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ABSTRACT

Hadoop is a popular implementation of the MapReduce pro-
gramming model for data processing. We first compare dif-
ferent Hadoop models and discuss their advantages and lim-
itation. The traditional Hadoop system is scalable because
a machine serves both computation and storage function.
However, this principle imposes a strong constraint on sys-
tem design and does not quite fit enterprise and cloud appli-
cation, which require to decouple computation and storage
nodes. Any naive Hadoop implementations may fail to be
optimized because they are designed to preserve data local-
ity, which does not exist in the decoupled model. In this
paper, we propose a flow scheduling method: it eliminates
undesired factors that can decrease processing performance.
We model the cost of task assignment based on the penalty
of violating flow demand and convert this problem to the
network optimization problem. We have implemented Flow
Scheduler for Hadoop and the experiment results show that
it can maximize the processing flow rate while improving
the system throughput by up to 30%. More interestingly,
our flow scheduling method can provide more smooth task
execution time, which suggests it can eliminate stragglers
that caused by resource contention.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management—schedul-

ing; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—distributed applications; G.2.2 [Discrete
Mathematics]: Graph Theory—graph algorithms, network
problem

General Terms

Design, Algorithms, Performance

1. INTRODUCTION

This is an era of big data, and IDC even estimated the
exponential growth of data by a factor of 10 [21, 29]. The
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Figure 1: Hadoop performance in the decoupled
model. Four x1.large instances are used, and Ama-
zon EMR uses Amazon S3 as the storage for in-
put and output files. Amazon EMR does not utilize
all available machines because its resource scheduler
does not fit the decoupled Hadoop model.

growing data set provides huge potential for business and
research to explore. Thus, big data analytics has become
critical demand to dig valuable information from explosive
growing data. The giant volume of data along with its va-
riety and velocity poses great challenge to big data ana-
lytics[35], and therefore its optimization remains an active
research domain.

The MapReduce programming model has gained increas-
ing success for parallel data processing because of its hori-
zontal scale and fault tolerance [13]. Apache Hadoop [4] and
Microsoft Dryad [18], for example, are popular systems that
embrace this model. In order to handle large-scale data,
these systems usually run on top of large clusters of com-
modity machines and tightly couple computation and stor-
age nodes. This design enables a system to scale out easily
because the ratio between computation power and I/0 ca-
pability remains constant [13, 4, 10].

However, this principle imposes a strong constraint on sys-
tem design, and thus cannot apply to many use cases, such
as enterprises application [23, 27], scientific computing [11,
28], and cloud computing [1, 6, 16]. For example, storage
area network (SAN) is popular in enterprise and Amazon
Simple Storage Service (Amazon S3) is the recommended
storage for Amazon web services. These scenarios prefer a
separate storage architecture because of high efficient stor-



age, data lifecycle management and elastic cloud storage.
More importantly, this separate architecture provides high
flexibility of system deployment, which is a big challenge in
enterprise and datacenter management [30, 27]. For these
reasons, we believe the decoupled model will become more
important for MapReduce and Hadoop.

The decoupled mode has emerged but only few research
studies pay attention to this scenario. This situation leads
to poor performance when running Hadoop with the decou-
pled model as shown in Figure 1. To understand the perfor-
mance of the decoupled model, we ran three different types
of jobs on Amazon EC2 for the Hadoop reference model and
Amazon Elastic MapReduce for the decoupled one. The re-
sult shows that the decoupled model has system throughput
that is much lower than we expected. We find that exist-
ing Hadoop schedulers cannot work well when data locality
no longer exists. Besides, we doubt that the overhead of
large data movement can greatly affect system throughput
because the storage system and the network infrastructure
cannot fulfill the demand of Hadoop applications.

In this paper, we view the decoupled Hadoop model as a
flow network in which data flows through computation and
storage facilities. The data flow rate is the amount of data
processed or transferred per unit of time, and the system
throughput can be measured by the flow rate. We argue
that maintaing high data flow rate can increase the system
throughput. In the decoupled model, there are two possible
conditions that a computation facility does not fully utilize
its processing power: 1) the flow rate of data supply from the
remote storage facility is not fast enough and 2) the com-
puting facility cannot process data flow fast enough. The
first case can happen when the storage facility cannot han-
dle a large number of simultaneous data access and when
network infrastructure cannot sustain such a large amount
of data transfer, especially when cross-rack communication
happens. The second case comes from the overhead of oper-
ating system and the data access over network. We believe
eliminating undesired factors that affects the processing flow
rate can increase the system throughput in the meanwhile.

We propose a flow scheduling method that models the
penalty cost of task assignments. Given the cost model, we
encode the scheduling problem as the min-cost flow problem
so that we can derive the optimal task assignment. We have
designed Hadoop Flow Scheduler that implements our flow
scheduling method. This Flow Scheduler requires job pro-
file and machine profile in order to decide the optimal task
assignment. We first estimate the flow demand of tasks and
the flow capability of facilities and then feed this informa-
tion to our Flow Scheduler. Our experiment result shows
that we can improve the system throughput by up to 30%.
More importantly, our flow scheduling method can eliminate
stragglers in the decoupled model and provide more smooth
task execution time.

This paper is organized as follows. Section 2 provides
the background on the new Hadoop design and the decou-
pled model. Section 3 describes the ideal behind our flow
scheduling method, the definition of data flow rate and the
cost model for task assignment. Section 4 details the Flow
Scheduler implantation for Hadoop and how we estimate the
data flow rate. We evaluate Flow Scheduler in Section 5 and
discuss the limitation of current implementation. Section 6
gives the most related work and we conclude in Section 7.
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Figure 2: A MapReduce job consists of the map,
shuffling and reduce phase. The map task processes
a portion of input data and the reduce task aggre-
gate the output from map tasks. The phase between
the map and the reduce phase to dispatch interme-
diate result is the shuffling phase.

2. BACKGROUND

2.1 MapReduce Programming Model

The MapReduce programming model [13] is a simplified
model for data processing. In the MapReduce model, a data
processing job consists of three phases. First, the map phase
processes a portion of input data and generates output as
a list of key/value pairs. Next, the shuffle phase is the pe-
riod to transfer data between map tasks and reduce tasks
Finally, the reduce phase merges the output, which is aggre-
gated by key, from the map phase. Many data processing
applications can benefit from this simplified model, such as
large-scale indexing, machine learning problems and graph
computation [13]. Google and Yahoo, for example, apply
this model to accelerate large-scale data processing and em-
power their online advertisement business.

Figure 2 shows the three phases in a MapReduce job. This
simplified model is relatively easy for programmers to de-
velop a MapReduce application. Programmers only need to
implement the map function and the reduce function. Each
map function processes a portion of input data at a time,
e.g. one line of a file or a XML document, and the output
of the map function is a list of key-value pairs. The reduce
function then aggregates those key-value pairs and generates
the final output. Programmers do not need to specify the
details of the shuffling phase. The MapReduce runtime han-
dles complex data exchange: it aggregates the results based
on the output key from the map phase, and then transfers
the output to corresponding reduce tasks.

The MapReduce model simplifies data processing because
it hides complicated data exchange among tasks and makes
fault tolerance easier to support. Unlike the Message Pass-
ing Interface (MPI) [17], a MapReduce job does not have to
specify the host to send and receive data; the MapReduce
runtime, instead, automatically transfer data in the shuffle
phase. This embarrassingly parallel design [25, 14] is not
flexible and is limited to some data processing applications.
However, it can ease the pain when developing data process-
ing programs. On the other hand, tasks in a MapReduce job
do not have strong dependency. This fact enables to sup-
port fault tolerance without complex checkpointing mecha-



nism; it needs only re-run the failed task again. In short, the
MapReduce programming is simple but yet powerful enough
to achieve the goal of many practical data processing appli-
cations.

2.2 Hadoop

Hadoop [4] is an open-source implementation of the MapRe-
duce programming model, which provides a reliable and scal-
able system for data processing. The latest Hadoop project
includes four modules: 1) Hadoop YARN is a cluster re-
source management framework, 2) Hadoop MapReduce is
the implementation to support the MapReduce program-
ming model based on YARN, 3) Hadoop HDFS is a dis-
tributed storage system for Hadoop application data, and 4)
Hadoop Common is the common utilities that are required
by the above modules.

2.3 Hadoop Job Execution Flow
1

The Resource Manager (RM) is responsible for resource
allocation. Once received a MapReduce job, RM allocates
resource to initialize a AppMaster. This AppMaster is cre-
ated to negotiate computing resources with the preconfig-
ured resource scheduler, e.g. FIFO Schduler, Capacity Sched-
uler [2], Fair Scheduler [3]. These schedulers allocate re-
sources (or slots) to the AppMaster based on objectives such
as data locality or fairness. Those allocated resources can be
used to run map or reduce tasks. Different from Hadoop 1.x
(non YARN based Hadoop), the number of map and reduce
slots is required to define explicitly, and research studies
[9, 32] show that the optimal configuration of this value is
not intuitive. The YARN resource framework, on the other
hand, is flexible because it determines these numbers dy-
namically based on the application request and the node
capability.

After obtaining computation resources, the AppMaster
starts several node containers to process input splits. Each
map task handles an input split, and the size is usually
64MB or 128MB (the block size of HDFS). This input split
is parsed by the RecordReader object and the map task
processes a record at a time. Fach record read operation
creates the FSDatalnputStream object to access the file in-
put stream as shown in Figure 3. The source of the input
split can be a block from HDFS or it can an data object
from Amazon S3 or Azure Blob Storage service.

2.4 Hadoop Models

The most common way to deploy a Hadoop system is
to configure a node to run both Hadoop MapReduce and
Hadoop HDF'S, which can avoid bringing data to computa-
tion. However, data management, in many cases, requires
separating computing and storage nodes for flexibility and
efficiency. For example, enterprises prefer silos in order to
manage high-value data. Amazon Elastic MapReduce pri-
mary uses Amazon S3 for its persistent data storage. More-
over, many high performance files systems are considered to
replace HDF'S in order to support both MapReduce appli-
cation and other workload. As a result, different scenarios
require different ways to deploy Hadoop. As shown in Figure
3, we can define three major types of Hadoop configuration
as follows.

!The latest YARN framework allocates resources based on
memory and CPU will be considered soon
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Figure 3: System configuration of Hadoop. Each
slot handles one input split and uses the Recor-
dReader object to read data from a POSIX compli-
ant file system or a non-POSIX compliant file sys-
tem, e.g. distributed data store.

1. The reference model is the most common config-

uration for dedicated Hadoop clusters. Each node in
a Hadoop cluster serves both computing and storage
functions. This model has the scale-out benefit be-
cause the ratio between computation and storage re-
mains constant. Each computation node own its own
private storage (local disks), which can provide Hadoop
jobs enough data access bandwidth. Most popular
Hadoop schedulers aim to maximize the number of lo-
cal map tasks so that data access is at local but not
from remote. This approach guarantees enough I/0
bandwidth when the number of computation nodes
increase. On the other hand, the output data of re-
duce tasks will be written to the local HDFS (the data
node), and then replicated to other remote data nodes.

2. Remote Storage Model is common in enterprises or

high performance computing (HPC). This model has
the similar definition of AoE architecture [30]. NFS
and SAN are quite common to store data, and Hadoop
might require to access data in a separate storage,
other than HDF'S. In this case, each computation node
can access data via file-level protocol or block-level
protocol (mounted as a local file system). The mounted
point should appear the same across all computation
nodes, and thus data can be accessed on any nodes.
An good example is to replace HDFS with GPFS [7].

3. Cloud Storage Model is defined as a separate archi-

tecture, which is similar to the remote storage model
but with specialized data access protocol. This is also
similar to the Split architecture [30] but we don’t limit
this model to HDFS only. The so called model can
be found easily in many cloud computing platforms,
like Amazon Elastic MapReduce or Azure HDInsight.



Table 1: Comparisons of Hadoop models with different storage architecture

Hadoop Reference Model

Remote Storage Model

Cloud Storage Model

Resource sharing Dedicated Hadoop cluster

Enable time and space sharing

Same as the remote storage
model

Deployment flexibility The ratio between computation
and storage resources remains

fixed

Highly flexible to determine the
size of computation and storage
resource

Same as the remote storage
model

Performance scalability Scale-out easily

Proportional to storage I/O ca-
pability and network bandwidth

Network limitation

Read/Write Performance | Depends on local disk configu-

ration

Support concurrent read/write
(high I/O performance)

Long latency for REST and
SOAP protocol

Replication Triple replication is common

Block-level replication

Geo-replication is considered to
reduce latency

Hadoop compatibility Native support

Mounted as local storage, e.g.
NFS

Only Amazon S3 is supported
by default

Schedulers are optimized for
data locality

Hadoop optimization

Not optimized

Not optimized

Extra Hadoop is optimized for this
model, but fails to apply to

many use cases

Enterprise storage supports rich
functions, e.g. de-duplication,
archiving, data lifecycle man-
agement

Best fits the cloud computing
scenario

This configuration forces a task to read and write data
from and to the remote storage service.

Contrary to the reference model, we classify the remote
storage model and the cloud storage model as the decoupled
model. Because the decoupled Hadoop model can provide
more flexibility in deployment and thus the decoupled model
would be our focus in this paper.

Different from traditional Hadoop model, data locality is
no longer valid for scheduling jobs, which can cause exist-
ing scheduler not suitable for the decouple Hadoop model.
Moreover, the decoupled Hadoop model can face perfor-
mance degradation because all the input data have to be
transferred over the network In such a case, the system
throughput can be affected because CPU can be idle while
waiting for the data to be ready. For these reasons, the de-
couple model requires a new scheduling algorithm for better
performance.

In order to optimize the system throughput (minimizing
turnaround time), we argue that maximizing the data pro-
cessing rate on computing nodes can greatly increase the
system throughput. The data processing rate can be af-
fected if the input data cannot be pulled quickly enough or
the output data cannot be pushed to remote storage nodes.
To address this challenge, we introduce flow scheduling in
the next.

3. FLOW SCHEDULING

In this section, we describe the concept of flow scheduling
and then explain how we model the assignment cost based
on the penalty of violating flow demand. We also introduce
how to encode the scheduling problem as a min-cost flow
problem.

3.1 Concept of Data Flow

A MapReduce job includes several map and reduce tasks,
and each of them (on a computing facility) reads data, pro-
cesses data and writes data. The data flow rate is the size of

data that goes through a facility per unit time. For exam-
ple, the processing flow rate is how fast a machine can pro-
cess data, and a faster processing rate also suggests higher
system throughput. In a decoupled model, all of the read
and write operations involve network activities, which can
be costly and decrease the processing flow rate. Therefore,
our flow scheduling tries to maximize processing flow rate
on computing facilities so that the system throughput can
be increased.

The idea of flow scheduling is similar to the water treat-
ment system. Water supply to a desired end-user must go
through several processing steps before water is delivered
to users. Users may complain if water supply is not fast
enough. This situation can happen if water supply is scarce
or if the intermediate facilities cannot process water quickly
or if the pipeline is not large enough or if too many users
request water at the same time. Thus, to meet the demand
from users, a water treatment system should satisfy the
above conditions as mush as possible. This analogy truly
reflects those factors that affect the system throughout in
a decoupled Hadoop model: ensuring the quality of data
supply and the flow rate of data processing can increase the
system throughput. More precisely, if the low demand of a
task cannot be satisfied by facilities, the scheduling decision
is considered costly.

Flow rate is defined as how fast a machine can process
data or a network can transfer data.

D

R=7
Here, D is the size of data and T is the total time to process
or transfer the data. Throughput this paper, we use second

for the time unit and mega bytes for the data size unit.

Flow capability of facilities: We define three types of
flow capability which are read, write and process. Read flow
capability is the maximum flow rate that a facility can pull
data from other facilities and write flow capability is similar
but its the maximum flow rate that can push data to other




facilities. The process flow capability is defined by how fast
a facility can process data. Facilities can be classified as
computing nodes, storage nodes and network infrastructure.
R;, is the read flow capability of the storage node and R}, ;
is the write one; similarly, R}, and Rj,; are for network
infrastructure, and the computing node uses R, and R,
for read and write capability. Besides, only the computing
node has the process flow capability, R;.

Flow demand of tasks: The flow demand describes the
characteristic of tasks and can be used to classify tasks into
CPU-intensive (low flow demand) and network-intensive (high
flow demand) tasks. A flow rate can vary during task execu-
tion, and we assume the flow rate is relatively stable, which
can be reasonable because either a map task or a reduce task
repeats a piece of the same code based on key-value pairs.
The R}, and R!,, are the read and write flow demand of
tasks.

3.2 Cost Model

In this section, we describe how to model the cost of task
assignment. The decoupled model can be model as {C, S, I'},
where C' is the set of computing facilities, S is the set of
storage facilities and I is the network infrastructure. Let
¢ € C, s; € S, where i is an integer. The flow capability
of facilities is defined as, for example, R} for the processing
capability on the computing node i and R, for the write
capability on the storage node i. Let r; be the processing
flow rate on a computing facility. When 7, approaches to R,
the system throughput is considered increasing. The tasks
to be scheduled are ¢;;, where ¢ is the ¢th job in the system
and j is the jth task of the job. Similar to flow capability,
R!“ and R., are the read and write flow demand of tasks.
A scheduling problem is to assign T' = {t;;} to C = {cn},
and our flow scheduling tries to minimize the assignment
cost based on the flow rate. Given a task, the cost of an
assignment can be defined as the penalty cost that facilities
cannot satisfy the flow demand of the task. To fulfill the flow
demand of tasks, we should ensure quality flow supply and
quality processing flow. There are two conditions in which
an assignment can occur high penalty cost: 1) a storage
facility is overloaded when Zt”e si Rz;f is high, especially
when it exceeds R}, and 2) a computing facility is filled with
network-intensive jobs, which means Ztij ce; Rf;'bj is high.

To assign a map task ¢;;, suppose the input data stores
on s,, the cost to assign the task on ¢, is the sum of
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where f. is the parameter if s,, and ¢, is not in the same
rack, and e, is the effective load on ¢,,. The effective load
can be defined as 37, . R} — stdev(RY7). TIf flow de-
mands of tasks are diverse on a computing facility, we con-
sider the assignment cost lower because overlapping CPU-
intensive and network-intensive tasks can utilize resource
efficiently.

When t;; is a reduce task, it usually reads data from mul-
tiple computing facilities; thus, we need to count all of these
read cost. Suppose t;; is assigned to ¢, and the reduce task
need to read data from other computing facilities cx, the
total read cost is

Demand = -6 Supply = 6

Figure 4: Flow scheduling uses the penalty cost to
build the min-cost flow network. The number of
supply means the number of tasks to be scheduled.
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where f. has the definition similar to the one above. If
cm and c¢i are the same node, the parameter is zero, and
otherwise, the parameter is small for in-rack communication
and large for cross-rack data transfer.

3.3 Min-cost flow optimization

We argued that maximizing the processing flow rate can
increase the system throughput. As described in Section 3.2,
we model the cost of task assignments as the penalty of vi-
olating flow demand. Given the cost model, we encode the
scheduling problem as a min-cost flow optimization prob-
lem. The min-cost flow problem is a network optimization
problem that looks for the cheapest way to allow a certain
amount of flow through a network. Given the flow demand
of map and reduce tasks, we can decide the best path of
network flow with minimum penalty cost. For example, our
flow scheduling avoids to assign a task to facilities if the flow
capability of the facilities can not meet the flow demand of
the tasks. Figure 4 depicts how to encode the scheduling
problem to a min-cost flow problem.

The min-cost flow problem can be stated as follows:

Minimize z(x) = E CijTij
(i,5)€A

subject to

Z Tij — Z Tji = b(’L) Vie N

J:(i,j)€A J:(4,i)€A

O S .’Eij S ’U,ij V(Z,]) S A

In this equation, N = {T};, Ck, source, sink} and the source
node produces flow of capacity n, which is the number of
available slots on computing facilities and the sink node has
the flow of capability —n. Each arc from Tj; to C} has the
cost that is defined in Section 3.2, and each arc has a lower
capacity zero and a upper capacity one. On the other had,
the lower capacity and higher capacity of the arc from the



source to Tj; are both one, and them of the arc from Cj to
the sink are the number of available slots on C. After en-
coding the scheduling problem, we then solve the min-cost
flow problem to decide the optimal task assignment.

4. FLOW SCHEDULER FOR HADOOP

Hadoop supports pluggable resource schedulers that makes
developing the flow scheduler not being a difficult challenge.

4.1 System Architecture

Our flow scheduler requires job profile (flow demand of
tasks) and machine profile (flow capability of facilities). Be-
sides, we use a database to keep track of resource allocation
so that next time we can understand the flow rate on fa-
cilities. The flow scheduler runs upon AppMaster requests
resources or periodically, e.g. every 5 second. In each run, it
calculate the penalty cost based on flow demand of tasks and
flow capability of facilities, and then encodes the scheduling
problem as stated in Section 3.3. After building the cost
mode, we use the scaling push-relabled method as described
in [15] and their solver program to derive the optimal task
assignment.

4.2 Estimating Flow Rate

In this section, we describe how to estimate the flow de-
mand of tasks and flow capability of facilities. Basically, we
overload facilities to get flow capability and run a single task
to derive the flow demand. First, we measure RS, of storage
nodes to get the flow rate that a storage node can supply.
We create a NoComputation map task that only reads input
data, but does not do computation and does not generate
output. We execute enough NoComputation map tasks at
the same time to ensure that the out-bound bandwidth of
a storage node is saturated. The result shows that Rg.; of
storage nodes is roughly close to 65% of the theoretical net-
work bandwidth. Similarly, Ry, is close to Rj,;; therefore,
we use the same number. Regarding the flow capability of
network infrastructure, we use the same number with that
of storage nodes. This is true for node communication in
the same rack; however, the cross-race communication can
be limited by aggregate bandwidth available at top-of-rack
switches. The real bandwidth of cross-bandwidth is hard to
measure and monitor, and instead, we increase the cost of
cross-rack communication in our cost model as described in
3.3.

For the flow capability of computing nodes, Ry,, and R,
are set to the same with storage nodes because this number
is mainly limited by the network bandwidth. Regarding Rj,
we ran different types of Hadoop jobs to estimate the pro-
cessing capability of computing nodes. In order to faithfully
measure the processing capability, we increased the number
of map tasks while keeping only one reduce tasks running
on the same node. As shown in Figure 5, the maximum
flow capability happens when four maps are executed on a
four-core node. Even with NoComputation jobs, the max
R; is around 60M B/s, which suggests the limitation of net-
work bandwidth and the overhead of Hadoop framework af-
fects the maximum flow rate of processing in the decoupled
Hadoop model. Unless we can break these bottlenecks, we
will not be able to increase the the flow rate of processing.
Table 2 shows the flow capability that will be used later in
our evaluation.

To estimate the flow demand of tasks, we vary input sizes
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Figure 5: Estimating flow rate of processing capa-
bility. Increasing the number of concurrent tasks
does not necessarily increase the aggregate through-
put; instead, it decreases the throughput, especially
when the tasks are network intensive. The com-
puting facility in Cluster 1 has the processing flow
capability lower than 60MB/s in

to measure RY, for map tasks, and we fixed the number of
reduce tasks to one. We pick up the flow rate when only
one map executes in a computing facility. This ensures that
other tasks would not compete resources with the map task
we measure. RL,, of map tasks is set to zero because the
output data would be staged and later will be pulled by
reduce tasks.

It is more tricky to estimate R}, of reduce tasks because
there are multiple sources of flow supply (the shuffle phase
contains many-to-many communication [12]) and a reduce
task can start even before all map tasks complete. Moreover,
the input size can also affect the flow demand. These cases
can make the elapse time of reduce tasks longer and would
affect the accuracy of estimating flow demand. To eliminate
the impact, we use only one reducer in our estimation and we
calculate the real low demand in runtime, which is described
as in Section 3.3.

Table 2: Estimated flow capability of facilities. Clus-
ter 1 is powerful than Cluster 2 and their detailed
configurations are describe in Section 5

Facility Type R, ot
Cluster 1 60 MB/s | 85 MB/s
Cluster 2 20 MB/s | 85 MB/s

5. EVALUATION

5.1 Experiment setup

We evaluate the flow scheduling on NCSU VCL [5]. In our
evaluation, two types of nodes are includes: 1) 2 x 2.0GHz
and 8GB memory, and 2) 4 x 2.4 GHz and 16GB memory.
Each of them is equipped with a 1-Gbps NIC. We refer to
the first group as Cluster 1 and the second groups as Cluster
2. Both have Ubuntu 12.04 installed and Hadoop 2.0.3-
alpha deployed. One node in Cluster 2 is used for Resource



Table 3: Estimating flow demand of tasks. Only one map and one reduce execute at a time to ensure the
estimation accuracy. Lower flow rate suggests it is a CPU-intensive task and it is likely to be a network-
inattentive task if flow rate is hight. Terasort requires high demand of bandwidth and Grep requires more

computing power (with search pattern .*kinmen.*)

Cluster 1

Cluster 2

Job Type

rin(map)

rt, (reduce)

rin(map)

ri, (reduce)

in/out ratio

WordCount

3.04 MB/s

7.63 MB/s

3.20 MB/s

7.63 MB/s

20%

Terasort

9.14 MB/s

13.31 MB/s

12.8 MB/s

22.18 MB/s

100%

Grep

0.23 MB/s

very small

0.27 MB/s

very small

very small

NoComputation

16.0 MB/s

0 MB/S

21.3 MB/s

0 MB/S
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Figure 6: Elapsed time comparison. The FIFO
scheduler is the baseline. Nine jobs with 1GB in-
put are submitted every 5 second.

Manger, and another one is for the name node of HDFS.
For computing facilities, two clusters are in different network
segment, and Cluster 1 has six nodes and Cluster 2 has five
nodes. Regarding storage facilities, two data nodes of HDF'S
are in Cluster 1 and one is in Cluster 2. Each has around
30GB disk space and we set the replication number of HDF'S
to two.

5.2 Heterogeneous Cluster Setting

We analyze the behavior of our flow scheduler and other
existing Hadoop schedulers. We compare Flow Scheduler
with FIFO Scheduler, Fair Scheduler, and Capacity Sched-
uler. Moreover, we create a Balancing Scheduler that dis-
tributes the flow demand to computing facilities evenly. In
this experiment, we setup a Hadoop system with Cluster 1
and Cluster 2. Then we submit jobs (Wordcount, Terasort
and Grep) to the Hadoop system every five seconds. The
wordcount and terasort job has an input size 1GB and we
submit four times for each of them. Since the grep job has
longer running time, we submit only one job with input size
1GB. As shown in Figure 6, FIFO Scheduler has the longest
elapsed time and Flow Scheduler can complete all the jobs
in a shorter time. Figure 7 shows that Flow Scheduler has
lower average execution time of tasks in most of cases. Be-
sides, Flow Scheduler demonstrates more smooth execution
time of tasks, as shown in Figure 7(b), because Flow Sched-
uler has lower values of the standard deviation of execution
time.

5.3 Scheduling Overhead

At each scheduling run, we filter out the computing facil-
ities without available slots, and then calculate the penalty
cost of each arc in the min-cost flow network. This encoding
is exported as an input to the solver to derive the optimal as-
signment. The solver accounts most of scheduling overhead.
The graph size in our experiment is greater than 100 at
peak time (|7 > 100 and |C| = 11). The maximum execu-
tion time is around 97ms and the minimum one is 2ms, and
the average solving time is 8.3ms. For a large-scale graph
size, as indicated in [19], the solving time of the min-cost
flow optimization problem can be acceptable.

5.4 Discussion

In the traditional Hadoop model, data locality plays an
important role in system performance so that most existing
schedulers focus on maximizing the number of local map
tasks. However, the decoupled Hadoop model does not have
this property so that most existing schedulers does not fit in
this model. From our experiments, we observed that those
schedulers might assign tasks directly to the first node with
available slots, which happens on FIFO Scheduler more of-
ten. FIFO Scheduler first considers node-level data locality
and then rack-level data locality. This scheduling method
can cause problems because many tasks of a job would be
assigned to a computing facility. This would lead to resource
competition especially when high flow demand of tasks are
executed on the same node. Figure 5 shows a similar result
when multiple higher flow demand tasks are running on a
node. The drop percentage appears to be the largest one for
the NoComputation line.

The proposed flow scheduling tries to avoid the task as-
signment that can affect the flow rate of processing. Our
cost model considers the quality of data supply (R;,; and

cut) and the qualify of processing flow rate on comput-
ing facilities. We argue that maintaining the flow rate of
processing can increase the system throughput, and Figure
5 greatly support our argument. More interestingly, our
flow scheduling method can somehow eliminate stragglers
[13, 34]. Our result shows that Flow Scheduler derives more
smooth execution time of map tasks.

Unlink the graph for the min-cost flow problem in Quincy
[19] and CAM [22], we do not construct a hierarchical graph
to reflect the hierarchical data center networking. The rea-
son is that we can not convert our desired cost model into a
hierarchical graph. Suppose we take the top-of-rack switch
into account, we introduce a new switch node SW. We then
construct an arc for each task assignment that produces data



Flow e
Balan(}::i g B

n
Capactly

apaci

pFIF& ezzz

25

Elapsed Time (Normalized)
o
T

ANNNNNNNNNY)
ANNNNNNNNNY)

Wordcount Mapordcount Reduce Terasort Map Terasort Reduce  GrepMap  Grep Reduce

(a) Average of execution time

Elapsed Time (Normalized)

4
Flow
Balancing ez
F G Fr_:}lr
apaci
pFIF(% ezza

WordCount MaRordCount ReduceTeraSort Map TeraSort Reduce ~GrepMap  Grep Reduce

(b) Standard deviation of execution time

Figure 7: The average execution time and the standard deviation of execution time. Flow Scheduler shows
more smooth execution time and this somehow suggests flow scheduling can eliminate stragglers that are

caused by resource contention.

flow through SW. We also construct another arc for com-
puting facilities that connects to SW. In such a scenario, we
cannot decide the cost for the arc from SW to C,, because
we lose the information of flow demand. For this reason,
Quincy has a cost, zero, for the arc from the rack to com-
puting nodes. In our cost model, we simply raise the cost
of an arc that causes cross-rack communication. To address
this problem, we probably can look into convex network op-
timization that can support this scenario so as to delivering
a more accurate cost model.

6. RELATED WORK
6.1 The decoupled model

In previous work [30], the author compared the perfor-
mance of Hadoop integrated with different types of storage
architecture. The author found that in the split architecture,
Hadoop has imbalance issue access to remote data storage,
which can lead to poor I/O performance. In the following,
we discussed the use cases that integrate Hadoop with sep-
arate storage. After that, we describe scheduling methods
for Hadoop and cluster that are related to our work.

6.1.1 Parallel File System

Several research studies show their interests in replacing
HDFS with other high performance storage systems. W.
Tantisiriroj et al [31] argues that parallel file systems can
support diverse workloads and provides a better tradeoff be-
tween performance and reliability. The authors proposed a
PVFS shim layer to incorporate data layout of PVFS to
achieve data locality. Maltzahn et al considered Ceph as a
scalable alternative to HDFS [24], and they create a mapping
layer which is similar to the PVFS one. GPFS is a shared-
disked file system developed by IBM, and widely adopted in
supercomputers. R. Ananthanarayanan et al [7] from IBM
Research modify data layout in GPFS and expose this infor-
mation to Hadoop. These are the earliest studies that tried
to replace HDFS, but none of them considers optimizing
Hadoop at the job scheduler level.

6.1.2 Enterprise Storage

Another research study [27] analyzed the feasibility to use
a very powerful storage node to accommodate Hadoop, and
he finds that Hadoop performance is dominated by the band-
width between computing and storage facilities.

Recently, the researchers in NetApp Inc. argued that it is
required to decouple compute and storage nodes in big data
analytics because enterprise IT often deploys silos to manage
high-value data [23]. The decoupled Hadoop model would
incur high cost on data loading from the backend storage
system to compute nodes. They propose MixApart, which
includes the data-aware task scheduler, the task-aware data
scheduler and a caching mechanism, to optimize Hadoop
performance. However, they mainly focused on highly data-
reuse workload.

6.1.3 Cloud Storage Service

Cloud computing has emerged as an important technol-
ogy for the pay-as-you-go model [8, 20]. In such a plat-
form, object storage, e.g. Amazon S3 and Azure Blob Stor-
age, is primarily chosen for persistent data. Amazon Elastic
MapReduce and Azure HDInsight are two popular Hadoop
platforms on the cloud [1, 6]. Both cases enable Hadoop to
support data access to object storage.

6.2 Resource and Job Scheduling

Hadoop has the builtin FIFO scheduler, which allocates
resources based on first-come-first-serve policy and data lo-
cality. The Fair Scheduler was originally developed by Face-
book with the objective of resource sharing, and Yahoo pro-
posed Capacity Scheduler to support fairness and priority
sharing; both of them aim at achieving data locality and
fairness in a large cluster. LATE [34] improvs the spec-
ulative execution by accurately estimating the remaining
time of tasks, which can better support Hadoop in heteroge-
neous environment. HE'S [33] uses delay scheduling to solve
the conflict between data locality and fairness, and the job
throughput can be improved by almost 2x. All of these
schedulers are suitable for the Hadoop reference model but
not the decoupled model.

Hadoop has poor resource utilization due to the fixed
number of map and reduce slots [26]. Polo et al proposed a
resource-aware scheduler that incorporates offline job profil-



ing so that resource utilization can be increased. This work
does not consider the decoupled Hadoop model, and the
new Hadoop YARN supports flexible slot allocation; how-
ever, their job profiling can be applied to our system. More-
over, instead of choosing the optimal slot number, our flow
scheduling can utilize resource more efficiently because com-
puting facilities can maintain high processing flow rate.

A scheduling problem can be solved as the network op-
timization problem. Quincy [19] adopts the min-cost flow
network to achieve fair scheduling in a distributed commut-
ing system. Our flow scheduling is similar to this approach;
however, our cost model is based on flow rate but not the
data size that is required by a computing task. We believe
flow rate is a better choice because it can be a good indicator
to determine the type of a task. For example, a low flow rate
task is a CPU-intensive task; however, the data size itself is
not enough to determine the right task type. CAM [22] ar-
gues that the decoupled model is not suitable for virtualized
clouds, and it attempts to co-allocate data with virtual ma-
chines. CAM utilizes the network topology information and
builds the min-cost flow network to reconcile data placement
and VM placement.

7. CONCLUSION

The decoupled Hadoop model is flexible and much more
preferable in many scenarios. However, existing Hadoop
schedulers do not consider this model and hence the schedul-
ing method fails to optimize the system throughput. Our
flow scheduling method uses the penalty cost for task as-
signments in order to increase the processing flow rate on
computing facilities. We encode this problem as the min-
cost flow problem and then we can obtain the optimal as-
signment. We have implemented a pluggable Flow Sched-
uler for Hadoop YARN and it supports the latest version
of Hadoop. Our experiment results have shown that our
flow scheduling can greatly improve the system throughput
by about 30% so as to eliminate stragglers. These results
support that the proposed flow scheduling can maintain the
flow rate of processing.

Flow scheduling seems efficient for the decoupled model,
but there still remains large space to improve. For our cur-
rent implementation, Flow Scheduler requires job profile and
machine profile, which is not practical. We believe we can
estimate the flow demand of tasks and the flow capability of
facilities at runtime. A naive approach is to sample the flow
demand of a task and then use this information to decide
the cost of the remaining tasks of the same job. Another
approach is to monitor the flow rate of tasks so that we can
adjust the penalty cost dynamically. We can also decide the
flow capability of facilities in a similar way. Overall, we are
positive about flow scheduling but more extensive evalua-
tions have to be conducted before we can conclude.
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