. Metrics of 
Comp. Interf., Sec. Metrics of Ctrl. Op., Sec. Metrics of I/O Mgmt, Sec. Metrics of Input Fmt., Sec. Metrics 
of Kernel Op., Sec. Metrics of Network Env., Sec. Metrics of Resource Alloc., Sec. Metrics of User Auth., 
SP_Betweenness, Vuln. Propagation Factor, Classif. Attrs. Inher., Classif. Meth.s Inher., Depth of Inher. 
Tree [P1, P14, P31, P32, P34, P42, P43, P45, P48, P51, P61] 

Effort (23) Access Complex., Access Vector, Adversary Work Factor, Attackability, Authentication, Conf. Rqt., Dmg. 
potential-effort ratio, Depth, ExclusiveExeTime, Expected Time to Completion, Exploitability, 
InclusiveExeTime, Integrity Rqt., Mean Effort to Sec. Failure, Min. cost of attack, Min. length of attack, 
Prot. Rate, Rigor, Side-chan. Vuln. Factor, Social Eng. Resistance, Struc. sev., Vuln. exploitability, Weakest 
adversary [P17, P19, P20, P24, P27, P29, P3, P32, P36, P41, P49, P54, P56, P6, P60, P8, P9] 

Organization 
(18) 

CNBetweenness, CNCloseness, Depth of Master Ownership, DNAvgBetweenness, DNAvgCloseness, 
DNAvgEdgeBetweenness, DNMaxCloseness, DNMaxDegree, DNMaxEdgeBetweenness, 
DNMinBetweenness, DNMinDegree, Edit Freq., Lvl. of Org. Code Ownership, New Effective Author, # 
Ex-Engineers, # Developers, Org. Intersection Factor, Overall Org. Ownership [P25, P33, P48, P63] 

Size (50) LOC, Instr. count, Arith. Expr., array index, Attack Surface Metric, blank lines, Classif. Attrs. Tot., Classif. 
Meths. Tot., Comment Lines, comp. interf., ctrl. op., # Base Classes, Crit. Classes Tot., data fmt., Economy 
of Mech., I/O mgmt, Interf. complex. density, kernel ctrl., LOC, LOCVarDecl, network planning, # Attacks, 
# data items transferred in an edge, # Dsgn. Decisions Related to Sec., # Developers, # member nodes, # 
params. in the meth. sig., # published Vuln., # return points in the meth., # Sec. Algs., # Sec. Incidents 
Reported, # sub classes, NumFunctions, NumLineProcessor, Paths, Reduce Attack Surface, resource alloc., 
Response for a Class, rin - # inc. cxns., rout - # out. cxns. from, Sec. Abs. Measurements, Stall Ratio, Tot. 
global vars, tot. # elicited Sec. use cases, tot. # excl. Sec. Rqts. that ensure session handling, tot. # excl. Sec. 
Rqts. that put the sys. at risk of possible attacks, tot. # identified misuse cases, Tot. # Sec. Rqts., Tot. Sec. 
Index, user auth., Vol. of email correspondence with Vuln. handling team, Weighted Meth.s per Class [P1, 
P10, P13, P15, P23, P25, P29, P32, P34, P37, P38, P42, P43, P44, P48, P51, P52, P53, P58, P61, P7] 

Strength 
(30) 

Availability Impact, Availability Rqt., CMMI Lvl., Comment ratio, CommentDensity, 
Compartmentalization, Completeness of fix, Conf., Conf. Impact, Defense-In-Depth, Expected Reliability, 
Fail Securely, Indep. of Verification, Inspect. perf., Integrity, Isolation, k-zero day safety, Least Priv., Mean 
Time To Failure, Rpt. Confidence, risk ctrl., risk identification, Sec. resource indicator, Svc. Mech. Str., 
softw. proj. mgmt exp., Trustworthiness, Use of (automated) tools, Variable Sec. Vuln., Vuln. Confidence 
Coefficient, Vuln. Free Days [P16, P17, P18, P19, P20, P22, P24, P25, P32, P35, P41, P45, P46, P5, P53, 
P55, P56, P58, P60, P61, P9] 

Weakness 
(55) 

Attack Graph Prob., Avg. Active Vuln. per day, Avg. time from incident det. until incident has been 
reported, BrokenAccountCount, Collateral Dmg. Potential, CVSS Base Score, Developer Risk, Dev. Risk, 
Env. Risk, Excess Priv., Expected threat Freq., Expected Vuln., ExploitedFlawCount, Faults found during 
manual inspect., InjectionFlawCount, Integrity Impact, Max. prob. of successful attack, Mean Failure Cost, 
Mean time from vendor patch availability to patch approval to patch installation, Mean time to incident det., 
Monitoring sys. use, non-Sec. failure reports, # Dsgn. Flaws Related to Sec., # Exceptions  Impl. to Handle 
Exec. Failures Related to Sec., # excl. Sec. Rqts. that ensure i/o handling, # function calls that don’t check 
return values, # Impl. Err.s Found in the Sys., # Impl. Err.s Related to Sec., # Omitted Exceptions for 
Handling Exec. Failures Related to Sec., # Omitted Sec. Rqts., # open Sec. bugs, # reported Sec. incidents, # 
Sec. bulletins issues per yr., # Svc. accts. with weak or default passwords, # successful attempts to execute 
recovery this period, # violations of the LP principle, OverflowVulnCount, % Softw. Hazards, Proj. Mgmt 
Risk, Remediation Lvl., Remediation Potency, Remediation Scheme, Rqts. Risk, Sec. of sys. doc., Static 
analysis alert count, Temporal Score, Time to close bug/Vuln., Time to Problem Correction, Time to 
Problem Rpt., User Risk, Vuln. found during Rqts., dsgn. & coding, Vuln. found post-dev., Vuln. Density, 
Weakness, XsiteVulnCount, "The Sec. Metric", Attack-Reward (URL Jumping), Avg. Svc. Depth, Classif. 
Accessor Attr. Interactions, Classif. Attrs. Inher., Classif. Attrs. Interaction Weight, Classif. Class Data 
Accessibility, Classif. Instance Data Accessibility, Classif. Meth. Extensibility, Classif. Meth.s 
Extensibiliity, Classif. Meth.s Inher., Classif. Meth.s Weight, Classif. Mutator Attr. Interactions, Classif. 
Op. Accessibility, CNBetweenness, Composite-Part Crit. Classes, Conf., Crit. Class Extensibility, Crit. 
Dsgn. Proportion, Crit. Superclasses Inher., Crit. Superclasses Proportion, Dsgn. Size, 
DNMaxEdgeBetweenness, Knot Count, Kolmogorov Complex., Measurement of Cost, NumCommits, 
NumDevs, Potency, Resilience, Shortest Path [P12, P16, P17, P18, P2, P20, P21, P23, P24, P26, P28, P29, 
P30, P38, P39, P4, P40, P41, P42, P44, P45, P46, P50, P52, P56, P58, P59, P60, P9] 

 



 

 

Appendix B: List of Selected Papers 
Paper # Paper Title 
P1[19] A Hierarchical Security Assessment Model for Object-Oriented Programs 
P2[20] A Metrics Framework to Drive Application Security Improvement 
P3[11] A Near Real-time System for Security Assurance Assessment 
P4[21] A New Method for the Identification of Proactive Information Security Management System Metrics 
P5[22] A New Security Sensitivity Measurement for Software Variables 
P6[23] A Weakest-Adversary Security Metric for Network Configuration Security Analysis 
P7[24] Adaptive and quantitative comparison of J2EE vs. .NET based on attack surface metric 
P8[25] Adversary Work Factor as a Metric for Information Assurance 
P9[26] An analysis of CVSS version 2 vulnerability scoring 
P10[27] An Analyzer-Based Security Measurement Model for Increasing Software Security 

P11[28] An Approach to Analyzing the Windows and Linux Security Models 
P12[29] An Attack Graph-Based Probabilistic Security Metric 
P13[30] An Attack Surface Metric 
P14[31] An Efficient Measurement of Object Oriented Design Vulnerability 
P15[32] An empirical model to predict security vulnerabilities using code complexity metrics 
P16[33] An empirical vulnerability remediation model 
P17[34] An Improved CVSS-based Vulnerability Scoring Mechanism 
P18[35] Analyses of Two End-User Software Vulnerability Exposure Metrics 
P19[13] Appraisal and reporting of security assurance at operational systems level 
P20[36] Architecture based analysis of performance, reliability and security of software systems 
P21[37] Assessing vulnerabilities in software systems: a quantitative approach 
P22[38] Automated Software Architecture Security Risk Analysis using Formalized Signatures 
P23[39] Catalog of Metrics for Assessing Security Risks of Software throughout the Software Development Life 

Cycle 
P24[40] Common Vulnerability Scoring System 
P25[41] Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of Software 

Vulnerabilities 
P26[42] Evaluating Security Controls Based on Key Performance Indicators and Stakeholder Mission 
P27[43] Experimenting with Quantitative Evaluation Tools for Monitoring Operational Security 
P28[44] Forewarned is Forearmed: Indicators for Evaluating Information Security Incident Management 
P29[45] Formal Analysis of Security Metrics with Defensive Actions 
P30[46] Hazard Analysis and Validation Metrics Framework for System of Systems Software Safety 
P31[47] Improving Software Security Using Search-Based Refactoring 
P32[48] Investigating Complexity Metrics as Indicators of Software Vulnerability 
P33[49] Investigating the Relationship Between Developer Collaboration and Software Security 
P34[50] Is Complexity Really the Enemy of Software Security? 
P35[51] k-Zero Day Safety: A Network Security Metric for Measuring the Risk of Unknown Vulnerabilities 
P36[52] Measuring Resistance to Social Engineering 
P37[53] Measuring the Attack Surfaces of Two FTP Daemons 
P38[54] Measuring the Interplay of Security Principles in Software Architectures 
P39[55] Necessary Measures: Metric-Driven Information Security Risk Assessment and Decision Making 



 

 

P40[56] On Reliability Analysis of Open Source Software - FEDORA 
P41[57] On the Impact of Environmental Metrics on CVSS Scores 
P42[58] Predicting Attack-Prone Components with Source Code Static Analyzers 
P43[59] Predicting Vulnerable Software Components with Dependency Graphs 
P44[60] Prioritizing Software Security Fortification Through Code-Level Metrics 
P45[61] Quantitative Security Analysis for Service-Oriented Software Architectures 
P46[62] Risk Management in the Trustworthy Software Process: A Novel Risk and Trustworthiness Measurement 

Model Framework 
P47[63] SAVI: Static-Analysis Vulnerability Indicator 
P48[64] Searching for a Needle in a Haystack: Predicting Security Vulnerabilities for Windows Vista 
P49[65] Security Benchmarks of OSGi Platforms: Toward Hardened OSGi. 
P50[66] Security Metrics for Software Systems 
P51[67] Security Metrics for Source Code Structures 
P52[68] Security Metrics to Improve Misuse Case Model 
P53[69] Security of Open SourceWeb Applications 
P54[70] Side-Channel Vulnerability Factor: A Metric for Measuring Information Leakage 
P55[71] Significance of Depth of Inspection and Inspection Performance Metrics for Consistent Defect Management 

in Software Industry 
P56[72] Temporal Metrics for Software Vulnerabilities 
P57[73] The Effect of Internet Security Breach Announcements on Market Value 
P58[74]  The Good, The Bad, And The Ugly: Stepping on the Security Scale  
P59[75] Toward Non-security Failures as a Predictor of Security Faults and Failures  
P60[76] Using Attack Surface Entry Points and Reachability Analysis to Assess the Risk of Software Vulnerability 

Exploitability 
P61[77] Using Complexity, Coupling, and Cohesion Metrics as Early Indicators of Vulnerabilities 
P62[78] Using Security Metrics Coupled with Predictive Modeling and Simulation to Assess Security Processes 
P63[79] When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits 

 
  



 

 

Appendix C: Metrics Identified 
M1 30-Day Churn 

M2 Access Accuracy 

M3 Access Complexity (AC) 

M4 Access Vector (AV) 

M5 Administrator and operator logs 

M6 Adversary Work Factor 

M7 Annual Loss Expectancy (ALE) 

M8 AnomalousSessionCount 

M9 Approval Accuracy 

M10 Arc coverage 

M11 Arithmetic Expression 

M12 Array index 

M13 Attack Graph Probability 

M14 Attack Surface Metric 

M15 Attackability 

M16 Audit logging 

M17 Authentication (AU) 

M18 Availability Impact (A) 

M19 Availability Requirement (AR) 

M20 Average Active Vulnerabilities per day (AAV) 

M21 Average internal data flow (AIDF) 

M22 Average Service Depth (ASD) 

M23 Average time from incident detection until incident has been reported - 

M24 Blank lines 

M25 Block coverage 

M26 BrokenAccountCount 

M27 Churn 

M28 Classified Accessor Attribute Interactions (CAAI) 

M29 Classified Attributes Inheritance (CAI) 

M30 Classified Attributes Interaction Weight (CAIW) 

M31 Classified Attributes Total (CAT) 

M32 Classified Class Data Accessibility (CCDA) 

M33 Classified Instance Data Accessibility (CIDA) 

M34 Classified Method Extensibility (CME) 

M35 Classified Methods Inheritance (CMI) 

M36 Classified Methods Total (CMT) 

M37 Classified Methods Weight (CMW) 

M38 Classified Mutator Attribute Interactions (CMAI) 

M39 Classified Operation Accessibility (COA) 

M40 Classified Writing Methods Proportion (CWMP) 

M41 CMMI Level 



 

 

M42 CNBetweenness 

M43 CNCloseness 

M44 Code Complexity 

M45 Collateral Damage Potential (CDP) 

M46 Comment Lines 

M47 Comment ratio 

M48 CommentDensity 

M49 Compartmentalization 

M50 Completeness of fix 

M51 Complexity 

M52 Component interface 

M53 Composite-Part Critical Classes (CPCC) 

M54 Confidentiality 

M55 Confidentiality Impact (C) 

M56 Confidentiality Requirement (CR) 

M57 Control operation 

M58 Controls against malicious code 

M59 Cost of security breach 

M60 Count of Base Classes (CBC) 

M61 Countermeasure-effectiveness 

M62 CountPath complexity 

M63 Coupling 

M64 Coupling between components 

M65 Coupling Between Object classes (CBOC) 

M66 Coupling Between Objects (CBO) 

M67 Coupling Corruption Propagation 

M68 Coverage 

M69 Coverage of Hazard Analysis 

M70 Critical Class Extensibility (CCE) 

M71 Critical Classes Coupling (CCC) 

M72 Critical Classes Total (CCT) 

M73 Critical Design Proportion (CDP) 

M74 Critical Element Ratio 

M75 Critical Serialized Classes Proportion (CSCP) 

M76 Critical Superclasses Inheritance (CSI) 

M77 Critical Superclasses Proportion (CSP) 

M78 CVSS Base Score 

M79 Damage potential-effort ratio 

M80 Data format 

M81 Defense-In-Depth 

M82 Dependency Network Complexity 

M83 Depth 



 

 

M84 Depth of Inheritance Tree (DIT) 

M85 Depth of inspection 

M86 Depth of Master Ownership 

M87 Developer Risk 

M88 Development Risk 

M89 DNAvgBetweenness 

M90 DNAvgCloseness 

M91 DNAvgEdgeBetweenness 

M92 DNMaxCloseness 

M93 DNMaxDegree 

M94 DNMaxEdgeBetweenness 

M95 DNMinBetweenness 

M96 DNMinDegree 

M97 Economy of Mechanism (PEM) 

M98 EDF - average external data flow  

M99 EDFIN - average incoming data flow  

M100 EDFIN - incoming data flow of 

M101 EDFOUT - average outgoing data flow 

M102 EDFOUT - outgoing data flow of 

M103 Edit Frequency 

M104 Eigenvector Centrality (EvCent) 

M105 EIR - ratio between external and internal data flow 

M106 Environment Risk 

M107 Excess Privilege 

M108 ExclusiveExeTime 

M109 Execution Complexity 

M110 Expected Reliability 

M111 Expected threat frequency 

M112 Expected Time to Completion 

M113 Expected Vulnerability 

M114 Exploitability (TE) 

M115 ExploitedFlawCount 

M116 Fail Securely 

M117 Fail-Safe Defaults (PFSD) 

M118 Fan In (FI) 

M119 Fan Out (FO) 

M120 Faults found during manual inspection 

M121 Flow_ Betweenness 

M122 Frequency 

M123 Grant Least Privilege (PLP) 

M124 Hazard Analysis Achieved 

M125 HK (Henry Kafura: SLOC * (FI*FO)^2) 



 

 

M126 I/O management 

M127 IE - number of edges between two arbitrary nodes 

M128 InclusiveExeTime 

M129 Incoming closure 

M130 Incoming direct  

M131 InDegree 

M132 InDegree_w 

M133 Independence of Verification 

M134 InjectionFlawCount 

M135 Inspection performance 

M136 Integrity 

M137 Integrity Impact (I) 

M138 Integrity Requirement (IR) 

M139 Interface complexity density (I-density) 

M140 Internal data flow (IDF) 

M141 Isolation (PI) 

M142 K-zero day safety 

M143 Kernel control 

M144 Lack of Cohesion of Methods (LCOM) 

M145 Layer information 

M146 Least Common Mechanism (PLCM) 

M147 Least Privilege 

M148 Level of Organizational Code Ownership 

M149 Lines of Code (LOC) 

M150 LinesChanged 

M151 LinesNew 

M152 LOCVarDecl 

M153 MaxFanIn 

M154 MaxFanOut 

M155 Maximal probability of successful attack 

M156 MaxMaxNesting 

M157 MaxNesting 

M158 Mean Effort to security Failure 

M159 Mean Failure Cost 

M160 Mean time from vendor patch availability to patch approval to patch installation  

M161 Mean Time To Failure 

M162 Mean time to incident detection 

M163 Minimal cost of attack 

M164 Minimal length of attack 

M165 Monitoring system use 

M166 Nesting complexity 

M167 Network planning 



 

 

M168 New Effective Author (NEA) 

M169 Non-security failure reports 

M170 Number 0f Ex-Engineers 

M171 Number of Attacks 

M172 Number of Catch Blocks Per Class 

M173 Number Of Children (NOC) 

M174 Number of data items transferred in an edge  

M175 Number of Design Decisions Related to Security (NDD) 

M176 Number of Design Flaws Related to Security (NSDF) 

M177 Number of Developers 

M178 Number of Exceptions That Have Been Implemented to Handle Execution Failures Related to Security (NEX) 

M179 Number of excluded security requirements that ensure input/output handling 

M180 Number of function calls that don’t check return values 

M181 Number of Implementation Errors Found in the System (NERR) 

M182 Number of Implementation Errors Related to Security (NSERR) 

M183 Number of lines deleted between revisions 

M184 Number of member nodes 

M185 Number of Omitted Exceptions for Handling Execution Failures Related to Security (NOEX) 

M186 Number of Omitted Security Requirements (NOSR) 

M187 Number of open security bugs 

M188 Number of parameters in the method signature 

M189 Number of published vulnerabilities 

M190 Number of reported security incidents  

M191 Number of return points in the method 

M192 Number of Security Algorithms (NSA) 

M193 Number of security bulletins issues per year 

M194 Number of Security Incidents Reported (NSR) 

M195 Number of service accounts with weak or default passwords 

M196 Number of sub classes 

M197 Number of successful attempts to execute recovery this period 

M198 Number of violations of the LP principle 

M199 NumCalls 

M200 NumCommits 

M201 NumFunctions 

M202 NumLineProcessor 

M203 OIR - ratio between average outgoing and incoming data flow 

M204 Organization Intersection Factor 

M205 OutDegree 

M206 OutDegree_w 

M207 Outgoing closure 

M208 Outgoing direct 

M209 Overall Organization Ownership 



 

 

M210 OverflowVulnCount 

M211 Paths 

M212 Percent High-Risk Software Hazards with Safety Requirements 

M213 Percent Medium-Risk Software Hazards with Safety Requirements 

M214 Percent Moderate-Risk Software Hazards with Safety Requirements 

M215 Percent Software Hazards 

M216 Percent Software Safety Requirements 

M217 Percent Software Safety Requirements Traceable to Hazards 

M218 Percentage Interactive Churn (PIC) 

M219 Percentage of identified corrective action that has not been implemented 

M220 Percentage of incidents that are a recurrence of previous incidents  

M221 Percentage of increases in reported security incidents - 

M222 Percentage of IT assets for which fault tolerance mechanisms have been implemented  

M223 Percentage of IT assets for which recovery procedures have been defined and implemented  

M224 Percentage of IT assets for which redundancy mechanisms have been implemented  

M225 Percentage of new components that were deployed in the system all at once  

M226 Percentage of organization attended security training 

M227 Percentage of Organization contributing to development 

M228 Percentage of reported incidents that have been followed up and mitigated 

M229 Percentage of reported security incidents where the cause of the incident was identified 

M230 Percentage of security incidents related to incorrect, incomplete, missing or compromised audit data  

M231 Percentage of security incidents related to lack of an audit capability  

M232 Percentage of security incidents related to the ability to bypass an audit function  

M233 Percentage of security incidents that exploited existing vulnerabilities with known solutions  

M234 Percentage of servers with installed and active automatic hard-disk encryption 

M235 Percentage of system architecture for which failure modes have been thoroughly identified  

M236 Percentage of system changes that were reviewed for security impacts before implementation  

M237 Percentage of system for which approved configuration settings has been implemented  

M238 Percentage of system that depends on external components that the organization lacks control over  

M239 Percentage of system that has been subject to risk analysis - 

M240 Percentage of system that is continuously monitored for configuration policy compliance  

M241 Percentage of system where permissions to install non-standard software is limited or prohibited  

M242 Percentage of system where the authority to make configuration changes is limited in accordance to policy  

M243 Percentage of systems with the latest approved patches installed  

M244 Percentage of sytems exposed at time of malware 

M245 PercentValidatedInput 

M246 Project Management Risk 

M247 Protection Rate (PR) 

M248 Ratio of Design Decisions (RDD) 

M249 Ratio of Design Flaws Related to Security (RDF) 

M250 Ratio of extension misuse cases extended once to the total number of extension misuse cases. 

M251 Ratio of Implementation Errors That Have an Impact on Security (RSERR) 



 

 

M252 Ratio of inclusion misuse cases included once to the total number of inclusion misuse cases. 

M253 Ratio of misuse cases used as pre/post conditions of other misuse cases to the total number of misuse cases. 

M254 Ratio of Patches Issued to Address Security Vulnerabilities (RP) 

M255 Ratio of Security Requirements (RSR) 

M256 Ratio of Security Test Cases (RTC) 

M257 Ratio of Security Test Cases that Fail (RTCP) (sic) 

M258 Ratio of Shared Resources (RSR) 

M259 Ratio of Software Changes Due to Security Considerations (RSC) 

M260 Ratio of the number of included security requirements to the total number of stated security requirements 

M261 Ratio of the number of misuse cases that do not threaten the application to the total number of misuse cases. 

M262 Ratio of the Number of Omitted Exceptions (ROEX) 

M263 Ratio of the Number of Omitted Security Requirements (ROSR) 

M264 Ratio of the number of the base misuse cases associated to one misuser to the total number of base misuse cases. 

M265 Ratio of the number of unmitigated misuse cases that threaten the application to the total number of misuse cases. 

M266 Readability of Classified Attributes (RCA) 

M267 Readability via Classified Methods (RCM) 

M268 Readability via Critical Classes (RCC) 

M269 Reduce Attack Surface (PRAS) 

M270 Reflection Package Boolean (RPB) 

M271 Relative Churn 

M272 Remediation Impact (RJ) 

M273 Remediation Level (RL) 

M274 Remediation Potency (RP) 

M275 Remediation Scheme (RS) 

M276 Repeat Frequency 

M277 Report Confidence (RC) 

M278 Requirements Risk 

M279 Resource allocation 

M280 Response for a Class (RFC) 

M281 Rigor 

M282 RIN - number of incoming connections 

M283 Risk control 

M284 Risk identification 

M285 Risk Potential 

M286 ROUT - number of outgoing connections from 

M287 RW_ Betweenness 

M288 Secure the Weakest Link (PSWL) 

M289 Security Absolute Measurements (SAM) 

M290 Security of system documentation 

M291 Security resource indicator 

M292 Service Mechanism Strength 

M293 Side-channel Vulnerability Factor 



 

 

M294 Social Engineering Resistance (SER) 

M295 Software Hazard Analysis Depth 

M296 Software project management experience 

M297 SP_Betweenness 

M298 Stall Ratio 

M299 Static analysis alert count 

M300 Static analysis alert density 

M301 Static analysis vulnerability density 

M302 Structural severity 

M303 SumCyclomaticStrict 

M304 SumEssential 

M305 SumFanIn 

M306 SumFanOut 

M307 SumMaxNesting 

M308 Target Distribution (TD) 

M309 Temporal Score 

M310 Threat-to-impact transitions 

M311 Time to close bug/vulnerability 

M312 Time to Problem Correction 

M313 Time to Problem Report 

M314 Total Churn 

M315 Total global variables 

M316 Total number of elicited security use cases 

M317 Total number of excluded security requirements that ensure session handling 

M318 Total number of excluded security requirements that put the system at risk of possible attacks. 

M319 Total number of identified misuse cases 

M320 Total Number of Security Requirements (NSR) 

M321 Total Security Index (TSI) 

M322 Trustworthiness 

M323 Unaccessed Assigned Classified Attribute (UACA) 

M324 Uncalled Classified Accessor Method (UCAM) 

M325 Unused Critical Accessor Class (UCAC) 

M326 Use of (automated) tools 

M327 User authority 

M328 User Risk 

M329 V-Density - McCabe density 

M330 Variable Security Vulnerability 

M331 Volume of email correspondence with vulnerability handling team 

M332 Vulnerabilities found during requirements, design and coding 

M333 Vulnerabilities found post-development 

M334 Vulnerability Confidence Coefficient (VCC) 

M335 Vulnerability Density 



 

 

M336 Vulnerability exploitability 

M337 Vulnerability Free Days (VFD) 

M338 Vulnerability Propagation Factor (VPF) 

M339 Weakest adversary 

M340 Weakness 

M341 Weighted Methods per Class (WMC) 

M342 Window of exposure 

M343 Writability of Classified Attributes (WCA) 

M344 Writability via Classified Methods (WCM) 

M345 Writability via Critical Classes (WCC) 

M346 XsiteVulnCount 

 
 


