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ABSTRACT

Data privacy audits that ensure policy compliant usage of personal
data are increasingly enforced (internally or externally) on service
providers that amass and process user data. Existing approaches to
privacy auditing fall short of addressing the challenges introduced
by modern personalized services that analyze user data using large
scale machine learning and data mining (MLDM) algorithms, and
provide users custom privacy controls. In this paper, we present
GraphAudit, an auditing framework for large-scale graph mining
platforms that can check the compliance of a wide range of expres-
sive privacy policies. GraphAudit achieves this by reconstructing
the runtime context of data use by MLDM algorithms by logging
data accesses and tracing data flows. We implement GraphAu-
dit over GraphLab, a popular distributed graph mining framework
and evaluate its performance using commonly used MLDM algo-
rithms and real worlds graph datasets. Our evaluation shows that
GraphAudit performance overheads are moderate and exhibits scal-
ing properties similar to GraphLab. Moreover, the overheads can
be reduced by amortizing the I/O overhead of logging across dis-
tributed machines in the cluster. This results in overheads relative
to GraphLab that are as low as 5.76x, with execution times that can
automate privacy auditing compared to the otherwise manual and
error prone approaches currently used.

1. INTRODUCTION

Online services commonly personalize the user experience by
aggregating and analyzing user’s personal data and preferences.
Users must consent to the use and disclosure of their personal data
by accepting the service provider’s privacy policy. These policies
typically describe what data is collected, how it is used, and with
whom the data is shared.

Violations of end-user privacy policies by service providers are
growing in frequency. Many of these violations are internal to a
service provider. A recent study [20] shows that unintentional or
intentional internal disclosure of user data accounted for approxi-
mately half of the privacy data violations publicly reported in the
US from 2005 to 2011. For example, one of the complaints filed by
the US Ferderal Trade Commission (FTC) against Facebook [5],
listed instances where user data that was supposed to be shared
with “Friends Only” was accessible to third-party Facebook appli-
cations and advertisers. Penalities for such violation include not
only financial penalties, but also mandated periodic privacy audits
to ensure that service provider maintains policy compliant use of
end-user personal data. Despite this mandate for auditing, the FTC
has few suggestions as to how to go about auditing the data use
practices of these service providers.

Privacy audits today [11, 14,26, 40] are largely based on guide-
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lines from government bodies or industry consortia [4,6,12] that are
typically carried out using a checklist of questions related to the fol-
lowing steps: 1) make an inventory of all data collected; ii) explain
the purpose of such data collection; and iii) state data management
practices such as how the data is stored, who has access, and how
and when it is deleted, etc. While some of these questions can be
automated, the checklist based approach audits a service providers
data use practices at a “high-level” without reasoning about the im-
plementation details of the private data use. Alternately, manual ap-
proaches based on interviews, code reviews, and log inspection can
potentially audit the service provider’s practices in detail. However,
these approaches cannot scale to large distributed software systems,
are inherently error prone and cannot analyze the runtime context
of private data use. Consequently, the view today is that there is
a vacuum in automated auditing of privacy policy compliance that
extend beyond rudimentary checklists [9].

In recent years, auditing “big data” personalized services (e.g.,
social networks and recommenders) is becoming an increasingly
difficult task for a couple of reasons. First, service providers com-

monly use sophisticated Machine Learning and Data Mining (MLDM)

frameworks (e.g., GraphLab [31] and Apache Mahout [2]) to ana-
lyze user data. Such frameworks typically load the complete data
once and then execute different MLDM algorithms on partial views
of the loaded data. Consequently, auditing the access and flow of
user data through these frameworks requires runtime monitoring
and logging of data use. Second, modern web services increasingly
provide user-specific, fine-grained privacy controls, enabling users
to limit the usage and disclosure of their personal data, e.g., name is
public, but age should only be visible to friends. Such user-specific
privacy policies substantially increases audit complexity.

In this paper, we propose GraphAudit as a novel approach for
auditing service providers using MLDM frameworks for data anal-
ysis. GraphAudit combines lightweight data flow tracking and data
access logging to enable automated proofs of policy compliance.
Specifically, GraphAudit builds upon the common vertex-centric
model for parallel graph processing, wherein algorithms iteratively
execute on each vertex of the data graph. GraphAudit logs access
to data attributes made by the vertex program, automatically de-
rives a taint label from data attributes (e.g. rating, movieid), and
propagates the labels throughout the computation. Logs generated
by GraphAudit are post-processed and represented as a data flow
graph upon which policy compliance checks are performed using
efficient graph queries.

Related to GraphAudit is a recent work by Sen et al. [39], shar-
ing a similar vision of automating the currently manual auditing
process. The authors propose a system and policy language that au-
tomates privacy policy compliance auditing, focusing on the Bing
search engine. However, unlike GraphAudit, their work only audits



global policies that apply to all users using the service. More im-
portantly, policies are audited based on static data analysis, namely
analyzing database queries, source code, and metdata associated
with user roles and data files. Such static analysis techniques can-
not track data use in MLDM algorithms that have complex data
flows with iterative processing of the data, a shortcoming that is
even identified by the authors.

We address several key challenges in the design and implemen-
tation of GraphAudit, which form our main contributions:

Fine-grained logging. A key design objective of GraphAudit is to
log accesses to individual data fields analyzed by the MLDM al-
gorithms to support fine-grained, user-specific privacy settings. To
address this, GraphAudit intercepts and logs all data accesses along
with their runtime context performed by the MLDM algorithm.

Tracking sensitive data. MLDM algorithms access and combine
multiple data attributes during computation. For example, a clas-
sifier may select age, gender, and location attributes to develop a
model, but that combination of attributes may violate the privacy
policy [41]. GraphAudit provides a label propagation mechanism
that automatically extracts labels from attribute names and tracks
the label set associated with derived values.

No changes to MLDM algorithm logic. GraphAudit does not re-
quire the MLDM expert to modify the core logic of the vertex pro-
gram. The only change required is to call two designated methods
when reading and writing data, a change that can be mostly auto-
mated. Our experience with modifying existing MLDM algorithms
shows that these changes are easy and quick to implement and re-
quire the developer to change a small fraction (3-9%) of the original
C++ code.

Supporting different deployment scenarios. The overheads in-
troduced by the runtime tracking and logging of data use should
not restrict the deployment scenarios of GraphAudit. Our evalua-
tion of GraphAudit’s computational and I/O overheads using large
real-world datasets shows that the overheads are moderate (as low
as 5.7x), and can be further reduced with parallelization. This en-
ables GraphAudit to either be deployed online for continuous mon-
itoring of policy compliance for services that do not require interac-
tive responses (e.g., computing recommendations), or be deployed
on demand as requested by the auditor for services that require in-
teractive latencies (e.g., social graph search).

Auditing diverse privacy policies. GraphAudit supports the au-
diting of a wide range of privacy controls and policies provided by
existing online services like Facebook and Google. These policies
range from limiting access to private data (e.g., user’s location must
not be used) to controling the flow of private data (e.g., share only
with friends). Private data access policies can be directly audited
from GraphAudit logs while monitoring the extent of data disclo-
sure is audited by generating data flow graphs from GraphAudit
logs and querying the resultant graph. Generally, these tasks are
practically impossible on modern massive datasets using current
manual auditing techniques.

The remainder of this paper proceeds as follows. Section 2 mo-
tivates GraphAudit and provides background necessary for under-
standing its design. In Section 3 we describe the GraphAudit de-
sign and Section 4 details our C++ implementation of GraphAu-
dit on GraphLab. Section 5 details the performance evaluation of
GraphAudit using several MLDM algorithms. Section 6 describes
a used case showing how GraphAudit logs are used to check pol-
icy compliance. We discuss practical deployment considerations in
Section 7 and related work in Section 8. We conclude the paper in
Section 9.
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Figure 1: Overview of an online personalized service.

2. MOTIVATION AND BACKGROUND

Before discussing GraphAudit, we begin by describing the types
of online services it is designed to audit and motivate the need to au-
tomate the policy compliance audits for such services. Finally, we
provide a short background on graph parallel abstractions, which
is an increasingly popular and scalable approach to processing data
aggregated by these online services.

2.1 Personalized Services

Figure 1 overviews the main entities involved in a personalized
service. Before using the service, users sign and consent to a pri-
vacy policy provided by the service provider. Optionally, users pro-
vide fine-grained privacy controls to limit the use and disclosure of
their data. User data aggregated by the service provider is made
available to internal employees (or authorized external partners) to
analyze user behavior and improve the personalized service. This
aggregated data is often large and consists of a number of different
attributes about the user. Analytics over this data uses large scale
distributed Machine Learning and Data Mining (MLDM) frame-
works. GraphAudit focuses on enabling policy compliance audit-
ing for the data analytics performed on the user data.

To better understand the entities, we provide the following two
representative personalized services.

Movie Recommendation Service. Consider an online movie stream-
ing service that provides personalized movie recommendations for
users to watch. Users provide their preferences by rating movies.
The service uses collaborative filtering algorithms to mine user
preferences and provide personalized recommendations. As pri-
vacy controls, the service lets users (a) completely opt-out of using
ratings for recommendations, (b) opt-out of using specific watched
or rated movies (e.g., don’t use any viewed x-rated movies), or (c)
opt-out of using specific user profile information for recommenda-
tions (e.g., age, gender or location).

Social Networking Service. Consider an online social network-
ing service that allows users to share updates (e.g., posts, pictures,
video) by setting explicit friendship relationships. The service mines
data about users and their social network to recommend new friends,
deliver targeted advertising, or let users search interesting facts
about their friends or the social network in general. As privacy
controls, the service lets users tag specific attributes of their profile
or uploaded content as (a) private, (b) shared only with friends, (c)
shared with friends of friends, or (d) shared with everyone.

These privacy policies are either agreed to by users when they
sign (or accept) the legal privacy policy of the service, or set by the
users via fine-grained privacy controls.

By studying the privacy controls and polcies provided by exist-
ing popular personalized services, we group them into one of the
following two broad types.

P1 Prevent use of specific private information. In the movie
recommendation service, users may opt-out completely. In
the social networking service, users may choose to keep pri-



vate specific attributes of their profile (e.g., age, income) or
friendship relationships. These private attributes and all de-
rived information should not be used or accessed by MLDM
algorithms for personalization.

P2 Limit the extent of disclosure of private information. In the
social networking service, users may explicitly limit the dis-
closure of private information (e.g., sexual orientation) to
specific friends or friend-of-friends. MLDM algorithms should
limit the flow of this information or any information derived
from it to the intended scope defined by the user.

2.2 Policy Compliance Audits

Privacy audits are increasingly used to prevent privacy policy vi-
olations. Some audits are judicially mandated. These audits investi-
gate the reported misuse of user data and are commonly performed
periodically to ensure service providers maintain compliance. For
example, the FTC mandated audits by independent external parties
for Facebook [5] and Google [7] for violating privacy policies. Ad-
ditionally, audits are sometimes voluntarily performed internally
to ensure policy compliance. Such internal audits can minimize
or potentially even prevent the damages caused by non-compliant
practices.

In this paper, we seek to develop an auditing mechanism for
existing graph-based MLDM frameworks that can automatically
monitor and log the runtime context of private data use by MLDM
algorithms. Capturing such context enables the programmatic re-
construction of the sequence of data accesses made by the algo-
rithms, as well as the resultant flow of private information. Privacy
policy compliance can be then checked for by analyzing how pri-
vate data was accessed and its propagation in the graph. We choose
a dynamic analysis approach, because violations are driven by the
user-data. Static analysis considers all possible cases, which may
not map to reality. Furthermore, dynamic analysis can more easily
react to privacy controls specified in user-data.

Threat Model. GraphAudit is designed to automate the MLDM
portion of a privacy audit. Recall that audits may be voluntary
or judicially mandated. In both cases, we assume that the ser-
vice provider does not attempt to maliciously circumvent audit-
ing. For example, a service provider might find that complying to
privacy policies reduces the value of MLDM inference and there-
fore decides to knowingly violate the judicial mandate. We do
not consider such cases. Rather, GraphAudit allows the service
provider to demonstrate due diligence in complying to end-user
privacy policies. GraphAudit’s automated MLDM privacy audit-
ing can be combined with manual audits to ensure GraphAudit is
properly used.

2.3 Graph Parallel Abstractions

Many personalization algorithms focus on modeling the explicit
dependencies that exist in the data. For example, a movie recom-
mendation system explicitly models users that rate movies simi-
larly, and a social network analyzes the structure of the social graph
to recommend new friends. The limitations of data parallel ab-
stractions, like MapReduce [23], to scale such dependent compu-
tation to large datasets, has recently led to new graph parallel ab-
stractions [2,31,32] that maintain the explicit data dependencies.
The dependencies in the data are represented as a graph and com-
putation is structured as programs that run on each vertex of the
graph. For example, user data from movie recommendation ser-
vice is structured as a bipartite graph between users and movies
with the edges representing the rating given by a user to a specific
movie. Algorithms represented as vertex programs compute on the

MLDM Algorithms

Graph Based MLDM
Execution Engine

1. Log Data Access
2. Label Propagation

)
( Graph Data )

GraphAudit
Logs

Privacy Policy
Compliance
Checks

[siegeT |

Figure 2: GraphAudit Design Overview

data associated with the vertex or edge and read or write to data on
adjacent vertices and edges. Such graph parallel abstractions en-
able MLDM algorithms to scale to massive datasets by executing
vertex programs in parallel while providing consistency guarantees.

Vertex programs are composed of three primary phases — Gather,
Apply, and Scatter. In the gather phase, the vertex program gath-
ers data from adjacent vertices and edges and data is aggregated
by an algorithm specific sum operation. The result of this sum-
mation is passed to the apply phase in which a vertex updates its
own state. Finally, scatter phase uses the new data to update the
data on adjacent edges and signal adjacent vertices to re-execute.
The execution engine manages the scheduling of vertex programs
to support a particular consistency model such that vertex programs
operate on consistent data in spite of parallel execution.

3. GRAPHAUDIT DESIGN

In this section we describe the design of GraphAudit, a pol-
icy compliance auditing framework that extends existing graph-
based MLDM frameworks. GraphAudit’s extensions enable the re-
construction of the runtime context of data accesses made by the
MLDM algorithms operating on graph data. This is achieved by
interposing and logging data accesses made by MLDM algorithms
and tracing the flow of private data through the graph. The pro-
grammatic analysis of these data flows enables automated auditing
of expressive privacy policies.

Figure 2 provides an overview of an MLDM framework extended
by GraphAudit to support auditing based policy compliance. The
shaded components represent the GraphAudit specific components.
The design of each GraphAudit component addresses several chal-
lenges and requirements that are specific to MLDM algorithms op-
erating on large graph data. However, the GraphAudit design is
general and applies to many practical MLDM frameworks that sup-
port the vertex oriented graph-parallel computation abstraction [31,
32]. In the rest of this section we describe these components.

3.1 Logging Data Accesses and Label Propa-
gation

GraphAudit extends existing MLDM frameworks by introducing
two functionalities: 1) a fine-grained logging mechanism to log
access to the structural graph elements as well as the data itself,
and 2) a coarse grained label propagation mechanism to track data
flows across the execution context of the vertex program.

Access to graph elements. A common use case of MLDM frame-
works is to have a data processing pipeline that starts with reading
a complete (large) graph into the MLDM framework. Different
MLDM algorithms may create partial views of the graph, e.g., to
support user’s privacy controls that restrict the use of specific data,
and execute on this partial view of the graph.

To support policy compliant usage of structural graph elements
(i.e., vertices and edges), GraphAudit provides two precondition



v_score = vertex.get_data("score"
v_gender = vertex.get_data("gender")
if (vertex.get_data("age") < 20) {
v_score += 1
vertex.set_data("score", v_score)
} else {
v_score += 2
vertex.set_data("score", v_score)

Figure 3: Example code showing the GraphAudit data access im-
plementation for GraphLab using get_data and set_data wrap-
per functions.

abstract functions that enable the developer to add logic for exclud-
ing access to a vertex or an edge based on a policy. By logging the
graph elements that were not excluded, GraphAudit can determine
whether a policy violation occurred, regardless of whether data ac-
cesses were performed.

For example, a social network can recommend a new friend to a
user based on their shared friends. If some of their shared friends
choose not to disclose these friendship links, an algorithm that sim-
ply uses these edges without accessing any associated data already
violates a policy. The programmer can use GraphAudit’s precon-
dition functions to exclude these private friendship links before the
friendship recommendation algorithm runs and thereby ensure that
the excluded links are indeed not used. If the programmer decides
to not filter a vertex or an edge, GraphAudit logs its use, irrespec-
tive of whether a data access was performed.

Access to graph data. Vertex programs compute on data that
broadly refers to either input data (e.g., a user profile in a social
network) or algorithm data (e.g., rank variable for Pagerank, la-
tent factors for collaborative filtering, etc.). These data attributes
are commonly stored in a programmer-defined structure, for ex-
ample a C-language struct in GraphLab. A key challenge for
GraphAudit is to log accesses to individual data attributes contained
in the programmer-defined structures while allowing the MLDM
algorithms the flexibility to define their own data representations.
Moreover, GraphAudit should not require any modifications to the
core logic of the MLDM algorithm implementation.

To address this, GraphAudit provides the MLDM developer with
wrapper functions to read and write individual data fields associ-
ated with the vertex and edge. These wrapper functions receive the
data field name as a parameter, and store the values in a generic
key-value map. In addition, they log accesses to the data fields
along with the id of the vertex or edge of the graph associated with
the data. As a concrete example consider the code fragment in
Figure 3, which uses the actual syntax of our C++ implementa-
tion of GraphAudit. In this code, the algorithm developer simply
replaces direct accesses to the struct fields with GraphAudit’s
get_data() and set_data() wrapper functions.

Label Propagation. An important aspect of auditing data use by
MLDM algorithms is to monitor how data attributes are combined
with each other, which could potentially result in a non-compliant
use of data. Consider the following example policy —an MLDM al-
gorithm can use a user’s age, gender or location fields individually
but cannot disclose any data derived by combining them, as doing
so may make users personally identifiable [41]. Auditing such poli-
cies requires tagging data fields with labels and propagating labels
to track derived data.

GraphAudit performs coarse grain label propagation within the
data access wrapper functions and propagates labels throughout the
execution context of the vertex program. Each data field is associ-
ated with a data field label set which is initialized to the data field
name (e.g., “age”). Additionally, GraphAudit maintains a context
label set that tracks all labels associated with the execution con-
text. Within the execution of a gather, apply or scatter, every read
access of a data field accumulates its label set into the context label
set (essentially holding the labels of all fields that were read in the
context). When writing a data field, the context label set is added
to the data field label set (distinct union of the two sets).

The set of labels associated with a data field are stored along-
side the data field value, and are thus persistent across the entire
execution of the algorithm. To support explicit data flows across
execution contexts, GraphAudit also propagates the context label
set between the gather and apply phases.

For the code snippet in Figure 3, each call to get_data() re-
sults in the accumulation of the corresponding label in the context
label set. In set_data("score"), the accumulated context labels
{age,gender} propagate to the score field. This example illus-
trates a caveat of coarse grained label propagation where every data
attribute read by the vertex program influences subsequent writes —
score is tainted with the label gender even though gender was not
used explicitly. This conservative approach to label propagation is
suitable for the purposes of privacy auditing, where careless access
of data (even if not used eventually) should be avoided. Another
advantage that comes with this approach is the ability to account
for implicit flows. Furthermore, the alternative approach of per-
forming fine-grained runtime data flow analysis can prohibitively
increase the runtime overheads of the vertex program, especially in
massive datasets.

3.2 GraphAudit Log Structure

GraphAudit logs are designed to provide the following two prop-
erties. First, the logs must be compact; MLDM algorithms running
on massive graphs may generate a large number of data accesses
and the resultant logs should reduce storage. Second, each data
access log must be complete and contain the necessary runtime in-
formation about the vertex program. To address this, GraphAudit
stores the following two types of logs:

Graph Elements Access Logs. GraphAudit logs the set of vertices
and edges that were used by the MLDM algorithm. This is achieved
by logging the graph structure at the end of the MLDM algorithm
using the mechanism described in Section 3.1.

Data Access Logs. GraphAudit logs every data access occurring in
each phase of the vertex program using the following log format:

<source_type>|<access_type>|<id>|<field>|<label>

Each log entry contains a source_type which indicates whether
avertex or an edge is associated with the data access; access_type
indicates whether a read or a write operation was performed; id is

the identity of the vertex (vid) or edge (< source_vid,destination_vid >)

associated with the data access; field is the data field being ac-
cessed, which is encoded in a single byte to reduce memory and
disk storage; label is the data field label associated with the field
at the time of access which is encoded as a bit array. Addition-
ally, before the execution of a gather/ apply or scatter, GraphAudit
logs information about the current execution context, i.e., the vertex
program’s identity, the phase of execution (gather, apply or scatter),
and the iteration number. This information is essential for correctly
analyzing the logs in order to enable a correct understanding of the
runtime data flow, as we will further describe in Section 3.3.2.



3.3 Log Analysis for Policy Compliance

In this section we describe the log analysis methods used by
GraphAudit to audit policy compliance for the two main policy
categories, i.e., policies that 1) limit the use of private data, and
2) limit the extent of data disclosure. For each category we pro-
vide specific examples motivated by the social network and movie
recommendation web services described in Section 2.1. Note that
the categories are not limited to the two services but rather encom-
pass a wide range of privacy controls and policies that we surveyed
across many services.

3.3.1 Policies that limit use of private data

Since data is explicitly structured as a graph, monitoring the use
of private data can be directly audited from the GraphAudit logs as
follows:

Vertex Use. Users may explicitly want to opt-out of any person-
alization service or opt-out certain entities (e.g., opt-out all x-rated
movies for recommendations). Auditing such a policy is done by
directly checking if the vertex corresponding to a opted-out user or
entity is present in the GraphAudit graph access logs.

Edge Use. Users may not want to have associations with specific
users or entities be used by the web service. Auditing such policies
is done by checking if any edges associated with the user or entity
are present in the GraphAudit graph access logs.

Data field use. Users may mark specific data fields as private, e.g.,
a user’s age in her social network profile. Such policies are audited
by directly searching the data access logs for the specific edge or
vertex id and field entries that match the user and the field name.

Derived Data. Users may preclude certain data fields from be-
ing combined, e.g., to prevent learning algorithms from inferring
undisclosed user characteristics. Auditing such policies requires
checking the field labels associated with the access logs and veri-
fying that none of the field labels have all the bit positions set that
correspond to the fields that should not be combined.

3.3.2  Policies that limit extent of data disclosure

Auditing policies that limit the extent of data disclosure requires
re-constructing the flow of data from the GraphAudit data access
logs. The primary challenges in re-constructing the data flows from
logs are 1) to account for the explicit ordering of read and write log
events to prevent any false flows, and 2) ensuring that the sequence
of logged events follow the consistency model adopted by the ex-
ecution engine. We discuss this latter challenge in Section 4 and
focus on preventing false flows.

GraphAudit constructs a data flow graph (hereby called a DFG)
that encodes the explicit dependencies between read and write ac-
cesses made to data fields by the vertex program. A vertex in the
DFG corresponds to a data field associated with a vertex or edge
that was accessed. For example, access (read or write) to field f1
associated with vertex A and field f2 associated with edge A — B
are represented as DFG vertices A : f1 and (A, B) : f2, respectively.
Directed edges in the DFG denote a read followed by a write. For
example, A : f1 — (A,B) : f2 indicates that f1 of A was read fol-
lowed by a write to f2 of the edge A — B.

The above described approach of generating the flow graph does
not explicitly account for the order of data accesses and can poten-
tially cause false data flows. Consider a graph with three vertices,
A, B, C, and an ordered sequence of data accesses B: f1 — C: f1
followed by A: f1 — B: f1. Simply creating these two edges in
the DFG would result in an incorrect flow of f1 from vertex A to C.
To address this, before adding an edge to the flow graph, GraphAu-

dit checks if the destination vertex is contained in the flow graph
and it already has an out edge. This implies that data from this ver-
tex already propagated to other vertices, thus new writes to the data
should not impact previous reads. Therefore, if an out edge exists,
GraphAudit creates a duplicate of the destination vertex, creates
an edge from the original to the duplicate destination vertex, and
then creates the new edge between the source and the duplicated
destination vertex. In our example, this results in a new vertex
B* in the DFG and the following three edges: B: f1 — C: f1,
B:f1 — B*: fl,andA: f1 — B*: f1.

GraphAudit processes the log events along with the context in-
formation of the vertex program to generate a data flow graph.
Within the execution context of a gather, apply or scatter, GraphAu-
dit creates a vertex for every read access log and adds these vertices
to a read set. One encountering a write access log, GraphAudit cre-
ates an edge from every vertex in the read set to the vertex on which
data is being written. To account for explicit data flows that occur
from the gather to the apply phase within a given iteration of the
vertex program, GraphAudit propagates the complete read set from
the corresponding gather phase and continues processing the logs
as described above. The read set is otherwise local to a vertex pro-
gram and is cleared after every iteration of the vertex program.

The resultant data flow graph enables the auditing of a wide
range of data flow related policies. A policy where a user in a
social network chooses to limit disclosure of a private data field
(e.g., age) to friends-of-friends is audited by computing all paths
from the vertex associated with the data field and checking that all
destination vertices are within two hops in the original graph.

4. GRAPHAUDIT IMPLEMENTATION

In this section we describe the implementation of the GraphAu-
dit design. We chose to implement GraphAudit over GraphLab ver-
sion 2.1 [25], which is implemented in C++. GraphAudit extends
two primary components of GraphLab — the Distributed Graph API
and the Execution Engine. For evaluation, we also modified three
MLDM algorithms, namely Pagerank!, Connected Components,
and Alternative Least Squares (ALS). For each component, we first
describe its function within GraphLab, and then the modifications
required to incorporate the GraphAudit design. It is important to
note that the GraphAudit design makes no assumptions of the spe-
cific implementation of the graph parallel abstractions. Alternately,
GraphAudit can be implemented for other graph parallel abstrac-
tions like Apache Giraph [1].

4.1 Distributed Graph API

GraphLab provides a unified API to interface with the directed
graph data structure that is distributed across multiple machines in
the cluster. The API enables the construction of the graph, stor-
ing and retrieving data associated with the graph, and performing
basic operations on the graph. The API enables the MLDM algo-
rithm developer to define custom edge and vertex data structures,
commonly in the form of a C style struct. These user-defined
data structures are used to initialize two GraphLab templates, ver—
tex_data_type and edge_data_type, that are used for storing
the user-defined data attributes on vertices and edges, respectively.
GraphAudit makes the following modifications to the distributed
graph APL:

Explicit data access. GraphAudit enforces all data accesses to be
logged by precluding direct access to user-defined data. GraphAu-
dit provides the developer with a DataMap class that permits data

IThe appendix provides C++ code snippets for Pagerank imple-
mentation in GraphLab and GraphAudit.



accesses only through two functions — get_data(key) and
set_data(key, value) where the key is the name of the data
field that needs to be accessed. The DataMap object stores the
data in a designated associative map array, that uses the field name
as a key. In addition to mediating access to the data fields, the
functions also logs every access to the data field using the log
format described in Section 3.2. In order to maintain type-safety
when accessing data attributes, we used a double type for all at-
tributes, which is commonly used data type for MLDM algorithms.
GraphAudit signals the execution engine to start only if both the
vertex_data_type and edge_data_type are not initialized us-
ing the DataMap class.

Data field labels. In addition to the data field storage, DataMap
stores the label sets associated with each data field (data field label
set). The labels are stored in a compact dynamically-sized bit array
initialized to 32 bits (we use the Boost C++ library [3]). Each data
field name is assigned a unique index in the label bit array upon the
first time the set_data() function is invoked. This assignment is
done by maintaining a globally synchronized map of field names
and bit position. To reduce the synchronization overhead, threads
cache the assignment of field names once they are initialized.

Label propagation within an execution context. In GraphLab,
each execution context is represented by a Posix thread (pthread)

that runs a vertex program function (gather, apply or scatter). GraphAu-

dit performs label propatation within an execution context requires
the propagation of labels between the context label set and the data
field label set. GraphAudit uses thread specific key-value storage
(with the standard pthread functions pthread_getspecific() and
pthread_setspecific()) for accessing the context labels. For
every read access of a data field (get_data()), GraphAudit prop-
agates the labels associated with the data field to the context la-
bel, and for every write to a data field (set_data()), GraphAudit
propagates the context label set to the data field label set. Label
propagation is performed using binary OR operations on the label
bit arrays.

4.2 Execution Engine

GraphLab’s execution engine performs two key tasks. First, it
implements a scheduler that schedules the execution of vertex pro-
gram for vertices that are signaled to execute in the current iteration
of the MLDM algorithm. The order of execution (including the
gather, apply and scatter phases) determines the consistency prop-
erties of the data accesses made by the vertex program. Second,
the execution engine manages synchronization of data across all
the replicated vertices in the cluster?. Each replicated vertex (or
mirror) is assigned a master vertex running on one of the machines
in the cluster. At the end of the gather phase, all the mirrors of
a vertex message the accumulated data to the master. The master
alone executes the apply phase and messages all the mirrors the
updated data after the apply phase terminates.

GraphAudit makes the following changes to the synchronous ex-
ecution engine of GraphLab:

Logging graph use. GraphAudit execution scheduler calls the
vertex_verify() and edge_verify() precondition filter func-

used. To limit overhead, GraphAudit assumes the first response as
final and logs the set of vertices and edges used in the computation
at the end of the execution of the MLDM algorithm.

Label propagation across execution contexts. GraphAudit mon-
itors information flows that occur across execution contexts be-
tween the gather and apply phase. GraphAudit propagates the con-
text labels of the gather phase by extending the default GraphLab
gather_data type to labeled_gather_data type that contains
the context label set of the gather phase. The master node receiv-
ing the labeled_gather_data objects first applies the labels to
it’s context label set before executing the 4+ = operation on the
gathered data. Finally, when the engine schedules the apply phase,
GraphAudit propagates the accumulated labels to the context label
set associated with the apply phase. This, GraphAudit ensures that
labels propagate along with the data even when data flows occur in
a distributed setting.

Consistency and ordering of logs. The consistency and order-
ing properties of GraphAudit logs are based on the scheduler and
consistency mechanisms provided by the execution engine. Since
the GraphAudit implementation does not impact these properties of
the execution engine, the resultant logs maintain the same proper-
ties. For example, the synchronous engine ensures a deterministic
execution even in a distributed setting. Additionally, the engine im-
plements a vertex consistency model by locking vertices in the exe-
cution context of current vertex program. Consequently, GraphAu-
dit logs maintain the same vertex consistency property and log the
same runtime ordering of accesses as made by the MLDM algo-
rithm.

Flushing logs to disk. GraphAudit creates thread-specific output
streams for logs. GraphAudit writes the logs to the streams, but
does not explicitly flush logs to disk, relying instead on the under-
lying OS for that purpose. We evaluate the performance overheads
with writing logs in Section 4.

4.3 MLDM Algorithms

The GraphAudit implementation requires the following two straight-

forward modifications to the MLDM vertex programs that does not
require any changes to the core logic of the MLDM algorithm.
First, GraphAudit requires that the vertex and edge data be initial-
ized using the DataMap and all accesses to the data fields use the
get_data(key) and set_data(key, value) functions. Mak-
ing these changes for the three algorithms requires modifying 71
lines of code (9.69%) for ALS, 9 lines of code (3.38%) for Pager-
ank, and 11 lines of code (4.44%) for Connected Components. Sec-
ond, GraphAudit optionally requires the MLDM programmer to

implement the two precondition filter functions?.

4.4 Audit Log Analysis

Implementing the log analysis for policies that limit the extent
of disclosure requires processing the data flow graph in a way that
is specific to the policy. Consider the policy where a user wants
to limit the disclosure of location data to friends-of-friends in the
social graph. Simply computing path lengths originating from ver-
tices that contain the location data field is not sufficient — the path

tions that are implemented in the vertex program. The vertex_verify () length computation must discount the redundant vertices in the flow

function is called before the scheduler invokes the vertex program
on a vertex and the edge_verify () function is called before in-
voking the gather on edges in the graph. If the verify functions
returns True, the vertex/edge access continues and is marked as

2GraphLab distributes the edges across machines (e.g., random as-
signment) in the cluster and replicates all the vertices.

graph, edges in original graph that are represented as vertices in the
flow graph, and vertices in the flow graph corresponding to other
data fields associated with the same user.

To address this, we make the following subtle change to the data
flow graph by introducing edge weights as follows. An edge weight

3The preconditions default to True, i.e., the graph element is used.



of 0 is added to every out edge from a redundant vertex, vertex that
corresponds to an edge in the original graph, and from a vertex
containing a data field that is not being audited. Every other edge
has a weight of 1. Path lengths are computed by a modified Dijk-
stras algorithm that traverses a path but counts lengths by adding
the edge weights. This resultant path length directly maps to the
path lengths in the original graph.

Implementing the log analysis for policies that limit the use of
data is straightforward as it is performed by running regular ex-
pressions matches over the logs.

5. PERFORMANCE EVALUATION

In this section we empirically evaluate the performance of GraphAu-

dit and characterize the performance overheads associated with it.
We study the scalability of GraphAudit using three different MLDM
algorithms, executing on varying graph sizes, across two deploy-
ments — a multi-core server and Amazon EC2 cluster instance.

Our performance evaluation of GraphAudit seeks to address the
following three main questions:

e What attributes of the vertex program impact the runtime ex-
ecution time of GraphAudit? (Section 5.1)

e How does the performance of GraphAudit scale relative to
GraphLab for increasing data graph size? (Section 5.3)

e How does the GraphAudit overhead scale relative to GraphLab
with increasing machines in the cluster? (Section 5.4)

5.1 MLDM Algorithms

In order to understand the attributes of MLDM algorithms that
GraphAudit’s performance, we consider the following three MLDM
algorithms:

Pagerank is a widely used link analysis algorithm that measures
the relative importance of a vertex in a graph. In a social network,
Pagerank can be used for identifying influential people for appli-
cations such as targeted advertising and friend recommendations.
The algorithm iteratively updates the rank of each vertex and con-
verges when the updates made to the rank estimate are below a
given threshold.

Connected Components is an algorithm used to identify connected
sub-graphs, e.g., to identify a connected group of friends that share
a specific attribute (e.g., they all like Sports). The algorithm con-
verges when all connected components have been identified.

Alternating Least Squares (ALS) is a matrix factorization method
used by recommender systems to provide personalized recommen-
dations to users. Matrix factorization decomposes a sparse user-
item rating matrix into dense user and item profiles with small di-
mensions, which were shown to be sufficient to accurately predict
the ratings a user will give to an item [30]. ALS is a matrix factor-
ization algorithm that iteratively solves linear least squares equa-
tions for the user and item profiles, and converges when the error
in the estimated ratings is below a threshold (or stops when the
maximum number of iterations was reached).

Table 1 summarizes the three key properties of MLDM algo-
rithms that impact the performance overheads of GraphAudit.

Data Type. Unlike GraphLab where data fields are accessed by
reference, the vertex program in GraphAudit accesses data fields by
value, which means that data needs to be copied. This is required to
support GraphAudit’s logging and label propagation mechanisms.
Consequently, the data types used by the MLDM algorithm have a

Table 1: Data and accesses information for Pagerank (PR), Con-
nected Components (CC) and Alternating Least Squqares (ALS)

Data Type Edges Used #Accesses/Iteration
Vertex Edge | Gather Scatter Gather Apply| Scatter
PR double - In Out 1 2 0
CC double - - All 0 2 3
ALS int, vec- double| All All 3 6 5
tor, dou- | int
ble

direct impact on the memory consumed by the GraphAudit.

Number of Data Accesses. Each access to an edge or vertex data
field requires GraphAudit to log the access and perform label prop-
agation. Thus, the performance of GraphAudit explicitly depends
on the number of accesses made in each phase of the vertex pro-
gram.

Edges Used. Gather and scatter phases of the vertex program ac-
cess data stored on the edge or the adjacent vertices of the edge.
Thus, the number of edges that are used by the MLDM algorithm
directly impacts the GraphAudit overhead.

Finally, most MLDM algorithms iteratively update their state un-
til they converge to slow low error or reach a predefined number of
iterations. This convergence is tightly related with the structure of
the input graph, and although GraphAudit does not modify the ter-
mination criteria of the algorithm, each additional iteration includes
the above described overheads.

Table 1 shows that the three algorithms store different data field
types, provide different edge usage patterns for the gather and scat-
ter functions, and make varying number of data accesses in each
phase of the vertex program. This enables us to characterize the
performance of GraphAudit for MLDM algorithms with varying
properties.

5.2 Experimental Setup

Dataset for graph analytics. We evaluate Pagerank and Con-
nected Componenets using large social network graphs. Using the
Boost Graph Library [10], we generate 10 synthetic small world
graphs that have the characteristics of a social network graph struc-
ture, with number of users (vertices) ranging from 1 to 10 million
in steps of 1 million. Based on the small-world model, each graph
contains approximately 10 times more edges than vertices.

Dataset for collaborative filtering. We use the MovieLens dataset [8],

which contains 10M ratings given by 71k users to a set of 10k
movies. This dataset is represented as a bi-partite graph, with ver-
tices representing users and movies, and connecting edges that rep-
resent the ratings that users assign to movies. We sub-sampled this
graph and created 10 graphs, ranging from 1M to 10M ratings in
steps of 1 million.

We deploy GraphAudit and GraphLab in two different settings:

Multi-core server. We use a 32-core 2.6GHz AMD Opteron server
with 256GB of RAM, and physically attached 1.7TB disk.

Amazon EC2 Cluster. We configured an 8-node Amazon EC2
cluster. Each node is a quad core 2.6GHz Intel Xeon E5-2670
machine with 15GB RAM and network attached storage (Amazon
EBS).

Metrics. For each experiment, we measure the execution time of
the algorithm for the following three settings: (1) GraphLab version
2.1 with no modifications (GraphLab), (2) GraphAudit with only
data access and label propagation with logging disabled (GraphAu-
dit without logging), which represents the processing overhead of
GraphAudit, and (3) GraphAudit with data access, label propa-
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Figure 4: Performance for Pagerank, Connected Component and
ALS, on an EC2 cluster and a Server, with various dataset sizes.

gation and logging enabled (GraphAudit with logging), which ac-
counts for the processing as well as I/O overhead of GraphAudit.
We define the overhead ratio as the ratio between the algorithm ex-
ecution time with GraphAudit and GraphLab without GraphAudit.

We set the following parameters: Pagerank — convergence tol-
erance is 0.01; ALS — user and item profiles dimension (i.e., the
number of latent factors) is 10, the maximal number of updates
(signals) per vertex is 5, convergence tolerance is 0.001.

We run the three algorithms using the corresponding datasets on
the EC2 cluster and the server. We report the average execution
time over 5 runs to account for any variability. We verified that the
variance of all runs was less than 5% of the average.

5.3 Varying Graph Size

We characterize the performance of GraphAudit for increasing
graph data sizes for the EC2 cluster, using all eight machines, and
the multi-core server.

Figure 4 shows the breakdown of the execution time taken by
GraphLab, GraphAudit without logs, and GraphAudit with logs.
Note that GraphAudit requires the logs for policy compliance checks;
we study the execution without logs to better understand the source
of GraphAudit’s performance overhead. We observe that across
all algorithms, the I/O overhead associated with writing logs to
disk dominates the execution time. The I/O overhead is higher for
the server because writes are bottlenecked by a single disk phys-
ically attached to the server. However, we observe that the pro-
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cessing overheads of GraphAudit (GraphAudit without logs) range
between 3-4.5x across all algorithms for both deployments. In the
following section we show how we can significantly reduce the I/0
overhead by a modest increase in the number of machines in the
cluster.

Pagerank and Connected Components. Figures 5(a) and 5(b)
show the overhead ratios for Pagerank and Connected Components
with and without logs, respectively*. The overhead ratios do not
vary with the input graph size. This shows that both the process-
ing and I/O components of GraphAudit provide scaling properties
similar to GraphLab.

The processing overhead of GraphAudit is comparable for the
two algorithms (~4x for 10M vertices) which is approximately
50% of the overhead for Pagerank with logs (8x for 10M vertices)
and 30% of the overhead for Connected Component with logs (15x
for 10M vertices). The higher overhead of Connected Component
is because the scatter function signals all edges of a vertex whereas
Pagerank signals only the out edges. This causes the Connected
Component vertex program to execute over significantly more ver-
tices compared to Pagerank causing additional processing and 1/0
overheads.

ALS. Figures 5(c) and 5(d) show the scaling properties for ALS
as the number of edges are increased from 1 to 10 million. Be-
yond 5 million edges, ALS exhibits the same scaling behavior as
Pagerank and Connected Components, i.e., the overhead ratio does
not change with increasing number of edges. However, from 1 to
5 million edges, the overhead associated the GraphAudit with logs
increases significantly (4-12x on EC2 and 20-27x on the server)°.
This increase is explained by the following two properties. First,
the apply phase of ALS makes the highest number of data accesses

#Connected Components for the 10M input graph size on our server
did not complete due to a memory limit, hence not shown in the
figure.

5The increase in the overhead ratio for GraphAudit without logging
is not as steep as GraphAudit with logging.



Table 2: The reduction in processing and logging overhead
achieved by increasing cluster size.

Processing overhead Logging Overhead
Cluster | 1 8 1 8
ALS 5.79 2.36 30.21 3.41
CC 7.61 3.37 26.77 9.13
PR 7.03 2.6 10.41 4.9
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Figure 6: GraphAudit Overhead for Pagerank, Connected Com-
ponent and ALS, with a constant dataset size but varying Cluster
sizes.

due to the dimensions of the latent factors (see Table 1). This makes
the apply phase the dominant source of the processing and I/O over-
heads of GraphAudit. However, beyond the first 5 million ratings,
only 1.47% new vertices (movies) are added to the graph, causing
the overheads associated with the apply phase to remain roughly
the same. Second, for graphs smaller than 5 million edges (ratings)
the algorithm converges before the maximum number of iterations.
Beyond 5 million ratings, the denser graphs cause the algorithm to
make the same number of iterations, stopping only when reaching
the maximum allowed iterations.

5.4 Varying Cluster Size

In this section we evaluate the extent to which the I/O overhead
of GraphAudit can be reduced by amortizing the writing of logs
across multiple machines. To evaluate this overhead, we maintain
fixed graph size and increase the number of machines in the Ama-
zon EC2 cluster from 1 to 8. For Pagerank and Connected Com-
ponents, we use a graph with 1M vertices and 10M edges, and for
ALS we use 1M edges and 16K vertices.

Figure 6 shows the reduction in the overhead ratio between GraphAu-

dit with logs and GraphLab for increasing number of machines in
the EC2 cluster across the three MLDM algorithms. Table 2 shows
the breakdown of the processing overhead (GraphAudit without
logs) and logging overhead (GraphAudit with logs - GraphAudit
without logs) for cluster size of 1 and 8 machines. We observe
that the relative improvement in performance across the three algo-
rithms is ordered by the extent of I/O processing involved in each
algorithm. The reduction of I/O overhead is the greatest for ALS
(30.21x to 3.41x with a speedup of 8.8x), followed by Connected
Components (speedup pf 2.9x) and Pagerank (speedup of 2.1x).
The improvement in processing overheads are modest and range
between 2.2-2.7x for the three algorithms.

5.5 Performance Evaluation Summary

The above described experiments highlight several properties of
the performance of GraphAudit. First, we observe the factors that
impact impact the performance of GraphAudit are: 1) the data types
used by the MLDM algorithm, 2) the scope of edges used, and 3)
the number of data accesses performed by the algorithm. MLDM
algorithm developers should account for these factors when build-
ing new algorithms for GraphAudit. Second, both the process-
ing and I/O component of GraphAudit incur a constant overhead

over GraphLab, scaling similarly to GraphLab for increasing graph
size. The I/O overhead associated with writing logs is the domi-
nant source of overhead, whereas the processing overhead associ-
ated with runtime data tracking is relatively low (3-4.5x). Finally,
the I/O overhead can be significantly reduced by amortizing the log
I/0O across a modest size compute cluster. This makes the overall
overhead of GraphAudit manageable and feasible for deployment
in practice.

6. LOG ANALYSIS CASE STUDY

We present a case study of using GraphAudit to audit policy
compliance for a real social networking service, and evaluate the
ability to detect policy violations and characterize their extent. Our
analysis shows that GraphAudit’s log analysis scales to log sizes
generated from real world social network graphs. Moreover, GraphAu-
dit’s ability to map data flows enables the auditor to go beyond de-
tection of violation, and perform a detailed characterization of the
extent and impact of the policy violation.

Dataset. We use anonymized data from a real-world social net-
working service, Pokec [42], which is a popular social network-
ing service in Slovakia. The dataset contains 1.6 million users
(vertices) and 30 million directed friendship relationships (directed
edges). The diameter (longest shortest path) is 11, which means
that when data associated with the vertex propagates 11 hops or
more, it essentially can reach all vertices in the graph.

Policy violation setup. We setup the following scenario to emu-
late a policy violation. The social network service provider uses
the social graph for targeted advertising. This is achieved by run-
ning Pagerank to identify influential users in the directed graph.
Users are provided with privacy controls enabling them to explic-
itly opt-out of targeted advertising. We consider two users - the
most connected user and a user with the median degree. The ser-
vice provider violates the policy by running Pagerank that uses the
complete social graph while ignoring those users’ privacy settings.

GraphAudit Log analysis for policy compliance. Executing Pager-
ank on the dataset results in a total of 800 million log lines. For
the above scenario, policy compliance can be audited directly from
logs by simply checking if the vertices associated with those users
that have opted-out exist in the graph access logs or in the data ac-
cess logs. Since each log line is self contained, a single appearance
of a non-compliant vertex already indicates a policy violation.

Data flow graph. We generate the data flow graph from the data
access logs. Since no data field is accessed by the Pagerank algo-
rithm, the data flow graph maps the flow of a vertex’s rank. The re-
sultant data flow graph has 18 million nodes and 436 million edges.
Of the 18 million vertices, 16 million are replicas generated to pre-
vent false flows, resulting in an average replication rate of 10.22
replicas per node.

Extent of violation. Beyond simply checking for the existence of
a violation, GraphAudit’s data flow graph can provide a detailed
characterization of the extent of the violation by empirically mea-
suring the number of users impacted by the policy violation. For
the above scenario, the auditor can measure the number of users
(vertices in the graph) whose rank computation was influenced by
the 2 users that opted-out and whose policy was violated.

In the Pokec data, the most connected user had an out-degree of
8763, and the user with the median degree had an out-degree of
11. Using the generated data flow graph we found that 88% of the
vertices (users) in the graph had their rank computation impacted
by the rank of the highest-degree vertex. We also observed that
the median-degree user influenced 85% of all other vertices in the



graph. The similarity in the extent of spread is a result of the small-
world structure of the Pokec social network graph: low-degree ver-
tices are mostly connected to high-degree vertices, which causes
information to quickly disseminate in the graph. This analysis im-
plies that for this social network, a non-compliant algorithm can
cause data that a user deems as private to potentially reach almost
all other users in the network, even for someone with few friends.

7. GRAPHAUDIT DEPLOYMENT

GraphAudit can be deployed under three different scenarios that
we outline below. The first two deployment scenarios enable con-
tinuous policy compliance checks while the last scenario is based
on compliance checks done at the time of audit.

Live deployment with non-interactive responses. Oftentimes,
MLDM algorithms operating on massive datasets are run on a pe-
riodic basis. For example, a movie recommendation service may
not require updating its learned collaborative filtering model on ev-
ery rating submitted by the users, but instead recompute it once a
week, when sufficiently new ratings were added. In this scenario,
GraphAudit can be deployed on the existing compute resources of
the service provider, while the modest overhead it introduces does
not alter the way the service provider runs its algorithms.

Live deployment with interactive responses. For scenarios that
require interactive latencies, e.g., executing Pagerank on the social
network graph in response to a user query, GraphAudit can be de-
ployed by increasing the number of machines in the cluster to mask
the compute and I/O overheads associated with it.

On demand deployment to facilitate an audit. Finally, GraphAu-
dit can also be deployed on-demand during an audit. In this case,
existing MLDM algorithms are modified and executed separately
on GraphAudit. The resultant logs are then provided to the auditor
for policy compliance checks.

8. RELATED WORK

Auditing. Audits are routinely conducted (automated and man-
ual) to test compliance of an organization’s security policies. How-
ever, auditing the compliance of privacy policies today relies pre-
dominantly on manual labor, code inspections and reviews of data
storage and usage. There has been little previous work done on
automating this process [11, 14, 26, 40], and as far as we know,
GraphAudit is the first work that addresses auditing MLDM algo-
rithms in a modern, large-scale graph-mining framework.

Database Provenance and Access Control. The most similar

works to our paper study data provenance in the context of databases [13,

15,16,21,22,27,43,44] and meta-data in storage systems [33]. In
these works, data stored in the database is associated with privacy
policies stating who can access it, for what purpose (e.g., which
queries can be run), and when it expires. Although these works can
support auditing the data acquisition and distribution performed by
the service provider, they operate at the database transaction level,
making them prohibitively slow for auditing the runtime context
of complicated MLDM algorithms operative on massive data. Fur-
thermore, using the data flow graph, GraphAudit enables far more
expressive policies than queries.

Privacy preserving data mining. A different line of work aim at
reducing the probability of private data violations, through input
or output distortion, such as differential privacy techniques [24, 28,
29], cryptographic methods that enable computation on encrypted
data [35,37], and end-user tools that improve transparency of data
usage [17,19]. Some of these techniques, such as Airavat [38],

were applied to a large-scale data-mining platform. These approaches
are orthogonal to GraphAudit, and even if these are made practical
and deployed, auditing will still be required to ensure that service
provider’s data use practices are policy compliant.

Information flow analysis. Runtime taint tracking is a key com-
ponent in GraphAudit, enabling the analysis of data accesses and
propagation during the runtime of the MLDM algorithm. Related
efforts like [45,46] seek to protect against malicious data accesses
and [18, 34,36] seek to protect the systems integrity. While these
systems provide runtime enforcement, GraphAudit only provides
detailed logs for post-analysis. Hence, GraphAudit’s logging does
not impact the runtime behavior of the MLDM framework. More-
over, GraphAudit logs all implicit flows for the purpose of auditing
and does not require precise taint propagation that can significanlty
increase the runtime overheads.

9. CONCLUSION

In this paper we present GraphAudit, a policy compliance audit-
ing framework for large-scale graph-based machine learning plat-
forms. GraphAudit mitigates the need for the traditional manual
process of auditing machine learning algorithms that process pri-
vate user data. It does so by tracking and logging the data use
and propagation of potentially private data at runtime. These logs
can then be analyzed to detect privacy violations, and furthermore,
build a complete data flow graph that can assist an auditor in char-
acterizing the extent of the policy violation and its potential harm.
‘We build GraphAudit on top of GraphLab, and show that it scales
well with the size of the input graph. We also demonstrate how
GraphAudit’s overhead can be significantly reduced into a practi-
cal deployment by using a modest cluster.

We believe that GraphAudit can fundamentally transform how
privacy auditing is perceived and performed by companies — from
being a slow, expensive and tedious manual process into an effi-
cient and scalable process, that is an integral part of the deployment
of machine-learning algorithms. As future work, we plan to imple-
ment GraphAudit on other popular machine-learning platforms and
integrate its logging mechanism with existing large-scale logging
infrastructures.
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APPENDIX

Appendix - Pagerank Code With and Without
GraphAudit

Listing 1 and 2 shows simplified C++ code snippets with and with-
out GraphAudit modifications, respectively. The data associated
with each vertex is an int. In the original GraphLab code, this data
is returned by reference with a call to vertex.data(), thus is used
both for reading and for writing the updated value. In Listing 2,
GraphAudit replaces this with explicit calls to get_data() and
set_data() to a field we call “rank”. In addition, we added an
edge precondition function, i.e., gather_verify(), that returns
true only if edge is not “confidential” and can be used.

/* 0Over all IN_EDGES, Gather the weighted rank of

the adjacent vertex */

double gather (icontext_type& context, const

vertex_type& vertex, edge_type& edge) const {
return (edge.source().data() / edge.source().
num_out_edges ());

}

/* Use the total rank of adjacent pages to update

this vertex x*x/

void apply(icontext_type& context, vertex_type&

vertex, const gather_type& total) {

const double newval = compute_rank(total);
last_change = (newval - vertex.data());
vertex.data() = newval;

}

/* The scatter function just signals adjacent

vertices */

void scatter (icontext_type& context, const

vertex_type& vertex, edge_type& edge) const {
if (last_change > TOLERANCE)

context.signal (edge.target ());
}

Listing 1: Simplified Code snippet for Pagerank - GraphLab

/* Verify Edge */
bool gather_verify(edge_type& edge) const {
return !confidential (edge);
}
/* 0Over all IN_EDGES, Gather the weighted rank of
the adjacent vertex */
double gather(icontext_type& context, const
vertex_type& vertex, edge_type& edge) const {
return (edge.source().get_data("rank") / edge.
source () .num_out_edges ());
}
/* Use the total rank of adjacent pages to update
this vertex x/
void apply(icontext_type& context, vertex_type&
vertex, const gather_type& total) {
const double newval = compute_rank(total);
last_change = (newval - vertex.get_data("rank"))
vertex.set_data("rank",newval);
}
/* The scatter function just signals adjacent
vertices */
void scatter (icontext_type& context, const
vertex_type& vertex, edge_type& edge) const {
if (last_change > TOLERANCE)
context.signal (edge.target ());

Listing 2: Simplified Code snippet for Pagerank - GraphAudit
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