
Discovering Security Requirements from Natural Language
Project Artifacts

John Slankas, Maria Riaz, Jason King, and Laurie Williams
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

+1(919) 515-7926

[john.slankas, mriaz, jtking, laurie_williams]@ncsu.edu

ABSTRACT

Project documentation often contains security-relevant

statements that are indicative of the security requirements of a

system. However these statements may not be explicitly

specified or straightforward to locate. At best, requirements

analysts manually extract applicable security requirements from

project documents. However, security requirements that are not

explicitly stated may not be considered during implementation.
The goal of this research is to aid requirements analysts in

generating security requirements through identifying security-

relevant statements in project documentation and providing

context-specific templates to generate security requirements.

First, we identify the most prevalent security objectives from

software security literature. To identify security-relevant

statements in project documentation, we propose a tool-based

process to classify statements as related to zero or more security

objectives. We then develop a set of context-specific templates

to help translate the security objectives of each statement into

explicit sets of security functional requirements. We evaluate

our process on six documents from the electronic healthcare

software industry, identifying 46% of statements as implicitly or

explicitly related to security. Our classification approach

identified security objectives with a precision of .82 and recall

of .79. From our total set of classified statements, we extracted

16 context-specific templates that identify 41 reusable security

requirements.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information

Systems]: Security and Protection

General Terms

Documentation, Reliability, Security, Standardization, Legal

Aspects.

Keywords

Security, requirements, objectives, templates, access control,

auditing, classification, constraints, natural language parsing.

1. INTRODUCTION
Developing a secure software-intensive system is a holistic

process that requires an emphasis on security during all phases

of software development lifecycle. There is often a lack of focus

on security during early stages of software development that can

lead to inadequately understood and improperly specified

security requirements [24]. Understanding a system’s underlying

security objectives, such as confidentiality or accountability, can

help focus the requirements engineering effort and facilitate

development of an appropriate and relevant set of security

requirements for the system under development.

Security objectives [14] are the security goals of a software

system that can be operationalized by specifying an appropriate

set of security functional requirements. Project documentation

(such as functional requirements specifications, feature requests,

bug reports, or applicable standards and certifications) often

contains information related to the security objectives of

software systems. However, these objectives may not be

explicitly specified or straightforward to locate within the

documentation. In prior research [33], we found that all of the

examined documentation in the study contained security-

relevant statements indicative of the security objectives and

security requirements of the system. However, in many cases,

these statements composed only a small percentage (under five

percent) of number of lines in the document. Currently,

experienced analysts must manually filter through the

documentation to identify these security-relevant statements to

obtain a more complete set of security requirements.

The goal of this research is to aid requirements analysts in

generating security requirements through identifying security-

relevant statements in project documentation and providing

context-specific template to generate security requirements.

In this research, we propose a tool-based process to identify

applicable security objectives (both explicitly-defined and

implicitly-defined) for each statement in available project

documentation. Based on patterns in the statements we

classified, we further propose a set of 16 context-specific

templates to generate security functional requirements.

First, we identified the most prevalent security objectives from

software security literature. Our tool-based process parses

existing documentation and applies machine learning algorithms

to automatically classify statements with appropriate security

objectives. The tool then provides a context-specific template

for the requirement analysts to generate security requirements.

To evaluate our process, we analyzed six documents related to

the development and maintenance of software systems in

healthcare domain from the United States and Canada. We

developed a labeled set of annotated statements by manually

classifying statements in each of the six documents as relating to

zero or more security objectives. For example, we annotate,

“The system shall provide the ability to update and display a

patient-specific medication list” as relating to confidentiality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

36th International Conference on Software Engineering, May 31- June 7,
2014, Hyderabad, India.

Copyright 2013 ACM 1-58113-000-0/00/0010 …$15.00.

We also annotate the statement as relating to accountability

since the system needs to keep a record of who performed the

updates to the medication list. From these objectives, the tool

provides templates associated with access control and logging

for the requirement analyst to compose specific security

requirements.

We use the following research questions to guide our analysis:

RQ1: From software security literature, what are the most

prevalent security objectives of software systems?

RQ2: For the examined documentation, are there groups/sets of

security objectives that appear consistently together?

RQ3: What features/elements do sentences of the same security

objectives have in common?

RQ4: How effectively can security objectives be identified and

extracted from selected set of documents?

Our research contributes the following:

 A repeatable process (and tool) to identify security objectives

and to generate security requirements from project

documentation

 A distribution report containing the frequency of identified

security objectives in six healthcare documents

 A set of context-specific templates to help translate security

objectives into functional security requirements.

The rest of this paper is organized as follows: Section 2 reviews

the background for this paper. We discuss related work in

Section 3. Section 4 presents the security objectives to address

RQ1 followed by our proposed tool-based approach, Security

Discoverer, in Section 5. In Section 6 we describe our research

methodology. Section 7 presents results and evaluation to

address RQ2-RQ4. We present the set of context-specific

templates based on our analysis in Section 8. Section 9 discusses

threats to validity for the study. Finally, Section 10 concludes

the paper in addition to outlining future directions.

2. BACKGROUND
In this section we provide background information regarding

security objectives and security requirements, machine

classification and classification evaluation.

2.1 Security Objectives and Requirements
Security objectives are the security goals or desired security

properties of a system [30]. Security requirements are functional

and non-functional requirements that formalize security

objectives without specifying how to achieve those objectives.

Security functional requirements describe the desired security

behavior of a system [6] and if incorporated, can achieve the

corresponding security objectives. Security functional

requirements can also be thought of as constraints on the

functional requirements of the system [25] as they are meant to

securely achieve a defined functionality of the system. For this

paper, we use the term security requirements to mean security

functional requirements.

2.2 Machine Learning and Classification
To identify security-related requirements from unconstrained

natural language texts, we need flexible, yet effective,

classification methods to handle different documents and

multiple ways of expressing similar concepts. Machine learning

provides such a foundation for our work. While techniques and

algorithms vary widely in machine learning, they can be

separated into two primary categories: supervised learning and

unsupervised learning. In supervised learning, people train

classifiers with labeled data. People and systems then use these

classifiers to decide in which classification a previously

unlabeled instance belongs. To be useful, a pre-trained classifier

for a similar domain should be utilized. In contrast,

unsupervised learning algorithms search data for common

patterns (clusters). The data is not directly labeled; instead

groups of common instances are created.

For this work, we utilize a combination of classifiers: k-nearest

neighbor classifier (k-NN), multi-nominal naïve Bayes (NB),

and Support Vector Machines (SVM). k-NN classifiers work by

classifying a test item based upon which items previously

classified are closest to the current test item. The classifier finds

the k nearest “neighbors” and returns a majority vote of those

neighbors to classify the test item. k-NN classifiers perform

extremely well when they contain similar items (based upon a

distance function) to the item currently under test. However, if

similar items do not exist, the classification results are

effectively random guesses. k-NN classifiers also work well in

an interactive fashion due to their ability to incrementally learn

as new items are classified and report similar sentences.

A naïve Bayes classifier works by selecting a class with the

highest probability from a set of trained data sets given a

specific document. Fundamentally, it assumes that each feature

of a class exists independently of other features. Despite the

simplification, the approach performs effectively in real-world

problems. Naïve Bayes classifiers typically require fewer trained

instances than other classifiers. SVM classifiers work by finding

the optimal separator between two classes. As with naïve Bayes,

text is represented as a word vector [20]. In our work, we utilize

a k-NN classifier as the primary classifier unless it does not

locate any similar sentences. At that point, we use a majority

vote of the three classifiers to produce the classification result.

2.3 Classification Evaluation
To compare the results, we use recall, precision, and the F1

measure. To compute these values, we first need to categorize

the classifier’s predictions into three categories for each

classification value. True positives (TP) are correct predictions.

False positives (FP) are predictions in which the sentence of

another classification is incorrectly classified as the one under

evaluation. False negatives (FN) are predictions in which a

sentence of the same classification under evaluation is

incorrectly placed into another classification. From these values,

precision (P) is the proportion of correctly predicted

classifications against all predictions for the classification under

test: . Recall is the proportion of

classifications found for the current classification under test:

 The measure is the harmonic mean of

precision and recall, giving an equal weight to both elements:

. From a security requirement perspective, recall is

more important than precision in that we want to extract all

relevant security requirements from the available documents.

However, precision cannot be ignored because producing large

amounts of false positives can frustrate users.

3. RELATED WORK
In this section, we discuss related work in terms of requirement

classifications, natural language processing and security

requirements engineering.

3.1 Requirement Classification
While text classification, especially with regard to Term

Frequency - Inverse Document Frequency (TF-IDF), has been

studied for a relatively long period of time [28], non-functional

requirement (NFR) classification first appeared in the literature

in 2006 [10]. In their work, Cleland-Huang et al. applied TF-

IDF with an additional parameter to specify the frequency of

indicator terms for a NFR category as compared to the

appearance of those terms in the requirement currently under

test. Their work performed well with a 0.8129 recall, meaning

that they successfully found 81% of the possible NFRs in the

dataset. However, their precision was 0.1244 indicating a large

number of false positives. While they intentionally choose to

maximize recall, users would be frustrated with their process

due to the large numbers of false positives to examine and

discard. Other researchers [9,37] have used the same dataset as

Cleland-Huang, but instead adopt naïve Bayes and SVM

classifiers. Both experiments reported higher scores for

precision than the original research. Our approach utilizes an

ensemble [27] of classification algorithms to produce

classifications.

3.2 Identifying Security Requirements
Mellado et. al., have conducted a systematic review of security

requirements engineering [24] to summarize existing approaches

and respective contributions. Fabian et. al., also provide a

comparison of security requirements engineering methods [12].

Methods for eliciting and documenting security requirements

include framework-methods such as the SQUARE method [23],

which provides a Capability Maturity Model-like reference

model for coordinating various technical activities and artifacts;

misuse or abuse cases[31]; anti-goals [21]; and assurance

arguments [15]. Our work supports the identification of security

functional requirements by bringing security-relevant statements

to the immediate attention of requirements analyst along with a

set of context-specific templates that can be used to generate

security requirements supporting identified objectives for each

statement. Further use/misuse-cases and risk models can be

generated based on the set of security requirements identified

using our approach to supplement the requirement specification

process.

Firesmith [13] argues security requirements can be reusable

across multiple systems and has proposed the use of

parameterized templates to model reusable security

requirements. The final step in our process is similar to

Firesmith's approach in that we generate security requirements

from a set of context-specific templates.

An important focus area related to security requirements

engineering has been on extracting security requirements from

regulatory texts ([8,22]). Other researchers have explored using

natural language to generate access control policies from natural

language ([18,35]). The focus or our research is on extracting

security requirements from existing functional requirements and

requirements-like documents and we do not consider issues

related to regulatory compliance or policy specification in this

paper.

4. SECURITY OBJECTIVES OF

SOFTWARE SYSTEMS
By identifying the security objectives expressed or implied by a

particular sentence within a document, we gain an understanding

of the underlying intent of the statement as well as possible

controls and mechanisms to establish that intent. While certain

sets of security objectives are widely known such as the

“Confidentiality, Integrity, and Availability (CIA) Triad”, we

need to ensure the completeness of our security objective set.

RQ1: From software security literature, what are the most

prevalent security objectives of software systems?

To address this research question, we examined multiple

security standards (National Institute of Standards and

Technology Special Publication (NIST SP) 800-53 [7], NIST SP

800-33 [2], Federal Information Processing Standards (FIPS)

publication 200 [5], FIPS publication 199 [4], Common Criteria

[6], Federal Information Security, Management Act (FISMA)

[3]), taxonomies of security objectives and requirements

([13,21]) and security seminal papers and books ([29,30]).

Software security is as much about physical protection of assets,

training of personnel, planning and management as it is about

building secure software. Security objectives of software

systems therefore involve not only technical aspects from

system development perspective but also operational and

management aspects. For the purpose of this research however,

we focus on technical security objectives of software systems. In

Figure 1, we present a hierarchy of security objectives as

identified from the literature. From the STRIDE Threat Model

[19], we list corresponding attack classes that threaten a security

objective where applicable.

We define each of the technical security objectives below. The

references from where these objectives have been identified are

listed after the objective's name. We also provide example

statements from the set of documents we analyzed (see Section

6.1) that indicate the presence of the corresponding objective.

The examples are numbered: <Document ID>-<Security

Objective Abbreviation>.<#>.

Confidentiality (C) ([5-7,13,21,30]): The degree to which the

"data is disclosed only as intended" [30]

CT-C.1: “The system shall provide the ability to update a patient

Figure 1. Security Objectives Hierarchy

history by modifying, adding or removing items from the patient

history as appropriate.”

Integrity (I) ([5-7,13,21,30]): "The degree to which a system or

component prevents unauthorized access to, or modification of,

computer programs or data." [1]

ED-I.1: "When health information has been mistakenly

associated with a patient, the system shall provide the ability to

mark the information as erroneous in the record of the patient in

which it was mistakenly associated and represent that

information as erroneous in all outputs containing that

information."

Identification & Authentication (IA) ([5-7,13,21]): The need to

establish and verify the identity of a user, process or device.

ED-IA.1: "The system shall provide the ability to assign an

identity to a patient at the time of arrival.”

Availability (A) ([5-7,13,21,30]): "The degree to which a system

or component is operational and accessible when required for

use." [1]

ED-A.1: “It is essential that system response speed fast enough

that there are no added delays in workflows in the ED when

using the system.”

Accountability (AY) ([5-7,13,21,30]): Degree to which actions

affecting software assets "can be traced to the actor responsible

for the action" [30]

ED-AY.1: “Every entry in the health record must be identified

with the author and should not be made or signed by someone

other than the author.”

Privacy (PR) ([6,13,21]): The degree to which an actor can

understand and control how their information is used.

NU-PR.2: “Nurses need to provide legitimate care in crisis

situations that may go against prior patient consent directives

("break the glass" situations)”

5. SECURITY DISCOVERER
We now present our tool-based process, Security Discoverer

(SD). The tool identifies any applicable security objectives for

each sentence, provides context-specific templates to generate

security requirements, and provides an authoring mechanism to

finalize those requirements.

5.1 Overview
Figure 2 presents an overview of the four-step process and the

associated tool. For input, the tool takes requirements-related

natural language documents (requirement specifications, feature

requests, etc.). Additionally, the organization needs a trained

classifier for the current problem domain. This can be

accomplished in one of three ways: 1) creating a new classifier

by manually classifying sentences for security objectives from

related projects; 2) utilizing an existing classifier; or 3) utilizing

the tool in an interactive fashion to provide recommendations

for classifications to aid the manual process. The tool has been

designed to take classification corrections from the user and

apply those corrections into the tool’s current classifier. The tool

parses the documents, identifies which (if any) security

objectives relate to each statement within the document. The

process then selects the relevant context-specific requirement

template for each identified objective. The requirement analyst

chooses either this template or another available template for the

objective. The analyst then completes the appropriate security

requirement from that chosen template.

Figure 2. Security Discoverer Process

5.2 Step 1: Import Text Document
The purpose of Step 1 is to import a text document into the SD

tool such that each statement can then be classified to identify

the security objectives. The tool first reads the entire text into

the system. Next, to provide additional context and features for

the classifier, the tool applies a concise document grammar

(Figure 3) to label each statement from the text to a specific

type:

 title: Statements which follow capitalization rules for titles.

We separate these statements from other statements in our

process as the titles rarely indicate a security-related

requirement.

 list start: These statements represent the header or

description of a list that follows.

 list element: These statements represent individual items

contained within an ordered or unordered list. These

statements are combined with the start of the list when sent

to the parser and for classification. Combining the two

provides additional context to both human analysts and

machine classifiers.

 normal sentence: These statements are not considered as

titles, list starts, or list elements.

Further, we identify heading and list identifiers (e.g., “4.1.1” and

“•”). The process removes these identifiers from the statement

passed into the Stanford Natural Language Parser (NLP). As list

identifiers do not generally appear in articles on which the NLP

parser was trained (such as news articles), the parser is not

adequately trained to recognize such situations and produces

results that are not consistent with what would otherwise be

expected. If any irregularities are found during the parsing of the

input text document, the parser defaults to “normal sentence”

and continues processing text.

Within Figure 3, italicized words represent nonterminal symbols

that can be replaced by other symbols on the right-hand side.

Words in normal font are terminal symbols. Characters within

quotation marks are also specific terminal symbols. λ represents

an empty expansion of a nonterminal.

After identifying the different statement types, the tool parses

each statement individually with the NLP and outputs a graph in

the Stanford Type Dependency Representation (STDR) [11].

The tool then converts the STDR into SD's sentence

representation (SR). The SR represents each statement as a

directed graph where the vertices are words and the edges are

the relationships between words. Figure 4 shows the SR for the

statement, “The system shall automatically terminate a remote

session after 30 minutes of inactivity.” Although, in general the

SR can be considered a tree, situations exist (primarily due to

conjunctions) in which a vertex has multiple parents. Vertices

correspond to words in the sentence and contain the word, the

word’s lemma, and the collapsed part of speech. Edges

correspond to the relationship between two words (unchanged

from the STDR). Using a pre-order traversal, the process creates

the SR from the Stanford graph. As each vertex is created, we

make two changes to the nodes. First, to avoid multiple versions

of the same word, we use the lemma1 of the original word.

Second, to avoid differences in the part of speech, we collapse

the parts of speeches for all nouns, verbs, and adjectives to their

base category. For example, we treat all plural nouns and proper

nouns as just nouns. Similarly, verbs with different tenses are

treated collectively as a single group. We use a very small stop

word list to remove common determiners2 from the SR as

demonstrated in Fig. 3 with the dashed lines. At this point, we

have the text entered into the system and stored in a

representation for the classifier.

terminate

system shall session minute

the

nsubj
prep_after

advmodaux

det

NN NN

VB

MD

DT
30

num

CD
inactivity

prep_of

NN

VB

the

det

DT
remote

amod

JJ

Figure 4. Sentence Representation

5.3 Step 2: Classify Sentences
Next, multiple machine learning algorithms are used to classify

a statement into zero or more security objectives.

The process uses a -NN classifier as the primary classifier.

Such classifiers work by taking a majority vote of the existing

classifications of the nearest neighbors to the item under test.

Thus, in our situation, to classify a statement, the classifier

needs to find which existing classified statements are most

similar to the current statement under test. -NN classifiers use a

distance metric to find the closest neighbors. This metric is the

sum of the differences among the attributes used to determine

the classification. Typically, Euclidean distance serves as a

metric for numerical values while for nominal values (e.g.,

words), the distance is generally considered to be zero if both

values are the same or one if they differ. Our situation is more

complex as we have a variable number of attributes (words,

parts of speech, named entities) to consider for each statement

based upon the statement length. Additionally, certain words

may be more closely related to one another than other words. As

such, we utilize a custom distance metric based upon the

distance between two SRs.

In prior work [32], we found that if we used a similarity

threshold to determine whether or not to provide a classification

1 A lemma is the base word form for a set of words. For

instance, sang, sing, and sung all have the same lemma,

“sing.” Lemmas are more precise than stems as they take into

account part of speech and other factors.
2 a, an, the

answer, the -NN classifier performance would be 1.0 (no

misclassifications) , although not all of the statements would be

classified. As such, we decided to utilize multiple machine

learning algorithms to produce the final classification result. If

the -NN classifier’s threshold is below a certain ratio (0.6)

based upon the computed distance to the nearest neighbor(s)

compared to the length of the sentence, we return the -NN

classifier’s answer. Otherwise, we return a majority vote of the

 -NN, naïve Bayes, and SVM. We term this classifier as

“Combined SL.”

For example, for the statement, “The system shall provide the

ability to update a patient history by modifying, adding or

removing items from the patient history as appropriate”, the

classifier should predict the following objectives:

confidentiality, integrity, availability, and accountability.

Once the classification is complete, the user may review the

predicted security objectives. If necessary, they can correct the

classified objectives within the tool. Figure 5 shows a screenshot

of the tool’s user interface. The top table contains the document

with individual columns to display the line number, statement

type, assigned objectives and completion status, assigned cluster

(groups of similar sentences, optional functionality), the

statement themselves, and any generated requirements. The

dialog in the lower left allows users to classify the statements for

objectives. The area in the lower left allows the user to edit

generated requirements from the selected templates (see Table 5

for example).

5.4 Step 3: Select Relevant Templates
Once the security objectives have been identified for a given

statement, the user presses up button to bring up a list of

context-specific templates for the security objectives and values

(such as action or time) present within the statement. The user

selects which templates to use. SD tracks which templates have

been selected. The usage data provides the ability to determine

which templates are most frequently used and in what

combination. Additionally, the data could be used within a

recommendation engine in future versions of the tool.

5.5 Step 4: Generate Requirement

Statements
Once the requirement templates have been selected by the user,

the tool presents the requirement text in an editor text window

for the user to complete. In situations where a replaceable value

has been found, the replacement is already made. For instance, if

an availability statement specifies “during business hours”, the

tool detects the time period from the prepositional phrase and

would automatically place that phrase into the generated

requirement template. The tool maps generated requirements to

source statements to produce a traceability matrix.

document line
line listID title line | title line | sentence line | λ
sentence normalSentence | listStart (“:” | “-”) listElement
listElement listID sentence listElement | λ
listID listParanID | listDotID | number
listParanID “(” id “)” listParanID | id “)” listParanID | λ
listDotID id “.” listDotID | λ

id letter | romanNumeral | number

Figure 3. Document Grammar

6. RESEARCH METHODOLOGY
In this section, we discuss our methodology for collecting and

preparing the selected documents for use within our study.

6.1 Study Documents
Security is an important consideration in a number of domains,

including healthcare. For the purpose of this study, we have

selected project documentation from healthcare systems,

standards, and best practices primarily used in two different

countries (United States and Canada) to increase the

generalizability of our findings within the healthcare domain. To

include a variety of document types in our study, we select the

following six freely-available healthcare documents for our

study:

 Certification Commission for Healthcare Information

Technology (CCHIT)3 Ambulatory Certification Criteria –

a set of standards/certification criteria that outlines

functional requirements of ambulatory EHR systems

 Nursing EHR and EHR Privacy and Security Requirements

from the Canadian Health Infoway4 -- two explicit sets of

privacy and security requirements for Canadian EHR

systems

 Emergency Department Information Systems Functional

Document5 – a set of functional data standards and

conformance criteria provided by Health Level 7

International for EHR systems

 Open Source Clinical Application Resource (OSCAR)

Feature Requests6 – a set of informal descriptions of

requests for additional functionality of the Canadian

OSCAR EHR system, submitted by stakeholders (including

users)

 Virtual Lifetime Electronic Records (VLER) user stories7 –

a set of functional requirements for the United States

Department of Veteran’s Affairs VLER technology

initiative

Table 1 presents the complete list of documents along with a

breakdown of statements classified for each security objective

per document.

3 https://www.cchit.org/

4 https://www.infoway-inforoute.ca/

5 http://www.hl7.org/
6 http://oscarcanada.org/
7 http://www.va.gov/vler/

6.2 Domain Classifier
To develop a domain classifier for our tool, we first classify

each statement in the six healthcare documents in terms of

applicable security objectives. Three researchers manually read

each natural language statement and classify the statement with

relevant security objectives as follows:

1) Convert the document into text-only format.

2) Import one text document into SD Tool, and parse the

document into individual statements using natural language

processing.

3) Manually classify each statement in a document.

 a) Classification Phase: For each document, two researchers

individually classify each natural language statement to

identify security objectives that apply to the statement. Each

statement is classified in terms of zero or more security

objectives. The classification phase results in the creation of

two separate output files (one output file produced by each

researcher) for each input document.

 b) Validation Phase: A third researcher generates a

difference report based on the two output files. The third

researcher resolves the differences between the classifications

of the first two researchers by communicating with the

original two researchers to generate consensus for creating a

final, consolidated classified corpus document.

The researchers spent a total of approximately 160 person-hours

to create the domain classifier. Almost 46% of statements in the

documents were identified as security-relevant. Given that we

selected documents from industry standards and best practices

related to healthcare domain, and that we also identified

statements that implied a need for security, this number is

significantly higher than our earlier findings [33]. We use the

domain classifier for further analysis, including training the tool,

to address our specific research questions.

6.3 Study Procedure
Once the domain classifier has been created, we executed four

classifiers (the -NN classifier, the “Combined SL” classifier, a

multinomial naïve Bayes classifier and a SVM - sequential

Figure 5. Security Discoverer Tool Screenshot

minimal optimization classifier) on the document set. For each

classifier considered, we tested using a stratified n-fold cross-

validation and computed the precision, recall, and measure.

With the n-fold cross-validation, data is randomly partitioned

into n folds based upon each fold of approximately equal size

and equal response classification. For each fold, the classifiers

are trained on the remaining folds and then the contents of the

fold are used to test the classifier. The n results are then

averaged to produce a single result. We follow Han et al.’s

recommendation [17] and use 10 folds as this produces

relatively low bias and variance. The cross-validation ensures

that all sentences are used for training and that each sentence is

tested just once. In addition to our versions of the -NN

classifier, we utilized the multinomial naïve Bayes and SVM -

sequential minimal optimization classifiers within Weka [16]

suite. We directly utilized Weka classifiers through the available

Java APIs. Since the Weka classifiers do not natively support

multiple classifications for an item, we created individual

classifiers for each algorithm and classification. As the folds are

randomly generated, we executed the tests 3 times and averaged

the results. To extract the top 20 keywords for each security

objective, we utilized the information gain [26] attribute selector

within Weka. Yang and Pedersen [36] found information gain to

be the most effective method for feature selection in text

classification.

7. EVALUATION
In this section, we address our research questions RQ2 - RQ4 as

follows. We previouslyaddressed RQ1 in Section 4 in our

discussion of identifying security objectives.

RQ2: Are there groups/sets of security objectives that appear

consistently together?

Table 2 presents the 10 most frequently occurring security

objective groups found within our set of 6 healthcare documents.

Confidentiality and accountability each appear in 7 out of the 10

top objective groups, suggesting that confidentiality and

accountability are common security objectives for healthcare

systems. Integrity appears in 6 out of the 10 top objective

groupings.

The confidentiality, integrity, and accountability security

objectives appear together in the classifications of 2232

statements (20.4% of all statements classified), suggesting a

strong relationship among the three. For example, the statement

“The system shall provide a means to edit discharge instructions

for a particular patient ” [ED] implies that the confidentiality of

discharge instructions should be maintained since it is protected

health information; that the integrity of the discharge instruction

data upon editing should be maintained; and that accountability

should ensure that the user editing the discharge instructions can

be held responsible.

Furthermore, confidentiality and accountability appear together

in the classifications of 2859 statements (26.1% of all statements

classified). Confidentiality and accountability are closely related

security objectives. For example, the act of controlling access to

sensitive data to help promote confidentiality is closely tied to

the act of ensuring that a complete list of users who have

accessed the sensitive data may be maintained for

accountability. Therefore, in our domain classifier, statements

that involve create/read/update/delete actions upon sensitive data

are often classified as implying both confidentiality and

accountability objectives.

Integrity and accountability appear together for 3119 statements

(28.5% of all statements classified). Integrity involves ensuring

that user interactions with sensitive data do not corrupt or

somehow damage the state of the sensitive data. In terms of

accountability, integrity helps ensure that the traces of user

activity in the system may not be corrupted, modified, or

damaged so that users can always be held accountable.

Privacy and identification/authentication objectives also appear

in the top ten objective groupings, but are much less common.

Privacy and identification/authentication often appear in

combination with confidentiality, integrity, and/or accountability

objectives. Overall, in the six healthcare documents in the study,

the strongest relationships appear among confidentiality,

integrity, and accountability.

 Table 1. Documents and Associated Security Objective Counts

 Security Objectives

Doc. ID Document Title

Lines
C I IA A AY PR None

CT CCHIT Certified 2011 Ambulatory EHR Criteria 331 252 214 19 14 260 5 7

ED Emergency Department Information Systems Functional Document 2328 1162 1173 75 35 1354 76 773

NU
Pan-Canadian Nursing EHR Business and Functional Elements
Supporting Clinical Practice

264 67 77 4 26 43 10 96

OR OSCAR Feature Requests 5081 696 974 104 10 1184 18 3735

PS Electronic Health Record (EHR) Privacy and Security Requirements 1623 146 120 43 31 149 85 928

VL Virtual Lifetime Electronic Record User Stories 1336 693 731 13 19 797 10 375

Total: 10963 3016 3289 258 135 3787 204 5914

Table 2. Frequently Occurring Objective Groups

Freq Objective Group

2232 Confidentiality, Integrity, Accountability

702 Integrity, Accountability

443 Confidentiality, Accountability

106 Confidentiality, Integrity

104 Confidentiality, Identification & Authentication

98 Confidentiality, Accountability, Privacy

95 Integrity, Accountability, Privacy

90 Integrity, Identification & Authentication, Accountability

86 Confidentiality, Identification & Authentication, Accountability

83 Confidentiality, Integrity, Privacy

RQ3: What features/elements do sentences of the same security

objectives have in common?

Table 3 presents the top twenty keywords listed for security

objective. The set of keywords is very similar for

confidentiality, integrity, and accountability objectives. This

suggests a noticeable relationship among confidentiality,

integrity, and accountability objectives.

For example, the keywords “system”, “provide”, and “ability”

commonly appear in statements classified as confidentiality,

integrity, and/or accountability. Statements classified as

confidentiality, integrity, and/or accountability often appear in

the form: “The system shall provide the ability to <action>

<resource>”. For example, “The system should provide the

ability to check medications against a list of drugs noted to be

ineffective for the patient in the past” [ED]. Since the resource

in the example statement involves access to medications

(protected health information), the statement is classified as

implying a confidentiality objective. Likewise, since the

statement involves access to protected information, the integrity

of the data must be maintained. Finally, since the statement

involves a user accessing protected information, the system

should keep track of all users who have accessed the data so that

they may be held accountable.

For identification/authentication, top keywords include,

“authentication”, “login”, “username”, “user”, “authenticate”,

and “identify”. While the structure of statements for

confidentiality, integrity, and accountability share a common

grammatical pattern, statements for identification/authentication

share only common keywords that suggest the need to know the

identity of a user, or the need to ensure that a user has

authenticated into the system so that they can be identified by

unique credentials.

Similarly, top keywords for availability include “run”,

“availability”, “retain”, “time”, “destroy”, “retention”, and “real-

time”. Like identification/authentication, no grammatical pattern

exists for availability statements. Instead, keywords that suggest

temporal or data retention/destruction obligations are strong

indicators of the presence of an availability security objective.

Top keywords for privacy include “consent”, “phi”,

“disclosure”, “purpose”, and “privacy”. Again, no grammatical

pattern exists in the statements classified with the privacy

security objective. Instead, common keywords that suggest

privacy objectives include terms that involve a user (patients, in

healthcare documents) choosing to give consent, or disclosure of

protected information to anyone other than the patient. The

disclose of protected information suggests that a user has

consented to disclose the given information to a third-party.

Overall, keywords are the primary indicator of security

objectives for identification/authentication, availability, and

privacy. However, for many confidentiality, integrity, and

accountability statements, the grammatical structure of the

sentence is often the same. With similarities in grammatical

structure and keywords within the statements of each security

objective, we propose a set of context-specific templates for

composing security requirements. We discuss the proposed

templates in Section 8.

RQ4: How effectively can security objectives be identified and

extracted from selected set of documents?

Table 4 presents the results of running the four classifiers

against the six documents using a ten-fold cross validation.

Creating the “Combined SL” demonstrated a slight performance

gain over just using the Weka SMO classifier. The k-NN

classifier performed equivalently to the SMO classifier.

However, the advantage of k-NN classifier comes into play with

using the SD tool in an interactive fashion. The classifier reports

the sentences closest to the current sentence under test along

with the distance. This allows an analyst to view similar

sentences when making choices as to the possible security

objectives. The reported precision of .82 implies that the tool

correctly predicted 82% of those sentences it classified into a

particular objective. The recall score of .79 means that it found

79% of all of the objectives possible. From an error perspective,

the precision score implies that 18% of the identified objectives

an analysts examines would be false positives and 21% of the

Table 3. Top 20 Keywords by Security Objective

Security

Objective

Keywords

Confidentiality
system, provide, ability, patient, result, vler, exam, capture, datum, record, send, display, medication, information, list, requirement,

status, consuming, order, complete

Integrity
system, provide, ability, vler, exam, send, capture, result, datum, store, consuming, patient, pass, click, pick-list, status, application,

element, create, generate

Identification &

Authentication

authentication, login, mac2002, username, oscar, user, authenticate, identify, cash, identity, myoscar, password, waitlist, log,

registration, list2012, regen, uniquely, credentials, valid

Availability
run, availability, datum, retain, time, year, nurse, destroy, application, legally, recent, retention, care, maximum, real-time,

information, period, destruction, record, historical

Accountability
system, ability, provide, vler, exam, result, send, consuming, click, pass, patient, capture, pick-list, datum, application, audit, status,

store, record, list

Privacy
consent, patient, person, phi, disclosure, purpose, privacy, directive, require, organization, ehrus, law, authorization, information,

connect, disclose, healthcare, inform, jurisdiction, collect

possible objectives were not found.

Table 4. Ten-Fold Cross Validation

Classifier Precision Recall Measure

Naïve Bayes .66 .76 .71

SMO .81 .76 .78

k-NN (k=1) .80 .76 .78

Combined SL .82 .79 .80

8. CONTEXT-SPECIFIC TEMPLATES

FOR SECURITY REQUIREMENTS
As a result of our analysis of the domain, we have developed a

set of context-specific templates to generate security functional

requirements based on the identified objectives from each

statement. We have extracted 16 context-specific templates that

identify 41 reusable security functional requirements. We list an

example set of 5 of our context-specific templates, along with

generated security requirements, in Table 5.

To use these templates, we first intend a requirements analyst to

use the SD tool on the given project documentation. The tool

then produces a set of security objective annotations for each

statement in the documentation. Requirements analysts should

consider our set of 16 context-specific templates8 to determine

which templates apply to each statement in the project

documentation. For example, for a statement that the tool

annotates as having a confidentiality objective, the requirements

analyst should consider whether the confidentiality context-

specific template C1 applies (see Table 5). If the statement

contains a subject acting upon sensitive information, then the

requirements analysis should compose a total of three security

requirements to fulfill the one statement’s confidentiality

objective.

However, the newly composed security requirements also

contain related security objectives, themselves. For example, the

security requirement output in C1 for “The system shall enforce

access privileges that <enable | prevent> <subject> to <action>

<resource>” involves a user performing an action with sensitive

information. This requirement suggests an accountability

objective to track the user behavior defined in the requirement,

so we include a reference from C1 to the related accountability-

specific template AY1 for the requirements analyst to further

consider. In Section 7, we discussed how security objectives for

confidentiality, integrity, and accountability often appeared

together in the classifications for 2232 statements. The cross-

references in our context-specific templates for composing

security requirements also reflects the strong relationships

among confidentiality, integrity, and accountability.

9. THREATS TO VALIDITY
The following threats to validity exist for this research:

Selection of problem domain: We have evaluated our process in

the domain of healthcare. The domain classifier created using

documents from this domain may not be generalizable to other

domains due to different security objectives and domain-specific

vocabulary. Within the healthcare domain, however, we

consider documents from the United States and Canada.

8 A complete list of context-specific templates and labeled

documents are available at:

http://go.ncsu.edu/securitydiscoverer/

Selection of systems and documents: Security requirements may

come from different types of documents / sources (policy

documents, legislative texts, etc.) and variations may exist

between security requirements of software systems, even in the

same domain. Thus, selection of documents may influence the

type and frequency of security-relevant statements that are

identified.

Selection of security objectives: We have compiled a list of

security objectives based on various taxonomies. Our list of

security objectives may not be complete. To minimize this

threat, we have looked at multiple sources from security

literature so that we do not miss out important information from

our list. A general consensus on the categorization of security

objectives minimizes this threat.

Subjective assessment of security objectives: To develop the

domain classifier, we carried out manual classification of

statements which can be subjective. Misclassification of

statements based on security objectives in the domain classifier

may have occurred. To minimize this concern, two researchers

have independently carried out the classification of each

document while a third researcher has consolidated the final

classification, lending subjectivity and validity to the process.

10. CONCLUSION
Our work describes a tool-based process for identifying key

attributes of sentences to be used in security-related analysis and

specification of security functional requirements using a set of

context-specific templates. We have evaluated our process on

six documents from the electronic healthcare software industry,

identifying 46% of statements as implicitly or explicitly related

to security. Our classification approach identified security

objectives with a precision of .82 and recall of .79. From our

total set of classified statements, we extracted 16 context-

specific templates that identify 41 reusable security functional

requirements. In addition to specifying security functional

requirements, we provide a domain classifier of statements

labeled with relevant security objectives. For practitioners, our

research can additionally be used for gap identification in

requirements specification.

We are considering the following directions for future work:

 Access control: How can the access control derived from

natural language texts be appropriately modeled, checked for

completeness and inconsistencies, and implemented in the

environment?

 Audit: How can we evaluate the effectiveness of system’s

audit and non-repudiation capability?

 Security requirement patterns: From the identified security

objectives, can we identify specific security requirement

patterns [34] based on the objectives and context-specific

templates (incorporating impact and mitigation approaches

along with a discussion on requirements tradeoffs)?

11. ACKNOWLEDGEMENTS
This work is supported by the USA National Security Agency

(NSA) Science of Security Lablet. Any opinions expressed in

this material are those of the author(s) and do not necessarily

reflect the views of the NSA. We would like to thank the North

Carolina State University Realsearch group for their helpful

comments on the paper.

Table 5. Example Context-Specific Templates for Generating Security Requirements
9

Objective: Confidentiality Context: C1: Maintaining the confidentiality of data

Given: <subject> = user
<resource> = sensitive information

<action> = create/read/update/delete type actions
Add Security Requirements:

 The system shall enforce access privileges that <enable | prevent>
<subject> to <action> <resource>. [see AY1, I1, I2, I4]

 The system shall encrypt <resource> and store <resource> in encrypted
format using an industry-approved encryption algorithm. [see AY3, I2, I4]

 The system shall transmit <resource> data in encrypted format to and from
the authorized <subject>. [see I4]

Statement: The system shall provide a means to edit discharge
instructions for a particular patient. [ED]

Security Requirements:

 The system shall enforce access privileges that enable authorized

users to edit discharge instructions for a particular patient.

 The system shall encrypt discharge instructions and store discharge
instructions in encrypted format using an industry-approved

encryption algorithm.

 The system shall transmit discharge instructions in encrypted

format to and from authorized users.

Objective: Integrity Context: I2: Maintaining integrity during write-type actions

Given: <subject> = system, user or role

<resource> = sensitive information
<action> = create / update / auto-populate / merge

Add Security Requirements:

 The system shall ensure that all mandatory information is provided for the

<object> before <action>.

 The system shall protect against loss of information during <action>.

 The system shall have provision to report errors in < resource > after

<action>. [see AY1]

 The system shall have provision to correct errors in < resource > if errors are
detected. [see AY1]

Statement: There must therefore be some capacity within the EHRi to

merge multiple instances of patient records into a single record. [PS]

Security Requirements:

 The system shall ensure that all mandatory information is provided

for the patient records before merging.

 The system shall protect against loss of information during merging
patient records.

 The system shall have provision to report errors in patient records
after merging.

 The system shall have provision to correct errors in patient records if
errors are detected.

Objective: Availability Context: A1: Maintaining availability of data

Given: <time> = length of time, typically one year

<keywords> = retention | archive | history

<resource> = information
<action> = read / view / display / send / receive / access

Add Security Requirements:

 The system shall store and make available <object> for a period of at least

<time period>. [see C1]

 The system shall provide the capability for an administrator to purge data that

is at least <time period> old and in accordance with organizational retention

policy. [see I4]

Statement: VLER DAS stores event descriptions in an audit log for a

minimum of six (6) years. [VL]

Security Requirement:

 The system shall store and make available audit event descriptions

for a period of at least 6 years.

 The system shall provide the capability for an administrator to purge

data that is at least 6 years old and in accordance with organizational
retention policy.

Objective: Accountability Context: AY1: Logging transactions with sensitive data

Given: <subject> = user or role

<action> = create/read/update/delete

<resource> = sensitive information

Add Security Requirements:

 The system shall log every time <subject> performs the <action> on

<resource>.

 The system shall allow only authorized auditors to view the log entry. [see
I1, AY1]

Statement: The system should provide the ability to check

medications against a list of drugs noted to be ineffective for the

patient in the past [ED]

Security Requirements:

 The system shall log every time the user checks medications against
a list of drugs noted to be ineffective for the patient in the past.

 The system shall allow only authorized auditors to view log entry.

Objective: Privacy Context: PR1: Usage of personal information

Given: <subject> = user or role

<resource> = private or personally identifiable information
<action> = create/read/update/delete/disclose/access

Add Security Requirements:

 The system shall inform the owner of <resource> of all the possible uses of

<resource> that are authorized. [see C1]

 The system shall allow the owner of <resource> to be notified when the

<resource> is <action> by <subject>. [see I2, AY1]

 The system shall have the ability to get consent from the owner of

<resource> before accessing <resource> for authorized use. [see C1, AY1]

Statement: Nurses require access to historical patient data to support

patient interaction and care planning [NU]

Security Requirements:

 The system shall inform the owner of historical patient data of all the

possible uses of historical patient data that are authorized.

 The system shall allow the owner of historical patient data to be
notified when the historical patient data is accessed by nurses.

 The system shall have the ability to get consent from the owner of
historical patient data before accessing historical patient data for

authorized use.

9 A complete list of context-specific templates and labeled documents are available at: http://go.ncsu.edu/securitydiscoverer/

12. REFERENCES
[1] 1990. IEEE Standard Glossary of Software Engineering

Terminology:

http://standards.ieee.org/findstds/standard/610.12-

1990.html

[2] 2001. Underlying Technical Models for Information

Technology Security:

http://csrc.nist.gov/publications/nistpubs/800-33/sp800-

33.pdf

[3] 2002. Federal Information Security Management Act:

http://csrc.nist.gov/drivers/documents/FISMA-final.pdf

[4] 2004. Standards for Security Categorization of Federal

Information and Information Systems:

http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-

199-final.pdf

[5] 2006. Minimum Security Requirements for Federal

Information and Information Systems

http://csrc.nist.gov/publications/fips/fips200/FIPS-200-

final-march.pdf

[6] 2012. Common Criteria for Information Technology

Security Evaluation,Version 3.1. Release 4:

http://www.commoncriteriaportal.org/files/ccfiles/CCPAR

T2V3.1R4.pdf

[7] 2013. Security and Privacy Controls for Federal

Information Systems and Organizations:

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.

SP.800-53r4.pdf

[8] Breaux, T.D. and Antón, A.I., 2008. Analyzing Regulatory

Rules for Privacy and Security Requirements. IEEE

Transactions on Software Engineering 34, 1 (Jan.), 5-20.

[9] Casamayor, A., Godoy, D., and Campo, M., 2010.

Identification of non-functional requirements in textual

specifications: A semi-supervised learning approach.

Information and Software Technology 52, 436-445. DOI=

http://dx.doi.org/10.1016/j.infsof.2009.10.010.

[10] Cleland-Huang, J., Settimi, R., and Solc, P., 2006. The

Detection and Classification of Non-Functional

Requirements with Application to Early Aspects. In 14th

IEEE International Requirements Engineering Conference

(RE'06) Ieee, 39-48. DOI=

http://dx.doi.org/10.1109/RE.2006.65.

[11] De Marneffe, M.-C., Maccartney, B., and Manning, C.,

2006. Generating Typed Dependency Parses from Phrase

Structure Parses. Proceedings of Language Resources and

Evaluation, 449-454. DOI=

http://dx.doi.org/10.1.1.74.3875.

[12] Fabian, B., Gürses, S., Heisel, M., Santen, T., and Schmidt,

H., 2010. A comparison of security requirements

engineering methods. Requirements Engineering - Special

Issue on RE'09: Security Requirements Engineering 15, 1,

7-40.

[13] Firesmith, D., 2004. Specifying Reusable Security

Requirements. Jornal of Object Technology 3, 1 (Jan-Feb.),

15.

[14] Firesmith, D.G., 2003. Engineering Security Requirements.

Journal of Object Technology 2(Jan-Feb), 16.

[15] Franqueira, V.N.L., Tun, T.T., Yu, Y., Wieringa, R., and

Nuseibeh, B., 2011. Risk and argument: A risk-based

argumentation method for practical security. In

Proceedings of the IEEE International Requirements

Engineering Conference (2011), 10.

[16] Hall, M., National, H., Frank, E., Holmes, G., Pfahringer,

B., Reutemann, P., and Witten, I.H., 2009. The WEKA

Data Mining Software : An Update. SIGKDD Explorations

11, 10-18. DOI=

http://dx.doi.org/10.1145/1656274.1656278.

[17] Han, J., Kamber, M., and Pei, J., 2011. Data Mining:

Concepts and Techniques, 744.

[18] He, Q. and Antón, A.I., 2009. Requirements-based Access

Control Analysis and Policy Specification (ReCAPS).

Information and Software Technology 51, 993-1009. DOI=

http://dx.doi.org/10.1016/j.infsof.2008.11.005.

[19] 2006. Uncover Security Design Flaws Using The STRIDE

Approach: http://msdn.microsoft.com/en-

us/magazine/cc163519.aspx

[20] Joachims, T., 1998. Text categorization with support vector

machines: Learning with many relevant features. Machine

Learning: ECML-98. DOI=

http://dx.doi.org/10.1007/BFb0026683.

[21] Lamsweerde, A.V., 2004. Elaborating Security

Requirements by Construction of Intentional Anti-Models.

In Proceedings of the International Conference on

Software Engineering (ICSE 2004) (Edinburgh,

Scotland2004), 10.

[22] Maxwell, J.C., Antón, A.I., and Swire, P., 2011. A legal

cross-references taxonomy for identifying conflicting

software requirements. In Requirements Engineering, 197-

206.

[23] Mead, N.R., Houg, E.D., and Stehney, T.R., 2005. Security

Quality Requirements Engineering (SQUARE)

Methodology. Software Engineering Inst.

[24] Mellado, D., Blanco, C., Sánchez, L.E., and Fernández-

Medina, E., 2010. A systematic review of security

requirements engineering. Computer Standards &

Interfaces 32, 4, 153-165.

[25] Moffett, J.D., Haley, C.B., and Nuseibeh, B., 2004. Core

security requirements artifacts. The Open University.

[26] Quinlan, J.R., 1986. Induction of decision trees. Machine

Learning 1, 1.

[27] Rokach, L., 2010. Ensemble-based classifiers. Artificial

Intelligence Review 33, 1-2, 1-39. DOI=

http://dx.doi.org/http://dx.doi.org/10.1007%2Fs10462-009-

9124-7.

[28] Salton, G. and Mcgill, M.J., 1986. Introduction to Modern

Information Retrieval.

[29] Saltzer, J.H. and Schroeder, M.D., 1974. The Protection of

Information in Computer Systems. Communication of the

ACM 17, 7.

[30] Schumacher, M., Fernandez-Buglioni, E., Hyberston, D.,

Buschmann, F., and Sommerlad, P., 2006. Security

Patterns: Integrating Security and Systems Engineering.

John Wiley & Sons, Ltd, West Sussex.

[31] Sindre, G. and Opdahl, A.L., 2005. Eliciting Security

Requirements with Misuse Cases. Requirements

Engineering 10, 12. DOI=

http://dx.doi.org/10.1007/s00766-004-0194-4.

[32] Slankas, J. and Williams, L., 2012. Classifying Natural

Language Sentences for Policy. 2012 IEEE International

Symposium on Policies for Distributed Systems and

Networks, 33-36. DOI=

http://dx.doi.org/10.1109/POLICY.2012.16.

[33] Slankas, J. and Williams, L., 2013. Automated Extraction

of Non-functional Requirements in Available

Documentation. In International Conference on Software

Engineering (ICSE) 1st International Workshop on

Natural Language Analysis in Software Engineering

(NaturaLiSE), 9-16.

[34] Withall, S., 2007. Software Requirement Patterns.

O'Reillly.

[35] Xiao, X., Paradkar, A., Thummalapenta, S., and Xie, T.,

2012. Automated Extraction of Security Policies from

Natural-Language Software Documents. In International

Symposium on the Foundations of Software Engineering

(FSE), Raleigh, North Carolina, USA.

[36] Yang, Y. and J.P., P., 1997. A Comparative Study on

Feature Selection in Text Categorization In Fourteenth

International Conference on Machine Learning (ICML'97),

412-420.

[37] Zhang, W., Yang, Y., Wang, Q., and Shu, F., 2011. An

Empirical Study on Classification of Non-Functional

Requirements. In The Twenty-Third International

Conference on Software Engineering and Knowledge

Engineering (SEKE 2011), 190-195.

