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Abstract

Hadoop is an open source mapreduce framework used by a large number of organizations. Its performance is important
in increasing the usefulness of large scale data processing applications. Map slot value (MSV) is one of the configuration
parameters that influences the resource allocation and the performance of a Hadoop application. MSV determines the
number of map tasks that can run concurrently on a node. In this work, we develop an approach to dynamically change
MSV during the execution of an application. Our approach converges to the best MSV for all types of applications and it
does so with low overhead. Without dynamic approach, determining the best MSV of an application requires a very tedious
process of measuring the map completion time for all MSV settings. Our approach also adjusts MSV for applications that
may not have a single best MSV throughout their execution. Compared to the peformance of an application when it is using
the best MSV, performance of our dynamic approach is within 4.6% with cold start and improves by as much as 5% with
warm start.

1 Introduction
Hadoop [3] is an open source implementation of mapreduce framework [12]. Hadoop simplifies processing of large datasets
across a large number of machines as a user only needs to implement map and reduce functions, and the framework takes
care of all other operations such as creating tasks for each function, parallelizing the tasks, distributing data, and handling
machine failures. Hadoop relies on more than 150 configuration parameters to change the allocations of tasks, intermediate
buffers, and a large number of internal operations. Many of these changes influence Hadoop’s performance, which is
critical due to its widespread use in running a variety of applications such as indexing, log analysis, ecommerce, analytics,
and machine learning [4]. Using appropriate configuration values can help an application to complete faster, whereas
misconfiguration can slowdown an application. Previous works show slowdown up to 2.3 times [17], 1.5 to 4 times [16],
and 1.5 times [15]. A common method to determine best configuration values is to manually try several possible values and
select the ones that reduce the overall execution time [2]. This process quickly becomes tedious when finding best values
for more than one application. Similarly, previous works also attempt to determine best configuration values by extensively
profiling an application [14] or profiling an application’s map task [17]. As these works show that best configuration values
change according to the type of applications, these approaches require statically changing configuration values whenever
a different application is run. Thus, it is desirable to have a mechanism that automatically selects the best configuration
parameters during the execution of an application. In this work, we describe a mechanism that dynamically tunes the
configuration parameter map slot value.

Map slot value (MSV) is a configuration parameter whose misconfiguration can cause significant performance degrada-
tion. It is the maximum number of map tasks that run concurrently on a machine. Our observations show that using best
MSV results in faster completion of an application, whereas misconfiguration adversely affects performance. Our previous
work [17] shows that an application suffers a performance degradation up to 132% when not using the best MSV. A naive
way of knowing the best MSV is to profile the completion time for all MSVs. For example, in our experiments, we run each
application for ten MSV settings to determine the best one. Out of the ten MSVs, seven are best for at least one application.
While this technique finds the best MSV, it is mostly impractical in Hadoop deployments.
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Our dynamic approach tunes MSV by using a feedback controller that changes MSV in response to change in resource
pressure of a system. Our approach converges to one of the best MSV during the execution of an application. Dynamic
tuning does not require any extensive profiling as is required by other static tuning methods [16, 15, 17]. It can dynamically
adjust MSV for all types of applications. During an application’s execution, feedback on instantaneous system metric values
is used to determine whether MSV should be increased or decreased. The metrics are selected such that they can estimate
the performance of an application.

In this paper, we present our feedback based approach to dynamically tune MSV. Compared to the profile determined
best MSV setting, our approach achieves performance within 4.6% with cold start and improves by as much as 5% with
warm start. Additionally, our approach saves significant time by not requiring extensive profiling. In the following sections
of the paper, we present the related work, provide background description of Hadoop, describe our design and implementa-
tion, and evaluate the results.

2 Related work
Five areas of prior research are related to our work. The first area is Hadoop tuning. Research in this area explores tuning
Hadoop using a trained model [27], using tuning rules in conjunction with Hill climbing search to explore configuration
parameters [18], using cost based optimization over application profile [15], using prior knowledge of optimal values of
other applications [16], and automatically using resource threshold as control [24]. Our work differs from previous tuning
efforts because it does not require prior knowledge, tuning rules, or extensive profiling of applications. Additionally, as our
work uses dynamic control, it does not rely on predetermined resource usage threshold.

The second related area is feedback based control. Several types of controller are used to adjust different systems. A
PI controller is used to tune web server’s response content quality by using its server utilization [9], and is also used to set
CPU frequency of a machine by using its power consumption [19]. Another related work uses a PID controller to set CPU
allocations by using a machine’s response time [25]. Our work uses a PID controller, with some modifications, to control
MSV by using the resource usage metrics as process variable.

The third related area is resource allocation. This area mostly focuses on resource sharing across multiple jobs by
performing allocations based on the resource that is dominant among all the requested resources [13] or by creating a
framework that enables an application to specify its resource requirements [23]. Such work ensures fairness across multiple
applications where the user specifies resource requirements of each application. In contrast, our work maximizes the system
resource utilization to achieve faster completion time for an application.

The fourth related area is optimization of applications by selecting best predefined techniques. Several techniques such
as rules [5], program analysis [21], or selecting alternative implementations [26] are used to optimize the performance of an
application. These approaches provide an additional method of improving system performance when an application’s usage
scenarios can be enumerated before execution or when an application can be reconfigured to use alternative implementa-
tions.

The fifth related area is workload analysis of Hadoop applications. Work in this area focuses on creating standardized
benchmarks [11] or creating qualitative job classes such as small, medium, and large duration jobs [20]. Workload analysis
helps to classify jobs. These classifications can be further used to correlate jobs and their performance behavior.

3 Background
Hadoop consists of a jobtracker server which coordinates with multiple tasktracker clients. Jobtracker accepts mapreduce
jobs from users and a typical mapreduce job processes large amounts of data. Jobtracker and tasktrackers handle the
computation part of the job. The data storage and retrieval is handled by the Hadoop distributed file system (HDFS). HDFS
is formed by aggregating storage of each client node. It is managed by a namenode server, which coordinates with multiple
datanode clients. The datanodes are responsible for data storage and run alongside tasktrackers in the client nodes. HDFS
uses 64MB or larger block sizes.

After the jobtracker accepts an application, it creates a map task for each block of input data. It then assigns the
map tasks to tasktrackers. The maximum number of tasks that can be assigned at a time is determined by the MSV
setting of the tasktracker. A map task processes a block of data and produces key-value output pairs. The map output is
partitioned according to the range of keys. The number of partitions is equal to the number of reduce tasks and a reduce
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Figure 1: Map and reduce task phases.

task processes one specific partition. The jobtracker assigns reduce tasks based on the reduce slot values. When the reduce
task is processing the data, it copies data belonging to the assigned partition from the tasktracker nodes. After reduce task
completes, it writes the final output to HDFS.

A map task consists of six phases. These phases as shown in Figure 1 are compute, collect, sort, spill, combine, and
merge-spill. In the compute phase, a map task performs the map function computation on each input key-value pair. In the
collect phase, the map task stores the processed key-value pairs in a map output buffer. The map output is logically divided
into partitions equal to the total number of reduce tasks. In the sort phase, the map task sorts the output key-value pairs of
each partition. When the map output buffer is full, the map task spills the content of the buffer to a spill file in the local disk.
This is the spill phase. The combine phase is optional and when present, the map task performs a local reduce operation
on the output key-value pairs. At the end of the map task, if there are multiple spill files then they are merged together to
produce a single map output file. This is the merge-spill phase. Each map task phase is either CPU or IO intensive. The
CPU intensive phases are compute, collect, sort, and combine. The IO intensive phases are spill and merge-spill.

YARN [23, 1] rearchitects Hadoop by separating the functions for resource management and mapreduce application
into separate modules. Even with this approach, resources are allocated using static configuration parameters. The resource
management framework consists of a resourcemanager and multiple nodemanagers. Applications run in YARN as contain-
ers, which are provisioned by the resourcemanager. Each nodemanager updates its memory and virtual core [6, 7] limits to
the resourcemanager. Using these limits and the memory and virtual core request of an application container, the resourcem-
anager determines the node in which the container is run. When an application is deployed, it creates an application master
that itself runs as a container in one of the slave nodes. The application master requests resourcemanager for containers to
run map and reduce tasks. After the resourcemanager assigns nodes to run the containers, the application master coordinates
their execution in conjunction with nodemanagers. Containers are freed after they complete map or reduce operations.

As the number of concurrent containers that run in a node is determined by memory and virtual core limit specified in
the configuration files, the problem of misconfiguration exists in YARN as well. Misconfiguration may result in fewer or
many concurrent containers running at the same time, which is similar to running fewer or many concurrent map tasks and
may cause performance problems [17].

4 Design and implementation
Our dynamic tuning system consists of a feedback controller that uses system metric values to dynamically adjust MSV. We
describe each part of the design in the following subsections.

4.1 Performance metrics
Performance metrics can be collected from two different sources, which are Hadoop specific counters and the system
statistics generated by operating system in /proc/stat file [8]. Each of them has advantages as well as disadvantages.
Hadoop counters have advantage of being internal to Hadoop, with information available on processed data and the time
spent by a task for compute and IO. Counters are suitable for characterizing applications as we have done in our previous
work [17]. From our previous work, we also found that counters map to wide ranges of best MSVs. The disadvantage of
using counters is the difficulty in correlating them with fine grained best MSV selection. For example, to know the extent
of delay due to increased IO pressure, the counters at best can provide information on time taken to perform IO operations
of map tasks. But, it requires extensive profiling to know what time duration indicates increased delay due to IO pressure.
However, metrics collected from /proc/stat have an advantage of providing such fine grained information. procs blocked
is a metric provided by /proc/stat that shows the number of processes blocked due to IO pressure in the system. This
information can then be used to determine the extent of the IO pressure. The disadvantage of using /proc/stat is that it
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requires a system call to read the metric values. Our observation during this work did not show any noticeable difference in
map completion time when collecting the metrics from /proc/stat. Thus, in this work, we use the metrics collected from
/proc/stat because their advantages outweigh that of Hadoop counters when using them for dynamic control of MSV.

There are many metrics available in /proc/stat [8]. In order to identify which metrics are reliable indicators of good
and bad performance, we measure these metric values together with map completion time. We do not take into account
network related metrics, as network usage during map computation is only significant when there are a large number of non
local map tasks. In this work, we have ensured that all map tasks are scheduled to local data blocks. We also do not account
for memory related metrics, as our setup has sufficient memory to accommodate all map tasks for both static and dynamic
MSV settings.

Figure 2 shows the relation of the /proc/stat metrics with map completion time. Each point in the figures represents a
30-second average of the metric values. Each figure contains measurements for thirteen diverse applications. The map com-
pletion time for each point is for the application run in which the sample measurement is taken. A higher map completion
time indicates bad performance whereas a smaller time indicates good performance. Ideally, a metric can be used to deter-
mine an application’s performance if it relates with map completion time such that a metric value can be distinctly mapped
to a performance value. From the figures, none of the metrics distinctly map to a performance value. However, metrics
that can at least separate good and bad performance can be useful for determining performance variations. For system time,
iowait, procs running, readrate, writerate, and timeio in Figures 2a, 2b, 2c, 2d, 2e, and 2f, there are no separation of good
and bad performance values throughout the metrics range. For example, system time in Figure 2a does not have any range of
values that distinctly maps to either good or bad performance. Its entire range maps to both good and bad performance with
wider performance fluctuations occurring for smaller metric values. In contrast to these metrics, user cpu, procs blocked,
and ctxt have metric ranges which map to only good or a bad performance. The higher values of metric user cpu in Figure
2g maps to good performance, the lower values have ambiguous performance. The higher values of procs blocked in Figure
2h maps to bad perfomance. The higher values of ctxt in Figure 2i maps to good performance with a small high value range
which also maps to bad performance.

The metric user cpu represents the percentage amount of time spent by CPU in user mode, procs blocked represents
the number of processes blocked during IO, and ctxt represents the number of context switches performed by the system.
Individually, none of the three metrics separate both good and bad performance. But user cpu separates good performance,
procs blocked separates bad performance, and ctxt in its higher range partly separates bad performance. Therefore, in order
to use the performance separation qualities of each of the three metrics, we combine them together to form a single metric
called score, which is shown in Equation 1. As the range of each metric value differs, we use coefficients shown in the
equation to scale these values such that a 100 represents a highest value for each metric. The highest value of user cpu is
100 and its coefficient is 1. For procs blocked, a value close to the number of CPU contexts in a system can be considered
to be the highest value as this means that there are processes blocked on all CPU contexts. We use a system with 64 CPU
threads, therefore, the coefficient of procs blocked is 100

64 = 1.56. For systems with different number of CPU threads, the
coefficient will be different and can be derived by dividing 100 by the number of CPU threads. The ctxt metric is measured
per 10 microseconds and requires a coefficient of 5 to scale it to a highest value of 100. The metrics are added or subtracted
based on the effect of each metric on the performance. The higher the user cpu, the lower is the map completion time. The
higher the procs blocked or ctxt, the higher is the map completion time. Thus, when forming the score, user cpu is added
and procs blocked and ctxt are subtracted. Figure 3 shows the relation between score and map completion time. The figure
shows that a lower score indicates a bad performance, whereas a higher score indicates a good performance. We use this
score to develop our dynamic tuning method.

score = user cpu+(−1.56)procs blocked+(−5)ctxt (1)

4.2 PID Controller
In this work, we use a PID [22] controller to dynamically change MSV by using the score values. The goal of the PID
controller is to set MSV such that the score is maximum for an application. From Figure 3, we know that as score increases
the map completion time decreases. Thus, the MSV setting for the highest score would achieve the best map completion
time.

A PID controller relies on error parameter to tune the control parameter, which in our case is MSV. If the maximum
achievable score of an application is known, then the error parameter is the difference between the maximum score and
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Figure 2: Relation of /proc/stat metrics with map completion time.
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Figure 4: Bezier approximation of MSV against score
for a Hadoop application.

the measured score. However, as the maximum score for an application is not known before executing the application,
we construct an error parameter such that the error parameter computes to 0 when the score is maximum with best MSV
setting, and computes to positive and negative values when the scores are low with lower and higher MSV settings. The
error parameter E(k) is shown in Equation 2.

E(k) =
score(k)− score(k−1)
MSV (k)−MSV (k−1)

(2)

E(k) is the slope of the curve between score and MSV. Figure 4 shows the Bezier approximation of score against MSV
for a Hadoop application. The plot shows that as MSV increases, the score initially increases, peaks and then gradually
decreases. This behavior is similar for other applications, with main difference on how early the score peaks. From
Figure 3, we know that as score increases, the map completion time decreases. Thus, when E(k) is 0, the score is largest
for an application and that corresponds to the smallest map completion time. In this case, the controller maintains the same
MSV. When E(k) is positive, it indicates that the score is in increasing trend towards peak score. In this case, the controller
increases the MSV. When E(k) is negative, the score is in decreasing trend away from peak score. In this case, the controller
decreases the MSV.

The amount by which the MSV changes is given by equation 3. The three components in the equation represent P, I,
and D components and Kp, Ki, and Kd are the gain parameters for each component.

∆MSV =KpE(k)+

Ki ∑E(k)+Kd(E(k)−E(k−1))
(3)

The gain parameters were tuned by iterating through several values. The selected gain parameters provide quick ramp
up time for all Hadoop applications. In order to avoid instability in regions close to the best MSV, we use two techniques
to change gain parameters. This is similar to gain scheduling approach used to vary gain parameters for different operating
conditions [22]. The first technique lowers gain parameters after the system has achieved a score close to the maximum
for a particular application. This maximum score is the one achieved by the application prior to decrease of score due to
increasing MSV. Without changing the gain parameters in such scenario, small score changes bring large MSV changes
that destabilizes the system. The second technique reduces gain parameters to avoid repetitive overshoot and undershoot of
MSV. This occurs for applications with lower best MSV. In such cases, the gain is reduced whenever there is an undershoot
of MSV.
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There are specific occasions when the controller prediction is not used or the system may not wait for the number of map
tasks to reach the PID controller recommended lower MSV count. The first case occurs when the controller recommends a
higher MSV during change of score from lower to higher negative values. A negative score represents higher procs blocked
or ctxt, which occurs during system degradation. Increasing MSV during system degradation is detrimental because once a
map task starts, it takes system resources and cannot be terminated until it finishes. The second case occurs when decreasing
MSV. As our approach does not immediately terminate or suspend extra map tasks, it has to wait until the extra map tasks
finish and the number of running map tasks reduces to the new MSV. As this may result in a long wait time, the controller
is invoked earlier if the score increases during the transition to the lower MSV.

Our system is built into tasktracker as a daemon thread and consists of three parts. The first part of our system is the
monitoring module. It collects the metrics from /proc/stat and invokes the controller every 30 seconds. Time interval of
30 seconds gives steady and reliable measurements due to sufficient activity in the system. Intervals shorter than 30 seconds
create measurement jitters and a longer interval is less responsive. There is a scenario when the controller is invoked sooner
than 30 seconds. When the PID controller recommends a lower MSV value and the system is waiting for the number
of map tasks to decrease, the score of the system may increase before the number of map tasks reaches the lower MSV.
This happens because at a higher MSV value, the procs blocked can increase, resulting in a low score; but when the MSV
decreases, initially the IO contention decreases as no new processes are introduced due to which more blocked processes get
turn to execute and the procs blocked decreases, resulting in a relatively higher score. As the overall goal is to increase the
score, the monitoring module invokes the controller early rather than waiting a longer time. This helps to decrease the map
completion time. The second part of our system is the PID controller. It is invoked by the monitoring module. Based on the
current and previous scores and MSVs, it calculates the next MSV using equation 3. It also performs gain scheduling. The
third part of our system is the Java Virtual Machine (JVM) management module. It dynamically instantiates JVMs for map
tasks without placing restrictions on the number of concurrent JVMs. In current model of Hadoop, only a fixed number of
JVMs can exist at a time.

5 Evaluation
In this section, we describe the experimental setup, analyze the performance of Hadoop applications for static and dynamic
MSV settings, and show the system behavior for static and dynamic MSVs.

5.1 Experimental setup
Experiments are performed on a ten node IBM PowerPC cluster. Each node consists of two POWER7 processors with
16 cores and 64 total CPU threads, 124GB RAM, and a 10 Gbps Ethernet network link. Hadoop is configured with one
jobtracker and nine tasktrackers. HDFS is configured with one namenode and nine datanodes.

Our experiments use sixteen Hadoop applications. Six of the applications are from the PUMA benchmark [10], seven
are customized versions of terasort, and three are applications each formed by combining two of the previous thirteen appli-
cations. The PUMA applications are grep, word count, invertedindex, rankedinvertedindex, terasort, and termvectorperhost.

The seven customized versions of terasort were used to diversify the applications in terms of per map task CPU uti-
lization (CPU UTIL) and write IO demand (IO THRPUT). Table 1 shows CPU UTIL and IO THRPUT values of these
applications. CPU UTIL is the percentage of total map task time that is spent on the CPU intensive phases of a map task.
IO THRPUT is the rate at which a map task writes data to its output files and it is measured in megabytes per second (MB/s).
The table shows that IO THRPUT is inversely proportional to CPU UTIL. Therefore, CPU UTIL values can infer IO char-
acteristics of an application. In our previous work [17], we found that applications can be grouped based on CPU UTIL
values and the groups can be used to predict best MSV range. Having applications with all ranges of CPU UTIL (42% to
99%) and IO THRPUT (10.58 MB/s to 0.01 MB/s) ensures that our results are applicable to all types of Hadoop applica-
tions. The customized terasort applications were created by adding variable extra busy loops and controlling the amount of
output data in the map function. The former helps to vary the computation and the latter helps to change the IO throughput.
For the terasort variant terasort(L10,D100), L represents the number of loops and D represents the percentage of input data
that is converted to output. In this case, terasort(L10,D100) executes 10 extra busy loops for each key-value pair and outputs
100% of the input data. The highest number of busy loops is 500 and the lowest amount of output data is 1%.

We combined multiple applications in order to represent applications that do not have a single best MSV. They are
formed by combining applications from three different regions. These regions are based on CPU UTIL values and each
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Applications CPU UTIL IO THRPUT Region
(%) (MB/s)

terasort 42 10.58
IO-intensiverankedinvertedindex 50 7.93

terasort(L10,D100) 59 7.84
word count 63 4.97

Balanced

terasort(L30,D100) 70 5.94
invertedindex 72 5.45

termvectorperhost 74 5.53
terasort(L60,D100) 78 4.54
terasort(L100,D100) 84 3.37
terasort(L200,D100) 90 2.06
terasort(L500,D100) 92 0.94

terasort(L10,D1) 96 0.18
CPU-intensivegrep 99 0.01

Table 1: CPU utilization and IO throughput of an application’s map task in the ascending order of CPU UTIL.

region has a different range of best MSVs [17]. These regions are IO-intensive, Balanced, and CPU-intensive and appli-
cations in these regions have respectively low, medium, and high CPU UTIL values. Each application is categorized into
one of the region using its CPU UTIL value. As applications belonging to a different region have different ranges of best
MSVs, combining them results in applications with multiple best MSVs. Table 1 shows that the first two applications
with CPU UTIL from 42% to 59% belong to IO-intensive region, next eight with CPU UTIL from 63% to 92% belong to
Balanced region, and the last two with CPU UTIL from 96% to 99% belong to CPU-intensive region. The combined appli-
cations are rankedinvertedindexterasort(L200,D100) formed by combining rankedinvertedindex and terasort(L200,D1000),
termvectorperhostterasort(L10,D1) formed by combining termvectorperhost and terasort(L10,D1), and rankedinvertedin-
dexterasort(L10,D1) formed by combining rankedinvertedindex and terasort(L10,D1).

The PUMA applications use wikipedia dataset. The dataset size of wikipedia is 900GB, which is formed by combining
multiple copies of the original 300GB wikipedia PUMA dataset. Terasort and its variants use the data generated by teragen.
In order to keep the total experiment time within a reasonable duration, terasort variants use three different dataset sizes.
900GB dataset is used by terasort, terasort(L10,D100), and terasort(L10,D1). 600GB dataset is used by terasort(L30,D100)
and terasort(L60, D100). 300GB dataset is used by terasort(L100,D100), terasort(L200,D100), and terasort(L500,D100).

5.2 Performance analysis
Table 2 shows the comparison of normalized map completion time for ten static MSVs and two dynamic MSVs. The best
static MSV performance value is 1 and it denotes the shortest completion time of an application for the set of static MSVs
used in the experiments. The ideal average performance value of all applications for a static MSV setting is 1. The shortest
completion time for each application is shown in parentheses alongside the best MSV performance value of 1. The static
MSV is set to values from 16 to 88 with increments of 8. Below 16 and beyond 88, the applications suffer slowdown and
those results are omitted.

In Table 2, there are two columns representing dynamic MSV, which are cold and warm dynamic MSVs. The cold
dynamic MSV indicates the first run of an application, where the controller is not aware of the right settings for initial MSV
and gain parameters. For cold start, we use an initial MSV of 32 and the gain parameters values of Kp = 10.0, Ki = 0.5,
and Kd = 1.0. The initial MSV value is equal to half of total CPU threads in the system. This value is appropriate for quick
ramp up or ramp down if the application has a higher or a lower best MSV. We also tested with initial MSV of 16 but no
discernable difference was observed. The gain parameter values are obtained by tuning the controller, first tuning Kp for
P control, then tuning Kp and Ki for PI control, and Kp, Ki, Kd for PID control. While tuning Kp, focus is on reducing
the ramp up time. While tuning Ki, focus is on allowing MSV to change even when the score change is minimal. This
helps to increase parallelism when the score fluctuation is very small. While tuning Kd , focus is on reducing overshoot
and undershoot of MSV. Once Kp, Ki, and Kd are tuned, those values are used for cold starts of all applications. During
the application execution, the gain scheduling reduces the parameters by one-third every time there is an overshoot or an
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CPU cores per node=16, CPU threads per node=64

Application Static MSV Dynamic Dynamic
16 24 32 40 48 56 64 72 80 88 (Cold) (Warm)

terasort 1.04 1.05 1(1022s) 1.15 1.4 1.44 1.49 1.64 1.87 1.82 0.96 0.95
rankedinvertedindex 1.06 1(1190s) 1.07 1.15 1.39 1.67 1.61 1.74 1.92 2.13 1.03 0.99
terasort(L10,D100) 1.19 1.13 1(971s) 1.22 1.36 1.75 1.57 1.83 2.17 2.29 1.08 1.05

word count 1.51 1.29 1.14 1.06 1.03 1(1351s) 1.02 1.02 1.03 1.07 1.08 1.02
terasort(L30,D100) 1.2 1.05 1.04 1(893s) 1.03 1.15 1.14 1.25 1.57 1.36 1.08 1.04

invertedindex 1.45 1.2 1.1 1.04 1.02 1.02 1(1520s) 1.02 1.01 1.13 1.08 1.03
termvectorperhost 1.41 1.2 1.11 1.04 1.03 1.06 1(1619s) 1.02 1.02 1.04 1.05 1.04
terasort(L60,D100) 1.19 1.07 1.05 1.04 1.04 1.01 1.03 1(1966s) 1.01 1.16 1.03 1.03

terasort(L100,D100) 1.15 1.05 1.04 1.05 1.03 1.04 1.01 1.01 1(1997s) 1.01 1.03 1.02
terasort(L200,D100) 1.16 1.09 1.08 1.07 1.1 1.08 1.1 1.01 1(1916s) 1.09 1.08 1.02
terasort(L500,D100) 1.17 1.14 1.14 1.13 1.17 1.16 1.1 1.05 1(4171s) 1.04 1.09 1.03

terasort(L10,D1) 1.2 1.05 1.02 1(390s) 1.01 1.01 1.09 1.01 1.04 1.05 1.03 1.02
grep 1.52 1.31 1.22 1.11 1.07 1.05 1(766s) 1.01 1.01 1.02 1.02 1.01

Average 1.25 1.13 1.08 1.08 1.13 1.19 1.17 1.2 1.28 1.32 1.05 1.02
# of best values 0 1 2 2 0 1 3 1 3 0 - -

Combined applications
rankedinvertedindexterasort(L200,D100) 1.06 1(3258s) 1.04 1.05 1.13 1.19 1.26 1.22 1.3 1.44 1.02 1

termvectorperhostterasort(L10,D1) 1.08 1(1589s) 1.04 1.11 1.33 1.39 1.52 1.6 1.89 1.94 0.98 0.99
rankedinvertedindexterasort(L10,D1) 1.37 1.17 1.08 1.03 1.01 1.01 1(2010s) 1.02 1.04 1.05 1.04 1.04

Average 1.17 1.06 1.04 1.06 1.16 1.2 1.26 1.28 1.41 1.48 1.01 1.01
# of best values 0 2 0 0 0 0 1 0 0 0 - -

Aggregate 1.21 1.1 1.06 1.07 1.15 1.2 1.22 1.24 1.35 1.4 1.03 1.02
# of best values 0 3 2 2 0 1 4 1 3 0 - -

Table 2: Normalized performance and the best completion time (in parentheses) for static and dynamic MSVs.

undershoot. Repeated overshoot and undershoot can reduce the parameters close to zero and stagnate the system, therefore
the gain parameters have a lower limit of Kp = 0.3, Ki = 0.01, and Kd = 0.03. After an application runs once, all subsequent
runs are warm start. The warm dynamic MSV indicates that the controller uses initial MSV and gain parameter settings for
an application from the stabilized values of its prior runs.

Table 2 shows the median performance value of three measurements for each MSV setting for each application. The
variation of the three measurements for each MSV setting of an application is within 0.08%. The table shows that each
application has a best performance value and there is not a single static MSV that is best for all applications. Every
application in the table has select best MSV or MSVs (eight applications have more than one MSV within 2% of the best).
For example, terasort and word count have best static MSVs of 32 and 56. Additionally, MSVs 24, 32, 40, 56, 64, 72, and 80
are best for 1, 2, 2, 1, 3, 1, and 3 of the thirteen individual applications, but none are best for all. Two MSVs 32 and 40 have
lowest average performance value of 1.08 for the first thirteen applications. But, they have maximum slowdown of 22%
for grep and terasort(L10,D100) respectively. In contrast, cold start dynamic MSV has an average performance of 1.05.
Furthermore, the maximum slowdown caused by cold start dynamic MSV is only 9%, which is for terasort(L500,D100).
These numbers improve more for warm dynamic MSV. The average peformance value is 1.02. The maximum slowdown is
only 5% for terasort(L10,D100). Additionally, it has 5% and 1% performance gain for terasort and rankedinvertedindex.

Table 2 also shows that for three combined applications, MSVs 24 and 64 are best for 2 and 1 applications. The lowest
average performance value is 1.06 for MSV of 32. Cold and warm dynamic MSVs have average performance value of 1.01.
Both have better performance than static MSVs for termvectorperhostterasort(L10,D1).

From table 2, the aggregate performance for all sixteen applications shows that the static MSVs 24, 32, 40, 56, 64, 72,
and 80 are best for 3, 2, 2, 1, 4, 1, and 3 applications. MSV 32 has the lowest average performance of 1.06. Cold dynamic
MSV has an average performance of 1.03. For two applications, cold dynamic MSV has a performance improvement over
the best static MSV. Warm dynamic MSV has an average performance of 1.02 and has a performance improvement over the
best static MSV for three applications.

In order to compare the execution progess between static MSVs and dynamic MSVs, Figure 5 shows the execution
progress of rankedinvertedindex for two static MSVs and the two dynamic MSVs. 24 is the best static MSV for rankedin-
vertedindex and completes faster than cold dynamic MSV by 3%. Warm dynamic MSV instead is 1% faster than the static
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Figure 5: Map completion progress comparison for rankedinvertedindex for static and dynamic MSVs.
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Figure 6: Characteristics of a tasktracker node during map execution of rankedinvertedindex for static MSV 24.

MSV of 24. Static MSV 48 takes the longest time compared to the static 24 and the two dynamic MSVs. Table 2 and Figure
5 show that dynamic approach improves performance when compared to static MSV values.

5.3 System behavior for static MSVs
Figures 6 and 7 show the system behavior of a single tasktracker node during the map execution of rankedinvertedindex
for static MSV settings. This behavior is similar on other tasktracker nodes as well. Figure 6 shows the behavior for MSV
setting of 24, which has the best map completion time for rankedinvertedindex. The figure shows that the score remains
mostly at low positive value with occasional drop to low negative value due to increase in procs blocked. The metrics
user cpu and ctxt remain low throughout the application’s execution. As ctxt value is quite low, in the figure it is scaled by
a factor of 5, which is the coefficient used to derive the score. Figure 7 shows the behavior for MSV setting of 48, which
has one of the worst running time for rankedinvertedindex. The figure shows that the metric procs blocked remains high
throughout the execution. The score remains low negative throughout the execution. The metrics user cpu and ctxt have
low values for this MSV setting as well. As MSV does not change during the application’s execution, the score does not
recover to a positive or a higher value and hence its performance suffers. The figures show a gap between the metrics and
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Figure 7: Characteristics of a tasktracker node during map execution of rankedinvertedindex for static MSV 48.
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Figure 8: Characteristics of a tasktracker node during map execution of rankedinvertedindex for dynamic MSV.

the 100% progress mark, because in Figure 6, the application completes just before the last measurement sample and in
Figure 7, there are a small number of map tasks in other nodes that are waiting to complete. As rankedinvertedindex belongs
to IO-intensive region, its system behavior shows high IO activity indicated by high procs blocked values in the figures.

5.4 System behavior for dynamic MSVs
Figures 8, 9, and 10 show the system behavior of a tasktracker node during the map execution of three different applications
with dynamic MSV setting. These figures help to explain the changes in system resource pressure for dynamic MSV values.
They also help to explain the response of the controller to change MSV in order to maintain the score as high as possible,
which helps to reduce the system resource pressure.

Figure 8 shows the system behavior for rankedinvertedindex, which belongs to the IO-intensive region and has a rela-
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Figure 9: Characteristics of a tasktracker node during map execution of termvectorperhost for dynamic MSV.
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Figure 10: Characteristics of a tasktracker node during map execution of terasort(L10,D1) for dynamic MSV.

tively lower best MSV. As shown in the figure, initially the controller increases the MSV from 32 by a small number. As a
result, the score increases and as the score is quite large, the controller performs gain scheduling and reduces the gain pa-
rameters. Due to this reason, even as the score decreases at around 50 seconds, the MSV does not change by a large amount.
Later when the score decreases drastically at 400 seconds due to high procs blocked, the controller reduces the MSV. This
helps to reduce resource pressure, and then the score gradually starts increasing. The controller increases MSV due to the
absence of resource pressure. After a while around 600s, the resource pressure increases again, and the MSV drops to low
value. The controller controls the MSV setting and does not allow the MSV to exceed values that create resource pressure.
We can observe this behavior till the end of the map execution. The rankedinvertedindex test completes at 1229 seconds,
just before the next measurement sample, therefore, Figure 8 does not show the decrease in MSV that occurred.

Figure 9 shows the system behavior for termvectorperhost, which belongs to Balanced region and has a relatively higher
best MSV. For this application, the gain scheduling occurs at around 150 seconds and the MSV rises to a value as high as 80.
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Figure 11: Characteristics of a tasktracker node during map execution of rankedinvertedindexterasort(L200,D100) for dy-
namic MSV.

During the remainder of the execution, procs blocked and ctxt remain low and user cpu remains high. Due to this reason,
the score remains high. The resource pressure is fairly low for this application.

Figure 10 shows the system behavior for terasort(L10,D1), which belongs to CPU-intensive region and has a rela-
tively moderate best MSV. The figure shows that the MSV remains steady with no significant change in user cpu as well
as procs blocked. The MSV varies between 50 and 60. Compared to the previous two applications (Figures 8 and 9),
terasort(L10,D1) has relatively higher ctxt value, almost zero procs blocked, and fairly high user cpu.

5.5 System behavior for combined application
In addition to the single applications, we also analyzed the system behavior for the combined applications. Figure 11
shows the system behavior for rankedinvertedindexterasort(L200,D100). The application runs rankedinvertedindex and
terasort(L200,D100) one after another. At the beginning of the execution, the controller detects a high score and immedi-
ately performs gain scheduling. This avoids bigger MSV changes for small changes in the metric values. This behavior is
similar to that of rankedinvertedindex. The MSV fluctuates between 18 to 28 for 1200 seconds. During this period, there
are occasional high procs blocked values, which causes the score to decrease. After 1200 seconds, the terasort(L200,D100)
part of the application starts and the controller increases MSV due to the steady increase in score value. Throughout the rest
of the map execution, procs blocked remains low, user cpu remains high, and the MSV is tuned to a higher value.

5.6 Overhead
There is little direct overhead of changing MSV because it occurs infrequently compared to the duration of the map exe-
cution. The PID controller performs simple calculation, the overhead of metric measurement is unnoticeable as we did not
observe any difference in map completion time while measuring metrics during static MSV settings, and the controller only
sets a single runtime parameter in Hadoop, which is a store instruction. However, there is an indirect overhead, which is
the delay to affect the MSV change. An increase in MSV is effective when the tasktracker receives new tasks at the next
heartbeat interval (500ms). A decrease is effective only after extra running tasks are complete. While decreasing, no new
task is spawned until the target MSV is achieved.
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6 Conclusion
In this paper, we explored a dynamic approach to tune the configuration parameter map slot value (MSV) and improve
performance of Hadoop applications. Knowing the best MSV of an application requires extensive profiling, which is quite
tedious and mostly impractical in Hadoop deployments. Our approach overcomes the limitation of having to know the best
MSV by using a PID controller that changes MSV in response to changing resource pressure. We use a combined value of
three different metrics called score to know the extent of resource pressure in the system. Our observation showed that the
score can be used to separate good and bad performance of a Hadoop application. Our experiments on sixteen different types
of applications show that our approach converges the MSV to the best MSV for all applications. Additionally, it also adjusts
MSV for applications that have multiple best MSVs throughout their execution. Compared to the performance of best MSV
of an application, which can be known only by extensive profiling, our approach achieves performance improvement as high
as 5% with warm start and performance loss of only 4.6% with cold start. Therefore, our approach provides an efficient
method of tuning the Hadoop configuration parameter MSV.
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