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Abstract—WaveCluster is a important family of grid-based
clustering algorithms that are capable of finding clusters of
arbitrary shapes. In this paper, we investigate techniques to do
WaveCluster while ensuring differential privacy. Instead of taking
a case-by-case approach (as WaveCluster can be instantiated with
any wavelet transform), our goal is to develop general techniques
that can be applied to any instantiated WaveCluster algorithm.
We show that straightforward techniques based on synthetic data
generation and introduction of random noise when quantizing the
data, though generally preserving the distribution of data, often
introduce too much noise to preserve useful clusters. We then
propose two optimized techniques, PrivTHR and PrivTHREM ,
which are independent of the specific Wavelet transform and
can significantly reduce data distortion during two key steps
of WaveCluster: the quantization step and the significant grid
identification step. We conduct extensive experiments based on
three large synthetic datasets, and show that PrivTHR and
PrivTHREM achieve high utility when privacy budgets are
properly allocated.

I. INTRODUCTION

Clustering is an important class of data analysis that has
been extensively applied in a variety of fields, such as identi-
fying different groups of customers in marketing and grouping
homologous gene sequences in biology research [1]. Cluster-
ing results allow data analysts to gain valuable insights into
data distribution when it is challenging to make hypotheses on
raw data. Among various clustering techniques, a grid-based
clustering algorithm called WaveCluster [2], [3] is famous for
detecting clusters of arbitrary shapes. WaveCluster relies on
wavelet transforms, a family of convolutions with appropriate
kernel functions, to convert data into a transformed space,
where the natural clusters in the data become more distinguish-
able. WaveCluster provides a framework that allows any kind
of wavelet transform to be plugged in for data transformation,
such as the Haar transform [4] and Biorthogonal transform [5].

In many data-analysis scenarios, when the data being an-
alyzed contains personal information and the result of the
analysis needs to be shared with the public or untrusted
third parties, sensitive private information may be leaked, e.g.,
whether certain personal information is stored in a database or
has contributed to the analysis. Consider the databases A and B
in Figure 1. These two databases have two attributes, Monthly
Income and Monthly Living Expenses, and the records differ
only in one record, u. Without u’s participation in database
A, WaveCluster identifies two separate clusters, marked by
blue and red, respectively. With u’s participation, WaveCluster
identifies only one cluster marked by color blue from database
B. Therefore, merely from the number of clusters returned
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Fig. 1: Example of personal privacy breach in cluster analysis

(rather than which data points belong to which cluster),
an adversary may infer a user’s participation. Due to such
potential leak of private information, data holders may be
reluctant to share the original data or data-analysis results with
each other or with the public.

In this paper, we develop techniques to perform WaveClus-
ter clustering with differential privacy [6], [7]. Differential
privacy provides a provable strong privacy guarantee that the
output of a computation is insensitive to any particular indi-
vidual. In other words, based on the output, an adversary has
limited ability to make inference about whether an individual
is present or absent in the dataset. Differential privacy is often
achieved by the perturbation of randomized algorithms, and
the privacy level is controlled by a parameter ε called “privacy
budget”. Intuitively, the privacy protection via differential
privacy grows stronger as ε grows smaller.

A straightforward idea to enforce differential privacy in
WaveCluster is to perturb the results obtained from the core
wavelet transform. Such an approach requires careful sensi-
tivity analysis for each single targeted wavelet transform, i.e.,
the maximum change caused to the wavelet transform output
when any individual record in the input data is modified. In
the big family of wavelet transforms, some transforms are
rather complex, requiring case-by-case non-trivial efforts to
derive their sensitivity, which is not an extensible solution. In
this paper, instead, we aim to develop a general technique to
achieving differential privacy on WaveCluster, which would
be independent of wavelet transform.

We first consider a general technique, Baseline, that adapts
existing differentially private data-publishing techniques to
WaveCluster through synthetic data generation. Specifically,
we could generate synthetic data based on any data model of
the original data that is published through differential privacy,
and then apply WaveCluster using any wavelet transform



over the synthetic data. Baseline seems particularly promising
as many effective differentially private data-publishing tech-
niques have been proposed in the literature, all of them striving
to preserve important properties of the original data. Therefore,
hopefully the “shape” of the original data is also preserved in
the synthetic data, and consequently could be discovered by
WaveCluster. In this way, we bypass the sensitivity analysis
of wavelet transform. Unfortunately, as we will show later
in the paper, this synthetic data-generation technique often
cannot produce accurate results. Differentially private data-
publishing techniques such as spatial decompositions [8],
adaptive-grid [9], and Privelet [10], output noisy descriptions
of the data distribution and often contain negative counts for
sparse partitions due to random noise. These negative counts
do not affect the accuracy of large range queries (which is
often one of the main utility measures in private data publish-
ing) since zero-mean noise distribution smoothes the effect of
negative counts. However, negative counts cannot be smoothed
away in the synthesized dataset, which are typically set to
zero counts. As will be shown in Section VI, such synthetic
data generation significantly distorts the data distribution and
reduces the accuracy of the WaveCluster results.

Motivated by the above challenge, we propose three tech-
niques that enforce differential privacy on the key steps of
WaveCluster, rather than relying on synthetic data generation.
WaveCluster accepts as input a set of data points in a multi-
dimensional space, and consists of the following main steps.
First, in the quantization step WaveCluster quantizes the multi-
dimensional space by dividing the space into grids, and
computes the count of the data points in each grid. These
counts of grids form a count matrix M . Second, in the
wavelet transform step WaveCluster applies wavelet transform
on the count matrix M to obtain the approximation of the
multi-dimensional space. Third, in the significant grid iden-
tification step WaveCluster identifies significant grids based
on the pre-defined density threshold value. Fourth, in the
cluster identification step WaveCluster outputs as clusters the
connected components from these significant grids [11]. To
enforce differential privacy on WaveCluster, we first propose
a technique, PrivQT, that introduces Laplacian noise to the
quantization step. However, such straightforward privacy en-
forcement cannot produce usable private WaveCluster results,
since the noise introduced in this step significantly distorts the
density threshold for identifying significant grids. To address
this issue, we further propose two techniques, PrivTHR and
PrivTHREM , which enforce differential privacy on both the
quantization step and the significant grid identification step.
These two techniques differ in how to determine the noisy
density threshold. We show that by allocating appropriate
budgets in these two steps, both techniques can achieve
differential privacy with significantly improved utility.

Traditionally, the effectiveness of WaveCluster is evaluated
through visual inspection by human experts (i.e., visually
determining whether the discovered clusters match those re-
flected in the user’s mind). Unfortunately, as visual inspection
is not quantitative, this imposes challenges when assessing

the utility of differentially private WaveCluster. Therefore, it
is hard to systematically compare through visual inspection
the impact of different techniques. Generally, researchers use
quantitative measures to assess the utility of differentially
private results, such as relative or absolute errors for range
queries and prediction accuracy for classification. But there
is no existing utility measures for density-based clustering
algorithms with differential privacy.

Given true and differentially private WaveCluster results,
these measures measure the dissimilarity of the significant
grids and the clusters of significant grids, which are the outputs
of two key steps in WaveCluster, significant grid identification
and cluster identification.

To mitigate this problem, in this paper we propose two
types of utility measures. The first is to measure the dissimilar
significant grids and clusters differences between true and
private WaveCluster results, which correspond to the outputs of
the two key steps in WaveCluster, significant grid identification
and cluster identification. To more intuitively understand the
usefulness of discovered clusters, our second utility measure
considers one concrete application of cluster analysis, i.e.,
to build a classifier based on mined clusters, and then use
that classifier to predict future data. Therefore the prediction
accuracy of the classifier from one aspect reflects the actual
utility of private WaveCluster.

To evaluate the proposed techniques, our experiments use
three synthetic datasets, which contain different data shapes
that are especially interesting in the context of clustering.
Our results confirm that PrivTHR and PrivTHREM enforce
differential privacy in both the quantization step and the
significant grid identification step, achieve high utility, and
are superior to Baseline and PrivQT.

II. RELATED WORK

The focus of initial work on differential privacy [7], [12]–
[15] concerned the theoretical proof of its feasibility on various
data analysis tasks, e.g., histogram and logistic regression.

More recent work has focused on practical applications of
differential privacy for privacy-preserving data publishing. An
approach proposed by Barak et al. [16] encoded marginals
with Fourier coefficients and then added noise to the released
coefficients. Hay et al. [17] exploited consistency constraints to
reduce noise for histogram counts. Xiao et al. [10] proposed
Privelet, which uses wavelet transforms to reduce noise for
histogram counts. Cormode et al. [8] indexed data by kd-
trees and quad-trees, developing effective budget allocation
strategies for building the noisy trees and obtaining noisy
counts for the tree nodes. Qardaji et al. [9] proposed uniform-
grid and adaptive-grid methods to derive appropriate partition
granularity in differentially private synopsis publishing. Xu et
al. [18] proposed the NoiseFirst and StructureFirst techniques
for constructing optimal noisy histograms, using dynamic
programming and Exponential mechanism. These data pub-
lishing techniques are specifically crafted for answering range
queries. Unfortunately, synthesizing the dataset and applying
WaveCluster on top of it render WaveCluster results useless,



since these differentially private data publishing techniques
do not capture the essence of WaveCluster and introduce too
much unnecessary noise for WaveCluster.

Another important line of prior work focuses on integrating
differential privacy into practical data analysis tasks, such
as regression analysis, model fitting, classification and etc.
Chaudhuri et al. [19] proposed a differentially private reg-
ularized logistic regression algorithm that balances privacy
with learnability. Zhang et al. [20] proposed a differentially
private approach for logistic and linear regressions that involve
perturbing the objective function of the regression model,
rather than simply introducing noise into the results. Friedman
et al. [21] incorporated differential privacy into several types
of decision trees and subsequently demonstrated the tradeoff
among privacy, accuracy and sample size. Using decision trees
as an example application, Mohammed et al. [22] investigated
a generalization-based algorithm for achieving differential
privacy for classification problems.

Differentially private cluster analysis has also be studied in
prior work. Zhang et al. [23] proposed differentially private
model fitting based on genetic algorithms, with applications
to k-means clustering. McSherry [24] introduced the PINQ
framework, which has been applied to achieve differential pri-
vacy for k-means clustering using an iterative algorithm [25].
Nissim et al. [26] proposed the sample-aggregate framework
that calibrates the noise magnitude according to the smooth
sensitivity of a function. They showed that their framework
can be applied to k-means clustering under the assumption that
the dataset is well-separated. These research efforts primarily
focus on centroid-based clustering, such as k-means, that
is most suited for separating convex clusters and presents
insufficient spatial information to detect clusters with complex
shapes, e.g. concave shapes. In contrast to these research
efforts, we propose techniques that enforce differential privacy
on WaveCluster, which is not restricted to well-separated
datasets, and can detect clusters with arbitrary shapes.

III. PRELIMINARIES

In this section, we first present the background of differen-
tial privacy. Then we depict WaveCluster algorithm followed
by our problem statement.

A. Differential Privacy

Differential privacy [6], [12] is a recent privacy definition,
which guarantees that an adversary cannot infer an individual’s
presence in a dataset from the randomized output, despite
having knowledge of all remaining individuals in the dataset.

Definition 1: (ε-differential privacy): Given any pair of
neighboring databases D and D′ that differ only in one
individual record, a randomized algorithm A is ε-differentially
privacy iff for any S ⊆ Range(A):

Pr[A(D) ∈ S] ≤ Pr[A(D′) ∈ S] ∗ eε

The parameter ε indicates the level of privacy. Smaller ε
provides stronger privacy. When ε is very small, eε ≈ 1+ ε.
Since the value of ε directly affects the level of privacy, we

refer to it as the privacy budget. Appropriate allocation of
the privacy budget for a computational process is important
for reaching a favorable trade-off between privacy and utility.
The most common strategy to achieve ε-differential privacy is
to add noise to the output of a function. The magnitude of
introduced noise is calibrated by the privacy budget ε and the
sensitivity of the query function. The sensitivity of a query
function is defined as the maximum difference between the
outputs of the query function on any pair of neighboring
databases.

Definition 2: (Sensitivity): The sensitivity S of a query
function f is :

∆f = max
D,D′

‖ f(D)− f(D′) ‖1

There are two common approaches to achieve ε-differential
privacy: Laplace mechanism [7] and Exponential mecha-
nism [27].

Laplace Mechanism: The output of a query function f
is perturbed by adding noise from a Laplace distribution
with probability density function f(x|b) = 1

2b exp(− |x|b ),
b = ∆f

ε . The following randomized mechanism Al satisfies
ε-differential privacy:

Al(D) = f(D) + Lap(
∆f

ε
)

Exponential Mechanism: This mechanism returns an out-
put that is close to the optimum, with respect to a quality
function. A quality function q(D, r) assigns a score to all
possible outputs r ∈ R, where R is the output range of f , and
better outputs receive higher scores. A randomized mechanism
Ae that outputs r ∈ R with probability

Pr[Ae(D) = r] ∝ exp(εq(D, r)
2S(q)

)

satisfies ε-differential privacy, where S(q) is the sensitivity of
the quality function.

Differential privacy has two properties: sequential composi-
tion and parallel composition. Sequential composition is that
given n independent randomized mechanisms A1, A2, . . . , An
where Ai (1 ≤ i ≤ n) satisfies εi-differential privacy, a
sequence of Ai over the dataset D satisfies ε-differential
privacy, where ε =

∑n
1 (εi). Parallel composition is that given

n independent randomized mechanisms A1, A2, . . . , An where
Ai (1 ≤ i ≤ n) satisfies ε-differential privacy, a sequence of
Ai over a set of disjoint data sets Di satisfies ε-differential
privacy.

B. WaveCluster

WaveCluster is an algorithm developed by Sheikholeslami
et al. [2], [3] for the purpose of clustering spatial data. It
works by using a wavelet transform to detect the boundaries
between clusters. A wavelet transform allows the algorithm
to distinguish between areas of high contrast (high frequency
components) and areas of low contrast (low frequency compo-
nents). The motivation behind this distinction is that within a
cluster there should be low contrast and between clusters there
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Fig. 2: Illustration of WaveCluster

should be an area of high contrast (the border). WaveCluster
has the following steps, as shown in Figure 2:

Quantization: Quantize the feature space into grids of a
specified size, creating a count matrix M .

Wavelet Transform: Apply the wavelet transform to the
count matrix M , such as Haar transform [4] and Biorthogonal
transform [5], and decompose M to the average subband that
gives the approximation of the count matrix and the detail
subband that has the information about the boundaries of
clusters. We refer to the average subband as the wavelet-
transformed-value matrix (WTVM ).

Significant Grid Identification: Identify the significant
grids from the average subband WTVM . WaveCluster con-
structs a sorted list of the positive wavelet transformed values
obtained from WTVM , and computes d based on the p per-
centile density value in the sorted list, where p is a parameter
given to WaveCluster. A grid whose wavelet transformed value
is above d is considered as a significant grid. The data points
in the non-significant grids are considered as noise.

Cluster Identification: Identify the connected components
(two grids are connected if they are adjacent) as clusters
from the significant grids using connected component labeling
algorithm [11], map the clusters back to the original multi-
dimensional space, and label the data points based on which
cluster the data points reside.

In WaveCluster, users need to specify four parameters:
num grid (g): the number of grids that the multi-

dimensional space is partitioned into along one dimension.
This parameter controls the scaling of quantization. Inappro-
priate scaling can cause problems of over-quantization and
under-quantization, affecting the accuracy of clustering [3].

density threshold (p): a percentage value p (0 ≤ p ≤ 100)
used to obtain the absolute density threshold value d. d is
used to compare with the values in WTVM for determining
whether a grid is a significant grid. It is difficult to specify
d directly since it is affected by the convolution of wavelet
transform. Therefore, users normally specify a percentage

value p and d is computed as the pth percentile of the positive
values in WTVM .

level: a wavelet decomposition level, which indicates how
many times the wavelet transform will be applied. The larger
the level is, the more approximate the result will be. In our
techniques, we set level to 1 since a smaller level value
provides more accurate results [3].

wavelet: the wavelet transform to be applied. Haar trans-
form [4] is one of the simplest wavelet transform and widely
used, which is computed by iterating difference and averaging
between odd and even samples of a signal (or a sequence of
data points). Other commonly used wavelet transforms include
Biorthogonal transform [5].

C. Motivating Scenario and Problem Statement

Consider a scenario with two participants: the data owner
(e.g. hospitals) and the querier (e.g. data miner). The data
owner holds raw data and has the legal obligation to protect
individuals’ privacy while the querier is eager to obtain cluster
analysis results for further exploration. The goal of our work
is to enable the data owner to release cluster analysis results
using WaveCluster while not compromising the privacy of any
individual who contributes to the raw data. The data owner
has a good knowledge of the raw data and is able to provide
appropriate parameters (e.g. num grid and density threshold)
for WaveCluster. We next give our problem statement.

Problem Statement. Given a raw data set D, appropriate
WaveCluster parameters for D and a privacy budget ε, our
goal is to investigate effective approach A such that A (1)
satisfies ε-differential privacy, and (2) strikes an effective
balance between the amount of introduced noise and the utility
of the WaveCluster results.

IV. APPROACHES

In this section, we present four techniques for achieving
differential privacy on WaveCluster, which are independent
of wavelet transforms. We first describe the Baseline tech-
nique that achieves differential privacy through synthetic data
generation. We then describe three techniques that enforces
differential privacy on the key steps of WaveCluster.

A. Baseline Approach (Baseline)

A straightforward technique to achieve differential privacy
on WaveCluster without requiring sophisticated sensitivity
analyses of various wavelet transforms is as follows: (1) adapt
an existing ε-differential privacy preserving data publishing
method to get the noisy description of the data distribution
in some fashion, such as a set of contingency tables or
a spatial decomposition tree [8], [10], [18]; (2) generate a
synthetic dataset according to the noisy description; (3) apply
WaveCluster on the synthetic dataset. We call this technique
as Baseline.

Discussion. Baseline achieves differential privacy on
WaveCluster through the achievement of differential privacy
on data publishing. However, it does not produce accurate



WaveCluster results. The adapted ε-differential privacy pre-
serving data publishing method is designed for answering
range queries. The noisy descriptions of the data distribution
generated by the method may contain negative counts for
certain partitions since the noise distribution is Laplacian with
zero mean. These negative counts do not affect the range
query accuracy since zero-mean noise distribution smooths the
effect of noise. For example, a partition p1 has the true count
of 2 and the noisy count of -2, whose noise is canceled by
another partition p2 having the true count of 10 and the noisy
count of 12 when both p1 and p2 are included in a range
query. Especially when the range query spreads large range
of a dataset, a single partition with noisy negative count does
not affect its accuracy too much. However, when the method
is used for generating a synthetic dataset, the noisy negative
counts are reset as zero counts, causing the data distribution
to change radically on the whole and further leading to the
severe deviation in differentially private WaveCluster results.

B. Private Quantization (PrivQT)

To address the challenge faced by Baseline, we propose
techniques that enforce differential privacy on the key steps
of WaveCluster. Our first approach, called Private Quanti-
zation (PrivQT), introduces independent Laplacian noise in
the quantization step to achieve differential privacy. In the
quantization step, the data is divided into grids and the count
matrix M is computed. To ensure differential privacy in
this step, we rely on the Laplace mechanism that introduces
independent Laplacian noise to M . Clearly, if we change one
individual in the input data, such as adding, removing or
modifying an individual, there is at most one change in one
entry of M . According to the parallel composition property of
differential privacy, the noise amount introduced to each grid
is Lap( 1

ε ), given a privacy budget ε. Since the following steps
of WaveCluster are carried on using the differentially private
count matrix M ′, the clusters derived from these steps are also
differentially private.

Selecting the appropriate grid size (reflected by the param-
eter num grid) in the quantization step strongly affects the
accuracy of WaveCluster results [3], and also the differentially
private WaveCluster results. A small grid size causes more data
points to fall into each grid and thus the count of data points
for each grid becomes larger, which makes the count matrix M
resistant to Laplacian noise. However, the small grid size is not
helpful for WaveCluster to detect accurate shapes of clusters
and renders the results useless. On the other hand, although
posing a larger grid size on the data can capture the density
distribution of the data more clearly, it makes each grid’s count
too small and thus become sensitive to Laplacian noise, which
dramatically affects the identification of significant grids and
further the shapes of clusters. Our empirical experiments show
that only when an appropriate grid size is given, differentially
private WaveCluster results maintains high utility.

Discussion. Although PrivQT achieves differential privacy
on the WaveCluster results, the noisy count matrix M ′ sig-
nificantly distorts the noisy absolute density value d′ and
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(c) WTVM ′ in PrivTHR; (d) WTVM ′ in PrivTHREM . Grey
segment: zero or negative values; Red segment: positive values
< d or d′; Green segment: positive values ≥ d or d′

consequently the clustering results. The reason is as follow.
Given a specified percentage value p, WaveCluster computes
the absolute density value d from the positive values in
WTVM (shown in Figure 3(a)), while PrivQT computes d′

from the positive values in WTVM ′ (shown in Figure 3(b)).
WTVM ′ in PrivQT is derived from M ′, which is perturbed
by Laplacian noise. Normally, Laplacian noise is non-zero,
making almost all of the zero-count grids become non-zero-
count grids. According to its randomness, approximately half
of the zero-count grids become noisy positive-count grids due
to positive noise while the remaining ones are turned into
noisy negative-count grids due to negative noise. These non-
zero-count grids may cause their corresponding wavelet trans-
formed values in WTVM ′ to become positive (depending
on the targeted wavelet transform), which will inappropriately
participate in the computation of d′ and further distorts d′.
As shown in Figure 3(b), the red segment moves towards the
beginning of the sorted list due to those newly generated noisy
positive-count grids, which later inappropriately participate in
the computation of d′. Therefore, d′ in PrivQT becomes much
smaller than d, which causes more original non-significant
grids to become significant. Figure 3(a) and (b) clearly show
the comparison between d and d′, and the significant grids
generated by WaveCluster and PrivQT, respectively. Due to the
noisy positive values in WTVM ′, our empirical results show
that the utility of differentially private WaveCluster results
improves marginally even when a large privacy budget is
given.

C. Private Quantization with Refined Noisy Density Threshold
(PrivTHR)

Motivated by the limitation of PrivQT, we propose a tech-
nique, PrivTHR, which prunes a portion of noisy positive val-
ues in WTVM ′ to refine the computation of d′. Algorithm 1
shows the pseudocode of PrivTHR.

PrivTHR first introduces random noise to the count matrix
M , similar to PrivQT, and obtains a noisy count matrix M ′

(Line 2). PrivTHR then applies wavelet transforms on M ′ to
obtain WTVM ′ (Line 3). WTVM ′ is then turned into a list



L′ that keeps only positive values and the values in L′ is
sorted in ascending order (Line 4). Thus, only the positive
values in WTVM ′ will be used for computing d′ based on
the specified density threshold p. To reduce the distortion of d′,
starting from the smallest noisy positive values in L′, PrivTHR
discards the first n′

2 values (Line 6), where n is the number
of zero values in the WTVM and n′ is a noisy estimate
of n (Line 5), as shown in Figure 3(c). The reason why
PrivTHR removes n′

2 values from L′ is based on the insight
that approximately n

2 zero values in WTVM are turned into
positive values due to the randomness of Laplacian noise.
Since n partially describes the data distribution and releasing n
without protection may leak private information, PrivTHR also
introduces Laplacian noise to n, ensuring the whole process
correctly enforces differentially privacy (Lines 10-16). Finally,
PrivTHR applies the connected component labeling algorithm
to identify clusters of significant grids (Line 8).

Algorithm 1 PrivTHR

Input: Dataset D, num grid g, density threshold p, differen-
tial privacy budget ε, allocation percentage α

Output: A set of differentially private clusters (of significant
grids)

1: procedure PrivTHR(D, g, p, ε, α)
2: M ′ = PrivQuantization(D, g, αε)
3: WTVM ′ = WaveletTransform(M ′)
4: L′ = ConvertToPosSortedArray(WTVM ′)
5: n′ = NOISYCOUNTOFZEROVALUES(D, g, (1− α)ε)
6: L′′ = RemoveFrom(L′,0,n

′

2 )
7: d′ = Percentile(L′′, p)
8: return ConnCompLabel(WTVM ′, d′)
9: end procedure

10: procedure NOISYCOUNTOFZEROVALUES(D, g, ε)
11: M = Quantization(D, g)
12: WTVM = WaveletTransform(M )
13: n = CountOfZero(WTVM )
14: n′ = n + Lap( 1

ε )
15: return n′

16: end procedure

Budget Allocation. PrivTHR first introduces Laplacian
noise in the quantization step using a privacy budget αε, where
0 < α < 1. In the significant grid identification step, PrivTHR
further introduces Laplacian noise to n using the remaining
privacy budget (1 − α)ε. In general only a small amount of
budget is needed to obtain an estimate of n. The empirical
results in Section VI will show in detail the impact of α on
clustering accuracy.

D. Private Quantization with Noisy Threshold using Exponen-
tial Mechanism (PrivTHREM )

Besides pruning positive values in WTVM ′, we propose
an alternative technique that employs Exponential mechanism

for deriving d′ from the sorted list of WTVM . Algorithm 2
shows the pseudocode of PrivTHREM .

PrivTHREM first introduces Laplacian noise to the count
matrix M , which is similar to PrivQT and PrivTHR. After
that, we obtain a noisy count matrix M ′ (Line 2) and the
corresponding WTVM ′ (Line 3). Different from the previous
two techniques that compute d′ from WTVM ′, PrivTHREM

derives d′ from WTVM using Exponential mechanism (Lines
7-15). As demonstrated in Figure 3(d), although the sorted list
derived from WTVM ′ is severely distorted in PrivTHREM ,
the sorted list does not affect the derivation of d′ at all.
Given sufficient privacy budget, d′ derived from Exponential
mechanism is reasonably accurate, compared to the case when
d′ is derived from WTVM ′.

The quality function fed into the Exponential mechanism
is [8]:

q(L,X) = −|rank(x)− rank(d)|,

where L represents the sorted positive values in WTVM
with Min and Max values (Line 10), and X represents
the possible output space, i.e., all the possible values in the
range of (0,Max]. Given a WTVM with k positive values
x1, x2, . . . , xk, these k values divide the range (0,Max] into
k partitions: (0, x1], (x1, x2], . . . , (xk−1, xk], and the ranks for
these partitions are 1, 2, . . . , k. For any x ∈ (xi−1, xi], its
rank is rank(xi). For example, if x ∈ (0,Min], rank(x) =
rank(Min) = 1. The sensitivity of q(L,X) is 1, since any
single change in the input only causes the outcome of q(L,X)
to be changed by 1 at maximum.

Plugging in the above quality function into Exponen-
tial mechanism, we obtain the following algorithm: for
any value x ∈ (0,Max], the Exponential mechanism
(EM) returns x with probability Pr[EM(L) = x] ∝
exp(− ε|rank(x)−rank(d)|

2 ) (Line 13). Since all the values in
a partition have the same probability to be chosen, a random
value from the partition Pti = (xi−1, xi] will be chosen with
the probability proportional to |Pti|∗exp(− ε

2 |i−rank(d)|). In
other words, once Pti is chosen, PrivTHREM further computes
a uniform random value from Pti as d′ (Line 14).

Budget Allocation. Similar to PrivTHR, the privacy budget
is split between two steps: introduction of Laplacian noise in
quantization and obtaining d′ using Exponential mechanism.
Previous empirical experiments [8] on splitting budgets be-
tween median and count noise suggest that, 30% vs. 70%
budget allocation strategy performs best. Specifically, 70% of
budget is allocated for obtaining noisy count matrix M ′ (Line
2) and the remaining budget is allocated for computing d′

(Line 4).

V. QUANTITATIVE MEASURES

To quantitatively assess the utility of differentially private
WaveCluster, we propose two types of measures for measur-
ing the dissimilarity between true and differentially private
WaveCluster results. The first type focuses on dissimilarity
of significant grids (DSG) and dissimilarity of clusters of
significant grids (DSGC). Given true and differentially private



WaveCluster results, DSG and DSGC respectively measure
the dissimilarity of the significant grids and the clusters, which
are the outputs of two key steps in WaveCluster, significant
grid identification and cluster identification.

The second type focuses on observing the usefulness of
differentially private WaveCluster results for further data anal-
ysis. The reason is that a slight difference in the significant
grids or clusters may cause a significant difference when
using the WaveCluster results. In this paper, we choose a
typical application of further data analysis: building a classifier
from the clustering results to predict unlabeled data [28]. The
classifier built from true WaveCluster results is called the
true classifier clft while the classifier built from differentially
private WaveCluster results is called the private classifier clfp.
Given the same test data, if clfp has the same prediction result
as clft, we regard the differentially private WaveCluster results
maintain the maximum utility. To measure the dissimilarity
between clft and clfp, we propose two metrics: OCM and
2CE, where OCM expresses the dissimilarity through pre-
dicted class mappings and 2CE expresses the dissimilarity
through the relationships among the test samples with pre-
dicted classes. Depending on the targeted data analyses, either
OCM or 2CE may provide a more reasonable estimation
of the usefulness for the differentially private WaveCluster
results.

A. Dissimilarity based on Significant Grids and Clusters

This section presents the first type of dissimilarity measures:
DSG and DSGC . We use T to denote the set of significant
grids in the true WaveCluster results and P to denote the set
of significant grids in the differentially private WaveCluster
results.

Dissimilarity of Significant Grids (DSG). DSG captures
the differences regarding the significant grids. For example,
if a grid a is significant in the true WaveCluster results but
insignificant in the differentially private WaveCluster results,
we reflect this difference in DSG. DSG is formally defined
as follows:

DSG =
|T

⋃
P − T

⋂
P |

|T |
DSG computes the ratio of the count of dissimilar sig-

nificant grids between T and P to the count of significant
grids in T . The smaller the DSG is, the higher utility the
private WaveCluster results maitain. As an extreme, when T
is exactly the same with P , DSG returns the minimum. For
another extreme, when T is totally different from P , DSG
could be exceptionally large.

Dissimilarity of Clusters of Significant Grids (DSGC).
DSG reflects the dissimilarity on only significant grids with-
out measuring how far apart the clusters are in the true and
differentially private WaveCluster results. Thus, we further
propose DSGC , which considers the dissimilarities of both
significant grids and clusters. Assume that there are t clusters
of true significant grids and s clusters of differentially private
significant grids. t might not be equal to s, and the cluster
labels in t true clusters and s private clusters are completely

arbitrary. To accommodate these differences, we adopt the
Hungarian method [29], [30], a combinatorial optimization
algorithm, to solve the matching problem between t true
clusters and s private clusters while minimizing the matching
difference.

Algorithm 2 PrivTHREM

Input: Dataset D, num grid g, density threshold p, differen-
tial privacy budget ε, allocation percentage α

Output: A set of differentially private clusters (of significant
grids)

1: procedure PrivTHREM (D, g, p, ε, α)
2: M ′ = PrivQuantization(D, g, αε)
3: WTVM ′ = WaveletTransform(M ′)
4: d′ = NOISYDENSITYTHRESHOLDEM(D, g, p, (1 −
α)ε)

5: return ConnCompLabel(WTVM ′, d′)
6: end procedure

7: procedure NOISYDENSITYTHRESHOLDEM(D, g, p, ε)
8: M = Quantization(D, g)
9: WTVM = WaveletTransform(M )

10: L = ConvertToPosSortedArray(WTVM )
11: d = Percentile(L, p)
12: rankd = d p

100 ∗ length(L)e
13: rankd′ = ExponentialMechanism(L,rankd,ε)
14: d′ = UniformRandom(L, rankd′ − 1,rankd′)
15: end procedure

When cluster Ci matches to cluster Cj , we define
that the distance d between cluster Ci and cluster Cj is
max{|Ci\Cj |, |Cj\Ci|}. Consider a cluster Ci = {g1, g3, g5}
and a cluster Cj = {g1, g5, g7, g9}. The distance d between
clusters Ci and Cj is max{|{g3}|, |{g7, g9}|} = 2. Given t
true clusters and s private clusters, assuming that t ≥ s , a
matching Mt,s of t true clusters and s private clusters is a set
of cluster pairs, where each private cluster is matched with a
true cluster. We then define the cost of a matching (Mcost)
as the sum of all the distances between each cluster pair in
the matching Mt,s plus the count of significant grids in the
non-matched clusters:

Mcost =
∑

1≤ix≤t,1≤jy≤s

max{|Cix\Cjy |, |Cjy\Cix |}+
∑

1≤z≤t

|Cz|

Here, ix and jy indicate the subscripts of clusters in a matched
pair. |Cz| represents the count of significant grids in the non-
matched true clusters. Among all the possible matchings of
clusters, we use the Hungarian method to find the optimal
matching with the minimum Mcost. Based on the minimum
Mcost, DSGC is computed as follows:

DSGC =
Mcost

|T |
For one extreme, the Hungarian method finds the matching

with Mcost being 0, when t true clusters and s private clusters



only differ in cluster labels.

B. Dissimilarity based on Classifier Prediction

This section presents the second type of dissimilarity mea-
sures, OCM and 2CE, to measure the dissimilarity between
clft and clfp. We name this way of evaluation as “clustering-
first-then-classification”: given a set of unlabeled data points,
we use a portion of the data points (e.g., 90%) to compute
WaveCluster results, where each cluster is a set of significant
grids. Using the significant grids with cluster labels as training
data, we build classifiers clft and clfp, and use them to predict
the classes for the remaining data points (e.g., 10%).

Dissimilarity of Classifiers based on Optimal Cluster
Matching (OCM ). OCM measures the dissimilarity between
the two sets of classes predicted by clft and clfp for the
same test samples. We use Lt to denote the set of classes
predicted by clft and Lp to denote the set of classes predicted
by clfp. Since Lt and Lp are completely arbitrary, we exploit
the Hungarian method to find the optimal matching between
Lt and Lp, which is similar to the case described in DSGC .

Assume that a class Lt,i predicted by clft is matched to a
class Lp,j predicted by clfp, forming a class pair. We compute
the count of common test samples in the class Lt,i and the
class Lp,j , and sum all the common test samples in each class
pair to compute CT :

CT =
∑

1≤i≤c1,1≤j≤c2

|Lt,i
⋂
Lp,j |

Here c1 is the count of classes in Lt and c2 is the count of
classes in Lp, and we assume c1 ≥ c2. Since there are many
possible mappings from the classes in Lt to the classes in Lp,
we use the Hungarian method to find the optimal mapping that
maximizes CT . Based on CT and the total count of the test
samples TT , we derive the dissimilarity OCM :

OCM = 1− CT

TT

When the dissimilarity is smaller, the differentially private
WaveCluster results are more similar to the true WaveCluster
results and maintain high utility for classification use.

Dissimilarity of Classifiers based on 2-Combination Enu-
meration (2CE). 2CE measures the dissimilarity between
clft and clfp based on relationships of every pair of test
samples, i.e., whether two samples are in the same cluster.
Essentially, given a pair of test samples A and B, we say A
and B are classified consistently either (1) clft(A) = clft(B)
and clfp(A) = clfp(B) or (2) clft(A) 6= clft(B) and
clfp(A) 6= clfp(B). 2CE is the ratio of the count of test
sample pairs that are not classified consistently over the total
number of test sample pairs, which is the set of 2-combination
of the test samples. We denote the set of 2-combination as
ComList. Consider the set of test samples {A,B,C,D}.
Assume that the predicted classes from clft are {1, 2, 1, 3}
whereas the predicted classes from clfp are {1, 2, 2, 3}. The
values that indicate whether a sample pair is classified in the
same class using clft and clfp are shown in table I, where

TABLE I: ComList values under clft and clfp
ComList AB AC AD BC BD CD

value under clft 0 1 0 0 0 0
value under clfp 0 0 0 1 0 0

0 means the sample pair is in different classes and 1 means
the sample pair is in the same class. We then perform parity
check on the two values of ComList and count the test sample
pairs with inconsistent bit values, which is 2. Therefore, 2CE
is 2/6 for this example. When 2CE is 0, it means that there
are no differences between clft and clfp. In other words,
the differentially private WaveCluster results are as useful
in classification as the true ones. 2CE uses ComList to
eliminate the need of finding the optimal matching between the
classes predicted by clft and clfp, since ComList considers
whether two test samples are predicted to be in the same class.
We next analyze how the value of 2CE reflect the dissimilarity
between the predicted classes using clft and clfp.

Unlike OCM which captures the class mappings, 2CE
captures the relationships among the test samples and may
have a very different value as OCM . Assume that there are N
test samples and k (0 < k ≤ N ) test samples have discrepancy
in the predicted classes using clft and clfp, which causes the
values of ComList to be different (e.g., the difference between
the values of ComList in table I originates from the prediction
discrepancy for test sample C). To make the analysis easier, we
also assume that these k test samples have the same predicted
class using clft. The minimum of 2CE is 0 and 2CE can be
expressed as follows:

2CE ≤

{
C(k,2)+k(N−k)+C(N−k,2)

C(N,2) , if N ≥ 4 and k ≥ 2
k(N−k)+C(N−k,2)

C(N,2) , if 0 < N ≤ 3 and k = 1

C(k, 2) represents the 2-combinations of test samples in the k
test samples, k(N −k) represents the 2-combinations of the k
test sample and the other N−k test samples, and C(N−k, 2)
represents the 2-combinations of test samples in the N−k test
samples. Since C(N − k, 2) have the same predicted classes
using clft and clfp (based on our assumption), C(N − k, 2)
is always 0. When every test sample in the k test samples is
predicted to be in a different class using clfp, 2CE achieves
the maximal value. On the contrary, when all the k test samples
are predicted to be in the same class using clfp, C(k, 2) is 0
and 2CE equals to k(N−k)

C(N,2) . As C(N, 2) grows much faster
than k(N −k), when N is large, 2CE has a low value, while
OCM has a relatively large value since OCM expresses such
differences as k

N . The above analysis will be used to explain
some of the observations from the experiments in Section VI.

VI. EXPERIMENTS

In this section, we evaluate the proposed techniques using
three synthetic clustering datasets from [31]. The implementa-
tion of non-private WaveCluster algorithm is provided by [32].
In our experiments, we use Haar transform as the wavelet
transform for the four techniques. The classification algorithm
used for measuring OCM and 2CE is C4.5 [33], [34]. All
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(a) DS1, g = 64, p = 58
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(b) DS2, g = 40, p = 10
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(c) DS3, g = 50, p = 15

Fig. 4: Illustration of datasets and their WaveCluster results

experiments were conducted on a machine with Intel 2.67GHz
CPU and 4GB RAM.

A. Synthetic Datasets

The three synthetic clustering datasets contain different data
shapes that are specially interesting in the context of clustering.
We enlarge these synthetic datasets and illustrate these datasets
by plotting the data points directly in Figure 4.
DS1: two-dimensional data containing 15 Gaussian clusters

with different degrees of cluster overlapping. It contains 30000
data points. These 15 clusters are all in convex shapes. The
center area of each cluster has higher density and is resistant to
noise. However, the overlapped area of two adjacent clusters
has smaller density and is prone to be affected by noise,
which might turn the corresponding non-significant grids into
significant grids and further connect two separate clusters.
DS2: two-dimensional spiral data with 3 clusters. It con-

tains 31200 data points. The head of each spiral is quite close
to one another. Some noisy significant grids are very likely to
bridge the gap between adjacent spirals and merge them into
one cluster.
DS3: two-dimensional data with 5 various shapes of clus-

ters, including concave shapes. It contains 31520 data points.
There are two clusters that both contain two sub components
and a narrow line-shape area that bridges those two sub
components. The narrow bridging area has low density and
might be turned into non-significant grids, causing a cluster to
split into two clusters.

Figures 4 also shows the WaveCluster results on these three
datasets under certain parameter settings (i.e., the values of g
and p are specified in Figure 4). Any two adjacent clusters
are marked with different colors. The points in red color are
identified as noise, which fall in the non-significant grids.

In our experiments, we compare the performances of the
four techniques (Baseline, PrivQT, PrivTHR, and PrivTHREM )
on these three datasets using the four metrics proposed in
Section V and provide analysis on the results.

B. Dissimilarity based on Significant Grids and Clusters

We here present the results of the two dissimilarity metrics:
DSG and DSGC .

Results of DSG Figures 5 (a), (e), (i) show the results of
DSG for the four techniques when the privacy budget ε ranges
from 0.1 to 2.0. The X-axis shows the privacy budgets ε, and
the Y-axis denotes the DSG values. As shown in the results,
PrivTHR outperform Baseline and PrivQT on all datasets for
all privacy budgets. PrivTHREM has a similar performance as
PrivTHR with sufficient privacy budgets (ε ≥ 0.5). When ε is
very limited (i.e., 0.1), PrivTHREM performs the worst among
all on DS1. The major reason is that limited budget causes
Exponential mechanism (exp( εq2 )) to be insensitive for the
changes of q, where q is the value of the quality function
(q = −|rank(x) − rank(d)). Therefore, the difference be-
tween the ranks of d′ and d may be large and causes DSG to
increase significantly.

As ε increases, Baseline, PrivTHR, and PrivTHREM gener-
ally achieve smaller values of DSG that indicate better utility.
Larger privacy budget allows the synthetic data generation
method to capture more accurate data distribution and thus
Baseline performs better in identifying significant grids, which
results in better DSG values. Similarly, given larger privacy
budgets, both PrivTHR and PrivTHREM can generate more
accurate d′ and further identify more similar significant grids
as the non-private WaveCluster algorithm.

Unlike the other techniques, PrivQT surprisingly benefits
little from increased privacy budgets. Increasing privacy bud-
gets can only reduce noise magnitude. However, WTVM
can be affected by any level of noise magnitude and thus
approximately half of the zero values in WTVM are turned
into noisy positive values in WTVM ′, causing d′ to be
significantly distorted with any level of privacy budget.

We also observe that the results of DSG on these three
datasets are quite different, which originates from the different
data distributions of these three datasets. The 15 clusters in
DS1 scatter quite evenly around the whole space and the
shapes of all clusters are convex. Most of the significant grids
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(b) DSGC -DS1
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(d) 2CE-DS10
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(i) DSG-DS3
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(l) 2CE-DS3
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Fig. 5: Results of DSG and DSGC on DS1, DS2 and DS3

located in the center of the cluster still remain significant under
differential privacy and are resistant to noise. Only those grids
around the border of each cluster change from significant to
non-significant or from non-significant to significant, which
causes the count of dissimilar grids between T and P to
increase and further increases DSG. The 3 spirals in DS2
are in concave shapes and synthetic data generation method
cannot preserve the original data distribution very accurately.
The reason is that uniform random generating synthetic points
in a partition gradually expands the spirals toward convex
shapes. What is more, the total count of true significant grids
|T | are relatively small compared to the total count of grids,
which makes the ratio of the dissimilar significant grids more
prominent in this dataset. This explains why Baseline on DS2
has higher DSG values (ranging from 0.88 to 1.03) than those
on DS1 and DS3 (ranging from 0.15 to 0.80). On DS3, all
four techniques achieve similar DSG values as privacy budget
increases. The reason is that the clusters in DS3 scatter around
the whole space and are well separated without overlapping.
Although DS3 contains two narrow line-shape areas that are

sensitive to noise due to their low densities, DSG measures
only the dissimilarities of significant grids and cannot capture
the dissimilarities of low-density areas precisely. We can see
the differences among these four techniques on DS3 when we
use DSGC to measure dissimilarities.

Results of DSGC . Figures 5 (b), (f), and (j) show the results
of DSGC for the four techniques when the privacy budget
ranges from 0.1 to 2.0. X-axis shows the privacy budgets,
and Y-axis denotes the values of DSGC . We found that in
quite a lot of cases, DSGC is larger than DSG when the
setting is exactly the same. The reason is that DSGC might
double-count the dissimilar significant grids between T and
P . For example, suppose there are two clusters in T , cluster
C1 includes significant grids {g1, g2} and cluster C2 contains
grid {g3}. In P , cluster C1 includes significant grid {g1} while
cluster C2 contains grids {g2, g3}. According to the definition
of DSGC , we found g2 is counted twice in DSGC . This
double-counting causes higher DSGC value when the setting
is the same.

As shown in the results, both PrivTHR and PrivTHREM



achieve smaller DSGC values than Baseline and PrivQT on
all three datasets for all budgets. The reason is that DSGC
considers the differences of both significant grids and clusters.
Therefore even if the noisy significant grids are similar to
the true significant grids, these noisy significant grids may
result in very different shapes of clusters and thus result in
a large value of DSGC . For example, on DS1 with ε being
0.1, PrivTHREM has the worst DSG value among the four
techniques since Exponential mechanism cannot produce a
very precise estimation of d′. However, its DSGC value is
smaller than Baseline and PrivQT, since the noisy clusters
formed by the noisy significant grids of Baseline and PrivQT
are quite different from the true clusters in terms of number of
clusters and data shapes. Similarly, although four techniques
achieve similar DSG values on DS3, their DSGC values
are quite different. In DS3, the narrow line-shape areas and
the gap between two adjacent clusters are sensitive to noise. If
some noisy significant grids appear in these areas, two clusters
may be merged into one; if some significant grids disappear
due to noise, one cluster might be split into two clusters. Such
changes cause DSGC to increase significantly since DSGC
measures the differences of clusters rather than the differences
of significant grids.

Similar to the results of DSG, Baseline, PrivTHR, and
PrivTHREM generally achieve smaller values of DSGC as ε
increases. PrivQT still benefits little from the increases of ε
due to the noisy positive values in WTVM ′ as described in
the analysis of DSG.

C. Dissimilarity based on Classifier Prediction

We here present the results of the two dissimilarity metrics:
OCM and 2CE.

Results of OCM . Figures 5 (c), (g), and (k) show the
results of OCM for the four techniques when the privacy
budget ε ranges from 0.1 to 2.0. X-axis denotes the privacy
budgets while Y-axis denotes the values of OCM . As shown
in the results, PrivTHR and PrivTHREM achieve smaller OCM
values than Baseline and PrivQT for all datasets when ε ranges
from 0.1 to 2.0. When ε is greater than 0.5, the OCM values
of PrivTHR and PrivTHREM are less than 0.1 on DS1 and
DS3, indicating the private classifier clfp maintains highly
similar prediction results as the true classifier clft. On DS2
that contains 3 spirals, PrivTHREM still maintains a very low
OCM value (< 0.1) when ε is greater than 0.5 while PrivTHR
has a slightly worse OCM value (ranging from 0.1 to 0.2).
Such results show that PrivTHREM is more resilient to noise
for concave-shaped data than PrivTHR.

The different data distributions of the three datasets cause
Baseline and PrivQT to have very different values of OCM .
On DS1, although Baseline does not perform better than
PrivTHR and PrivTHREM , Baseline exhibits a steadily decreas-
ing trend of OCM values as ε increases. The reason is that
all 15 clusters in DS1 are convex shaped, which can be well
captured by synthetic data generator when a larger ε is given.
On DS2 and DS3, both Baseline and PrivQT achieve larger
OCM values. DS2 contains 3 spiral-shaped clusters that can

be easily merged into one cluster by noisy significant grids.
For Baseline, resetting negative counts to zero counts makes
some noisy positive-count grids too prominent and become one
of the “bridging points” that wrongly connect the clusters. For
PrivQT, approximately half of the positive values in WTVM ′

cause certain grids to become these “bridging point”. This
explains why Baseline and PrivQT both perform steadily worse
and have an OCM value more than 0.66 on DS2. Similarly,
DS3 has several unique shapes, and two adjacent clusters are
easily merged into one when noisy significant grids show up
in the gap between two clusters. As we can see from the
results, while OCM of Baseline decreases when ε is 0.5 on
DS3, such decreasing trend does not continue when ε > 0.5.
In fact, the occurrence of noisy bridging significant grids is
quite random, and thus PrivQT and Baseline do not exhibit
an obvious increasing or decreasing trend of OCM when the
budget increases on DS3.

Similar to the results of DSG and DSGC , Baseline,
PrivTHR, and PrivTHREM generally achieve smaller values of
OCM as ε increases. The results also reconfirm that PrivQT
benefits little from the increases of ε due to the noisy positive
values in WTVM ′.

Results of 2CE. Figures 5 (d), (h), and (l) show the
results of 2CE for the four techniques when the privacy
budget ε ranges from 0.1 to 2.0. X-axis denotes the privacy
budgets while Y-axis denotes the values of 2CE. As shown in
the results, PrivTHR and PrivTHREM achieve smaller OCM
values than Baseline and PrivQT for all datasets when ε ranges
from 0.1 to 2.0.

In general, all four techniques exhibit similar trends of 2CE
as their trends in OCM . On DS1, all four techniques have
very low 2CE values (< 0.1) though their corresponding
OCM values are much higher (ranging from 0.05 to 0.5).
The reason is that 2CE captures the relationships between
data points while OCM focuses on the mappings of classes.
As described in Section V-B, if there are k test samples out
of N total samples have different prediction results in the
true and private results, 2CE expresses the differences as
C(k, 2)+k(N−k) over the total combinations of test samples
C(N, 2), while OCM expresses the differences as k over N .
On DS1, the k test samples are predicted to be in the same
cluster in the private results and C(k, 2) becomes close to
0. In this case, only k(N − k) matters in the computation of
2CE. Given that C(N, 2) is much larger than N and k(N−k)
when N of DS1 is about 30,000, 2CE has a smaller value
than OCM for measuring the differences, and thus is less
sensitive to the noise on DS1.

Similar to the results of other dissimilarity measures, Base-
line, PrivTHR, and PrivTHREM generally achieve smaller val-
ues of 2CE as ε increases. PrivQT exhibits a random trend of
2CE as ε increases, and still benefits little from the increases
of ε.

Budget Allocation for PrivTHR. Figure 6 (a) shows the
values of DSG for PrivTHR under different budget allocation
strategies. As we can see from the results, the budget allocation
strategy with 10% for n (the number of positive values in
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Fig. 6: (a) PrivTHR with different budget allocation strategies
using DSG. (b) PrivTHR and PrivTHREM using Biorthogonal
wavelet transform on DS1

WTVM ) performs the best, i.e., 90% of budget is used for
private quantization while 10% of budget is used for obtaining
n′. Due to space limit, we show only DSG values on DS1.
The results of other measures on DS1 show the similar results,
and the results of all the four measures on DS2 and DS3 also
show the similar results.

Different Wavelet Transform. Figure 6 (b) shows the
results of DSGC and OCM for PrivTHR and PrivTHREM

using Biorthogonal transform (bior2.2) on DS1. As we can
see from the results, both PrivTHR and PrivTHREM exhibit
decreasing trends of DSGC and OCM , similar to the trends
shown in Figures 5 (b) and (c), which use Haar transform.
Such results demonstrate that our techniques are independent
of the used wavelet transform. Due to the space limit, here we
provide the results of only DS1 and use DSGC and OCM as
measures. The results of all the measures on DS2 and DS3
show the similar trends.

VII. CONCLUSION

In this paper we have addressed the problem of cluster anal-
ysis with differential privacy. We take a well-known effective
and efficient cluster-analysis algorithm called WaveCluster,
and propose several ways to introduce randomness in the
computation of WaveCluster. We also devise several new quan-
titative measures for examining the dissimilarity between the
non-private and differentially private results and the usefulness
of results in classification. In the future, we will investigate
under differential privacy other categories of cluster-analysis
algorithms, such as hierarchical clustering. Another important
problem is to explore the applicability of differentially private
cluster analysis in those cases where the users do not have
good knowledge about the dataset, and the parameters of the
algorithms should be inferred in a differentially private way.
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