
Obtaining Information about Queries
Behind Views and Dependencies

Rada Chirkova
Department of Computer Science

NC State University, Raleigh, NC 27695, USA
chirkova@csc.ncsu.edu

Ting Yu
Department of Computer Science

NC State University, Raleigh, NC 27695, USA
yu@csc.ncsu.edu

ABSTRACT
We consider the problems of finding and determining
certain query answers and of determining containment
between queries; each problem is formulated in pres-
ence of materialized views and dependencies under the
closed-world assumption. We show a tight relation-
ship between the problems in this setting. Further,
we introduce algorithms for solving each problem for
those inputs where all the queries and views are con-
junctive, and the dependencies are embedded weakly
acyclic [13]. We also determine the complexity of each
problem under the security-relevant complexity mea-
sure introduced in [31]. The problems studied in this
paper are fundamental in ensuring correct specification
of database access-control policies, in particular in case
of fine-grained access control. Our approaches can also
be applied in the areas of inference control, secure data
publishing, and database auditing.

1. INTRODUCTION
In this paper, we consider the problems of finding and

determining certain answers to relational queries, and
of containment between relational queries. For the for-
mer two problems, we build on the setting of [1], and
for the latter – on the setting of [31]; we point out and
exploit a tight relationship between the settings. To be-
gin with, in all these settings the set of databases (a.k.a.
instances) of interest is not given directly, and is instead
specified via a set of “materialized views.” That is, we
are given definitions of one or more named queries (def-
initions of views). We are also given a set of answer
tuples for each view, that is, each view is materialized
into a relation. Intuitively, each set MV of material-
ized views specifies a set of “base instances” I, such that
each relation in MV can be obtained as an answer, on
the instance I, to the respective view definition. In
addition, for a given set of integrity constraints (depen-
dencies) on the instances of interest, we deem relevant
only those instances that satisfy all the dependencies.
In summary, we consider the problems of finding and
determining certain query answers and the problem of
query containment, each with respect to the sets of base
instances specified by a given set of materialized views
and a given set of dependencies.

The following motivating example draws on the area
of database security called“database-access control” [7].

EXAMPLE 1.1. Suppose a relation Emp stores in-
formation about employees of a company, using attributes
Name, Dept (department), and Salary. Two other re-
lations of interest are HQDept(Dept) and OfficeInHQ

(Name,Office). The relation HQDept stores the names
of the departments that are located in the company head-
quarters; OfficeInHQ associates employees working in
the headquarters with their office addresses.

We now describe the integrity constraint (dependency)
that holds on the database schema P = { Emp, HQDept,
OfficeInHQ }. Suppose that for all the departments lo-
cated in the company headquarters, all their employees
have their offices in the headquarters. This can be ex-
pressed as a “tuple-generating dependency” [2], which we
call σ. (Please see Example 4.1 for a formalization.)

Let a “secret query” [20] Q ask for the names and
salaries of all the employees who work in the company
headquarters. We can formulate Q in the standard rela-
tional query language SQL, as follows:

(Q):SELECT DISTINCT Emp.Name, Salary FROM Emp, OfficeInHQ
WHERE Emp.Name = OfficeInHQ.Name;

Consider three views, U, V, and W, that are defined for
some class(es) of users, in SQL on the schema P. The
view U returns the relation HQDept, the view V returns
the department names for each employee, and W returns
the salaries in each department:

(U): DEFINE VIEW U(Dept) AS SELECT * FROM HQDept;
(V): DEFINE VIEW V(Name,Dept) AS

SELECT DISTINCT Name, Dept FROM Emp;
(W): DEFINE VIEW W(Dept,Salary) AS

SELECT DISTINCT Dept, Salary FROM Emp;

Consider database users who are authorized to see
only the answers to the views U, V and W. (In partic-
ular, these users are not authorized to see any answers
to the query Q.) That is, U, V, and W are access-control
views for these users on the database with the schema
P. Suppose that at some point in time, these users can
see the following set MV of answers to the views:

MV={U(sales),V(johnDoe,sales),W(sales,50000)}.
A basic security question in this setting is as follows:

Can these users find out which tuples must be in the
answer to the query Q on all the relevant “back-end”
databases? If the answer to this question is positive,
then, intuitively, there is a security breach, in the form
of leakage of some answers to Q to unauthorized users.

Let the back-end databases of interest be those in-
stances of schema P (i.e., “base instances”) that sat-
isfy the dependency σ and that “generate exactly MV
as answers to U, V, and W.” (The latter requirement is
the “closed-world assumption,” to be discussed in detail
shortly.) Using an algorithm introduced in this paper,
we can show that the tuple t̄ = (johnDoe, 50000) is in

1

the answer to the secret query Q on all such base in-
stances. Thus, we can answer the above security ques-
tion in the positive for the secret query Q in the “materi-
alized-view setting” (P, {σ}, {U, V, W}, MV). 2

A tuple that is in the answer to the query of inter-
est on all the relevant base instances is called a certain
answer to the query. “Determining a certain query an-
swer” is the problem of determining if a given tuple is
a certain answer to a given query w.r.t. the given ma-
terialized views and, possibly, dependencies. (E.g., the
tuple t̄ in Example 1.1 is a certain answer to the query Q
in the setting (P, {σ}, {U, V, W}, MV).) The problems
of finding and determining certain query answers on the
instances defined by the given materialized views have
been considered both under the “open-world assump-
tion” (OWA) and under the “closed-world assumption”
(CWA). That is, for a base instance I, consider the an-
swer tuples generated by the given view definitions on I.
Then, informally, I is relevant to the given instance MV
of materialized views under CWA iff these answer tu-
ples together comprise exactly MV . In contrast, OWA
permits MV to not contain all such tuples.

The classic paper [1] by Abiteboul and Duschka ad-
dressed the complexity of determining certain query an-
swers under both OWA and CWA, for a range of query
and view languages and in the absence of dependencies.
[1] also provided algorithms for finding certain query an-
swers under both OWA and CWA, for queries defined in
datalog and for views in nonrecursive datalog, with dis-
equalities (6=) permitted in both, again in the absence
of dependencies. The algorithms of [1] are based on the
“conditional tables” of [17]. The formulation of the lat-
ter problem was extended, in the context of database
security, to account for database dependencies; the ex-
tended problem was solved in [8, 27], under OWA for
more restricted (than in [1]) languages of queries and
views and for “embedded dependencies” [2].

Our original motivation for this current work comes
from the fact that finding certain query answers is a ba-
sic problem in database security, as illustrated by Ex-
ample 1.1. Moreover, in its security form, this problem
makes the most sense under CWA, rather than under
OWA (see, e.g., [24]). Intuitively, for those database
attackers who are seeking unauthorized answers to a se-
cret query, Q, in presence of a set of view answers MV ,
the only relevant base instances are those that“generate
exactly MV ,” that is only the CWA-relevant instances.
Suppose the owners of the back-end database run an
OWA-based algorithm for finding certain answers to Q
w.r.t. MV . They could then arrive at the empty set
of answers (and thus conclude that their database is
secure), even though under CWA, the set of certain an-
swers to Q would not be empty for the same MV and
dependencies. Indeed, we can use the results of [8, 27]
to show that in Example 1.1, the set of certain answers
to the query Q is the empty set under OWA.1

To address this challenge, we have developed a CWA-
based approach for finding certain answers to conjunc-
tive queries (CQ queries), in presence of CQ views and
of weakly acyclic embedded dependencies [13]. (Simi-
larly to the dependency-free case [1], the CWA version
of this problem is harder than the OWA version consid-

1The algorithms of [1] could not be applied to the problem
instance of Example 1.1, as that instance contains a depen-
dency that is not a “full” [2] (a.k.a. “total” [6]) dependency.

ered in [8, 27].) We then realized that our techniques
can be connected to the solution of [31], by Zhang and
Mendelzon, to the (CWA-based) problem of determin-
ing containment between queries in presence of mate-
rialized views. The latter problem arises, for instance,
in determining whether a user query formulated on the
base database relations has an equivalent rewriting in
terms of the access-control views for this user. (If the
answer to the question is positive, then the user query
can be answered safely, see [24, 31] for the details.) A
natural and practically important generalization of this
problem is its extension to the consideration of depen-
dencies holding on the base instances. We have been
able to extend to the case of dependencies the algorithm
of [31] for their query-containment problem w.r.t. mate-
rialized views MV , by building on our approach to the
problem of finding certain query answers w.r.t. MV .

Our contributions.
Our specific contributions are as follows:

• We formalize the problem of determining contain-
ment between two queries under CWA and in pres-
ence of materialized views and dependencies, by
building on the formalization of [31] that does not
consider dependencies.

• We develop an algorithm for solving this problem,
in the case where the input queries and all the view
definitions are CQ queries, and the input depen-
dencies are embedded weakly acyclic.

• We show that the problem of determining certain
answers to a query, under CWA and in presence
of materialized CQ views and dependencies, is a
special case of the above containment problem.
It follows that the algorithm that we introduce
for the containment problem also solves correctly
this “certain-query-answer” problem, for all inputs
where the queries and views are CQ queries and
the dependencies are embedded weakly acyclic.

• For the problem of finding all certain query an-
swers under CWA and in presence of material-
ized views and dependencies, we develop two algo-
rithms that are sound and complete for all inputs
where the queries and views are CQ queries and
the dependencies are embedded weakly acyclic. The
first algorithm uses as a subroutine our algorithm
for the “certain-query-answer” problem. The sec-
ond algorithm both builds on the standard ap-
proach to answering queries in relational data ex-
change, and uses a simpler version of the technique
that we use to solve the above containment prob-
lem (w.r.t. materialized views and dependencies).

• We determine the complexity of each of the three
problems under the security-relevant complexity
measure of [31]. In this measure, it is assumed
that everything is fixed except for the materialized
views and queries (but not for view definitions).

The problems that we study in the paper can be
used to model and analyze a wide range of database-
security problems, including database-policy analysis,
secure data publishing, inference control, and auditing.
For instance, database-security policies are often imple-
mented through views. It is important to ensure that
security views are defined correctly, so that no sensi-
tive information can be learned by unauthorized par-

2

ties from granted view access [8, 29]. Clearly, an infor-
mation disclosure happens if an attacker can learn cer-
tain answers to a secret query. The same modeling can
be applied to capture the secure data-publishing prob-
lem [20]. Similarly, in database query auditing, answers
to user-issued queries can be modeled as materialized
views [22, 23]. A potential inference attack happens if
those answers combined together can be used to derive
secret information as defined by a query.

The remainder of the paper is organized as follows.
After discussing related work in Section 2, we review
the background definitions and results in Section 3, and
then define our three problems of interest in Section 4.
In Sections 5–6 we introduce our approaches to solving
the three problems in the CQ weakly acyclic setting.
Finally, in Section 7 we address the complexity of the
three problems in the CQ weakly acyclic setting.

2. RELATED WORK
The seminal paper [1] by Abiteboul and Duschka ad-

dressed the complexity of the problem of determining
whether a tuple is a certain query answer in presence
of materialized views (the “certain-query-answer prob-
lem”) under both OWA and CWA, for a range of query
and view languages and in the absence of dependencies.
[1] also solved the problem of finding all certain query
answers under both OWA and CWA, for datalog queries
and for views in nonrecursive datalog, with disequali-
ties (6=) permitted in both, in the absence of dependen-
cies. The algorithms of [1] are based on the “conditional
tables” of [17]. (See [2, 16] for detailed overviews of
incomplete databases and of their representations, in-
cluding conditional tables [17].) It is remarked in [1]
that their algorithms for finding certain answers could
be extended to the case of “full” (or “total”) dependen-
cies [6, 2]. In this current paper, we provide sound and
complete algorithms for finding certain answers and for
the certain-query-answer problem, under CWA for CQ
queries and views and for “weakly acyclic” [13] embed-
ded dependencies, of which the class of full dependencies
is a proper subclass. We also address the complexity of
both problems in this CQ weakly acyclic setting.

The paper [8] by Brodsky and colleagues introduced
in the security context the problem of finding certain
query answers under OWA and in presence of embed-
ded dependencies, and proposed a sound and complete
algorithm for the case where the queries and views are
CQ queries expressible without joins. Then, Stoffel and
colleagues in [27] made a connection between this prob-
lem and the techniques introduced in data exchange [13,
5, 4], by developing ([27]) a data-exchange-based ap-
proach for finding certain query answers, under OWA
for CQ views, UCQ queries (i.e., unions of CQ queries),
and embedded dependencies.

In this paper we extend the data-exchange approach
of [13], also used in [27], to solve the problem of find-
ing certain query answers under CWA, for CQ queries
and views in presence of weakly acyclic embedded de-
pendencies. The approaches of this current paper do
not use “target-to-source dependencies” introduced in
the data-exchange context in [15]. The dependencies
in our approaches do use constants (as was suggested
back in [13]), and thus are related to“conditional depen-
dencies” [14]. Conditional dependencies are intuitively
understood as enforcing a (perhaps constant-involving)
pattern onto (typically constant-determined) subsets of

the given relations. As the dependencies that we use do
not have constants in their antecedents, they intuitively
behave in the ways expected of standard (constant-free)
embedded dependencies.

While the term “data exchange” is mentioned in the
paper [20] by Miklau and Suciu, data-exchange meth-
ods are not used in the technical development in [20].
Rather, the term is used in [20] informally as a refer-
ence to today’s universal sharing of data (as in, e.g., on
the Web). [20] addresses the problem of “data publish-
ing,” in which the goal is to determine, for a given set
of view definitions and for a “secret query”Q, whether
any materializations of the given views would disclose
information about any answers to Q. (In contrast, in
the three problems considered in this current paper, we
assume that a specific set of view materializations is
provided in the problem input.) Further, the notion of
disclosure in [20], inspired by Shannon’s notion of per-
fect secrecy [25], is as follows: There is no disclosure of
query Q via views V if and only if the probability of an
adversary guessing the answer to Q is the same (or, in
another scenario, is almost the same) whether the ad-
versary knows the answers to V or not. In this current
paper, we use a deterministic, rather than probabilistic,
notion of disclosure of a query answer, in presence of a
specific set of view materializations; this leads to differ-
ent security decisions than those following from [20].

The work [31] by Zhang and Mendelzon introduced
and solved the problem of“conditional containment”be-
tween two CQ queries in presence of materialized CQ
views, under CWA and in the absence of dependencies.
[31] also introduced a security-relevant complexity met-
ric, under which their problem is Πp

2 complete. ([31]
also provides an excellent overview of the connections
of the query-containment problem of [31] to database-
theory literature.) In our work, we add dependencies
to the formulation of the problem of [31], and extend
the approach of [31], both to solve the resulting prob-
lem in the CQ weakly acyclic setting and to analyze the
complexity of the problem. We also uncover a tight re-
lationship of the problem with the problems of finding
and determining certain query answers, under CWA in
presence of view materializations and of dependencies.

3. PRELIMINARIES
3.1 Instances and Queries

Schemas and instances. A schema P is a finite
sequence < P1, . . . , Pm > of relation symbols, with each
Pi having a fixed arity ki ≥ 0. An instance I of P assigns
to each Pi ∈ P a finite ki-ary relation I[Pi], which is a
set of tuples. For tuple membership in relation I[Pi], we
use the notation t̄ ∈ I[Pi]. Each element of each tuple
in an instance belongs to one of two disjoint infinite sets
of values, Const and Var. We call elements of Const
constants, and denote them by lowercase letters a, b,
c, . . . ; the elements of Var are called (labeled) nulls,
denoted by symbols ⊥, ⊥1, ⊥2,

Sometimes we use the notation Pi(t̄) ∈ I instead of t̄
∈ I[Pi], and call Pi(t̄) a fact of I. When all the values
in t̄ are constants, we say that Pi(t̄) is a ground fact,
and t̄ is a ground tuple. The active domain of instance
I, denoted adom(I), is the set of all the elements of
Const ∪ Var that occur in any facts in I. When each
fact in I is a ground fact, we call I a ground instance.

Queries. We consider the class of queries called

3

“unions of conjunctive queries with disequalities,”UCQ6=

queries. In the definitions for UCQ6= queries, we will use
the following notions of relational atom and of (dis)equality
atom. Let Qvar be an infinite set of values disjoint
from Const ∪ Var; we call Qvar the set of (query)
variables. We will denote variables by uppercase letters
X, Y , Then P (t̄), with P a k-ary relation symbol
and t̄ a k-vector of values, is a relational atom whenever
each value in t̄ is an element of Const ∪ Qvar. Fur-
ther, an equality (resp. disequality) atom is a built-in
predicate of the form S θ T , where θ is = (resp. 6=),
and each of S and T is an element of Const ∪ Qvar.

A CQ6=-rule over schema P, with k-ary (k ≥ 0) output
relation symbol Q /∈ P, is an expression of the form

Q(X̄) ← P1(Ū1) ∧ . . . ∧ Pn(Ūn) ∧ C.
Here, n ≥ 1; the vector X̄ has k elements; for each i
∈ [1, n], Pi ∈ P; each of Q(X̄), P1(Ū1), . . . , Pn(Ūn)
is a relational atom; and C is a (possibly empty) finite
conjunction of disequality atoms. We consider only safe
rules: That is, each variable in X̄, as well as each vari-
able occurring in C, also occurs in at least one of Ū1, . . .,
Ūn. All the variables of the rule that do not appear in X̄
(i.e., the nonhead variables of the rule) are assumed to
be existentially quantified. We call the atom Q(X̄) the
head of the rule, call X̄ the head vector of the rule, and
call the conjunction of its remaining atoms the body of
the rule. Each atom in the body of a rule is called a sub-
goal of the rule. The conjunction in the body is usually
written using commas, as P1(Ū1), . . . , Pn(Ūn), C.

A conjunctive query with disequalities (a CQ6= query)
is a query defined by a single CQ6=-rule; a conjunctive
query (a CQ query) is a CQ6= query with an empty C.
We will be referring to a CQ6= query with head Q(X̄) as
just Q(X̄), or even Q, whenever clear from the context.
We will be using body(Q) as a concise name for the body
of the (rule for) Q.

Finally, for a k-ary relation symbol Q, with k ≥ 0,
let S(Q) = { Q(1), . . . , Q(l) } be a finite set of CQ6=-
rules over schema P, such that Q is the output relation
symbol in each rule. Then we say that the set S(Q)
defines a UCQ6= query Q over P, and that each element
of S(Q) defines a CQ6= component of Q. In the special
case where S(Q) = ∅, we say that the corresponding
UCQ6= query Q is a trivial query.

Semantics of UCQ6= queries. We now define the
semantics of a UCQ6= query Q. In the definition, we
will need the notions of homomorphism and of valua-
tion. Consider two conjunctions, ϕ(Ȳ) and ψ(Z̄), of
relational atoms. Then a mapping h from the set of
elements of Ȳ to the set of elements of Z̄ is called a ho-
momorphism from ϕ(Ȳ) to ψ(Z̄) whenever (i) h(c) = c
for each constant c in Ȳ , and (ii) for each conjunct of the
form p(Ū) in ϕ(Ȳ), the relational atom p(h(Ū)) is a con-
junct in ψ(Z̄). (For a vector S̄ = [s1s2 . . . sl], for some l
≥ 0, we define h(S̄) as the vector [h(s1)h(s2) . . . h(sl)].
By convention, a homomorphism is an identity mapping
when applied to empty vectors and to empty tuples.)

We define homomorphisms in the same way for the
case where either one of ϕ(Ȳ) and ψ(Z̄) (or both) is a
conjunction of facts. Further, for a conjunction C of dis-
equality atoms and two conjunctions ϕ(Ȳ) and ψ(Z̄) of

relational atoms or of facts, we say that every homomor-
phism, h, from ϕ(Ȳ) to ψ(Z̄) is also a homomorphism
from ϕ(Ȳ) to ψ(Z̄)∧C. We will denote homomorphisms
by lowercase letters g, h, . . . , possibly with subscripts.

Now suppose we are given a conjunction ϕ(Ȳ) of re-
lational atoms, a conjunction ψ(Z̄) of facts, and a con-
junction C of disequalities over variables in Ȳ and con-
stants in Const. Suppose there is a homomorphism,
h, from ϕ(Ȳ) to ψ(Z̄), such that for each atom of the
form S 6= T in C, the values h(S) and h(T) are distinct
elements of Const ∪ Var. Then we say that h is a val-
uation from ϕ(Ȳ)∧C to ψ(Z̄). We will use Greek letters
µ, ν, . . . , possibly with subscripts, for valuations.

Given a k-ary CQ6= queryQ(X̄) and given an instance
I, which we interpret as a conjunction of all the facts
in I. Then the answer to Q on I, denoted Q(I), is

Q(I) = { ν(X̄) | ν is a valuation from body(Q) to I } .

(When k = 0, i.e., Q is a Boolean query, ν(X̄) is the
empty tuple.) Further, for a UCQ6= query Q defined
by l ≥ 1 rules { Q(1), . . . , Q(l) }, and for an instance
I, the answer to Q on I is the union ∪li=1Q

(i)(I). By
convention, for every trivial UCQ6= query Q and for
every instance I, we have Q(I) = ∅.

Query containment. A query Q1 is contained in
query Q2, denoted Q1 v Q2, if Q1(I) ⊆ Q2(I) for ev-
ery instance I. A classic result in [9] by Chandra and
Merlin states that a necessary and sufficient condition
for the containment Q1 v Q2, for CQ queries Q1 and
Q2 of the same arity, is the existence of a containment
mapping from Q2 to Q1. Here, a containment mapping
[9] from CQ query Q2(X̄2) to CQ query Q1(X̄1) is a
homomorphism h from body(Q2) to body(Q1) such that

h(X̄2) = X̄1. By the results in [19], this containment
test of [9] remains true when Q1 has built-in predicates.
Thus, the same test holds in particular when Q1 is a
CQ6= query. It follows that, for Q1 a UCQ6= query and
for Q2 a CQ query, determining whether Q1 v Q2 is
decidable. Indeed, the containment holds iff for each

CQ6= rule Q
(i)
1 ∈ S(Q1), i ∈ [1, l], we have Q

(i)
1 v Q2.

Canonical database. Every CQ6= query Q can be
regarded as a symbolic ground instance I(Q). I(Q) is
defined as the result of turning each relational atom
Pi(. . .) in body(Q) into a tuple in the relation I(Q)[Pi].
The procedure is to keep each constant in the body
of Q, and to replace consistently each variable in the
body of Q by a distinct constant different from all the
constants in Q. The tuples that correspond to the re-
sulting ground facts are the only tuples in the canonical
database I(Q) for Q, which is unique up to isomorphism.

Remark. We have defined CQ6=-rules as not having
explicit equality atoms in their bodies. As a result and
by definition of canonical database, we are restricting
our consideration to the set of all and only satisfiable
CQ6=-rules/queries. (A CQ6=-rule/query Q is satisfiable
iff there exists an instance I such that Q(I) 6= ∅.)

3.2 Dependencies and Chase
Embedded dependencies. We consider dependen-

cies σ of the form

σ : φ(Ū , V̄)→ ∃W̄ ψ(Ū , W̄) (1)

4

with φ and ψ conjunctions of relational atoms, possibly
with equations added. (All the variables in Ū , V̄ are
understood to be universally quantified.) Such depen-
dencies, called embedded dependencies, are expressive
enough to specify all usual integrity constraints, such
as keys, foreign keys, and inclusion dependencies [2]. If
ψ is a single equation, then σ is an equality-generating
dependency (egd). If ψ consists only of relational atoms,
then σ is a tuple-generating dependency (tgd). We follow
[13] in allowing constants in egds and tgds. Each set of
embedded dependencies without constants is equivalent
to a set of tgds and egds [2]. We write I |= Σ if instance
I satisfies all elements of set Σ of dependencies. All the
sets Σ that we refer to are finite.

Query containment under dependencies. We
say that query Q is contained in query P under set of
dependencies Σ, denoted Q vΣ P, if for every instance
I |= Σ we have Q(I) ⊆ P (I). Queries Q and P are
equivalent under Σ, denoted Q ≡Σ P, if both Q vΣ P
and P vΣ Q hold. Q and P are equivalent (in the
absence of dependencies), denoted Q ≡ P , if Q ≡∅ P .

Chase for CQ queries. Given a CQ query Q(X̄) ←
ξ(X̄, Ȳ) and a tgd σ as in Eq. (1); assume w.l.o.g. that
Q has none of the variables in W̄ . The (standard [16])
chase of Q with σ is applicable if there is a homomor-
phism h from φ to ξ, such that h cannot be extended to
a homomorphism from φ ∧ ψ to ξ. Then, a (standard)
chase step on Q with σ and h is a rewrite of Q into a
CQ query Q∗(X̄) ← ξ(X̄, Ȳ) ∧ ψ(h(Ū), W̄). It can be
shown that Q∗ ≡{σ} Q and that Q∗ v Q.

We now define a (standard [16]) chase step with an
egd. Assume a CQ query Q, as before, and an egd σ
of the form φ(Ū) → U1 = U2. The chase of Q with σ
is applicable if there is a homomorphism h from φ to ξ
such that h(U1) 6= h(U2). Suppose at least one of h(U1)
and h(U2) is a variable; let w.l.o.g. h(U1) be a variable.
Then a chase step on Q with σ and h is a rewrite of
Q into a CQ query, Q∗, that results from replacing all
occurrences of h(U1) in Q by h(U2). Again, we have
Q∗ ≡{σ} Q and Q∗ v Q. If, for an h as above, h(U1)
and h(U2) are distinct constants, then we say that chase
with σ fails on Q. In this case, Q(I) = ∅ on all I |= {σ}.

A Σ-chase sequence C (or just chase sequence, if Σ is
clear from the context) for CQ query Q0 is a sequence
of CQ queries Q0, Q1, . . . such that each query Qi+1
(i ≥ 0) in C is obtained from Qi by a chase step Qi ⇒σ

Qi+1 using a dependency σ ∈ Σ. A chase sequence
Q = Q0, Q1, . . . , Qn is terminating if I(Qn) |= Σ, where
I(Qn) is the canonical database for Qn. In this case we
denote Qn by (Q)Σ and say that (Q)Σ is the (terminal)
result of the chase. All chase results for a given CQ
query are equivalent in the absence of dependencies [11].

Weakly acyclic dependencies [13]. Let Σ be a set
of tgds over schema T. We construct the dependency
graph of Σ, as follows. The nodes (positions) of the
graph are all pairs (T, A), for T ∈ T and A an attribute
of T . We now add edges: For each tgd ϕ(X̄) → ∃ Ȳ
ψ(X̄, Ȳ) in Σ, and for each X ∈ X̄ that occurs in ϕ in
position (T , A) and that occurs in ψ, do the following.

• For each occurrence of X in ψ in position (S, B),
add a regular edge from (T, A) to (S, B); and

• For each existentially quantified variable Y ∈ Ȳ
and for each occurrence of Y in ψ in position (R,

C), add a special edge from (T , A) to (R, C).

For a set Σ of tgds and egds, with Σt the set of all tgds
in Σ, we say that Σ is weakly acyclic if the dependency
graph of Σt does not have a cycle going through a special
edge. Chase of CQ queries terminates in finite time
under sets of weakly acyclic dependencies [13].

The following result is immediate from [2, 10, 11, 18].

Theorem 3.1. Given CQ queries Q1, Q2 and a set Σ
of embedded dependencies. Then Q1 vΣ Q2 iff (Q1)Σ v
Q2 in the absence of dependencies. 2

Chase of instance. Let I be an instance of schema
P, and Σ a set of egds and tgds; we interpret I as a
conjunction of its facts. We follow [11] in defining chase
of I with Σ in the same way as chase of a CQ query with
Σ. That is, in the chase steps we treat each distinct null
in I as a distinct variable (in the chase for CQ queries).
Further, each chase step with a tgd that has existential
variables introduces, in the result of the chase step, a
distinct new null for each existential variable of the tgd.
Chase sequences and chase termination are also defined
in the same way as for CQ queries; the result I ′ of the
chase of I with Σ always satisfies Σ, that is, I ′ |= Σ.

4. THE PROBLEM STATEMENTS
In this section we formalize the problems of finding

and determining certain query answers and of query
containment, under CWA and in presence of dependen-
cies. We then establish a direct relationship between the
latter two problems in the case of CQ view definitions.

4.1 Certain Query Answers and Query Con-
tainment w.r.t. Views and Dependencies

We begin by introducing the notion of “materialized-
view setting” (“setting” for short). Suppose that we are
given a schema P and a set of dependencies Σ on P.
Let V be a finite set of relation symbols not in P, with
each symbol (view name) V ∈ V of some arity kV ≥ 0.
Each V ∈ V is associated with a kV -ary query on the
schema P. We call V a set of views on P, and call the
query for each V ∈ V the definition of the view V , or the
query for V . We assume that the query for each V ∈ V
is associated with (V in) the set V. We call a ground
instance MV of schema V a set of view answers for V.

Let I be a ground instance of schema P. We say that
I is a Σ-valid base instance for V and MV , denoted by
V ⇒I,Σ MV , whenever (a) I |= Σ, and (b) the answer
V (I) to the query for V on the instance I is identical
to the relation MV [V] in MV , for each V ∈ V. (This is
the closed-world assumption (CWA), as defined in, e.g.,
[1], with an added requirement that I |= Σ.) Further,
we say that MV is a Σ-valid set of view answers for
V, denoted by V ⇒∗,Σ MV , whenever there exists a
Σ-valid base instance for V and MV .

Definition 4.1. (Materialized-view settingMΣ)
Given a schema P, a set Σ of dependencies without con-
stants on P, a set V of views on P, and a (Σ-valid) set
MV of view answers for V: We call MΣ = (P, Σ, V,
MV) the (valid) materialized-view setting for P, Σ, V,
and MV . 2

Let MΣ be a materialized-view setting (P, Σ, V,
MV), and let Q be a query over P. We define the set
of certain answers of Q w.r.t. the setting MΣ as

5

certainMΣ(Q) =
⋂
{Q(I) | I s.t. V ⇒I,Σ MV in MΣ}.

That is, the set of certain answers of a query w.r.t. a
setting is understood, as usual, as the set of all tuples
that are in the answer to the query on all the instances
relevant to the setting. (Cf. [1] for the case Σ = ∅.)

Definition 4.2. (Certain-query-answer problem
in a materialized-view setting) Given a settingMΣ
= (P, Σ, V, MV), a k-ary (k ≥ 0) query Q over the
schema P in MΣ, and a ground k-tuple t̄. Then the
certain-query-answer problem for Q and t̄ in MΣ is to
determine whether t̄ ∈ certainMΣ(Q). 2

It is easy to show that a tuple t̄ can be a certain an-
swer to a query Q in a settingMΣ only if all the values
in t̄ are in consts(MΣ), which denotes the set of con-
stants occurring inMΣ. (For a given materialized-view
setting MΣ = (P, Σ, V, MV), we define consts(MΣ)
as the union of adom(MV) with the set of all the con-
stants used in the definitions of the views V.) By this
observation, in Definition 4.2 we can restrict our con-
sideration to the tuples t̄ with this property.

The problem as in Definition 4.2, the problem of de-
termining certain query answers, will be featured in our
characteristic of the relationship between the extensions
of the problems of [1] and of [31] to the case of depen-
dencies under CWA. We will also consider the problem
of finding the set of certain query answers w.r.t. a set-
ting: Given a setting MΣ and a query Q, find the set
of certain answers of Q w.r.t. MΣ. In Sections 5–6, we
will introduce algorithms for solving the “CQ weakly
acyclic case” of this problem and of the problem of Def-
inition 4.2. The CQ weakly acyclic case of each problem
is the case where: (i) each MΣ is conjunctive (i.e., all
the views inMΣ are defined as CQ queries) and weakly
acyclic (i.e., Σ inMΣ is a set of weakly acyclic embed-
ded dependencies), and (ii) each Q is a CQ query.

We now turn our attention to the problem of query
containment w.r.t. a setting MΣ. Our Definition 4.3
extends the formalization of this problem due to [31], to
the case of dependencies on the relevant base instances.

Definition 4.3. (MΣ-conditional query contain-
ment) Given a materialized-view settingMΣ and queries
Q1 and Q2 over the schema P in MΣ. Then we say
that Q1 is MΣ-conditionally contained in Q2, denoted
Q1 vMΣ Q2, iff for each instance I s.t. V ⇒I,Σ MV
in MΣ, we have Q1(I) ⊆ Q2(I). Further, the prob-
lem of MΣ-conditional containment for Q1 and Q2 is
to determine whether Q1 vMΣ Q2. 2

4.2 An Illustration
In this subsection we recast Example 1.1 into the for-

mal terms of Section 4.1. The results of this paper
permit us to obtain correct solutions to all the three
problems formulated at the end of Example 4.1.

EXAMPLE 4.1. The settingMΣ outlined in Exam-
ple 1.1 uses the schema2 P = {E, H, O} and a weakly
acyclic set {σ} of dependencies, with σ as follows:

σ: E(X,Y, Z) ∧H(Y)→ ∃S O(X,S).

Further, V = {U , V , W} is the set of CQ views in
MΣ, with the view definitions as follows:
2We abbreviate the relation names of Example 1.1 using the
first letter of each name.

U(X) ← H(X).
V (X,Y) ← E(X,Y, Z).
W (Y,Z) ← E(X,Y, Z).

Finally, for brevity we encode the constants of Exam-
ple 1.1 as c for johnDoe, d for sales, and f for 50000.
Then the set of view answers MV of Example 1.1 can
be recast for MΣ as MV = { U(d), V (c, d),W (d, f) }.

Now that we have specified a CQ weakly acyclic setting
MΣ, consider the CQ query Q of Example 1.1:

Q(X,Z) ← E(X,Y, Z), O(X,S).

Consider another CQ query, Q1, defined as follows:

Q1(c, f) ← H(d), E(c, d,X), E(Y, d, f).

For the MΣ, Q, and Q1 as above and for a tuple t̄ =
(c, f), we have the following problems as in Section 4.1:

1. The certain-query-answer problem for Q and t̄ in
MΣ is “Is t̄ a certain answer of Q w.r.t. MΣ?”

2. The problem of finding the set of certain answers
to Q w.r.t. MΣ is “Return the set certainMΣ(Q)
for Q and MΣ”; and, finally,

3. The problem of MΣ-conditional containment for
Q1 and Q is “Does Q1 vMΣ Q hold?” 2

4.3 Relationship between the Problems
We now establish a direct relationship between the

certain-query-answer problem for a givenQ, t̄, andMΣ,
and the problem ofMΣ-conditional containment for Q1
and Q, for the same Q and MΣ. (We prove the rela-
tionship for the case where all the views are defined as
CQ queries.) Here, the query Q1 is constructed from
the given Q, t̄, and MΣ. A similar relationship was
observed in [1] between the certain-query-answer prob-
lem, for a range of query and view languages in the
dependency-free case under OWA, and unconditional
(Q1 v Q) query containment. In contrast, our result
holds under CWA, in presence of dependencies, and
involves MΣ-conditional query containment. Due to
this result, the algorithm that we introduce in Sec-
tion 5 for checking MΣ-conditional containment, can
also be used to solve the certain-query-answer problem,
in the CQ weakly acyclic case of each problem. (The CQ
weakly acyclic case of the containment problem covers
CQ weakly acyclic settings and CQ input queries.)

We formulate the main result of this section, Theo-
rem 4.1, using the following notation. For a set V =
{V1, . . ., Vm} of m ≥ 1 CQ views and for a set MV of
view answers for V, consider the conjunction

CMV =
∧m
i=1

∧li
j=1 Vi(t̄ij)

The conjunction is over all the ground facts Vi(t̄ij) in
the set MV . (For each i ∈ [1, m], the relation MV [Vi]
in MV is of cardinality li ≥ 0.) That is, we treat each
ground fact in MV as a relational atom, and CMV is
the conjunction of all these relational atoms. (For each

i such that MV [Vi] = ∅, we define
∧li
j=1 Vi(t̄ij) := true.)

Observe that CMV can be treated as the body of a
CQ query over the schema V. Thus, we can use the
view definitions in V to do the standard expansion (as
in a rewriting [19]) of CMV into a conjunction of atoms,
CexpMV , over the schema P. We call CexpMV the expansion

6

of MV over P. As an illustration, in the setting of Ex-
ample 4.1, CMV is U(d) ∧ V (c, d) ∧W (d, f), and CexpMV
is the body of the query Q1 in the example.

We now formulate Theorem 4.1. (Due to the page
limit, the straightforward proof and other details can be
found in Appendix B.) This result says that for a valid
CQ materialized-view settingMΣ and for an arbitrary
query Q and an arbitrary ground tuple t̄, there exists
a (constructible) CQ query Q1 such that the certain-
query-answer problem for Q and t̄ inMΣ is the problem
of MΣ-conditional containment for Q1 and Q.

Theorem 4.1. Given a valid CQ materialized-view
setting MΣ = (P, Σ, V, MV), a k-ary (k ≥ 0) query
Q defined in an arbitrary query language over P, and
a k-tuple t̄ of values in consts(MΣ). Consider the CQ
query Q1(t̄) ← CexpMV . Then t̄ ∈ certainMΣ(Q) if and
only if Q1 is MΣ-conditionally contained in Q. 2

Whenever determining validity of a setting MΣ is
decidable (as is the case for, e.g., CQ weakly acyclic
settings, via our view-verified data-exchange approach
of Section 6, see Appendix J.3), MΣ not being valid
implies that certainMΣ(Q) = ∅ for every query Q.

5. THE QUERY-CONTAINMENT PROBLEM
In this section we outline our approach to solving the

problem of MΣ-conditional query containment. (See
Definition 4.3.) We show that this approach is a correct
algorithm for the CQ weakly acyclic case of the prob-
lem. Thus, our algorithm extends to the case of weakly
acyclic dependencies the solution of [31] for their prob-
lem of conditional containment between CQ queries in
presence of materialized CQ views.3 We show that our
extension of the method of [31] is not trivial. By The-
orem 4.1, the approach reported in this section is also
a correct algorithm for the CQ weakly acyclic cases of
the certain-query-answer problem.

5.1 Intuition and Discussion
We begin by sketching our containment-checking ap-

proach via an extended example. The example illus-
trates, in particular, how disequalities and disjunction
may arise in the chase of a CQ query in this approach.

EXAMPLE 5.1. Consider CQ queries Q1 and Q2:

Q1(X)← P (X,Y).
Q2(X)← P (X,Y), R(Z).

Consider a dependency (full tgd) σ on the schema P
= {P,R}, a view V , and an instance MV , as follows.

σ : P (X,X)→ R(X)
V (X)← P (X,X).
MV = { V (c) }.

Let us specify a setting MΣ as (P, {σ}, {V },MV).
The setting MΣ is CQ weakly acyclic by definition.

By the results reviewed in Section 3, the query Q1 is
not unconditionally contained in Q2, either in the ab-
sence of dependencies or in presence of σ. At the same
time, by our results in this section, Q1 isMΣ-contained
in Q2. Our approach to proving it is by chasing the
query Q1 using a “6=-transformation,” σ(6=), of the given

3A full version of [31], including proofs of its results, has
never been published.

tgd σ on the schema P, as well as “MV -induced depen-
dencies.” (We introduce both kinds of dependencies in
Section 5.2.) The first step of the approach is to conjoin
the body of Q1 with CexpMV = P (c, c) (see Section 4.3 for
the definition of CexpMV):

Q′1(X)← P (X,Y), P (c, c).

Now the only MV -induced dependency, τV , is

τV : P (X,Y)→ (X = c ∧ Y = c) ∨ (X 6= Y).

It says that, for each subgoal of the form P (X,Y) that
could arise in the chase of Q′1 with the dependencies τV
and σ(6=): Either (i) the subgoal must become P (c, c),
which would (correctly) give rise to V (c) in MV , or (ii)
P (X,Y) must be accompanied by the disequality X 6=
Y , to prevent atoms of the form V (d), where d is a
constant not equal to c, from arising in MV . (These
requirements must be satisfied for our approach to be
correct, see Proposition 5.3 in Section 5.3.)

The chase of Q′1 with τV produces a UCQ6= query:

Q
(a)
1 (c)← P (c, c), P (c, c). (We then drop the duplicate.)

Q
(b)
1 (X)← P (X,Y), P (c, c), X 6= Y.

Now the dependency σ(6=), which we obtain from the
tgd σ, is σ(6=) : P (X,Y) → R(X) ∨ X 6= Y. Applying

σ(6=) to the above UCQ6= query yields the UCQ6= result

(Q1)MΣ = {Q(1)
1 , Q

(2)
1 , Q

(3)
1 } of chasing the query Q′1

with the dependencies τV and σ(6=):

Q
(1)
1 (c)← P (c, c), R(c).

Q
(2)
1 (X)← P (X,Y), R(X), P (c, c), R(c).

Q
(3)
1 (X)← P (X,Y), X 6= Y, P (c, c), R(c).

Now the results of [19] can be used to ascertain the
unconditional containment of (Q1)MΣ in the query Q2.
We conclude that the query Q1 isMΣ-contained in Q2.

Finally, suppose that we change the query Q2 slightly,
by replacing its subgoal R(Z) with R(X). Then the same
procedure as above can be used to show that the resulting
query would not MΣ-contain the query Q1. 2

In some particularly simple cases, queries (Q1)MΣ can
be CQ queries; see Appendix F. In general in our ap-
proach, queries (Q1)MΣ are UCQ6= queries.

In our proposed approach for checkingMΣ-containm-
ent of CQ queries, the intuition is the same as in chech-
ing query containment in presence of dependencies [2,
10, 11, 18] (see Section 3). That is, to determine if a
query Q1 is contained in query Q2 on a set of instances
that are “relevant” to a set of view answers MV , we
chase Q1 to transform it into a query, (Q1)MΣ, which
is equivalent, by construction, to Q1 on all the rele-
vant instances. (The“relevant instances”are the Σ-valid
base instances for the given V and MV .) In addition
to this property, the query (Q1)MΣ, by its construc-
tion, “exhibits the flavor of the relevant instances,” in a
very precise sense (see Proposition 5.3 in Section 5.3).
These properties permit us to use a test for uncondi-
tional containment of (Q1)MΣ in Q2 to correctly deter-
mine whether the original query Q1 is contained in Q2
w.r.t. all the relevant instances. (See Theorem 5.1 in
Section 5.3.)

7

Zhang and Mendelzon in their paper [31] did precisely
the above chase, with precisely the same goals and re-
sults, in the special case where no dependencies hold
on the relevant instances. As an illustration, suppose
that in Example 5.1 we set Σ := ∅, while keeping the
remaining inputs as they are. Then the approach of [31]

for these inputs would derive the UCQ6= query {Q(a)
1 ,

Q
(b)
1 } of that example, call this query Q′′1 . As Q′′1 is

not unconditionally contained in the given query Q2,
the conclusion of [31] for these inputs would be that Q2
does not contain Q1 w.r.t. these inputs with Σ = ∅.

Thus, in this current work we build directly on the
ideas and techniques of [31]. At the same time, [31]
does not make the chase process explicit, in the way
in which it is explicit in the work (e.g., [2, 10, 11, 18])
on determining containment of queries in presence of
dependencies. In particular, the paper [31] does not in-
troduce dependencies that look like τV in Example 5.1.
As a result, the authors of [31] do not have to deal with
the (arguably inelegant) extensions of embedded depen-
dencies to dependencies that may have disjunction and
disequalities on the right-hand side. (Appendix C pro-
vides some details of the approach of [31].)

In this current paper, when extending the approach
of [31] to the case of dependencies holding on the in-
stances of interest, it has proved convenient for us to
make explicit the MV -induced dependencies, such as
τV in Example 5.1. Thus, in this work we introduce (in
Section 5.2) dependencies that have both disjunctions
and disequalities on the right-hand side. Disequalities in
dependencies are necessary in our approach for deter-
mining MΣ-conditional containment, see Section 5.3.
(As a side note, we will see in Section 6 that disequali-
ties in dependencies are not necessary for essentially the
same approach to work correctly when solving the prob-
lem of finding the set of certain answers to a CQ query
w.r.t. a CQ weakly acyclic materialized-view setting.)

Not surprisingly, for CQ weakly acyclic settings MΣ
and CQ queries Q1 and Q2 of interest, Q1 vMΣ Q2
does not necessarily imply any of the following:

• Q1 v Q2;

• Q1 vΣ Q2; and

• Q1 vM∅ Q2; here, by M∅ we denote the result of
replacing Σ by ∅ in MΣ.

(See Appendix E for all the details.)

5.2 The Dependencies and Chase Rules
We now introduce dependencies that are used in the

algorithm of Section 5.3. The input to each run of the
algorithm is a triple of the form (MΣ, Q1, Q2), with
MΣ a CQ weakly acyclic setting, and Q1 and Q2 two
CQ queries. We call such triples CQ weakly acyclic in-
put instances. For each (MΣ, Q1, Q2), the algorithm
determines whether Q1 vMΣ Q2 holds. To make the
determination, a modification (via adding CexpMV) of the
query Q1 is chased with the dependencies that we in-
troduce in the current subsection.

Building blocks for the chase.
All the dependencies used in Section 5.3 are con-

structed using the input CQ setting MΣ. (For ease of
exposition, in the remainder of this subsection we will
assume that one such setting MΣ = (P, Σ, V, MV)
is fixed.) The construction uses normalized versions of

conjunctions of relational atoms (see, e.g., [30]). That
is, let φ be a conjunction of relational atoms. We re-
place in φ each duplicate occurrence of a variable or
constant with a fresh distinct variable name. As we do
each replacement, say of X (or c) with Y , we add to
the conjunction the equality atom Y = X (or Y = c).
As an illustration, if φ = P (X,X)∧ S(c, c,X), then its
normalized version is φ(n) = P (X,Y)∧S(c, Z,W)∧Y =
X ∧ Z = c ∧W = X. By construction, the normalized
version of each φ is unique up to variable renamings.
For the normalized version φ(n) of a conjunction φ, we
will denote by R(φ(n)) the conjunction of all the re-
lational atoms in φ(n), and will denote by E(φ(n)) the
conjunction of all the equality atoms in φ(n). (If φ(n)

has no equality atoms, we set E(φ(n)) to true.)
A non-egd (negd) is a dependency of the form

σ : φ(W̄)→ X 6= Y. (2)

Here, φ is a conjunction of relational atoms, and each
of X and Y is an element of the set of variables W̄ .

We also use chase with “implication constraints,” see,
e.g., [30]. An implication constraint (ic) is a dependency
of the form τ : φ(W̄)→ false, with φ(W̄) a conjunction
of relational atoms.

The algorithm of Section 5.3 performs chase of CQ6=

queries with ics, negds, egds, and tgds, by the follow-
ing rules. Let Q be a CQ6= query. We say that chase
of Q with an ic τ is applicable whenever there exists a
homomorphism, h, from the antecedent φ of τ to the
body of Q. Then we say that the chase step of Q with
τ fails. Similarly, we say that a chase step with a negd
σ (as in Eq. (2)) applies to Q if there exists a homo-
morphism, h, from the antecedent φ of σ to the body
of Q. There are two cases: One, h(X) and h(Y) are
the same variable (or the same constant) in Q. Then
we say that the chase step of Q with σ fails. Otherwise,
we form from Q the result Q∗ of the chase step: Q∗ is
a CQ6= query obtained by conjoining body(Q) with the
atom h(X) 6= h(Y). Chase steps with tgds are defined
for CQ6= queries in the same way as for CQ queries, see
Section 3.2. Finally, for chase with egds, we extend the
rules of Section 3.2 by requiring that whenever chase
of a CQ6= query Q with an egd τ is applicable, with
some homomorphism h, and the consequent of τ is of
the form X = Y , then the chase step of Q with τ fails iff
body(Q) has the atom h(X) 6= h(Y) (or h(Y) 6= h(X)).
(This generalizes the chase-step rule for CQ queries with
egds, in the part where h(X) and h(Y) are distinct con-
stants, see Section 3.2.) As we define CQ6= queries as
not having explicit equality atoms, our extended chase-
step rules cover all possible cases for CQ6= queries.

Dependencies Φ(MV) for CQ settingMΣ.
We now introduce one type of dependencies, MV -

induced dependencies Φ(MV), to be used in the chase in
the algorithm of Section 5.3. For the CQ setting MΣ
with set V of views, let V ∈ V be a kV -ary (kV ≥ 0)
view with definition V (X̄)← φ(X̄, Ȳ). We first normal-
ize the body φ of V into R(φ(n)) ∧ E(φ(n)). The result
¬ E(φ(n)) of negating E(φ(n)) is (obviously) a disjunc-
tion of disequality atoms. (E.g., ¬ (X = Y ∧ Z = c) is
(X 6= Y ∨ Z 6= c).) We now proceed for V as follows.

8

If MV [V] = ∅, we define the MV -induced generalized
implication constraint (MV -induced gic) ιV for V as

ιV : R(φ(n))→ false ∨ ¬E(φ(n)). (3)

Now suppose kV ≥ 1 and MV [V] = {t̄1, t̄2, . . ., t̄mV
},

with mV ≥ 1. Then we define the MV -induced gener-
alized negd (MV -induced gnegd) τV for V as

τV : R(φ(n))→ ∨mV
i=1(X̄ = t̄i) ∨ ¬E(φ(n)). (4)

Here, X̄ = [S1, . . . , SkV] is the head vector of the query
for V , with Sj ∈ Const ∪ Qvar for j ∈ [1, kV]. (By

definition of R(φ(n)), all the elements of X̄ occur in
R(φ(n)).) For each i ∈ [1, mV] and for the ground tuple
t̄i = (ci1, . . . , cikV) ∈ MV [V], we abbreviate by X̄ = t̄i
the conjunction ∧kVj=1(Sj = cij). MV -induced gnegds
are a straightforward generalization of disjunctive egds
of [12, 13], with negds added “on top.”

For a CQ setting MΣ with set of view answers MV ,
the set of MV -induced dependencies Φ(MV) for MΣ is
the set of MV -induced gnegds and MV -induced gics
constructed for all the views inMΣ as specified above.4

Dependencies Σ(6=) for CQ settingMΣ.
We now outline how to obtain from the given CQ set-

ting MΣ the second set of dependencies, Σ(6=), to be
used in chase in the algorithm of Section 5.3. We con-
vert each dependency in Σ (in the given MΣ) using a
conversion rule that follows, and then produce Σ(6=) as
the union of the outputs. The conversion rule for a de-
pendency σ ∈ Σ of the form σ : φ(X̄, Ȳ)→ ∃Z̄ ψ(X̄, Z̄)
converts φ into R(φ(n)) ∧ E(φ(n)), and then returns

σ(6=) : R(φ(n))→ ∃Z̄ ψ(X̄, Z̄) ∨ ¬E(φ(n)).

Chase of CQ6= queries with ΥMΣ = Φ(MV) ∪ Σ(6=).
We now define chase of CQ6= queries with the depen-

dencies ΥMΣ = Φ(MV) ∪ Σ(6=). For the fixed MΣ, let

Q be a CQ6= query over the schema P in MΣ. Our
definition of the chase steps can be seen as an exten-
sion of the definition of [13] for their disjunctive egds,
once we postulate that chase steps are to be applied
to queries, rather than to instances as is done in [13].
Intuitively, we view each dependency υ ∈ ΥMΣ, of the
form υ : φ → ψ1 ∨ ψ2 ∨ . . . ∨ ψm, where each ψi is
a conjunction, as m dependencies υ1 : φ → ψ1; . . .;
υm : φ → ψm. Suppose there is a homomorphism, h,
from the antecedent φ of υ to the query Q, and none
of h(ψ1), h(ψ2), . . ., h(ψm) is a tautology. Then we say
that the chase step with υ applies to Q, and we output,
as the result of the step, a set of CQ6= queries such that
each element of the set results from the application to
Q of one of υ1, . . ., υm, as defined above.

Whenever the chase step of Q with υi, for an i ∈ [1,
m], fails (as is, e.g., always the case with an ic), then the
chase step does not contribute anything to the output
set. Thus, if the chase step of Q fails with υi for all
i ∈ [1, m], the output of the chase step of Q with the
(original) υ is the empty set, i.e., a trivial UCQ6= query.

4We have shown that it is not necessary to use MV -induced
dependencies for Boolean views V with MV [V] 6= ∅.

Once we have a formalization of chase steps of CQ6=

queries with dependencies ΥMΣ, we can define chase
trees and chase results, by generalizing the formaliza-
tions of [13] of chase of instances with disjunctive egds.
Due to the space limit, we are unable to provide detailed
formalizations in the main text. (Example 5.1 provides
an illustration. Appendix J has a detailed formalization
of the special case where ΥMΣ does not contain any
disequalities; an extension to disequalities is straight-
forward.) Intuitively, in a chase tree T constructed for
a CQ setting MΣ and a CQ6= query Q, the root repre-
sents Q, and each node represents either a CQ6= query
or (as a special case of a leaf) a trivial UCQ6= query;
we denote the node in this special case by ε. A node t
in T has children t1, . . ., tk iff a chase step with some
σ ∈ ΥMΣ applies to the CQ6= query represented by t,
and the result of the chase step is exactly all the queries
represented by t1, . . ., tk. A (non-ε) node t in T is a
leaf iff no dependency in ΥMΣ applies in a chase step
to the CQ6= query represented by t.

Each chase tree T can be associated with a sequence
(with repeated entries allowed) of dependencies in ΥMΣ,
according to the sequence of chase steps represented by
T from the root downwards. The result of the chase of
Q with sequence σ1, σ2, . . . of dependencies in ΥMΣ is
defined iff the associated T is a finite tree; then this re-
sult is either a trivial UCQ6= query (iff each leaf of T is
ε), or is the union of all the CQ6= queries represented by
the leaves of T . A chase result of Q withMΣ, denoted
(Q)MΣ, is the result (if defined) of the chase of Q with
any sequence of dependencies in ΥMΣ.

We now obtain the following result, in Proposition 5.1,
for the case where MΣ is CQ weakly acyclic and Q is
a CQ query. Let MV be the set of materialized views
in MΣ; then CexpMV is defined as in Section 4.3. As is
done in [31], we denote by Q′ the CQ query obtained
from Q by conjoining the body of Q with CexpMV , after all
the variables of CexpMV have been consistently renamed so
that Q and CexpMV do not share any variable names. We
call Q′ the MΣ-expansion of Q.

Proposition 5.1. Given a CQ weakly acyclic setting
MΣ and a CQ query Q: For the MΣ-expansion Q′ of
Q, each chase tree T forMΣ and Q′ is finite, of polyno-
mial depth in the size of Q and of MV inMΣ. Further,
for any such T and for the UCQ6= query (Q)MΣ that
is the result of the chase of Q′ with sequence of depen-
dencies associated with T , we have that:

• The number of CQ6= components of (Q)MΣ is up
to exponential in the size of Q and MV , and

• For each CQ6= component, q, of (Q)MΣ, the size
of q is polynomial in the size of Q and MV . 2

The proof of Proposition 5.1 is based on the results
of [13], which construct a polynomial-size upper bound
on the number of distinct values that can occur in chase
of an instance with weakly acyclic tgds and egds. Ap-
pendix J outlines a proof for a generalization over [13],
in which a version of ΥMΣ is constructed without dis-
equalities; the main observation is that Q′ already has
all the constants that might be introduced in the chase
by the MV -induced gnegds (as in Eq. (4)) of ΥMΣ. We
then build on that result of Appendix J, by observing
that chase steps with negds do not add new values, and

9

may add a number of disequality atoms that is only up
to polynomial in the size of the given Q and MV .

5.3 The Containment-Checking Algorithm
By Proposition 5.1, if a triple (MΣ, Q1, Q2) is CQ

weakly acyclic as defined in Section 5.2, then each chase
tree forMΣ and Q′1 is finite. Thus, the following proce-
dure, given here by pseudocode, is an algorithm for CQ
weakly acyclic inputs. (Testing whether (MΣ, Q1, Q2)
is CQ weakly acyclic can be done in polynomial time.)

Algorithm MΣ-containment determination:
Input: CQ weakly acyclic instance (MΣ, Q1, Q2).
Output: Determination whether Q1 vMΣ Q2.

1. Set Q′1 to the MΣ-expansion of Q1;
2. Obtain a chase result (Q1)MΣ of Q′1 with ΥMΣ;
3. If ((Q1)MΣ is a trivial UCQ6= query
4. or (Q1)MΣ v Q2) then output “yes”; else output “no.”

(Recall that [19] provides a containment test for the
UCQ6= query (Q1)MΣ and CQ query Q2 in line 4.)

We now show that the algorithmMΣ-containment
determination is correct for CQ weakly acyclic in-
puts. Our first observation is as follows.

Proposition 5.2. For a CQ weakly acyclic MΣ =
(P, Σ, V, MV) and CQ query Q, let (Q)MΣ be a chase
result of the MΣ-expansion Q′ of Q with MΣ. Then:

1. (Q)MΣ v Q, and

2. Q vMΣ (Q)MΣ. 2

The proof of item 2 of Proposition 5.2 is by induc-
tion on the chase steps for Q′ and ΥMΣ, once we fix
an instance I such that V ⇒I,Σ MV . Specifically, the
property in item 2 is an invariant for the output of each
chase step of Q′ with ΥMΣ, for any fixed such I.

Our next observation concerns valuations for the query
(Q)MΣ and for arbitrary instances of schema P. (The
proof is by construction of each UCQ6= query (Q)MΣ.)

Proposition 5.3. Given a CQ weakly acyclic setting
MΣ = (P, Σ, V, MV) and a CQ query Q. For any
nontrivial chase result (Q)MΣ of the MΣ-expansion of
Q withMΣ, denote by B∗ all the relational atoms in the
body of (Q)MΣ. Then for every instance I of schema P
and for each valuation ν for (Q)MΣ and I, ν(B∗) is a
Σ-valid base instance for V and MV . 2

By Propositions 5.2–5.3, for CQ weakly acyclic in-
stances (MΣ, Q1, Q2), all the chase results (Q1)MΣ are
trivial UCQ6= queries (i.e., each of them is the empty
set) iff (*) the answer to the input query Q1 is empty on
all Σ-valid base instances. Further, a (Q1)MΣ = ∅ only
if (*) holds. This justifies the “yes” output when the
condition of line 3 of the algorithm evaluates to true.

Propositions 5.1 through 5.3 permit us to establish
correctness of the algorithm MΣ-containment de-
termination for CQ weakly acyclic inputs:

Theorem 5.1. Given a CQ weakly acyclic instance
(MΣ, Q1, Q2). Then Q1 vMΣ Q2 if and only if for
any one chase result (Q1)MΣ of the MΣ-expansion of
Q1 with MΣ, either (Q1)MΣ = ∅ or (Q1)MΣ v Q2. 2

By this result, our solution to the certain-answer prob-
lem presented in Example 1.1, for the tuple (johnDoe,
50000), is correct for the setting of this example. (We
solve that certain-answer problem via determiningMΣ-
conditional containment, as stipulated in Theorem 4.1.)

As discussed earlier, the approach of [31] is exactly
the algorithmMΣ-containment determination for
the case Σ = ∅. The chase result (Q1)MΣ, with Σ =
∅, is denoted in [31] by Q′′1 . We have shown that our
extension of the approach of [31] to the cases where Σ
6= ∅ is not as simple as “just chasing Q′′1 with the input
dependencies Σ.” In fact, even if we chase Q′′1 with our
modified dependencies Σ(6=), we are not guaranteed a
correct output. (See Appendix F for all the details.)
Thus, algorithm MΣ-containment determination
is not a trivial extension of the approach of [31].

We can also show that to chase the query Q′1 with the
dependencies Σ, and to then chase the resulting query
with the dependencies Φ(MV), does not, in general, yield
a correct determination of Q1 vMΣ Q2 when we apply
the unconditional-containment (v) test. However, it is
by construction of the dependencies Σ(6=) that chasing
Q′1 with Σ(6=) (rather than Σ) only, followed by chase
with the dependencies Φ(MV) only, yields correct chase
results for the purpose of determining MΣ-conditional
containment for CQ weakly acyclic inputs.

Finally, we note that the presence of disequality atoms
is critical to ensure correctness of our algorithm. Specif-
ically, if disequality atoms are not introduced into ei-
ther Σ(6=) or the dependencies Φ(MV), then the result
of Proposition 5.3 no longer holds. (See Appendix G
for all the details.) As a result, it is no longer clear how
to ensure that the only-if direction of Theorem 5.1 (in
case where (Q1)MΣ 6= ∅) goes through.

6. FINDING ALL THE CERTAIN ANSWERS
The results of Sections 4–5 suggest an approach for

finding all certain-answer tuples for CQ weakly acyclic
inputs. For a k-ary query Q and a setting MΣ, the
approach is to generate all the k-ary tuples of values in
consts(MΣ), and then for each such tuple, t̄, to solve
the certain-answer problem for Q, t̄, and MΣ, by us-
ing Theorem 4.1 and algorithmMΣ-containment de-
termination. By our results above, this approach is a
correct algorithm for CQ weakly acyclic inputs. At the
same time, its generate-and-test flavor may result in vo-
luminous unnecessary computation for all those tuples
t̄ that are not certain answers for the given input.

In this section we introduce an approach, called“view-
verified data exchange,” which solves the same problem
but is not based on the generate-and-test paradigm. As
the name suggests, this approach is based on data ex-
change [13, 5, 4]. This approach is also intimately re-
lated to the techniques that we used in Section 5 to ad-
dress MΣ-conditional query containment. Specifically,
view-verified data exchange uses a modification of the
dependencies ΥMΣ of Section 5, in which we do away
with the disequality atoms in the dependencies. Due to
the page limit, in this section we provide just a brief
overview; all the details, including a full formalization
and examples, can be found in Appendix J.

Given a CQ settingMΣ = (P, Σ, V, MV), the idea of
view-verified data exchange is very natural: We borrow
from the standard data-exchange framework, in that we

10

treat the relation symbols in V as the “source schema”
and the schema P as the “target schema,” with “target
constraints” Σ. Further, we treat natural tgds arising
from the definitions of the views in V as “source-to-
target dependencies” Σst for this “data-exchange set-
ting.” Then we could treat the set MV as a “source
instance,” and pose the input query Q on the “target
instances” that are determined by this data-exchange
setting and by this source instance. (All the relevant
formal definitions can be found in Appendices H–I.)

One special type of target instance used in data ex-
change is called “canonical universal solution” [13] for
the given data-exchange setting and source instance.
Such instances are obtained by chase of the source in-
stance with the dependencies Σst ∪ Σ, and can be used
to represent, in the following precise sense, all target
instances of interest. When Σst is a set of tgds, Σ is
weakly acyclic, and Q is a UCQ query, the problem of
computing certain answers for Q, w.r.t. the given data-
exchange setting and source instance, can be solved via
posing Q on a canonical universal solution [13]. It turns
out that this result can be carried over directly to the
problem of finding certain answers to a query in pres-
ence of a materialized-view setting, resulting in a sound
and complete algorithm [27] under OWA for the CQ
weakly acyclic cases of the problem.

Not surpisingly, the algorithm of [27] is not complete
under CWA. (See Appendices H–I for the details.) In
particular, applying the algorithm of [27] to our Exam-
ple 1.1 would produce the empty set of certain-answer
tuples. At the same time, using the results of Section 5
we can show that t̄ = (johnDoe, 50000) is a certain
answer for the setting of Example 1.1 under CWA. As
it would be straightforward for attackers to obtain that
tuple t̄ “from first principles,” our motivation was to
come up with a correct algorithm for the CWA version
of the problem of finding all certain query answers, as
defined in Section 4.1. Our view-verified data exchange
does qualify, by being a sound and complete algorithm
for all CQ weakly acyclic instances under CWA.

We outline here the main idea of view-verified data
exchange. (Due to the space limit, all the details can be
found in Appendix J.) Just as in the approach of [27],
we begin by obtaining a canonical universal solution,
JMΣ
de , for the data-exchange setting that arises natu-

rally from the input instance (MΣ, Q). We then apply
to JMΣ

de disjunctive chase, as specified for our problem
of MΣ-conditional query containment, with two modi-
fications. One, we chase the instance JMΣ

de , essentially
by treating it as the body of a CQ query. Two, we use
in the chase a modification of the dependencies ΥMΣ =
Φ(MV) ∪ Σ(6=) of Section 5. The idea of this modifica-
tion of ΥMΣ is that we do not normalize the left-hand
side of any dependency. One consequence of this choice
is that disequalities do not arise in the right-hand side
of any resulting dependency. (In particular, Σ remains
unmodified, rather than giving rise to Σ(6=) as in Sec-
tion 5.) We show that disequalities are not necessary
for correctness of the approach to the problem of finding
certain-query answers. Intuitively, the instances that
we obtain in the chase are used to characterize only Σ-
valid instances for V and MV , rather than all possible
instances of schema P. (In the problem of Section 5, the
chase enforces constraints that ensure that Proposition
5.3 holds for (Q1)MΣ on all instances of schema P.)

Finally, the view-verified data-exchange approach ob-
tains a set of answers without nulls to the input query Q
on each of the instances in the chase result; the output
is then the intersection of these sets. We have shown
that for all CQ weakly acyclic inputs, the output of this
approach is well defined and is the set of all certain
answers to Q w.r.t. the setting MΣ. That is:

Theorem 6.1. View-verified data exchange is a sound
and complete algorithm for finding certain answers for
all CQ weakly acyclic instances under CWA. 2

Interestingly, in view-verified data exchange one can-
not always find all the certain answers correctly if one
does the chase “in stages.” That is, chase only with
the input dependencies Σ, followed by chase only with
the “MV -induced dependencies,” does not always yield
a correct solution. The reverse order of the “stages” is
not guaranteed to work either. See Appendix L for the
details.

7. COMPLEXITY OF THE PROBLEMS
In this section we consider the complexity of the CQ

weakly acyclic cases of the three problems defined in
Section 4.1. Our main focus is on the security-relevant
complexity measure introduced in [31]. Due to the page
limit, the exposition in this section is just an outline of
the results; Appendices J and M provide the details.

Generally, in studying the complexity of the certain-
query-answer problem of Definition 4.2, it is natural
to build on the results of [1], which were established
w.r.t. the complexity measures introduced in [28]. For
instance, for the CQ weakly acyclic case of the problem
of Definition 4.2, it is straightforward to obtain mem-
bership in coNP for the “data complexity” of the prob-
lem, that is, for the assumption that the set MV is the
only non-fixed part of (MΣ, Q, t̄). Then one can use
the coNP-hardness result of [1] for the special case Σ
= ∅, to arrive at the overall coNP completeness of the
CQ weakly acyclic case of the problem of Definition 4.2
w.r.t. the data-complexity measure of [28].

Given the security focus of this current work, we con-
centrate here on a complexity measure that extends
naturally that of [31]. Zhang and Mendelzon in [31] as-
sumed for their“conditional-containment”problem that
the base schema and the view definitions are fixed, where-
as the set of view answers MV and the queries posed
on the base schema in presence of MV can vary. (This
assumption is natural in, e.g., database-access control
[7], where access-control views are typically defined once
for each (class of) users, and where the only frequently
changing parts of the problem instance would be the
view answers, MV , seen by the users, as well as the “se-
cret queries”Q.) [31] did not consider dependencies on
the base schema; we follow the standard data-exchange
assumption, see, e.g., [13], that the given dependencies
are fixed, rather than being part of the problem input.

Under this complexity metric, we consider first the
complexity of the certain-query-answer problem (Def-
inition 4.2) and of the MΣ-conditional containment
problem (Definition 4.3). Given the tight relationship
between these problems (see Theorem 4.1), specifically
between their CQ weakly acyclic cases, we can view the
two problems together, using the following “grid”:

1. The CQ weakly acyclic case of the certain-query-
answer problem with Σ = ∅;

2. The general (i.e., Σ 6= ∅ is possible) CQ weakly
acyclic case of the certain-query-answer problem;

11

3. The CQ weakly acyclic case of theMΣ-conditional-
containment problem with Σ = ∅; and

4. The general (i.e., Σ 6= ∅ is possible) CQ weakly
acyclic case of MΣ-conditional containment.

With the help of Theorem 4.1, it is easy to show that
Problem 1 above is a special case of each of Problems 2
and 3, and that each of the latter problems is, in turn,
a special case of Problem 4.

Using these relationships, we have shown that each
of Problems 1–4 is Πp

2 complete w.r.t. our extension,
above, of the complexity measure of [31]. These four
results are immediate from the results of Theorems 7.1–
7.2, to follow, and from our observations above on the
inclusions between the four problems.

Theorem 7.1. The certain-query-answer problem of
Definition 4.2 is Πp

2 hard for CQ input instances (MΣ,Q,
t̄) in which Σ = ∅ in the settingMΣ, under the assump-
tion that everything in the instance (MΣ, Q, t̄) is fixed
except for Q, t̄, and the set MV in MΣ. 2

(It is easy to show that in the setting of Theorem 7.1,
it is enough to consider problem instances in which the
size of the tuple t̄ in (MΣ, Q, t̄) is the arity of the query
Q. See Appendix M for the details.)

The result of Theorem 7.1 is by reduction from the ∀∃-
CNF problem, which is known to be Πp

2 complete [26].
(Please see Appendix M for a detailed proof.) We start
off from the reduction that was used by Millstein and
colleagues in [21] for the problem of query containment
for data-integration systems. We modify the reduction
of [21] in the spirit that is similar to the modification of
that reduction (of [21]) as suggested in [31]. (Recall that
the full version of [31], including any of its proofs, has
never been published.) The goal of our modification is
to comply with our assumptions about the input size,
specifically with the assumption that the input view
definitions are fixed. (In [21] it is assumed that both
the queries and the view definitions can vary.)

Theorem 7.2. The MΣ-conditional containment
problem of Definition 4.3 is in Πp

2 for CQ weakly acyclic
input instances (MΣ, Q1, Q2), under the assumption
that everything in the instance (MΣ, Q1, Q2) is fixed
except Q1, Q2, and the set MV in MΣ. 2

(The proof is straightforward from the results of Sec-
tion 5, specifically of Proposition 5.1.)

Finally, consider the complexity of the CQ weakly
acyclic case of the problem of finding all certain-answer
tuples. Observe first that, in the special case where Q
is a Boolean query, the problem of finding all certain-
answer tuples reduces to the certain-query-answer prob-
lem for the same MΣ and Q, with t̄ = (). Now re-
call that the view-verified data exchange of Section 6 is
a sound and complete algorithm for the (general) CQ
weakly acyclic case of this problem. Using this algo-
rithm, we establish a singly-exponential upper bound
on the time complexity of the problem, under the same
complexity measure as above, that is, assuming that in
each instance (MΣ, Q), everything is fixed except for
the query Q and for the set MV inMΣ. Further, under
the same complexity measure, solving the CQ weakly
acyclic case of the problem is in PSPACE (provided
the algorithm does certain things on-the-fly). Note that
the output size is up to exponential in the arity of the
input query Q. See Appendix J for all the details.

8. REFERENCES
[1] S. Abiteboul and O. Duschka. Complexity of answering

queries using materialized views. In PODS, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among
relational expressions. SIAM J. Comput., 8:218–246, 1979.

[4] M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Relational
and XML Data Exchange. Morgan & Claypool, 2010.

[5] P. Barceló. Logical foundations of relational data exchange.
SIGMOD Record, 38(1):49–58, 2009.

[6] C. Beeri and M. Y. Vardi. The implication problem for
data dependencies. In ICALP, pages 73–85, 1981.

[7] E. Bertino, G. Ghinita, and A. Kamra. Access control for
databases: Concepts and systems. Foundations and Trends
in Databases, 3(1-2):1–148, 2011.

[8] A. Brodsky, C. Farkas, and S. Jajodia. Secure databases:
Constraints, inference channels, and monitoring disclosures.
IEEE TKDE, 12(6):900–919, 2000.

[9] A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In STOC, 1977.

[10] A. Deutsch. XML Query Reformulation over Mixed and
Redundant Storage. PhD thesis, Univ. Pennsylvania, 2002.

[11] A. Deutsch, A. Nash, and J. Remmel. The chase revisited.
In PODS, pages 149–158, 2008.

[12] A. Deutsch and V. Tannen. Optimization properties for
classes of conjunctive regular path queries. In DBPL, 2001.

[13] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data
exchange: semantics and query answering. Theoretical
Computer Science, 336:89–124, 2005.

[14] W. Fan and F. Geerts. Foundations of Data Quality
Management. Morgan & Claypool, 2012.

[15] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W.-C. Tan.
Peer data exchange. ACM TODS, 31(4):1454–1498, 2006.

[16] S. Greco, C. Molinaro, and F. Spezzano. Incomplete Data
and Data Dependencies in Relational Databases. Morgan &
Claypool, 2012.

[17] T. Imielinski and W. Lipski. Incomplete information in
relational databases. J. ACM, 31(4):761–791, 1984.

[18] D. S. Johnson and A. C. Klug. Testing containment of
conjunctive queries under functional and inclusion
dependencies. J. Comput. Syst. Sci., 28(1):167–189, 1984.

[19] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering queries using views. In PODS, 1995.

[20] G. Miklau and D. Suciu. A formal analysis of information
disclosure in data exchange. JCSS, 73(3):507–534, 2007.

[21] T. D. Millstein, A. Y. Halevy, and M. Friedman. Query
containment for data integration systems. JCSS, 66, 2003.

[22] R. Motwani, S. U. Nabar, and D. Thomas. Auditing SQL
queries. In ICDE, pages 287–296, 2008.

[23] S. U. Nabar, K. Kenthapadi, N. Mishra, and R. Motwani.
A survey of query auditing techniques for data privacy. In
Privacy-Preserving Data Mining, pages 415–431. 2008.

[24] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy.
Extending query rewriting techniques for fine-grained access
control. In SIGMOD Conference, pages 551–562, 2004.

[25] C. E. Shannon. Communication theory of secrecy systems.
Bell Syst. Techn. J., 28:656–715, 1949.

[26] L. J. Stockmeyer. The polynomial-time hierarchy.
Theoretical Computer Science, 3(1):1–22, 1976.

[27] K. Stoffel and T. Studer. Provable data privacy. In DEXA,
pages 324–332, 2005.

[28] M. Y. Vardi. The complexity of relational query languages
(extended abstract). In STOC, pages 137–146, 1982.

[29] R. W. Yip and K. N. Levitt. Data level inference detection
in database systems. In CSFW, pages 179–189, 1998.

[30] X. Zhang and M. Özsoyoglu. Implication and referential
constraints: A new formal reasoning. IEEE TKDE, 9, 1997.

[31] Z. Zhang and A. O. Mendelzon. Authorization views and
conditional query containment. In ICDT, 2005.

12

APPENDIX
A. CERTAIN QUERY ANSWERS:

EXAMPLE WITH Σ = ∅
In this appendix we show an example with Σ = ∅, of

an input instance for the certain-query-answer problem
of Definition 4.2 and for the problem of finding the set
of certain query answers w.r.t. a materialized-view set-
ting, see Section 4.1. This example is to be used as an
illustration in later appendices, e.g., in Appendix B.

EXAMPLE A.1. Consider a relation E (for Employee),
which is used for storing information about employees
of a company. Let the attributes of E be Name, Dept
(for the departments in which the employees work), and
Salary: E(Name, Dept, Salary).

We assume that no integrity constraints hold on the
database schema P containing the relation E. (In par-
ticular, the only primary key of E is all its attributes.)
Thus, the set Σ of dependencies holding on the schema
P is the empty set.

Let a query Q ask for the salaries of all the employees.
We can formulate the query Q in SQL as

(Q): SELECT DISTINCT Name, Salary FROM E;

The query Q is a CQ query, which can be expressed in
Datalog as follows:

Q(X,Z)← E(X,Y, Z).

Consider two views, V and W, that are defined for some
class(es) of users on the schema P. The view V returns
the departments for each employee, and the view W re-
turns the salaries in each department. The Datalog def-
initions of these CQ views are as follows. (Please see
Example 1.1 for the SQL definitions of V and W.)

V (X,Y)← E(X,Y, Z).
W (Y,Z)← E(X,Y, Z).

Suppose that some user(s) are authorized to see the
answers to V and W, and that at some point in time the
user(s) can see the following set MV of answers to these
views.

MV = { V(johnDoe,sales), W(sales,50000) } .

Then one “conjunctive fact-expression” CMV (see Sec-
tion 4.3) that the user(s) can put together based on this
instance MV is

CMV = V(johnDoe,sales) AND W(sales,50000).

Let t̄ = (johnDoe, 50000) be the tuple that the user
hypothesizes is in the answer to the query Q on all the
instances of the relation Emp that satisfy the (empty set
of) dependencies Σ and that generate the above instance
MV . Observe that the tuple t̄ is made up from values
johnDoe and 50000, which “are generated by” the ex-
pression CMV . Thus, knowing the associations between
the values in the tuple t̄ and the respective attribute
names in MV , we can “put together” this expression
CMV and this tuple t̄ as a SQL query, Rvw, in terms of
the views V and W and in presence of the constants from
the instance MV , as follows:

(Rvw): SELECT DISTINCT Name, Salary FROM V, W
WHERE Name = ‘johnDoe’ AND V.Dept = W.Dept
AND V.Dept = ‘sales’ AND Salary = ‘50000’;

That is, by defining the query Rvw we formalize the
rather natural process of the user “putting together” tu-
ples in the available instance MV and of his then using
some of the values from the selected tuples to put forth
a tuple of constants that is hypothetically in the answer
to the query Q. We note that Rvw is defined by a CQ
query:

Rvw(johnDoe, 50000)← V (johnDoe, sales),
W (sales, 50000).

By definition of Rvw, the above tuple t̄ = (johnDoe,
50000) is the only possible answer to Rvw on all possible
instances of the relations V and W. It is easy to see that
this answer to the query Rvw is compatible with (i.e.,
can be obtained by asking the query Rvw on) the above
instance MV . (Intuitively, this is true because we have
constructed Rvw from the tuples in the above instance
MV .) 2

B. RELATIONSHIP BETWEEN THE CERT-
AIN-QUERY-ANSWER PROBLEM W.R.T.
A SETTING AND THE QUERY-CONT-
AINMENT PROBLEM W.R.T. A SETTING

In this appendix we provide the technical details on
the main result of Section 4.3. That result, Theorem 4.1,
establishes a direct relationship between the certain-
query-answer problem for a given Q, t̄, and a valid CQ
setting MΣ, and the problem of MΣ-conditional con-
tainment for Q′ and Q, for the same Q andMΣ. Here,
the query Q′ is constructed from the given Q, t̄, and
MΣ. The proof of Theorem 4.1 is immediate from The-
orem B.2, see Section B.3 of this appendix.

A relationship similar to that of Theorem 4.1 was ob-
served in [1] for the dependency-free case under OWA.
In contrast, our result holds under CWA and in pres-
ence of dependencies on the schema P in the setting
MΣ.

B.1 The Intuition
The intuition for the relationship between the two

problems can be illustrated via Example A.1. That is,
we formalize the thought process of the presumed at-
tackers concerning the answers to “secret queries” [20]
(such as the query Q in Example A.1) that are posed
on a a proprietary database. The attackers know a
materialized-view setting MΣ = (P, Σ, V, MV) and
the definition of a query Q, and come up with candi-
date certain answers to Q in this settingMΣ. (This is,
informally, the idea of the problem of database access
control, see, e.g., [7].)

We argue that the approach of putting together the
tuples in the view answers is natural for the presumed
attackers to use. Indeed, in any specific instance of the
problem of the certain query answer w.r.t. a materialized-
view setting, attackers deal directly with a ground in-
stance MV . They know that MV is a set of answers to
the “access-policy” views V on the underlying instance
of interest. Thus, intuitively, a question that is natural
for the attackers to ask is which values in consts(MΣ)
can be put together to form an answer to the secret

13

query Q, on all possible underlying instances of inter-
est. (In general, the attackers could consider in their
pursuit not just values in consts(MΣ), but also con-
stants mentioned in the queries for V and in the secret
query Q. It is straightforward to reflect this in our set-
ting, by adding extra head arguments to the definitions
of the respective views. Thus, we do not explicitly con-
sider this extension in this paper.)

How can this certain-query-answer question be an-
swered deterministically, as required by Definition 4.2?
A natural approach would be to put together a query,
call it R, in terms of the relations in the instance MV ,
and to then prove that R is “contained,” in some pre-
cise sense (in particular, w.r.t. the views in V), in the
secret query Q. We will be referring to all queries R
over schema V as “rewritings” (in terms of V), as indeed
they would be defined in terms of the relation symbols
in V. (Another reason to refer to such queries R as
“rewritings” is that we will need to define their expan-
sions shortly.) Hence our name for this approach to
solving the problem of whether a ground tuple t̄ is a
certain answer to a query Q w.r.t. a setting MΣ. As
we will see, this approach determines precisely contain-
ment between two queries w.r.t. the given settingMΣ.
Here, one of the two queries in question is the query Q
provided in the problem input, and the other query is
the “expansion” [19] of a rewriting R, with head t̄, such
that the definition of R is obtained from MΣ.

A challenge arises immediately when attackers pursue
this train of thought: In the set R(MV) of answers to
a rewriting R on an instance MV , not all the tuples
in R(MV) would necessarily be in the answer to the
secret query Q. That is, the formal containment that
we are looking for would not hold for all rewritings R.
(As an illustration, suppose that in some instance of the
certain-query-answer problem w.r.t. a setting, the input
query Q returns names of employees with high salaries,
and R returns names of employees in the accounting
department. Clearly, the answer to R is not necessarily
a subset of the answer to Q, on any particular database
of interest.)

At the same time, for each individual tuple t̄ ∈R(MV),
it makes sense to ask the question of whether the query
R(t̄) is contained in Q in the appropriate precise sense.
The intuition is that R(t̄) is the result of binding the
head vector of R to a tuple, t̄, in the relation R(MV);
as a result, t̄ is the only answer to R(t̄) on the instance
MV . We focus on such rewritings R(t̄) in this approach.

B.2 Defining the Rewriting Approach
We now formalize the “rewriting approach” to deter-

mining whether a given ground tuple t̄ is a certain an-
swer to a given query Q w.r.t. a given materialized-view
settingMΣ. As outlined in Section B.1, the intuition is
that this rewriting approach works by determining con-
tainment between two queries w.r.t. the setting MΣ,
such that each of the two queries is obtained from some
combination of the given inputs Q, t̄, and MΣ. Our
intent is to tie the definitions of rewritings that attack-
ers can formulate on view answers, to components of
the given setting MΣ. After defining rewritings of the
form R(t̄), we recall the standard notion of expansion of
a view-based rewriting [19]; an expansion of a rewriting
is its equivalent reformulation over the schema P used
to define the query Q. We then formalize the rewriting

approach, using the notion of containment of queries
over the same schema w.r.t. a set of view answers MV
and a set of dependencies Σ.

Head-instantiated rewriting R(t̄). Intuitively, an
attackers’ goal in this approach is to form candidate
answers, t̄, to the secret query Q, by using constants
that are in consts(MΣ) and that thus presumably orig-
inate from the actual instance I of interest, V ⇒I,Σ

MV . (That is, the instance I is the actual proprietary
database, of interest to the attackers, that has been
used to generate the instance MV .) Observe that not
all V-based rewritings could be used toward this goal.
Consider, for instance, a rewriting Rf (f)← V (X), de-
fined using a constant f and a subgoal V (X) for a view
V and variable X. Clearly, regardless of the contents
of the set MV of answers to the view V , the answer
Rf (f)(MV) to Rf on MV is always the set { (f) }. To
rule out rewritings such as Rf (f), we define a desirable
type of rewritings as follows.

For an integer k ≥ 0 and for a k-tuple t̄ of constants,
consider a safe k-ary CQ query R over schema V and
with head vector t̄. We say that R is a head-instantiated
rewriting for t̄ iff there exists a safe k-ary CQ query
R(g)(X̄) over the schema V, called a grounding rewriting
for R, that satisfies two conditions. First, the head
vector X̄ of R(g) does not include constants. Second,
there exists a mapping, h, that maps all the elements of
X̄ to constants and that maps the remaining terms in
R(g) to themselves, such that the rewriting that results
from applying h to the definition of R(g) is exactly R.

EXAMPLE B.1. Consider rewritings Rvw and R̃vw
that use constants c, d, and f . (R̃vw also uses a variable
Z.)

Rvw(c, f)← V (c, d),W (d, f).
R̃vw(c, f)← V (c, Z),W (Z, f).

Suppose that c, d, and f stand for ‘johnDoe’, ‘sales’,
and ‘50000’, respectively; then Rvw is the rewriting Rvw
of Example A.1. By applying this “translation of con-
stants” to the instance MV of Example A.1, we obtain
an instance MV = {V (c, d),W (d, f)}.

Each of Rvw and R̃vw is a head-instantiated rewriting
for (c, f), as the respective grounding rewritings are

R
(g)
vw(X,Y)← V (X, d),W (d, Y).

R̃
(g)
vw(X,Y)← V (X,Z),W (Z, Y). 2

By definition, for each head-instantiated rewriting R
for a tuple t̄, the answer to R on an instance I of schema
V is nonempty (and is exactly { t̄ }) iff there exists a
valuation from the body of R onto a subset I ′ of I such
that adom(I ′) contains all the constants in t̄. Further,
consider an arbitrary safe CQ query R′′ over schema V,
and consider any instance MV such that R′′(MV) 6=
∅. Then for each tuple t̄ in R′′(MV), the result R′′(t̄)
of binding the head vector of R′′ to t̄ (while consis-
tently renaming the terms in the body of R′′ as well)
is a head-instantiated rewriting for t̄, such that the an-
swer to R′′(t̄) on the instance MV is not empty (and
is, obviously, exactly {t̄}).

Expansion of a rewriting. We now take a step
back, from head-instantiated rewritings to general CQ
rewritings, to recall the standard notion of expansion of

14

a CQ rewriting [19]. First, given a set of views V and
a ground instance I of schema P, consider an instance
over schema V ∪ P, which results from adding to I the
relation V (I) for each relation symbol V ∈ V. We call
the latter instance the V-enhancement of I, and denote
it by I(+V). Now given a rewriting R over the schema
V, consider a query, R′, over the schema P such that for
each instance I of P we have R′(I) = R(I(+V)). We call
such a query R′ an expansion of R (over P), and denote
it by Rexp. We will use the following straightforward
property of Rexp:

Proposition B.1. For a set V of views over schema
P: Let R be a query over V such that Rexp exists, and
let MV be an instance of schema V. Then for each
instance I of schema P such that V ⇒I,∅ MV , we have
Rexp(I) = R(MV). 2

In case where V is a set of CQ views and R is a CQ
query over V, the standard process in the literature of
constructing Rexp is [19] to replace each subgoal of R
with the body of the query for the corresponding rela-
tion symbol in V. In this process, care is taken to per-
form two operations on each query, of the form V (X̄)←
body(V), whose body in Rexp corresponds to a subgoal

of R of the form V (Z̄). First, we bind the arguments of
the query for V to the vector Z̄, in two steps, (A) and
(B). The step (A) is to extend the homomorphism,5 h,
that maps each element of the head vector X̄ of the
query for V to the same-position element of Z̄, to a
homomorphism hV (Z̄), whose domain is the set of all
arguments of body(V), such that hV (Z̄) is the identity
mapping for each value that is not in the domain of h.
Then, (B) is to apply hV (Z̄) to body(V), with conjunc-

tion of relational atoms hV (Z̄)(body(V)) as the output.

Second, before conjoining hV (Z̄)(body(V)) with the cur-
rent body, bodyRexpcurr, of the query Rexp, we rename all
the variables in hV (Z̄)(body(V)) consistently into “fresh”
variables not occuring in bodyRexpcurr. The query Rexp

that is obtained by this two-step process is (i) an ex-
pansion of R over P, and is (ii) unique up to variable
renaming.

Conditional containment: We can now use con-
tainment to directly relate a rewriting R, via Rexp, to
the given query Q. The notion of containment we will
use is that of Definition 4.3 in Section 4.1.

For notational convenience in the results to follow, we
now introduce Σ-conditional containment of a rewriting
in a query modulo a set of views and a set of answers
to the views: For a rewriting R over V such that Rexp

exists, and for a query Q over P, we say that R is Σ-
conditionally contained in Q w.r.t. MV and modulo V,
denoted R vΣ,MV,V Q, iff Rexp vMΣ Q holds.

The rewriting approach: We are now ready to
specify the rewriting approach to the problem of deter-
mining whether a tuple t̄ is a certain answer to a query
Q w.r.t. a materialized-view setting MΣ. For an in-
stanceMV of schema V, we say that a head-instantiated
rewriting R(t̄) is MV -validated iff the set R(t̄)(MV) is

not the empty set. (The rewritings Rvw and R̃vw of

5It is easy to show that if such a h cannot be constructed,
then R is unsatisfiable on all instances of the schema V.

Example B.1 are both MV -validated.) Given a valid6

materialized-view settingMΣ with set of view answers
MV , a k-ary (k ≥ 0) query Q, and a k-ary tuple t̄ of
constants in consts(MΣ), the rewriting approach to the
certain-query-answer problem for Q and t̄ in MΣ is to
find an MV -validated head-instantiated rewriting R for
t̄ such that R vΣ,MV,V Q. This approach is sound:

Proposition B.2. Given a valid materialized-view
setting MΣ = (P, Σ, V, MV) and a query Q of ar-
ity k ≥ 0. Let t̄ be a k-tuple of values from consts(MΣ).
Suppose that there exists an MV -validated head-instantiated
rewriting R for t̄ such that R vΣ,MV,V Q. Then t̄ is a
certain answer to Q w.r.t. MΣ. 2

The proof is very simple: Any rewriting R satisfying
the conditions of Proposition B.2 must have t̄ as its only
answer on the given instance MV . Thus, by Proposi-
tion B.1, Rexp (which exists because the containment
R vΣ,MV,V Q is stated in Proposition B.2 to be well
defined) has t̄ as its only answer on all instances I such
that V ⇒I,Σ MV . From the containment Rexp vMΣ Q
we conclude that on all such instances I, the tuple t̄ is an
element of the set Q(I). The claim of Proposition B.2
follows.

B.3 One Rewriting Is Enough
Suppose that we are given a materialized-view set-

ting MΣ and a k-ary (k ≥ 0) query Q. One (e.g.,
attackers) can generate all k-tuples t̄ with values in
consts(MΣ). Then, Proposition B.2 gives the attack-
ers a tool for testing each such t̄ as a certain-answer
tuple to Q w.r.t. MΣ, assuming that the attackers can
come up with an “appropriate” rewriting R for each t̄,
and that there exists an algorithm for checking the con-
tainment R vΣ,MV,V Q for each such R and t̄. We will
consider in the next subsection some such algorithms.
However, in this current subsection we show that to
solve this generate-and-test problem for a given instance
MΣ, it is not necessary to also generate various bodies
for rewritings R. Each valid MΣ is associated with a
single CQ rewriting for each t̄, with all these rewritings
(for MΣ) having the same body. The main result of
this subsection is that for all CQ instances MΣ, these
rewritings alone can be used to capture exactly the set
of all certain answers to the input query.

Intuitively, we are to construct the desired rewritings
from the facts in the instance MV given as part ofMΣ.
Indeed, by the requirement that MV in each MΣ be a
ground instance, each fact in MV can be viewed equiv-
alently as a relational atom whose all arguments are
constants. Given a fixed MV and a k-ary (k ≥ 0) tuple
t̄ of values from consts(MΣ), we say that a CQ rewrit-
ing R with head vector t̄ is an MV -induced rewriting
for t̄ iff each subgoal of R is a fact in MV . Further,
an MV -induced rewriting R for t̄ is a maximal MV -
induced rewriting for t̄ iff each fact in MV is also a
subgoal of R. In Example B.1, Rvw is a maximal MV -
induced rewriting for the tuple (c, f), and R̃vw is not
an MV -induced rewriting.

We now list useful properties of MV -induced rewrit-
ings.
6The view-verified data-exchange approach of Appendix J
can be used as a sound and complete algorithm for deter-
mining whether a given CQ weakly acyclic materialized-view
setting is valid.

15

Proposition B.3. Given a valid materialized-view
setting MΣ = (P, Σ, V, MV). For a k ≥ 0, let t̄,
t̄1, and t̄2 be k-tuples of values from consts(MΣ), for
the MV in MΣ. Then:

(1) Each MV -induced rewriting R for t̄ is an MV -
validated head-instantiated rewriting for t̄ whenever
each element of t̄ occurs in the body of R;

(2) For each t̄, there is exactly one maximal MV -induced
rewriting, which is an MV -validated head-instantiated
rewriting for t̄; and

(3) The maximal MV -induced rewritings for t̄1 and for
t̄2 have the same body, for all choices of t̄1 and t̄2.

2

Note 1. In case where some constants in consts(MΣ)
are in definitions of the views in V but are not in MV ,
all the claims of Proposition B.3 still go through once
we modify the view definitions by adding all their body
constants into their head vectors. This fix for this case
also works for all the other results of this appendix that
deal with head-instantiated rewritings for tuples t̄ con-
structed from the elements of the set consts(MΣ).

The next result says that when we have the maximal
MV -induced rewriting for some tuple t̄ of values from
consts(MΣ), then we do not need to consider any other
head-instantiated rewritings for t̄ in our rewriting ap-
proach. (The proof is straightforward and is omitted.)

Proposition B.4. Given a valid CQ materialized-
view settingMΣ = (P, Σ, V, MV) and a query Q of ar-
ity k ≥ 0. Let t̄ be a k-tuple of values from consts(MΣ).
Let R be an MV -validated head-instantiated rewriting
for t̄ such that R vΣ,MV,V Q. Then for the maximal
MV -induced rewriting R∗t̄ for t̄, we have R∗t̄ vΣ,MV,V
Q. 2

The following result says that maximal MV -induced
rewritings alone can be used to capture exactly the cer-
tain answers to queries w.r.t. CQ materialized-view set-
tings. This result is an immediate corollary of Proposi-
tions B.3 and B.4.

Theorem B.1. Given a valid CQ materialized-view
setting MΣ and a query Q of arity k ≥ 0. For a k-
tuple t̄ of values from consts(MΣ): The tuple t̄ is a
certain answer to Q w.r.t. MΣ iff for the maximal
MV -induced rewriting R∗t̄ for t̄, we have R∗t̄ vΣ,MV,V
Q. 2

Proof. If: The proof of this direction parallels the
proof of Proposition B.2.

Only-If: By Definition 4.2, for the given tuple t̄ we
have that t̄ is in the setQ(I) for all instances I of schema
P such that V ⇒I,Σ MV . By Proposition B.3, we have
that t̄ is the only answer on the instance MV to the
maximal MV -induced rewriting R∗t̄ for t̄. Thus, for
the expansion of R∗t̄ , denote this expansion by (R∗t̄)

exp,
we have by Proposition B.1 that for each instance I of
schema P such that V ⇒I,Σ MV , we have (R∗t̄)

exp(I)
= {(t̄)}. (In more detail, we have by Proposition B.1
that for each instance J of schema P such that V ⇒J,∅
MV , we have (R∗t̄)

exp(J) = {(t̄)}. The conclusion that
(R∗t̄)

exp(I) = {(t̄)} for each instance I of schema P such
that V ⇒I,Σ MV follows from the fact that the set of

all such instances I is a subset of the set of all such
instances J .) Thus, by the definitions of expansions of
rewriting and of the containment vΣ,MV,V , we obtain
immediately that R∗t̄ vΣ,MV,V Q.

It follows from Theorem B.1 that the converse of
Proposition B.2 also holds. Hence we obtain the fol-
lowing result.

Theorem B.2. Given a valid CQ materialized-view
setting MΣ and a query Q of arity k ≥ 0. For a k-
tuple t̄ of values from consts(MΣ): There exists an
MV -validated head-instantiated rewriting R for t̄ such
that R vΣ,MV,V Q iff t̄ is a certain answer to Q w.r.t.
MΣ. 2

Note 2. In the light of Theorems B.1 and B.2, we can
use the results of this current paper onMΣ-conditional
query containment to determine correctly if a given
ground k-tuple t̄ is a certain answer to the (k-ary) query
Q w.r.t. the setting MΣ, for the class of all problem
instances where Q is a CQ query, and the materialized-
view settingsMΣ is valid CQ weakly acyclic. Moreover,
we can also find all the certain answers to Q w.r.t. MΣ
for the same class of instances (i.e., CQ queries and valid
CQ weakly acyclic materialized-view settings), by first
generating all the ground k-tuples of values in consts(MΣ),
and by then determining for each such tuple whether it
is a certain answer to Q w.r.t. MΣ. By the results of
this paper, the latter algorithm is sound and complete
for this class of input instances under CWA.

C. CONDITIONAL CONTAINMENT FOR
CQ QUERIES

Zhang and Mendelzon in [31] addressed the problem
of letting users access authorized data, via rewriting
the users’ queries in terms of their authorization views.
Toward that goal, [31] explored the notion of “condi-
tional query containment.” The results of [31] include
a powerful reduction of the problem of testing condi-
tional containment of CQ queries to that of testing un-
conditional containment of modifications of the queries.
In this appendix we review these results of [31]. Ap-
pendix D provides an illustrative example of conditional
query containment.

We begin by reviewing the definition of conditional
containment of queries [31]. Some of the definitions
here are restricted versions of the definitions given in
Section 4. We provide the restricted definitions here for
this appendix to be self contained.

Suppose that we are given a schema P and a set V
of relation symbols not in P, with each symbol (view
name) V ∈ V of some arity kV ≥ 0. Each symbol V ∈
V is defined via a kV -ary query on the schema P. We
call V a set of views on P, and call the query for each
V ∈ V the definition of the view V , or the query for V .
We assume that the query for each V ∈ V is associated
with (V in) the set V. Consider a ground instance MV
of schema V; we call MV a set of view answers for V.
Then for a ground instance I of schema P, we say that I
is a valid instance (of P) for V and MV [31] whenever
for each V ∈ V, the answer V (I) to the query for V
on the instance I is identical to the relation MV [V] for
V in the instance MV . For a given set MV of view
answers for a set of views V, we say that MV is a valid

16

set of view answers for V whenever there exists at least
one valid instance for V and MV .

Now given queries Q1 and Q2 on the schema P, we
say that Q1 is conditionally contained in Q2 w.r.t. (V
and) MV [31], denoted7 Q1 vMV Q2, if and only if the
relation Q1(I) is a subset of the relation Q2(I) for each
valid instance I for V and MV .

It is easy to see that for all instances MV of all
schemas V, the containment Q1 v Q2 is a sufficient con-
dition for the containment Q1 vMV Q2. Not surpris-
ingly, Q1 vMV Q2 does not imply Q1 v Q2; something
more sophisticated is clearly called for. The authors of
[31] report the following powerful test for conditional
containment of CQ queries. (We say that V is a set of
CQ views if the query for each V ∈ V is a CQ query.)

Theorem C.1. [31] Given a schema P, a set of CQ
views V on P, a valid set MV of view answers for V,
and CQ queries Q1 and Q2 on the schema P. Then
Q1 vMV Q2 if and only if for the UCQ6= query Q′′1
constructed for Q1 by an algorithm given in [31], we
have Q′′1 v Q2. 2

Theorem C.1 reduces the problem of testing condi-
tional containment of CQ queries, Q1 vMV Q2, to the
problem of testing (unconditional) containment in Q2

of a UCQ6= modification of Q1. The latter containment
can be decided by a test due to [19]. The required mod-
ification of Q1 is done by an intricate algorithm given
in [31]. We outline here briefly the intuition for the
construction of Q′′1 from Q1.

We say that an instance I of schema P underproduces
MV if, for at least one V ∈ V, the relation V (I) is a
proper subset of the relation MV [V]. By definition,
each valid instance for V and MV does not underpro-
duce MV .

The construction ofQ′′1 fromQ1 proceeds in two steps.
The first step guarantees that its output, a CQ query
Q∗1, has the empty answer on all instances of P that
underproduce MV . This goal is achieved by defining
Q∗1 as having the same head vector as in Q1, and by
(Q∗1) having the body that is a conjunction of the body
of Q1 with the conjunction CexpMV defined in Section 4.3.

The output of the second step in the construction, a
UCQ6= query Q′′1 , has the same property as Q∗1 does.
In addition, for each instance, I, of schema P such that
I does not underproduce MV , and for each valuation,
ν, from the query Q′′1 to I, all the facts in ν(body(Q′′

1))
collectively constitute a valid instance for V and MV .
(This is done by adding to the body of Q′′1 disjunc-
tions, equalities, and/or disequalities based on homo-
morphisms from the normalized bodies of the views in
V to the body of (the current version of) Q′′1 . The body
of a CQ query is normalized whenever its relational part
has only one occurrence of each variable and of each con-
stant, and all the equalities between variables and/or
constants are enforced by explicit equality atoms.)

The result of Theorem C.1 is shown in [31] to follow
from these properties of Q′′1 and from the fact that for
all valid instances I for V and MV , Q′′1(I) = Q1(I).

7To avoid overcrowding the symbol v, we assume that in
the notation vMV , the name MV of an instance of schema
V uniquely identifies the relevant set V.

D. EXAMPLE OF QUERY CONTAINMENT
W.R.T. A SET OF VIEW ANSWERS

In the example in this appendix, one query is MΣ-
conditionally contained in the other, even though the
bodies of the queries do not share any relational sym-
bols.

EXAMPLE D.1. In this trivial example, one query
is MΣ-conditionally contained in the other (in the ab-
sence of dependencies), even though the bodies of the
queries do not share any relational symbols. Consider
Boolean CQ queries Q1 and Q2, a CQ view V , and a
set of view answers MV , as follows.

Q1()← P (X).
Q2()← R(Y).
V (Y)← R(Y).
MV = { V (c) }.

LetMΣ be ({P,R}, ∅, {V },MV), with V and MV as
above. P and R in the schema P = {P,R} are unary
relation symbols, and no dependencies hold on P.

For any base instance I that is relevant to the setting
MΣ, the instance I must have the ground atom R(c).
(This follows from the definitions of the view V and of
the instance MV .) As a result, the query Q2 returns
the empty tuple on any such instance I. It follows that
any Boolean query, including Q1, is MΣ-conditionally
contained in Q2. The algorithm reported in this paper
allows us to make this correct conclusion. 2

E. A NONCONTAINMENT EXAMPLE
In this appendix we show by example that when Q1
vMΣ Q holds for some choice of Q1, Σ, MV , and Q,
then none of the following necessarily holds:

(1) Q1 v Q,

(2) Q1 vΣ Q, and

(3) Q1 vM∅ Q.

Here, by M∅ we denote the result of replacing Σ by ∅
in the given setting MΣ = (P, Σ, V, MV }.

EXAMPLE E.1. Recall the schema P = { Emp,
HQDept, OfficeInHQ } of Example 1.1. We abbreviate
each relation name by its first letter (same as in Exam-
ple 4.1). As before, we assume that the only primary key
of the relation E is its three attributes together. The key
of the relation O is its first attribute, which we express
using the following egd τ :

τ : O(X,Y) ∧O(X,Z)→ Y = Z.

Suppose that for all the departments located in the
company headquarters, all their employees have their
offices in the headquarters. We express this constraint
using a tgd σ (which is the same as in Examples 1.1
and 4.1):

σ : E(X,Y, Z) ∧H(Y)→ ∃S O(X,S).

We assume that σ and τ constitute all the integrity
constraints Σ on the schema P, that is, Σ = { σ, τ }.

Recall the views U, V, and W introduced in Example 1.1:

17

(U): DEFINE VIEW U(Dept) AS SELECT * FROM HQDept;
(V): DEFINE VIEW V(Name, Dept) AS

SELECT DISTINCT Name, Dept FROM Emp;
(W): DEFINE VIEW W(Dept, Salary) AS

SELECT DISTINCT Dept, Salary FROM Emp;

We denote by V the set { U, V, W }.
Suppose that a user, or several users together, are au-

thorized to see the answers to all three views U, V, and
W, and that at some point in time the user(s) can see
the following set MV of answers to these views (same
as in Example 1.1).

MV={U(sales),V(johnDoe,sales),W(sales,50000)}.

We denote by MΣ the materialized-view setting (P, Σ,
V, MV }.

Now recall the secret query Q of Example 1.1; Q re-
turns the names and salaries of all the employees who
work in the company headquarters.

(Q): SELECT DISTINCT E.Name, Salary FROM Emp E, OfficeInHQ
WHERE E.Name = OfficeInHQ.Name,

Recall the tuple t̄ = (johnDoe, 50000) and the query
Rvw, over the schema V, of Example A.1:

(Rvw): SELECT DISTINCT Name, Salary FROM V, W
WHERE V.Name = ‘johnDoe’ AND V.Dept = W.Dept
AND V.Dept = ‘sales’ AND Salary = ‘50000’;

Using the results of this paper, we can show that the
expansion Rexpvw , in terms of the schema P, of the query
Rvw is contained in the query Q w.r.t. the setting MΣ.
At the same time, none of the following containments
hold: Rexpvw v Q, Rexpvw vΣ Q, and Rexpvw vM∅ Q. (Here,
by M∅ we denote the result of replacing Σ by ∅ in the
setting MΣ.)

We now prove all the containment and non-containment
statements of the preceding paragraph, for the queries
Rexpvw and Q over the schema P. First, we render in Dat-
alog the queries Rvw, Rexpvw , Q, and the queries for the
three views. (For conciseness, in the remainder of this
example we will refer to the constants johnDoe, sales,
and 50000 as c, d, and f , respectively.)

Q(X,Z) ← E(X,Y, Z), O(X,S).
U(X) ← H(X).
V (X,Y) ← E(X,Y, Z).
W (Y,Z) ← E(X,Y, Z).
Rvw(c, f) ← V (c, d),W (d, f).
Rexpvw (c, f) ← E(c, d, Z), E(X, d, f).

(1) We are first determining whether Rexpvw v Q holds.
The noncontainment of Rexpvw (c, f) in Q is immediate
from the containment test of [9] and from the absence
in the definition of Rexpvw (c, f) of a subgoal with predi-
cate OfficeInHQ. (As a result, the subgoal of Q with
predicate OfficeInHQ cannot be mapped into the body
of Rexpvw (c, f).) We conclude that Rexpvw v Q does not
hold.

(2) We are now determining whether Rexpvw vΣ Q holds.
We observe that the result of chasing the query Rexpvw (c, f)
with the dependencies Σ is identical to Rexpvw (c, f). Re-
call that Rexpvw (c, f) vΣ Q holds iff that chase result
(which is identical to Rexpvw (c, f)) is contained in Q in
the absence of dependencies. We then use the reasoning
of item (1) to conclude that Rexpvw vΣ Q does not hold.

(3) We are now determining whether Rexpvw vM∅ Q
holds. Consider the following instance I of schema P:

I = {H(d), E(c, d, f)}.

It is easy to verify that for the set V = { U, V, W },
the result of applying the queries for V to I is exactly
the instance MV as given above. (Observe that the in-
stance I does not satisfy the tgd σ in the set Σ in the
setting MΣ. At the same time, we’re checking here for
the containment of Rexpvw in Q w.r.t. the setting M∅,
in which Σ = ∅.) We verify that Q(I) = ∅ and that
Rexpvw (c, f)(I) = { (c, f) }. As a result, the containment
Rexpvw vM∅ Q does not hold.

(4) Finally, let us determine whether Rexpvw vMΣ Q
holds. For ease of exposition, we denote the query Rexpvw
by Q1. Using the results of this current paper, we first
transform Q1 into Q′1, by conjoining the body of Q1 with
CexpMV = E(c, d,A) ∧E(B, d, f) ∧H(d). (We then mini-
mize the resulting query to obtain Q′1; the minimization
does not affect any of our results in this current paper.)

Q1(c, f) ← E(c, d, Z), E(X, d, f).
Q′1(c, f) ← E(c, d, Z), E(X, d, f), H(d).

Then we chase Q′1 using the MV -induced dependen-
cies τU , τV , and τW , as well as the modifications σ′

and τ ′ of the dependencies σ and τ , respectively, in the
given set Σ of dependencies on the schema P:

τU : H(X) → X = d.
τV : E(X,Y, Z) → X = c ∧ Y = d.
τW : E(X,Y, Z) → Y = d ∧ Z = f.
σ′ : E(X,Y, Z) ∧H(T)→ (∃S O(X,S)) ∨ (Y 6= T).
τ ′ : O(X,Y) ∧O(T,Z)→ (Y = Z) ∨ (X 6= T).

The result of the chase of Q′1 with the dependencies
τU , τV , τW , σ′, and τ ′ is the following query (Q1)MΣ:

(Q1)MΣ(c, f)← E(c, d, f), H(d), O(c, Z).

It is easy to verify that, by the results of [9], the CQ
query (Q1)MΣ is unconditionally contained in the input
query Q. Using the results of this current paper, we
obtain that Q1 vMΣ Q holds as well. On replacing Q1
by the original notation Rexpvw , we conclude that Rexpvw
vMΣ Q also holds. 2

F. FORMΣ-CONDITIONAL CONTAINM-
ENT, CANNOT JUST CHASE WITH Σ

(OR EVEN WITH Σ(6=)) THE QUERY Q′′1
This appendix illustrates via an example that, in de-

terminingMΣ-conditional containment of two CQ queries
w.r.t. a weakly acyclic materialized-view setting, just
“chasing with Σ (or even with Σ(6=))” the query Q′′1 of
[31] may yield incorrect conclusions about the MΣ-
conditional containment of the input queries. (“The
query Q′′1 of [31]” is the result of chasing one of the
input queries in the algorithm of [31] for determining
conditional containment of the two input queries in the
absence of dependencies. The algorithm of [31] checks
this query Q′′1 for unconditional containment in the in-
put query Q2; it is shown in [31] that, in case of the
positive answer to the unconditional-containment test,
the input query Q1 is conditionally contained in Q2.)

Note. As shown in this current paper, the result
(Q1)MΣ of chasing a CQ query Q1 using weakly acyclic

18

dependencies Σ and the MV -induced dependencies is,
in general, a UCQ6= query. (Q1)MΣ in Example F.1 is
a CQ query, because the view/tgd definitions and MV
are particularly simple here.

EXAMPLE F.1. Let schema P have a unary rela-
tion symbol R and binary relation symbols P and S.
Consider a tgd σ and three view definitions:

σ : S(X,Y)→ ∃ T P (Y, T).
U(X)← R(X).
V (X)← P (Y,X).
W (X)← S(Y,X).

Finally, for the set {U, V,W} of the above views, let
the set of view answers MV be {U(c), V (c),W (f)}. Then
the materialized-view setting (P, {σ}, {U, V,W}, MV),
which we denote by MΣ, is CQ weakly acyclic.

Now let Q1 and Q2 be two CQ queries, as follows.

Q1(X)← S(X,Y).
Q2(X)← S(X,Y), P (Y,Z), R(Z).

It is easy to show that neither Q1 v Q2 nor Q1 v{σ}
Q2 holds. (Please see Section 3.) However, it turns out
that Q1 vMΣ Q2 does hold. A way to prove this fact is
to chase the query Q1 using both the given dependencies,
{σ}, on the schema P, and the “MV -induced” depen-
dencies that we introduce in this paper. (In this partic-
ular example, the input dependency σ is the same as its
“neq-transformation.” That is, the set of dependencies
Σ(6=) required for the chase in our approach for checking
MΣ-conditional containment, is the same as the input
set Σ = {σ}. Thus, chase with σ and with the MV -
induced dependencies as shown in this example is cor-
rect w.r.t. the approach for checking MΣ-conditional
containment as introduced in this paper.)

The result of the chase is the following CQ query:

(Q1)MΣ(X)← S(X, f), P (f, c), R(c), P (Z, c), S(T, f).

We can then determine that theMΣ-conditional con-
tainment of Q1 in Q2 holds, by using the results of [9] to
check that the unconditional containment (Q1)MΣ v Q2
holds.

We now provide the details of chasing the query Q1
using both the given dependencies, {σ}, on the schema
P, and the MV -induced dependencies. The process of
obtaining the query (Q1)MΣ from the query Q1 via this
process can be represented using four stages, as follows:

Stage I: We first add to the body of the query Q1 the
conjunction CexpMV = R(c) ∧ P (Z, c) ∧ S(T, f):

Q′1(X)← S(X,Y), R(c), P (Z, c), S(T, f).

Stage II: In this stage, we choose to chase the query
Q′1 using the following MV -induced dependencies τU ,
τV , and τW . (Intuitively, each of the egds τU , τV , and
τW below arises from the ground fact for the respective
view in the given instance MV . If MV had more than
one fact for any view symbol, call it V ∗, then all these
facts together would give rise to a single dependency for
V ∗, with a disjunction on the right-hand side of the de-
pendency. The reason each MV -induced dependency in
this example is “just” an egd is that both the definitions
of the views and the instance MV are particularly sim-
ple here.)

τU : R(X) → X = c.
τV : P (Y,X) → X = c.
τW : S(Y,X)→ X = f.

Applying these three dependencies to the query Q′1 re-
sults in the following query:

Q′′1(X)← S(X, f), R(c), P (Z, c), S(T, f).

The difference between the queries Q′1 and Q′′1 is that an
application of the egd τW to the first subgoal, S(X,Y),
of the query Q′1 turns this subgoal into the first subgoal
S(X, f) of the query Q′′1 . None of the dependencies τU ,
τV , and τW is applicable to the query Q′′1 .

Stage III: In this stage, we choose to chase the query
Q′′1 with the dependency σ (on the schema P in MΣ);
the outcome of the chase is a CQ query Q′′′1 , see be-
low. The two chase steps with σ on Q′′1 result in the
addition to the body of Q′′1 of two subgoals, P (f,A) and
P (f,B). These two subgoals are what is different be-
tween the queries Q′′1 and Q′′′1 . The tgd σ is not appli-
cable to the query Q′′′1 .

Q′′′1 (X)← S(X, f), R(c), P (Z, c), S(T, f), P (f,A), P (f,B).

Note that if we stop here, unconditional containment
of the query Q′′′1 in Q2 does not hold. (The reason is, the
body of Q′′′1 does not have any pattern of three subgoals
with predicates S, P , and R, such that the body of the
query Q2 would subsume the pattern.)

Stage IV: Now, after stage III in chasing the original
query Q1 is over, we can apply again chase steps with
the MV -induced dependencies. Indeed, we can do two
chase steps with the egd τV . As a result, the subgoals
P (f,A) and P (f,B) of the query Q′′′1 are transformed
into two identical atoms P (f, c). We call the resulting
query

(Q1)MΣ(c)← S(X, f), P (f, c), R(c), P (Z, c), S(T, f).

Chase with σ or with the MV -induced dependencies
does not apply to this query (Q1)MΣ. It is easy to see
that the query (Q1)MΣ is unconditionally contained in
the query Q2. We conclude that the given query Q1 is
MΣ-conditionally contained in Q2. 2

G. ENSURING THAT THE IMAGE OF
BODY ((Q1)MΣ) UNDER EACH VALUATION
BE A Σ-VALID BASE INSTANCE FOR V
AND MV

In this appendix, in the context of the problem of de-
terminingMΣ-conditional query containment, we demon-
strate via two examples the role of disequality atoms,
both in MV -induced dependencies (Example G.1) and
in the dependencies Σ(6=) (Example G.2). As a sum-
mary of the observations illustrated by these examples,
when at least some of the disequalities are missing in
either kind of dependencies, then there may exist a val-
uation, call it ν, from the body, B, of the resulting
query to some instance, such that the image of (the
relational part of) B under ν is not a Σ-valid base in-
stance for V and MV . As a result, we would not be
able to prove correctness of the algorithm for determin-
ing MΣ-conditional containment of CQ queries w.r.t.

19

CQ weakly acyclic materialized-view settings, both in
case Σ = ∅ (this is the setting of [31]) and in case Σ 6=
∅. (Example G.1 illustrates the former case, and Ex-
ample G.2 – the latter case.) Specifically, we would not
be able to prove the claim that Q1 vMΣ Q2 implies
(Q1)MΣ v Q2.

EXAMPLE G.1. On a schema P with one binary
relation symbol P , consider two CQ queries, Q1 and V ,
as follows:

Q1(X)← P (X,Y).
V (X)← P (X,X).

Let V be the set {V }, with the set of view answers
MV = { V (c) }. We will show chase of the query Q1
with the dependencies arising in the setting MΣ = (P,
∅, V, MV).

Scenario A. In this scenario, we show the correct
chase of the query Q1 for the settingMΣ, as introduced
in [31]. The first step of the approach is to conjoin the
body of Q1 with the CexpMV = P (c, c):

Q′1(X)← P (X,Y), P (c, c).

We then chase the query Q′1 with the MV -induced
dependency τV :

τV : P (X,Y)→ X = c ∨X 6= Y.

The result of the chase of Q′1 with τV is a UCQ6=

query (Q1)MΣ = {Q(a)
1 , Q

(b)
1 }, with the CQ6= compo-

nents specified as follows:

Q
(a)
1 (c)← P (c, Y), P (c, c).

Q
(b)
1 (X)← P (X,Y), X 6= Y, P (c, c).

We can show that for each instance I of the schema
P and for each valuation, ν, for either one of the two
CQ6= components of the query (Q1)MΣ and for I, the
image under ν of (the relational part of) the body of
the relevant CQ6= component of (Q1)MΣ is a Σ-valid
base instance for V and MV . (Here, Σ = ∅ as specified
above, and V and MV are also as above.)

Scenario B. In this scenario, we show chase of the
query Q1 using a version of the dependency τV (which
is defined as in Scenario A here) that does not use dis-
equalities. We refer to this version of τV as τ̃V :

τ̃V : P (X,X)→ X = c.

(Recall that the body of the view V is P (X,X).)
Similarly to Scenario A, we first obtain the query Q′1,

and then chase it with τ̃V . The result of chase of Q′1
with τ̃V is a CQ query Q̃1 specified as follows:

Q̃1(X)← P (X,Y), P (c, c).

As the dependency τ̃V does not apply to (either Q′1 or)

Q̃1, the query Q̃1 is the result of the chase of the query
Q′1 with τ̃V .

Consider an instance I = {P (c, c), P (d, d)} of the
schema P, and the valuation ν : {X → d, Y → d} for

Q̃1 and I. Clearly, the image J = {P (d, d), P (c, c)} of

(the relational part of) the body of the query Q̃1 under
ν is an instance (of schema P) that does not generate
the above set of view answers MV under CWA. That
is, J is not a ∅-valid base instance for the {V } and MV
as above. The reason is, the relation V (J) has the tuple
V (d), which is not in the instance MV as specified in
the beginning of this example. 2

EXAMPLE G.2. On a schema P with a binary re-
lation symbol P and a unary relation symbol S, consider
two CQ queries, Q1 and V , and a tgd σ, all defined as
follows:

Q1(X)← P (X,Y).
V (X)← P (X,Y).
σ : P (X,X)→ S(X)

Let V be the set {V }, with the set of view answers
MV = { V (c) }. We will show chase of the query Q1
with the dependencies arising in the setting MΣ = (P,
{σ}, V, MV).

Scenario A. In this scenario, we show the correct
chase of the query Q1 for the settingMΣ, as introduced
in this current paper. The first step of the approach is
to conjoin the body of Q1 with the CexpMV = P (c, Z):

Q′1(X)← P (X,Y), P (c, Z).

We then chase the query Q′1 with the MV -induced
dependency τV and with the “neq-transformation” σ′ of
the tgd σ, defined as follows:

τV : P (X,Y)→ X = c
σ′ : P (X,Y)→ S(X) ∨X 6= Y

The result of the chase of Q′1 with τV and σ′ is a

UCQ6= query (Q1)MΣ = {Q(a)
1 , Q

(b)
1 , Q

(c)
1 , Q

(d)
1 }, with

the CQ6= components specified as follows:

Q
(a)
1 (c)← P (c, Y), S(c), P (c, Z).

Q
(b)
1 (c)← P (c, Y), S(c), P (c, Z), Z 6= c.

Q
(c)
1 (c)← P (c, Y), Y 6= c, P (c, Z), S(c).

Q
(d)
1 (c)← P (c, Y), Y 6= c, P (c, Z), Z 6= c.

We can show that for each instance I of the schema
P and for each valuation, ν, for any one of the four
CQ6= components of the query (Q1)MΣ and for I, the
image under ν of (the relational part of) the body of the
relevant CQ6= component of (Q1)MΣ is a Σ-valid base
instance for V and MV . (Here, Σ = {σ} as specified
above, and V and MV are also as above.)

Scenario B. In this scenario, we show chase of the
query Q1 using the dependency τV (defined as in Sce-
nario A here), as well as the original tgd σ (which does
not use disequalities), instead of using the dependency
σ′ of Scenario A.

Similarly to Scenario A, we first obtain the query Q′1,
and then chase it with τV and σ. The result of the chase
is a CQ query Q̃1 specified as follows:

Q̃1(c)← P (c, Y), P (c, Z).

Neither τV nor σ applies to Q̃1.
Consider an instance I = {P (c, c), S(c)} of the schema

P, and the valuation ν : {Y → c, Z → c} for Q̃1 and I.

20

Clearly, the image J = {P (c, c)} of (the relational part

of) the body of the query Q̃1 under ν is an instance (of
schema P) that does not satisfy the input tgd σ (even
though the instance I does). (The instance J does gen-
erate the above set of view answers MV under CWA.)
We conclude that J is not a Σ-valid base instance for
the {V } and MV as above. 2

H. THE DATA-EXCHANGE APPROACH
In this appendix we outline an approach to finding the

set of certain answers to a CQ query w.r.t. a CQ weakly
acyclic materialized-view setting under CWA. (Please
see Appendix I for all the technical details.) This ap-
proach is based on data exchange [13, 5, 4], hence the
name.

This approach is the result of our having rediscovered
independently the idea and methods of the 2005 paper
[27] by Stoffel and colleagues. The work [27] explicitly
uses techniques that arise in data exchange, to solve
the problem of finding the set of certain answers to a
query w.r.t. a materialized-view setting under the open-
world assumption (OWA). At the same time, Brodsky
and colleagues in their paper [8], which was published in
2000, used the same approach as Stoffel and colleagues
did in [27], without calling their approach (of [8]) “data
exchange.” (Arguably,“data exchange”was not a house-
hold term in the year 2000.) Both [8] and [27] solve the
problem of finding the set of certain answers to a query
w.r.t. a materialized-view setting under the open-world
assumption (OWA). (Please see Section 2 for the details
on the query languages and classes of dependencies to
which the work of [8] and [27] applies.)

In this Appendix H we show that, not surprisingly, the
approach of [8] and [27] is sound but not complete under
the closed-world assumption (CWA), even in case when
the given (base) schema comprises a single relation, and
even in the absence of dependencies on this schema.
(A counterexample can be found in Appendix A.) Our
“view-verified data exchange” of Appendix J then pro-
vides a correct algorithm for solving the problem of
finding the set of certain answers to a query w.r.t. a
materialized-view setting under CWA, for CQ queries
and CQ weakly acyclic materialized-view settings.

The idea of using data exchange [13, 5, 4] as a tool
arises naturally in the context of the problem of finding
the set of certain query answers w.r.t. a materialized-
view setting. In the remainder of this appendix, we out-
line the resulting “data-exchange” approach. We begin
by reviewing the basics of data exchange in Section H.1,
by generally following the excellent detailed survey [5].
Then, in Section H.2 we introduce and discuss the sound
but not complete data-exchange approach to finding the
set of certain answers to a CQ query w.r.t. a CQ weakly
acyclic materialized-view setting under CWA. All the
technical details of the discussion can be found in Ap-
pendix I.

H.1 Reviewing Data Exchange
Given schemas S = < S1, . . ., Sm > and T = < T1,

. . ., Tn >, with no relation symbols in common, denote
by <S, T> the schema < S1, . . ., Sm, T1, . . ., Tn >. If
I is an instance of S and J an instance of T, then (I,
J) denotes an instance K of < S, T > such that K[Si]
= I[Si] and K[Tj] = J [Tj], for i ∈ [1, m] and j ∈ [1, n].

Definition H.1. (Data-exchange setting) A data-

exchange setting M is a triple (S, T, Σ), where S and
T are disjoint schemas and Σ is a finite set of dependen-
cies over <S, T>. S in M is called the source schema,
and T is called the target schema. 2

Instances of S are called source instances and are al-
ways ground instances. Instances of T are target in-
stances. Given a source instance I, we say that a target
instance J is a solution for I (under M) if (I, J) |= Σ.

It is customary in the data-exchange literature to re-
strict the study to the class of settings whose set Σ can
be split into two sets Σst and Σt, as follows:

1. Σst is a set of source-to-target dependencies (stds),
that is, tgds of the form ϕS(X̄) → ∃ ȳ ψT(X̄, Ȳ),
where ϕS(X̄) and ψT(X̄, Ȳ) are conjunctions of re-
lational atoms in S and T, respectively; and

2. Σt, the set of target dependencies, is the union of a
set of tgds and egds defined over the schema T.

In this current paper, we assume all data-exchange
settings to be of the form M = (S, T, Σ), where Σ =
Σst ∪ Σt, for Σst a set of stds and Σt a set of target
dependencies. Intuitively, the stds can be viewed as a
tool for specifying how the source data get translated
into target data. In addition, the target dependencies
are the usual database constraints, to be satisfied by
the translated data. The data-exchange settings of this
form are not restrictive from the database point of view.

Solutions for a given source instance are not necessar-
ily unique, and there are source instances that have no
solutions. Universal solutions are, intuitively, “the most
general” solutions among all possible solutions. For-
mally, given a solution J for source instance I, we say
that J is a universal solution for I if for every solu-
tion J ′ for I, there exists a homomorphism from J to
J ′. Constructing a universal solution for a given source
instance I can be done by chasing I with Σst ∪ Σt.
The chase may never terminate or may fail; in the lat-
ter case, no solution exists [13]. If the chase does not
fail and terminates, then the resulting target instance
is guaranteed to be a universal solution for I.

The problem of checking for the existence of solutions
is known to be undecidable, please see [5]. At the same
time, the following positive result is due to [13].

Theorem H.1. [13] Let M = (S, T, Σst ∪ Σt) be
a fixed data-exchange setting, such that Σt is weakly
acyclic. Then there is a polynomial-time algorithm such
that for every source instance I, the algorithm decides
whether a solution for I exists. Then, whenever a so-
lution for I exists, the algorithm computes a universal
solution for I in polynomial time. 2

The universal solution of Theorem H.1, called the
canonical universal solution [13], is the result of the
chase.

Query answering: Assume that a user poses a query
Q over the target schema T, and I is a given source
instance. Then the usual semantics for the query an-
swering is that of “certain answers,” defined as follows.
Let M be a data-exchange setting, let Q be a query
over the target schema T of M, and let I be a source
instance. We define certainM(Q, I), the set of certain
answers of Q with respect to I under M, as

certainM(Q, I) =
⋂
{ Q(J) | J is a solution for I }.

21

Computing certain answers for arbitrary FO queries
is an undecidable problem. For unions of CQ queries
(UCQ queries) we have the following positive result:

Theorem H.2. [13] Let M = (S, T, Σst ∪ Σt) be a
data-exchange setting with Σt a weakly acyclic set, and
let Q be a UCQ query. Then the problem of comput-
ing certain answers for Q under M can be solved in
polynomial time. 2

To compute the certain answers to a UCQ query Q
w.r.t. a source instance I, we first check whether a
solution for I exists. If there is no solution, the setting is
inconsistent w.r.t. I. Otherwise, compute an arbitrary
universal solution J for I, and then compute the set
Q↓(J) of all those tuples in Q(J) that do not contain
nulls. It can be shown that Q↓(J) = certainM(Q, I).

H.2 Data Exchange for Finding Certain Query
Answers w.r.t. Materialized-View Setting

Suppose we are given a valid CQ weakly acyclic mater-
ialized-view setting MΣ = (P, Σ, V, MV) and a CQ
query Q of arity k ≥ 0. We consider the problem of
finding the set of certain answers to Q w.r.t. the set-
ting MΣ under CWA. That is, by the definition given
in Section 4.1, we are interested in finding all (and only)
the k-ary tuples t̄ of elements of consts(MΣ), such that
for all the instances I with V ⇒I,Σ MV , we have t̄ ∈
Q(I).

In this subsection we show how a straightforward re-
formulation of the pair (MΣ, Q) turns the above prob-
lem into an instance of the problem of computing cer-
tain answers in data exchange. We first construct a set
Σst of tgds, as follows. For a view V in the set of views
V in MΣ, consider the query V (X̄) ← body(V)(X̄, Ȳ)
for V . (AsMΣ is a CQ setting, the query for each V ∈
V is a CQ query.) We associate with this V ∈ V the tgd
σV : V (X̄) → ∃Ȳ body(V)(X̄, Ȳ). We then define the
set Σst to be the set of tgds σV for all V ∈ V. Then the
components P, Σ, and V of MΣ can be reformulated
into the following data-exchange setting:

S(de)(MΣ) = (V, P, Σst ∪ Σ).

Further, we interpret MV inMΣ as a source instance
for S(de)(MΣ), and interpret the input query Q as a
query on the target schema P in S(de)(MΣ). We call
the triple (S(de)(MΣ), MV , Q) the associated data-
exchange instance for (MΣ, Q).

For valid CQ weakly acyclic settingsMΣ and for CQ
queries Q, we introduce the following algorithm, which
we call the data-exchange approach to finding the set
of certain query answers w.r.t. a materialized-view set-
ting. First, we compute the canonical universal solu-
tion, JMΣ

de , for the source instance MV in the data-

exchange setting S(de)(MΣ). If JMΣ
de does not exist,

then we output the empty set of answers. Otherwise we
output, as a set of certain answers to the query Q w.r.t.
the setting MΣ, the set of all those tuples in Q(JMΣ

de)
that do not contain nulls. When we assume, similarly
to [31], that everything in MΣ is fixed except for MV
and Q, then from Theorem H.2 due to [13] we obtain
immediately that this algorithm always terminates and
runs in polynomial time. We have shown that this data-
exchange approach is sound. (Please see Appendix I.)

It turns out that our data-exchange approach is not
complete for (CQ queries and) CQ weakly acyclic set-
tingsMΣ with Σ = ∅, nor for those with Σ 6= ∅. (Please
see Appendix I.2 for all the details.) We now discuss
a feature of the data-exchange approach that prevents
us from using it as a complete algorithm for the prob-
lem of finding the set of certain query answers w.r.t. a
materialized-view setting under CWA. In Appendix J
we will eliminate this feature of the data-exchange ap-
proach, in a modification that will yield a sound and
complete algorithm for finding the set of certain answers
to CQ queries w.r.t. CQ weakly acyclic materialized-
view settings under CWA.

Why is the data-exchange approach not complete when
applied to (CQ queries and) CQ weakly acyclic material-
ized-view settings? Intuitively, the problem is that its
canonical universal solution JMΣ

de “may cover too many
target instances” (i.e., JMΣ

de is an OWA rather than
CWA solution). Let us rewrite the set MV of Ex-
ample A.1 using, to save space, constants c, d, and f ,
as MV = {V (c, d),W (d, f)}. Now let us evaluate the
queries for the views V and W of Example A.1 over the
canonical solution JMΣ

de = {E(c, d,⊥1), E(⊥2, d, f)} for
that example. We obtain that the answer to the view
V on JMΣ

de is {V (c, d), V (⊥2, d)}. Similarly, the an-
swer to W on JMΣ

de is {W (d,⊥1), W (d, f)}. Thus, if
we replace ⊥1 in JMΣ

de by any constant except f , or
replace ⊥2 by any constant except c, then any ground
instance obtained from JMΣ

de using these replacements
would “generate too many tuples” (as compared with
MV) in the answer to either V or W .

We now generalize over this observation. Fix a valid
CQ weakly acyclic instanceMΣ, and consider the canon-
ical universal solution (if one exists) JMΣ

de generated by
the data-exchange approach with MΣ as input. (In
the remainder of this paper, we will refer to JMΣ

de as the
canonical data-exchange solution for MΣ.) By defini-
tion of JMΣ

de , for each V ∈ V, the answer to the query
for V on JMΣ

de is a superset of the relation MV [V].
Suppose that the answer on JMΣ

de to at least one view
V ∈ V is not a subset of MV [V], as it is the case in
the example we have just discussed. Then JMΣ

de , as a
template for instances of schema P, describes not only
instances that “generate” exactly the set MV in MΣ,
but also those instances that generate proper supersets
of MV . The latter instances are not of interest to us.
(Recall that we take the CWA viewpoint, and thus are
interested only in the instances I of schema P such that
V ⇒I,Σ MV .) As a result, when the data-exchange ap-
proach uses JMΣ

de to obtain certain answers to the input
query Q, it can easily miss those certain answers that
characterize only those instances of interest to us.

I. TECHNICAL DETAILS OF THE DATA-
EXCHANGE APPROACH

In this appendix we discuss the technical details of the
data-exchange approach of Appendix H to finding the
set of certain answers to a query w.r.t. a materialized-
view setting, under CWA for CQ queries and CQ weakly
acyclic settings.

I.1 A Sound Data-Exchange Approach

22

Suppose that we are given a valid CQ materialized-
view settingMΣ = (P, Σ, V, MV) and a CQ query Q
of arity k ≥ 0. By the definition given in Section 4.1, we
are interested in finding all (and only) k-ary tuples t̄ of
elements of consts(MΣ), such that for all the instances
I satisfying V ⇒I,Σ MV , we have t̄ ∈ Q(I).

We now show how a straightforward reformulation
ofMΣ turns the above problem into an instance of the
problem of computing certain answers in data exchange.
We first construct a set Σst of tgds, as follows. For
a view V in the set of views V in MΣ, consider the
query V (X̄) ← body(V)(X̄, Ȳ) for V . (As MΣ is a CQ
instance, the query for each V in V is a CQ query.) We
associate with this V ∈ V the tgd σV : V (X̄) → ∃Ȳ
body(V)(X̄, Ȳ). We then define the set Σst to be the set
of tgds σV for all V ∈ V. ThenMΣ can be reformulated
into a data-exchange setting

S(de)(MΣ) = (V, P, Σst ∪ Σ),

with a source instance MV and a query Q on the target
schema P. We call the triple (S(de)(MΣ),MV,Q) the
associated data-exchange instance for MΣ and Q.

The following observation is immediate from Defini-
tion 4.2 and from the definitions in Section H.1.

Proposition I.1. Given a valid CQ materialized-view
setting MΣ and a CQ query Q, with their associated
data-exchange instance (S(de)(MΣ),MV,Q). Then for
each tuple t̄ that is a certain answer of Q with respect
to MV under the data-exchange setting S(de)(MΣ), we
have that t̄ is a certain answer to the query Q w.r.t.
MΣ under CWA. 2

For valid CQ weakly acyclic settings MΣ and CQ
queries Q, we introduce the following algorithm, which
we call the data-exchange approach to finding certain
query answers w.r.t. a materialized-view setting. First,
we compute the canonical universal solution, JMΣ

de , for
the source instance MV in the data-exchange setting
S(de)(MΣ). If JMΣ

de does not exist, then we output the
empty set of answers. Otherwise we output, as a set
of certain answers to Q w.r.t. MΣ, the set of all those
tuples in Q(JMΣ

de) that do not contain nulls. When
we assume, same as in [31], that everything in MΣ is
fixed except for MV , and assume that Q is not fixed,
then from Theorem H.2 due to [13] we obtain immedi-
ately that this algorithm always terminates, constructs
the instance JMΣ

de in polynomial time, and returns each
certain-answer tuple in polynomial time. By Proposi-
tion I.1, this data-exchange approach is sound.

I.2 The Data-Exchange Approach Is Not
Complete

By Theorem B.2 and Proposition I.1, we have that for
CQ weakly acyclic materialized-view settings MΣ and
for CQ queries Q, for all the certain answers to Q w.r.t.
MΣ that can be found using the data-exchange ap-
proach of Section I.1, these certain answers can in prin-
ciple also be disclosed by an adaptation of our rewriting
approach of Section B.2. (See Note 2 in Section B.3.)

Theorem I.1. Given a valid CQ weakly acyclic ma-
terialized-view setting MΣ and a CQ query Q. Let T

be the set of tuples output by the data-exchange ap-
proach of Section I.1 when it is applied to the inputs
MΣ and Q. Then for each t̄ ∈ T , there exists an MV -
validated head-instantiated rewriting R for t̄, such that
R vΣ,MV,V Q. 2

Even in the light of the result of Theorem I.1, we
cannot just abandon the data-exchange approach in fa-
vor of the rewriting approach when working with valid
CQ weakly acyclic materialized-view settings and CQ
queries. It is true that we already have a sound and
complete rewriting approach to finding all certain an-
swers to CQ queries w.r.t. valid CQ weakly acyclic
materialized-view settings under CWA. However, the
rewriting approach works via an explicit generate-and-
test paradigm for all the candidate certain-answer tu-
ples, please see Note 2 in Section B.3. The advantage of
the data-exchange approach in this regard is that we can
obtain all the certain-answer tuples for the query Q that
are determinable by this (sound) approach, simply by
processing Q once on the instance JMΣ

de , and by then fil-
tering out all the answer tuples that contain null values.
In Appendix J we will introduce a sound and complete
algorithm for finding all the certain-answer tuples to
CQ queries w.r.t. CQ weakly acyclic materialized-view
settings under CWA. The algorithm of Appendix J (i)
uses the idea and approach of data exchange, and is
in fact based on the approach of Section I.1; and (ii)
has the same desirable property of “returning all the
certain-answer tuples by processing the input query Q
once” as just discussed in this paragraph in regard to
the data-exchange approach of Section I.1.

(As each of the generate-and-test rewriting algorithm
of Section B.3 and the algorithm to be introduced in
Appendix J is sound and complete for input instances
with CQ queries and CQ weakly acyclic materialized-
view settings under CWA, these two approaches have
of course the same asymptotic complexity, w.r.t. any
relevant complexity measure. Our only argument in
the previous paragraph in favor of the algorithm of Ap-
pendix J is that that algorithm is, in a sense, more
streamlined (than the data-exchange approach), as it
does not use the generate-and-test paradigm w.r.t. the
candidate certain-answer tuples.)

The reason we are to introduce the algorithm of Ap-
pendix J is that, not surprisingly, the data-exchange
approach of Section I.1 is not complete under CWA for
CQ queries, either for CQ weakly acyclic settings MΣ
with Σ = ∅, or for those with Σ 6= ∅. In the remain-
der of this appendix, we discuss a feature of the data-
exchange approach that prevents us from using it as a
complete algorithm for this class of input instances un-
der CWA. In Appendix J we will eliminate this feature
of the data-exchange approach, in a modification that
will give us a sound and complete algorithm for find-
ing all the certain-answer tuples for this class of input
instances under CWA.

We now prove that the data-exchange approach is not
complete for CQ instances MΣ with Σ = ∅.

EXAMPLE I.1. We recall the CQ query Q and the
CQ views V and W of Example A.1:

Q(X,Z) ← E(X,Y, Z).
V (X,Y) ← E(X,Y, Z).
W (Y,Z) ← E(X,Y, Z).

23

Using the agreement as in Example B.1 for the con-
stants used in Example A.1, we represent the set of view
answers of Example A.1 as MV = { V (c, d),W (d, f) }.
In the same notation, the tuple t̄ of Example A.1 is re-
cast as (c, f).

Consider the materialized-view setting MΣ = ({E},
∅, {V,W}, MV), with all the elements as defined above.
By definition,MΣ is a CQ weakly acyclic setting. (MΣ
is also valid, by the existence of the instance {(c, d, f)}
of schema {E}.) The data-exchange approach of Sec-
tion I.1 applied toMΣ and Q yields the following canon-
ical universal solution, JMΣ

de , for the source instance

MV in the data-exchange setting S(de)(MΣ):

JMΣ
de = { E(c, d,⊥1), E(⊥2, d, f) }.

(The first tuple in JMΣ
de is due to the tuple V (c, d) in

MV , and the second tuple is due to W (d, f) in MV .) It
is easy to see that each of the two answers to the query Q
on the instance JMΣ

de has nulls and thus cannot qualify
as a certain answer to Q w.r.t. MΣ. 2

When given as inputs the settingMΣ and query Q of
Example I.1, the data-exchange approach of Section I.1
outputs the empty set of candidate-answer tuples. As Q
is a CQ query andMΣ is CQ weakly acyclic (with Σ =
∅), the sound and complete rewriting-based algorithm
of Section B.3 for finding all the candidate-answer tu-
ples is applicable to MΣ and Q, and outputs { (c, f)
} when given MΣ and Q in its input. We conclude
that the data-exchange approach is incomplete when
applied to CQ queries and CQ weakly acyclic settings
with Σ = ∅. Further, we can use the example of Ap-
pendix E to show that the data-exchange approach is
also incomplete when applied to (CQ queries and) CQ
weakly acyclic materialized-view settings with Σ 6= ∅.

Why is the data-exchange approach not complete when
applied to (CQ queries and) CQ weakly acyclic material-
ized-view settings? Intuitively, the problem is that its
canonical universal solution JMΣ

de “may cover too many
target instances” (i.e., JMΣ

de is an OWA rather than
CWA solution). Let us evaluate the queries for the
views V and W of Example I.1 over the solution JMΣ

de
of that example. We obtain that the answer to the
view V on JMΣ

de is {V (c, d), V (⊥2, d)}. Similarly, the
answer to W on JMΣ

de is {W (d,⊥1), W (d, f)}. Thus,
if we replace ⊥1 in JMΣ

de by any constant except f , or
replace ⊥2 by any constant except c, then any ground
instance obtained from JMΣ

de using these replacements
would “generate too many tuples” (as compared with
MV) in the answer to either V or W .

We now generalize over this observation. Fix a valid
CQ weakly acyclic instanceMΣ, and consider the canon-
ical universal solution (if one exists) JMΣ

de generated by
the data-exchange approach with MΣ as input. (In
the remainder of this paper, we will refer to JMΣ

de as the
canonical data-exchange solution for MΣ.) By defini-
tion of JMΣ

de , for each V ∈ V, the answer to the query
for V on JMΣ

de is a superset of the relation MV [V].
Suppose that the answer on JMΣ

de to at least one view
V ∈ V is not a subset of MV [V], as it is the case in
the example we have just discussed. Then JMΣ

de , as a
template for instances of schema P, describes not only

instances that “generate” exactly the set MV in MΣ,
but also those instances that generate proper supersets
of MV . The latter instances are not of interest to us.
(Recall that we take the CWA viewpoint, and thus are
interested only in the instances I of schema P such that
V ⇒I,Σ MV .) As a result, when the data-exchange ap-
proach uses JMΣ

de to obtain certain answers to the input
query Q, it can easily miss those certain answers that
characterize only those instances of interest to us.

J. VIEW-VERIFIED DATA EXCHANGE
The problem with the natural data-exchange approach,

as introduced in [8, 27], is that its canonical univer-
sal solution, when turned into a ground instance, may
produce a proper superset of the given set of view an-
swers MV . (See Appendices H– I in this current paper.)
That is, the canonical data-exchange solution does not
necessarily describe ground solutions for MΣ “tightly
enough.” (Recall that we take the CWA viewpoint, and
thus are interested only in the instances I of schema P
such that V ⇒I,Σ MV . At the same time, the canonical
data-exchange solution describes not only these “CWA”
instances, but also those that are relevant to the inputs
under OWA.)

The approach that we introduce in this appendix builds
on data exchange, by “tightening” its universal solu-
tions using consts(MΣ). This approach, which we call
view-verified data exchange, solves correctly the prob-
lem of finding all the candidate-answer tuples w.r.t. a
CQ query and a valid CQ weakly acyclic materialized-
view setting. We also use the approach of this ap-
pendix to solve the problem of deciding whether a given
materialized-view setting is valid.

J.1 Chase with MV-Induced Dependencies
In Section J.2 we will define view-verified data ex-

change for CQ weakly acyclic input instances. (Through-
out this appendix, we use the term “CQ weakly acyclic
input instance” to refer to a pair (MΣ, Q), where MΣ
is a CQ weakly acyclic materialized-view setting, and Q
is a CQ query Q over the schema P in MΣ.) Given a
MΣ with set of views V and set of view answers MV ,
the idea of the approach is to force the canonical data-
exchange solution JMΣ

de for MΣ to generate only the
relations in MV as answers to the queries for V. (By
definition of JMΣ

de , the answer on JMΣ
de to the query

for each V ∈ V is always a superset of the relation
MV [V].) We achieve this goal by chasing JMΣ

de us-
ing “MV -induced” dependencies. Intuitively, applying
MV -induced dependencies to the instance JMΣ

de forces
some nulls in JMΣ

de to become constants in consts(MΣ).
As a result of such a chase step, we obtain that for at
least one view V ∈ V, some formerly non-ground tu-
ples in the answer to V on the instance become ground
tuples in MV [V].

We now formally define MV -induced dependencies.
Let V (X̄) ← φ(X̄, Ȳ) be a CQ query of arity kV ≥ 0,
and MV be a ground instance of a schema that in-
cludes the kV -ary relation symbol V . First, in case
where MV [V] = ∅, we define the MV -induced impli-
cation constraint (MV -induced ic) ιV for V as

ιV : φ(X̄, Ȳ)→ false. (5)

(Each MV -induced ic is an implication constraint, i.e.,

24

a Horn rule with the empty head. See [30] for the dis-
cussion and references on implication constraints.)

Second, in case where kV ≥ 1, suppose MV [V] =
{t̄1, t̄2, . . ., t̄mV

}, with mV ≥ 1. Then we define the
MV -induced generalized egd (MV -induced ged) τV for
V as

τV : φ(X̄, Ȳ)→ ∨mV
i=1(X̄ = t̄i). (6)

Here, X̄ = [S1, . . . , SkV] is the head vector of the query
for V , with Sj ∈ Const ∪ Qvar for j ∈ [1, kV]. For
each i ∈ [1, mV] and for the ground tuple t̄i = (ci1, . . . ,
cikV) ∈ MV [V], we abbreviate by X̄ = t̄i the conjunc-

tion ∧kVj=1(Sj = cij). MV -induced geds are a straight-

forward generalization of disjunctive egds of [12, 13].
We now define chase of instances with MV -induced

dependencies. Consider first MV -induced implication
constraints. Given an instance K of schema P and an
MV -induced ic ιV as in Eq. (5), suppose there exists
a homomorphism h from the antecedent φ(X̄, Ȳ) of ιV
to K. The intuition here is that we want to make sure
that K does not “generate” any tuples in the relation
MV [V]; however, by the existence of h, the instance
K does generate at least one such tuple. We then say
that chase with ιV (and h) fails on the instance K and
produces the set {ε}, with ε denoting the empty instance.

Now let τ as in Eq. (6) be anMV -induced generalized
egd for a V ∈ V. The intuition here is that K must
“generate” only the tuples in the relation MV [V]; we
make this happen by assigning nulls in K to constants
in MV [V]. (If such assignments are not possible, chase
with τ fails on K.) Example J.1 is the running example.

Our definition of the chase step with τ as in Eq. (6)
is a straightforward extension of the definition of [13]
for their disjunctive egds, as follows. Consider the con-
sequent of τ , of the form ∨mV

i=1(X̄ = t̄i). Recall that
for each i ∈ [1, mV], the expression X̄ = t̄i is of the

form ∧kVj=1(Sj = cij). Denote by τ (1), . . ., τ (mV) the fol-

lowing mV dependencies obtained from τ : (φ(X̄, Ȳ) →
X̄ = t̄1), . . ., (φ(X̄, Ȳ) → X̄ = t̄mV

), and call them the
dependencies associated with τ . For each i ∈ [1, mV],
τ (i) is an embedded dependency that can be equiva-
lently represented by kV egds τ (i,1), . . ., τ (i,kV). Here,
for each j ∈ [1, kV], the egd τ (i,j) is φ(X̄, Ȳ)→ Sj = cij .

Given a τ as in Eq. (6) and an instance K of schema
P, suppose that there exists a homomorphism h from
φ(X̄, Ȳ) to K such that ∧kVj=1(h(Sj) = h(cij)) is not a

tautology for any i ∈ [1, mV]. Then we say that τ is
applicable to K with the homomorphism h. It is easy to
see that it is also the case that each of τ (1), . . ., τ (mV)

can be applied to K with h. That is, for each i ∈ [1,
mV], the chase of K is applicable with at least one egd
τ (i,j) in the equivalent representation of τ (i) as a set
of egds. For each i ∈ [1, mV], let Ki be the result of
applying all the egds τ (i,1), . . ., τ (i,kV) to K with h.
Note that chase with τ (i,j) and h can fail on K for some
i and j. For each such i, we say that chase with τ (i)

fails on K and produces the empty instance ε.
Similarly to [13], we distinguish two cases:

• If the set {K1, . . ., KmV
} contains only empty in-

stances, we say that chase with τ (and h) fails on
K and produces the set {ε}.

• Otherwise, let K(τ) = {Ki1 , . . ., Kip} be the set of
all nonempty elements of {K1, . . ., KmV

}. We say
that K(τ) is the result of applying τ to K with h.

Similarly to the approach of [13], in addition to chase
steps with MV -induced dependencies we will also use
chase steps with egds and tgds as in Section 3.2. For the
chase step of each type, we will use the set notation for
uniformity: K ⇒σ,h K′ denotes that a chase step with
dependency σ and homomorphism h applied to instance
K yields a set of instances K′. Whenever chase with an
egd fails on K, the set K′ is the set {ε} by convention;
in all other cases where σ is an egd or a tgd, the set K′
is a singleton set. For σ of the form as in Eq. (5)–(6),
the set K′ is in some cases {ε} as defined above.

Definition J.1. (MV -enhanced chase) Let Σ be a
set of egds and tgds, let Σ(MV) be a set of MV -induced
dependencies, and let K be an instance.

• A chase tree of K with Σ ∪ Σ(MV) is a tree (finite
or infinite) such that:

– The root is K, and
– For every node Kj in the tree, let Kj be the

set of its children. Then there must exist some
dependency σ in Σ ∪ Σ(MV) and some homo-
morphism h such that Kj ⇒σ,h Kj.

• A finite MV -enhanced chase of K with Σ ∪ Σ(MV)

is a finite chase tree T , such that for each leaf Kp of
T , we have that either (a) Kp is ε, or (b) there is no

dependency σ in Σ ∪ Σ(MV) and no homomorphism
h such that σ can be applied to Kp with h.

2

EXAMPLE J.1. Consider Q as in Example A.1 and
MΣ = ({E}, ∅, {V,W}, MV), with all the elements ex-
cept MV as in Example A.1.8 For this current example,
we define the set MV as

MV = { V (c, d), V (g, d),W (d, f) }.

By definition, MΣ paired with Q is a CQ instance
with Σ = ∅. MΣ is also valid, as witnessed by the
instance {E(c, d, f), E(g, d, f)}. The data-exchange ap-
proach of Appendix H yields the following canonical data-
exchange solution JMΣ

de for MΣ:

JMΣ
de = { E(c, d,⊥1), E(g, d,⊥2), E(⊥3, d, f) }.

The set of answers without nulls to the query Q on JMΣ
de

is empty. Thus, the data-exchange approach applied to
MΣ discovers no certain answers to the query Q w.r.t.
the setting MΣ.

In applying the view-verified data-exchange approach
to the input (MΣ, Q), we first construct the MV -induced
generalized egds, τV and τW , one for each of the two
views in MΣ. (As MV has no empty relations, we do
not need to construct MV -induced ics for MΣ.)

τV : E(X,Y, Z)→ (X = c ∧ Y = d) ∨ (X = g ∧ Y = d).
τW : E(X,Y, Z)→ (Y = d ∧ Z = f).

8Please see Example I.1 for the details.

25

The two dependencies associated with τV are τ
(1)
V :

E(X,Y, Z)→ (X = c∧Y = d) and τ
(2)
V : E(X,Y, Z)→

(X = g ∧ Y = d). Each of τ
(1)
V and τ

(2)
V can be equiva-

lently represented by two egds. For instance, the egd rep-

resentation for τ
(1)
V is via τ

(1,1)
V : E(X,Y, Z) → X = c

and τ
(1,2)
V : E(X,Y, Z) → Y = d. Similarly, there is

one dependency τ
(1)
W (= τW) associated with τW ; an

equivalent representation of τ
(1)
W is via two egds.

Consider a homomorphism h
(1)
V : {X → c, Y → d,

Z →⊥1} from the antecedent E(X,Y, Z) of τV to the

instance JMΣ
de . As applying h

(1)
V to the consequent of

τ
(1)
V gives us the tautology (c = c ∧ d = d), we conclude

that τV is not applicable to JMΣ
de with h

(1)
V .

Consider now the homomorphism h
(2)
V : {X →⊥3,

Y → d, Z → f} from the antecedent of τV to JMΣ
de .

Applying h
(2)
V to the consequent of τV gives us the ex-

pression (⊥3= c ∧ d = d) ∨ (⊥3= g ∧ d = d), which has
no tautologies among its disjuncts. Thus, τV is applica-

ble to JMΣ
de with h

(2)
V . The chase step with τV and h

(2)
V

transforms JMΣ
de into instances J1 and J2, as follows.

J1 = { E(c, d,⊥1), E(g, d,⊥2), E(c, d, f) }.
J2 = { E(c, d,⊥1), E(g, d,⊥2), E(g, d, f) }.

(J1 results from assigning ⊥3:= c, and J2 from ⊥3:= g.)
We then use the same procedure to apply τW to each

of J1 and J2. In each case, the chase steps assign the
value f to each of ⊥1 and ⊥2. As a result, the following
instance JMΣ

vv is obtained from each of J1 and J2:

JMΣ
vv = { E(c, d, f), E(g, d, f) }.

2

J.2 Solving CQ Weakly Acyclic Instances
We now define the view-verified data-exchange ap-

proach to the problem of finding all certain answers to
queries w.r.t. materialized-view-settings.

LetMΣ = (P, Σ, V, MV) be a CQ materialized-view
setting. Then the set Σ(MΣ) of MV -induced dependen-
cies for MΣ is a set of up to |V| elements, as follows.
For each V ∈ V such that kV 6= 0 or MV [V] 6= {()},
Σ(MΣ) has one MV -induced implication constraint or
one MV -induced generalized egd, by the rules as in Eq.
(5)–(6) in Section J.1.9

For CQ weakly acyclic input instances (MΣ, Q) we
introduce the following view-verified data-exchange ap-
proach to finding certain query answers w.r.t. a materi-
alized-view setting. First, we compute (as in Appendix H)
the canonical universal solution JMΣ

de for the source in-

stance MV in the data-exchange setting S(de)(MΣ). If
JMΣ
de does not exist, we stop and output the answer

thatMΣ is not valid. Otherwise we obtain a chase tree
of JMΣ

de with Σ ∪ Σ(MΣ), where Σ(MΣ) is the set of

9We omit from Σ(MΣ) the dependencies, of the form
φ(X̄, Ȳ) → true, for the case where kV = 0 and MV [V]
6= ∅. By the results in this appendix, adding these depen-
dencies to Σ(MΣ) would not change any chase results.

MV -induced dependencies forMΣ. If the chase tree is
finite, denote by JMΣ

vv the set of all the nonempty leaves
of the tree. We call each J ∈ JMΣ

vv a view-verified uni-
versal solution forMΣ. If JMΣ

vv = ∅, then we stop and
output the answer that MΣ is not valid. Otherwise,
for each J ∈ JMΣ

vv we compute the set Q↓(J) of all the
tuples in Q(J) that do not contain nulls. Finally, the
output of the approach for the input (MΣ, Q) is the set⋂

J∈JMΣ
vv

Q↓(J). (7)

The view-verified data-exchange approach to the prob-
lem of finding all certain answers to queries w.r.t. materi-
alized-view-settings addresses the shortcoming of the
data-exchange approach, see Appendix H. Recall that
the canonical universal solution JMΣ

de of the latter ap-
proach might not cover“tightly enough”all the instances
of interest to the attackers. In the view-verified ap-
proach, we address this problem, by using our exten-
sion of the chase to generate from JMΣ

de a set JMΣ
vv of

instances that are each“tighter”than JMΣ
de in this sense.

In Section J.3 we will show that the view-verified
data-exchange approach is a sound and complete al-
gorithm for the problem of finding all certain answers
to queries w.r.t. materialized-view-settings, in all cases
where the input instances are CQ weakly acyclic. In
particular, we will see that the set JMΣ

vv is well de-
fined, in that the chase tree in the view-verified data-
exchange approach is always finite. We will also see
that the set JMΣ

vv is “just tight enough,” in the fol-
lowing sense: Recall (see Section 4.1) the definition
of certainMΣ(Q), i.e., of the set of certain answers of
query Q w.r.t. materialized-view setting MΣ. Then
the expression in Eq. (7), which is the intersection of
all the “certain-answer expressions” for Q and for the
individual elements of the set JMΣ

vv , is exactly the set
certainMΣ(Q).

EXAMPLE J.2. Recall the input instance (MΣ, Q)
of Example J.1, and the instance JMΣ

vv obtained in that
example. JMΣ

vv is the (only) view-verified universal so-
lution for MΣ. The set of answers without nulls to the
query Q on JMΣ

vv is {(c, f), (g, f)}. Thus, (c, f) and
(g, f) are certain answers of the query Q w.r.t. the
materialized-view setting MΣ, as computed for the in-
stance (MΣ, Q) by the view-verified data-exchange ap-
proach. Both (c, f) and (g, f) (and nothing else) are
also discovered by the rewriting algorithm of Appendix B,
which is sound and complete for (MΣ, Q). (See Note 2
in Section B.3.) 2

J.3 Correctness, Validity, and Complexity
In this subsection, we show that the view-verified

data-exchange approach is sound and complete for all
CQ weakly acyclic input instances, and discuss its run-
time and space complexity. We also show how the ap-
proach can be used to decide whether a CQ weakly
acyclic materialized-view setting MΣ is valid.

View-verified data exchange is an algorithm.
We begin by obtaining a basic observation that builds
on the results of [13] for chase with tgds and disjunctive
egds (as they are defined in [13]). It is immediate from
Proposition J.1 that view-verified data exchange always
terminates in finite time for CQ weakly acyclic inputs.

26

Proposition J.1. Given a CQ weakly acyclic mate-
rialized-view setting MΣ, such that its canonical data-
exchange solution JMΣ

de exists. Assume that everything
in MΣ is fixed except for the instance MV . Then we
have that:

(1) MV -enhanced chase of JMΣ
de with Σ ∪ Σ(MΣ) is a

finite tree, T , such that:

(a) T is of polynomial depth in the size of MV ,
and

(b) The number of leaves in T is up to exponential
in the size of MV ; and

(2) For each nonempty leaf J of T , we have that:

(a) J is of polynomial size in the size of MV , and
(b) Each grounded version of J is a Σ-valid base

instance for V and MV .

2

(A grounded version of instance K results from replac-
ing consistently all its nulls with distinct new constants.)

The proof of Proposition J.1 relies heavily on the re-
sults of [13], particularly on its Theorem 3.9. Recall the
“decomposition,” in Section J.1, of MV -induced gener-
alized egds into egds that are defined as in Section 3.2.
Intuitively, given a CQ weakly acyclic materialized-view
settingMΣ and for each node K on each path from the
root JMΣ

de of the tree T for MΣ, we can obtain K by
chasing the root of T using only egds and weakly acyclic
tgds.10 The key observation here is that even though
the set Σ(MΣ) of dependencies is not fixed (in fact, its
size is linear in the size of the instance MV in MΣ),
all the constants that contribute to the size of Σ(MΣ)

are already used in the root JMΣ
de of the tree T , by

definition of JMΣ
de . In addition, the antecedent of each

MV -induced generalized egd in Σ(MΣ) is of constant
size, by definition of the size of MΣ. As a result, we
can build on Theorem 3.9 and Proposition 5.6 of [13] to
obtain items (1)(a) and (2)(a) of our Proposition J.1.

Item (2)(b) of Proposition J.1 is by definition of MV -
enhanced chase, and (1)(b) is by construction of the tree
T . Appendix K provides a lower bound, via an example
where for a CQ instanceMΣ with Σ = ∅, the number of
leaves in a chase tree is exponential in the size of MΣ.

Soundness and completeness. By Proposition J.1
(2)(b), the view-verified data-exchange approach is a
complete algorithm when applied to CQ weakly acyclic
input instances (MΣ, Q). (That is, for each certain-
answer tuple t̄ for a problem input in this class, view-
verified data exchange outputs t̄.) We now make a key
observation toward a proof that this algorithm is also
sound for such instances. (Soundness means that for
each tuple t̄ that this approach outputs for an input
(MΣ, Q) in this class, t̄ is a certain-answer tuple for
(MΣ, Q).)

Proposition J.2. Given a CQ weakly acyclic mate-
rialized-view setting MΣ = (P, Σ, V, MV) and a CQ
query Q. Then, for each instance I such that V ⇒I,Σ
MV , there exists a homomorphism from some view-
verified universal solution for MΣ to I. 2

10Besides the egds and tgds of Section 3.2, chase on each path
in T may use MV -induced implication constraints. How-
ever, the only role of the latter constraints is to obtain the
instance ε and thus to terminate the respective path in T .

The intuition for the proof of Proposition J.2 is as
follows. For a given MΣ, whenever an instance I ex-
ists such that V ⇒I,Σ MV , a canonical data-exchange
solution JMΣ

de for MΣ must also exist. By definition
of JMΣ

de , there must be a homomorphism from JMΣ
de to

the instance I. We then start applying MV -enhanced
chase to JMΣ

de , to simulate some rooted path, P(T), in
the chase tree T for MΣ. (The tree is finite by Propo-
sition J.1.) In following the path P(T) via the chase,
we make sure that there is a homomorphism from each
node in the path to I, by always choosing an “appropri-
ate” associated dependency τ (i) for each MV -induced
generalized egd τ that we are applying in the chase. By
V ⇒I,Σ MV , such a choice always exists, and the path
P(T) terminates in finite time in a nonempty instance,
J . By definition, J is a view-verified universal solution
for MΣ. By our simulation of the path P(T) “on the
way to” I, there exists a homomorphism from J to I.

Validity of setting MΣ. By the results of [13],
when for a givenMΣ no canonical data-exchange solu-
tion exists, then MΣ is not a valid setting. We refine
this observation into a sufficient and necessary condi-
tion for validity of CQ weakly acyclic materialized-view
settings MΣ. (The only-if part of Proposition J.3 fol-
lows from Proposition J.2, and its if part is by Propo-
sition J.1 (2)(b).)

Proposition J.3. Given a CQ weakly acyclic mate-
rialized-view settingMΣ, the settingMΣ is valid iff the
set JMΣ

vv of view-verified universal solutions for MΣ is
not empty. 2

Correctness of view-verified data exchange. By
Proposition J.2, view-verified data exchange is sound.
By Proposition J.3, it outputs a set of certain-answer
tuples iff its input is valid. We now conclude:

Theorem J.1. View-verified data exchange is a sound
and complete algorithm for finding all certain answers
to CQ queries w.r.t. CQ weakly acyclic materialized-
view-settings. 2

Complexity of view-verified data exchange for
CQ weakly acyclic input instances. By Theorem J.1,
view-verified data exchange is an algorithm for all CQ
weakly acyclic input instances. We now obtain an expon-
ential-time upper bound on the runtime complexity of
the view-verified data-exchange approach, as follows.

Given a CQ weakly acyclic input instance (MΣ, Q),
the runtime of the approach of Section J.2 is exponential
in the size of Q and of the set of answers MV in MΣ,
assuming that the rest of MΣ is fixed. This complex-
ity setting extends naturally that of [31]: Zhang and
Mendelzon in [31] assumed for their problem that the
base schema and the view definitions are fixed, whereas
the set of view answers MV and the queries posed on
the base schema in presence of MV can vary. The au-
thors of [31] did not consider dependencies on the base
schema; we follow the standard data-exchange assump-
tion, see, e.g., [13], that the given dependencies are fixed
rather than being part of the problem input.

To obtain the above exponential-time upper bound
for the problem of view-verified data exchange for CQ
weakly acyclic input instances (MΣ, Q), we analyze the
following flow for the view-verified data-exchange algo-
rithm of Section J.2. First, we spend exponential time

27

in the arity k of Q to generate all the k-ary ground
tuples t̄ out of the set consts(MΣ). (Generating each
such t̄ gives rise to one iteration of the main loop of
the algorithm.) For each such tuple t̄, we then do the
following:

• Construct the query Q(t̄), as the result of applying
to the query Q the homomorphism11 µ, such that
(i) µ maps the head vector X̄ of Q to t̄, and (ii) µ
is the identity mapping on each term that occurs
in Q but not in its head vector X̄;

• Enumerate all the (up to an exponential number of)
view-verified universal solutions J for MΣ (recall
that generating each such J takes polynomial time
in the size of MV , see Proposition J.1); and then

• For each such J that is not the empty instance,
verify whether the query Q(t̄) has a nonempty set
of answers, which would be precisely {t̄}, on the in-
stance J . (For each t̄ generated as above, we use a
one-bit flag to track whether t̄ is an answer to Q on
all such instances J ; each t̄ that is an answer to Q
on all the instances J is returned as an answer tu-
ple by the view-verified data-exchange algorithm.)
The runtime for this verification step is polynomial
in the size of MV (because the size of J is poly-
nomial in the size of MV , see Proposition J.1) and
is exponential in the number of subgoals of Q. (As
the schema P in MΣ is fixed, each subgoal of the
query Q has up to constant arity.)

Observe that for each tuple t̄ generated in the main
loop of the algorithm, the respective iteration of the
main loop runs in PSPACE. Indeed, recall from Propo-
sition J.1 that each instance J as above is of size poly-
nomial in the size of the instance MV inMΣ. Further,
the size of each candidate valuation from Q(t̄) to J is
linear in the size of Q; thus, we satisfy the PSPACE
requirement as long as we generate these candidate val-
uations one at a time (“on the fly” for each fixed J), in
some clear algorithmic order.

Further, the entire view-verified data-exchange algo-
rithm (i.e., finding all the certain-answer tuples for the
given input CQ weakly acyclic pair (MΣ, Q)) also runs
in PSPACE, provided that we:

(a) Output each certain-answer tuple t̄“on the fly”(i.e.,
as soon as we know that it is a certain answer), and

(b) Use a counter (e.g., a binary-number representa-
tion of each k-ary ground candidate certain-answer
tuple t̄, as generated in the main loop of the algo-
rithm) to keep track of the “latest” t̄ that we have
looked at and to generate from that “latest” t̄ the
next candidate certain-answer tuple t̄ that we are
to examine for the given input; the size of such
a counter would be polynomial in the size of the
problem input.

K. THE NUMBER OF LEAVES INMV -ENH-
ANCED CHASE CAN BE EXPONENTIAL
IN THE SIZE OF THE INPUT

11It is easy to verify that if a homomorphism µ specified by
(i)-(ii) does not exist, then t̄ cannot be a certain answer to
Q w.r.t. MΣ.

In this appendix we show by example a family of CQ
materialized-view settings MΣ with Σ = ∅, such that
the number of leaves in a chase tree for each setting
in the family is exponential in the size of the setting.
As usual and similarly to [31], we assume that the size
of a given materialized-view setting MΣ is the size of
its instance MV , with the remaining elements of MΣ
being fixed. (See Section J.3 for a detailed discussion.)

EXAMPLE K.1. Consider a schema P with two bi-
nary relations P and R, and with Σ = ∅. Let the set
of views V = {V,W} be defined via two CQ queries, as
follows:

V (X)← P (X,Y), R(Y,Z).
W (Z)← R(Y,Z).

For each n ≥ 1, consider a set MV(n) of answers for
V, with n+ 2 tuples, as follows. The relation MV(n)[V]
has n tuples V (1), V (2), . . . , V (n), and MV(n)[W] has
tuples W (0) and W (1).

For each n ≥ 1, let the materialized-view settingMΣ(n)

be the tuple (P, Σ, V, MV(n)), with all the components
as described above. (As specified above, the set Σ is the
empty set for each n ≥ 1.)

The canonical universal solution JMΣ(n)

de for MV(n)

has two tuples, P (i,⊥(i,1)) and R(⊥(i,1),⊥(i,2)), for V (i)
in MV(n), for each i ∈ [1, n]. It also has the tuples
R(⊥(n+1,1), 0) and R(⊥(n+2,1), 1) for MV(n)[W].

The process of creating view-verified universal solu-
tions for MΣ(n) involves assigning either 0 or 1 inde-
pendently to each of the nulls ⊥(i,2), for all i ∈ [1, n]. It
is easy to see that this process creates 2n nonisomorphic
instances, one for each assignment of zeroes and ones
to each element of the vector [⊥(1,2), ⊥(2,2), . . ., ⊥(n,2)].
The expression 2n is exponential in the size of the set
MV(n) of view answers in MΣ(n). 2

L. CHASE CANNOT BE STAGED FOR
FINDING ALL CERTAIN ANSWERS

In this appendix we provide two examples that show
that in the problem of finding all certain answers to a
CQ query w.r.t. a CQ weakly acyclic materialized-view
setting, one cannot always find all the certain answers
correctly if one does the chase (in view-verified data-
exchange, see Appendix J) in stages. That is, chase
only with the input dependencies Σ, followed by chase
only with the “MV -induced dependencies,” does not al-
ways yield a correct solution. (This is the point of Ex-
ample L.1.) The reverse order of the “stages” does not
always work either. (This is the point of Example L.2.)

EXAMPLE L.1. Consider a schema P = {P, S} with
binary relation symbols P and S. Let σ be a dependency
defined on the schema P, as follows. (The dependency
σ is an egd, specifically a functional dependency.)

σ : P (X,Y) ∧ P (X,Z)→ Y = Z.

Further, let U , V , and W be three CQ views over P,
and let MV be the set of answers for these views, as
follows.

28

U(X)← P (X,Y), S(Y,Z).
V (X)← P (X,Y).
W (X,Z)← S(X,Y), P (Y,Z).
MV = {U(c), V (c),W (g, h)}.

We denote the set {U, V,W} by V, and the set {σ}
by Σ. Then the setting MΣ = (P, Σ, V, MV) is CQ
weakly acyclic.

Now let Q be a CQ query:

Q(X)← S(X,Y).

We consider the problem of finding the set of cer-
tain answers to the query Q w.r.t. the setting MΣ
using the view-verified data-exchange approach, as de-
scribed in Appendix J. By this approach, we first con-
struct, from the materialized-view setting MΣ, a data-
exchange setting S(de)(MΣ) = (V, P, Σst ∪ Σ). Here,
Σst = {σU , σV , σW } is the set of the following three tgds:

σU : U(X) → ∃Y, Z P (X,Y) ∧ S(Y, Z).
σV : V (X) → ∃Y P (X,Y).
σW : W (X,Z) → ∃Y S(X,Y) ∧ P (Y, Z).

We then designate the set of view answers MV in the
materialized-view setting MΣ to be a source instance
for the data-exchange setting S(de)(MΣ).

We now proceed to construct the canonical universal
solution, call it J0, for the source instance MV in the
data-exchange setting S(de)(MΣ):

J0 = {P (c,⊥1), S(⊥1,⊥2), P (c,⊥3),
S(g,⊥4), P (⊥4, h)}.

In the instance J0, the atoms P (c,⊥1) and S(⊥1, ⊥2)
are due to the atom U(c) in MV and to the tgd σU , and
so on for the rest of MV and of Σst.

As described in Appendix J, toward finding all the
certain answers to the query Q w.r.t. the materialized-
view setting MΣ, we now chase the instance J0, using
both the set Σ = {σ} in MΣ, as well as the dependen-
cies τU(c), τV (c), and τW (g,h), as follows. (The three
latter dependencies are generated by the view-verified
data-exchange approach from the inputs V and MV .)

τU(c) : P (X,Y) ∧ S(Y, Z) → X = c.
τV (c) : P (X,Y) → X = c.
τW (g,h) : S(X,Y) ∧ P (Y,Z) → X = g ∧ Z = h.

We do three stages of the chase of the instance J0
with σ, τU(c), τV (c), and τW (g,h). In Stages I and III,
we perform the chase steps with the input dependency
σ on the schema P, and in Stage II, we chase the in-
stance with the MV -induced dependencies τU(c), τV (c),
and τW (g,h).

Stage I: A chase step of the instance J0 with the
egd σ turns the atom P (c,⊥3) of J0 into a copy of its
atom P (c,⊥1), resulting in the following instance J1 (in
which we drop the duplicate of P (c,⊥1)):

J1 = {P (c,⊥1), S(⊥1,⊥2), S(g,⊥4), P (⊥4, h)}.
The egd σ does not apply to the instance J1.

Stage II: We now chase the instance J1 with the MV -
induced dependencies τU(c), τV (c), and τW (g,h). The
egd τV (c) applies to the atom P (⊥4, h) in J1, turning
it into P (c, h) and, as a side effect, also turning the
atom S(g,⊥4) of J1 into S(g, c). We call the resulting
instance J2:

J2 = {P (c,⊥1), S(⊥1,⊥2), S(g, c), P (c, h)}.

The MV -induced dependencies τU(c), τV (c), and τW (g,h)

do not apply to the instance J2.
Note that if we stop after this Stage II, the set of

answers without nulls to the query Q on the instance
J2 is Q(J2) = {(g)}. However, we observe that the
instance J2 does not satisfy the egd σ. We can then do
Stage III of the chase, by applying σ to the instance J2.
The application binds the null ⊥1 to the constant h, in
the atoms P (c,⊥1) and S(⊥1,⊥2) of the instance J2.
We call the resulting instance J3:

J3 = {P (c, h), S(h,⊥2), S(g, c)}.

The set of answers without nulls to the query Q on
the instance J3 is Q(J3) = {(g), (h)}. By the results
reported in Appendix J, this set is a correct set of certain
answers to Q w.r.t. the given materialized-view setting
MΣ. We can see that by not applying Stage III in the
chase, we would have missed the certain answer (h) to
the query Q w.r.t. the setting MΣ. 2

EXAMPLE L.2. Consider a schema P = {P, S} with
a unary relation symbol P and a binary relation sym-
bol S. Let σ be a dependency (specifically, a full tgd)
defined on the schema P, as follows.

σ : S(X,Y)→ P (Y).

Further, let U and V be two CQ views over P, and let
MV be the set of answers for these views, as follows.

U(X)← P (X), S(X,Y).
V (X)← P (X).
MV = {U(c), V (c)}.

We denote the set {U, V } by V, and the set {σ} by Σ.
Then the setting MΣ = (P, Σ, V, MV) is CQ weakly
acyclic.

Now let Q be a CQ query:

Q(X)← S(X,X).

We consider the problem of finding the set of certain
answers to the query Q w.r.t. the setting MΣ, using
the view-verified data-exchange approach detailed in Ap-
pendix J. By this approach, we first construct, from the
materialized-view setting MΣ, a data-exchange setting
S(de)(MΣ) = (V, P, Σst ∪ Σ). Here, Σst = {σU , σV }
is the set of the following two tgds:

σU : U(X) → ∃Y P (X) ∧ S(X,Y).
σV : V (X) → P (X).

We then designate the set of view answers MV in the
materialized-view setting MΣ to be a source instance
for the data-exchange setting S(de)(MΣ).

We proceed to construct the canonical universal so-
lution, call it J0, for the source instance MV in the
data-exchange setting S(de)(MΣ).

J0 = {P (c), S(c,⊥1)}.

In the instance J0, the atoms P (c) and S(c,⊥1) are
due to the atom U(c) in MV and to the tgd σU . At the

29

same time, the atom P (c) is also due to the atom V (c)
in MV and to the tgd σV .

As described in Appendix J, toward finding all the
certain answers to the query Q w.r.t. the materialized-
view setting MΣ, we now chase the instance J0, using
both the set Σ = {σ} in MΣ, as well as the dependen-
cies τU(c) and τV (c), as follows. (The two latter depen-
dencies are generated by the view-verified data-exchange
approach from the inputs V and MV .)

τU(c) : P (X) ∧ S(X,Y) → X = c.
τV (c) : P (X) → X = c.

We do three stages of the chase of the instance J0
with σ, τU(c), and τV (c). In Stages I and III, we perform
the chase steps with the MV -induced dependencies τU(c)

and τV (c), and in Stage II, we chase the instance with
the input dependency σ on the schema P.

Stage I: A chase step of the instance J0 with the MV -
induced dependencies τU(c) and τV (c) leaves the instance
J0 unchanged. To indicate that we have performed this
stage of the chase, we rename J0 into J1:

J1 = {P (c), S(c,⊥1)}.

The MV -induced dependencies τU(c) and τV (c) do not
apply to the instance J1.

Stage II: We now chase the instance J1 with the tgd σ
on the schema P. The application adds to the instance
J1 the atom P (⊥1). We call the resulting instance J2:

J2 = {P (c), S(c,⊥1), P (⊥1)}.

The tgd σ does not apply to the instance J2.
Note that if we stop after this Stage II, the set of

answers without nulls to the query Q on the instance J2
is Q(J2) = ∅. However, we observe that the instance
J2 does not satisfy the MV -induced dependency τV (c).
We can then do Stage III of the chase, by applying the
dependencies τU(c) and τV (c) to the instance J2. An
application of τV (c) in a chase step to J2 binds the null
⊥1, in the atoms P (⊥1) and S(c,⊥1), to the constant
c. We call the resulting instance J3:

J3 = {P (c), S(c, c)}.

The set of answers without nulls to the query Q on the
instance J3 is Q(J3) = {(c)}. By the results reported in
Appendix J, this set is a correct set of certain answers to
Q w.r.t. the given materialized-view setting MΣ. We
can see that by not applying Stage III in the chase, we
would have missed the certain answer (c) to the query
Q w.r.t. MΣ. 2

M. THE CERTAIN-QUERY-ANSWER PROB-
LEM IS ΠP

2 COMPLETE FOR CONJUNC-
TIVE WEAKLY ACYCLIC INPUT INST-
ANCES

In this appendix we prove that the certain-query-
answer problem, for a query and ground tuple w.r.t. a
materialized-view-setting, is Πp

2 complete for CQ weakly
acyclic input instances (MΣ, Q, t̄). We say that a triple
(MΣ, Q, t̄), with MΣ a materialized-view setting, Q a

query, and t̄ a ground tuple, is a CQ weakly acyclic in-
put instance if and only if MΣ is CQ weakly acyclic
and Q is a CQ query.

In the complexity measure used throughout this ap-
pendix, we assume, in a natural extension of the com-
plexity setting introduced in [31] (see Section J.3 for
the detailed discussion), that all elements of MΣ ex-
cept MV are fixed, and that Q is not fixed. That
is, the size of a given input instance (MΣ, Q, t̄) is the
size of its set of view answers MV and of its query Q,
with the remaining elements of (MΣ, Q, t̄) being fixed.
Note that in all input instances (MΣ, Q, t̄) in which t̄
could be a certain answer to Q w.r.t. MΣ, the size
of the ground input tuple t̄ must be linear in the size
of Q; more precisely, the size of t̄ must be the arity of
the query Q. Thus, in this appendix we restrict our
consideration to the problem-input triples that satisfy
this property. That is, in all of the results in this ap-
pendix we assume that, in all the given input instances
(MΣ, Q, t̄), we have that: Q is a k-ary CQ query for
some k ≥ 0; t̄ is a k-ary ground tuple; and the size of
the CQ weakly acyclic instance (MΣ, Q, t̄) is the size of
the set of answers MV in MΣ and of the query Q.

We first observe that the problem is in Πp
2.

Proposition M.1. The certain-answer problem for
a query and a tuple w.r.t. a materialized-view setting is
in Πp

2 for CQ weakly acyclic input instances. 2

Proof. Given a CQ weakly acyclic input instance
(MΣ, Q, t̄), we show how to ascertain that the ground
tuple t̄ is not a certain answer to the query Q w.r.t.
the setting MΣ. Observe first that if this is the case,
then, by soundness of view-verified data exchange (see
Section J.3), there must be a view-verified universal so-
lution, J , forMΣ such that t̄ is not an answer to Q on
the instance J . We can thus:

(1) Guess a view-verified universal solution J forMΣ,
and then

(2) Verify that there is no valuation from the query
Q(t̄) to J ; here, Q(t̄) is the result of applying to
the query Q the homomorphism12 µ, such that:

(i) µ maps the head vector X̄ of Q to t̄, and

(ii) µ is the identity mapping on each term that
occurs in Q but not in its head vector X̄.

By Proposition J.1, the step (1) that generates the
instance J can be done in polynomial space in the size
of the set MV in MΣ. Further, step (2) can be done
using an NP -oracle for Q and J , as the size of each
valuation from Q(t̄) to J must be polynomial in the size
of Q and J (it is, in fact, linear in the size of Q).

We now provide a Πp
2 hardness result, even for the

special case of CQ weakly acyclic inputs with Σ = ∅.

Theorem M.1. The certain-answer problem for a query
and a tuple w.r.t. a materialized-view setting is Πp

2 hard
for CQ input instances (MΣ, Q, t̄) in which Σ = ∅ in
the input materialized-view setting MΣ. 2

12It is easy to verify that if a homomorphism µ specified by
(i)-(ii) does not exist, then t̄ cannot be a certain answer to
Q w.r.t. MΣ.

30

Before providing a proof of Theorem M.1, we observe
that as an immediate corollary of Theorem M.1 and of
Proposition M.1 we obtain the main result of this ap-
pendix, a Πp

2-completeness result for the certain-answer
problem for a query and a tuple w.r.t. a materialized-
view setting, for the case of CQ weakly acyclic input
instances:

Theorem M.2. The certain-answer problem for a query
and a tuple w.r.t. a materialized-view setting is Πp

2 com-
plete for CQ weakly acyclic input instances. 2

In the remainder of this appendix, we provide a proof
of Theorem M.1. As a summary, the result of Theo-
rem M.1 is by reduction from the ∀∃-CNF problem,
which is known to be Πp

2 complete [26]. We start off
from the reduction that was used by Millstein and col-
leagues in [21] for the problem of query containment
for data-integration systems. We modify the reduction
of [21] in the spirit that is similar to the modification
of that reduction (of [21]) as suggested in [31]. (Recall
that the full version of [31], including any of its proofs,
has never been published.) The goal of our modification
is to comply with our assumptions about the input size,
specifically with the assumption that the input view def-
initions are fixed. (In [21] it is assumed that both the
queries and the view definitions can vary.)

Proof. (Theorem M.1) In this proof, we build on
the constructions from the proof of Theorem 3.3 in [21];
that result of [21] states Πp

2 hardness for a subclass of
the problem of query containment for data-integration
systems. The reason that we modify the reduction of
[21] is that we need to comply with our assumptions
about the size of our input instances MΣ, specifically
with the assumption that the input view definitions are
fixed. (In [21] it is assumed that both the queries and
the view definitions can vary.) Thus, our variation on
the reduction of [21] is similar in spirit to the modifica-
tion suggested in [31].

Similarly to the reduction in [21], we reduce the ∀∃-
CNF problem, known to be Πp

2 complete [26], to our
problem. The ∀∃-CNF problem is defined as follows:
Given a 3-CNF propositional formula F with variables
X̄ and Ȳ , is it the case that for each truth assignment
to Ȳ , there exists a truth assignment to X̄ that satisfies
F? Here, we denote by X̄ the set of n variables X1, . . .,
Xn, for some n ≥ 0, and we denote by Ȳ the set of m
variables Y1, . . ., Ym, for some m ≥ 1.

The reduction is as follows. Suppose we are given a
3-CNF formula F , with variables

Z̄ = {X1, . . . , Xn} ∪ {Y1, . . . , Ym}.

The formula F has clauses C̄ = {C1, . . . , Cl}. Clause Ci
contains the three variables (either positive or negated)
Zi,1, Zi,2, and Zi,3; each of the three variables is an
element of the set Z̄.

For the input formula F , we begin building the corre-
sponding (CQ weakly acyclic) instance
(MΣ, Q, t̄) of the certain-answer problem for a query
and a tuple w.r.t. a materialized-view setting. In each
such instance (MΣ, Q, t̄), the query Q will be Boolean,
hence t̄ will be the empty tuple. The setting MΣ that
we will construct is as usual a quadruple of the form (P,
Σ, V, MV), always with Σ = ∅. We show below how

to construct each of P, V, MV , and Q for the input
formula F .

The schema P = {P,R, S} that we construct for the
input formula F uses three relation symbols: R of arity
kR = 4, and two binary relation symbols P and S. In-
tuitively, for each i ∈ [1, l] and for the clause Ci in F ,
in each “relevant” instance of schema P we will have in
R a nonempty set of tuples whose fourth argument is
the constant i. Further, for each j ∈ [1, m] and for the
variable Yj in F , in each “relevant” instance of schema
P we will have in each of P and S a nonempty set of
tuples whose second argument is the constant j.

We now define the set of views V = {U, V,W} in the
materialized-view settingMΣ that we construct for the
given formula F . First, for the clauses C̄ in F we intro-
duce the following view V :

V (Z1, Z2, Z3, i) ← R(Z1, Z2, Z3, i).

(Here, i is a variable rather than a constant; we use
the variable name i in the definition of the view V to
mnemonically refer to each clause Ci in C̄ as discussed
above.) The answer to this view simply mirrors the
relation R.

In the set MV of answers to the views in V that we
are constructing for the given formula F , the relation
MV [V] records, for each i ∈ [1, l] and for the clause Ci
in F , the seven (out of the total eight possible) satisfying
assignments for the clause. (We follow [21] in using 1
for true and 0 for false.) The fourth argument of each
tuple in MV [V] for these seven assignments for Ci is
always i.

As a running example, we use the following example
from the proof of Theorem 3.3 in [21]: Consider the
formula

F = (X1 ∨X2 ∨ Y1) ∧ (¬X1 ∨ ¬X2 ∨ ¬Y2).

The seven satisfying assignments to X1, X2, and Y1 in
the first clause C1 = (X1 ∨X2 ∨ Y1) of F are (1, 1, 1),
(1, 1, 0), (1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0), and (0, 0, 1).
For the second clause C2 = (¬X1 ∨ ¬X2 ∨ ¬Y2) of F ,
the seven satisfying assignments to X1, X2, and Y2 are
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), and
(1, 1, 0).

By construction of the view V and by our intuition
for the relation R, see above, in this running example
we construct the relation MV [V] from these fourteen
assignments, as follows. First, the seven assignments
as above for C1 are adorned, in the fourth argument
of V , by the index 1 of C1, as follows: V (1, 1, 1, 1),
V (1, 1, 0, 1), V (1, 0, 1, 1), V (1, 0, 0, 1), V (0, 1, 1, 1),
V (0, 1, 0, 1), and V (0, 0, 1, 1). Similarly, the seven as-
signments as above for C2 get adorned, in the fourth ar-
gument of V , by the index 2 of C2, as follows: V (0, 0, 0, 2),
V (0, 0, 1, 2), V (0, 1, 0, 2), V (0, 1, 1, 2), V (1, 0, 0, 2),
V (1, 0, 1, 2), and V (1, 1, 0, 2). These fourteen tuples to-
gether constitute the relation MV [V] for the formula F
in this running example.

We now return from our running example, to continue
to define the views in the set V = {U, V,W} for the
formula F . For the m ≥ 1 variables Y1, . . . , Ym in F ,
we introduce a unary view W :

W (j) ← P (Yj , j), S(Yj , j).

Here, j is a variable rather than a constant; we use
the variable name j in the definition of the view W to

31

mnemonically refer to each variable Yj in the formula
F as discussed in the beginning of this proof.

The relationMV [W] for the given formula F isMV [W]
= {(1), (2), . . . , (m)}. Intuitively, for each j ∈ [1, m],
the tuple (j) in MV [W] witnesses, in each ground in-
stance I of schema P such that V ⇒I,Σ MV , the pres-
ence of a ground P -atom P (yj , j) and of a ground S-
atom S(yj , j) with the same arguments. (Here, yj is
some constant value.) In our running example, we have
that MV [W] = {(1), (2)}, with one tuple for each of the
two variables Y1 and Y2 in the given formula F .

Finally, in the general case we define the view U in the
set V = {U, V,W} for the given formula F as follows:

U(Y, j) ← S(Y, j).

(As in the previous view definitions, j is a variable
rather than a constant.) The answer to this view simply
mirrors the relation S.

Now in the set MV that we are constructing, the
relation MV [U] for U provides the two possible truth
assignments, 1 and 0, to each variable among Y1, . . . ,
Ym in the set of variables Ȳ in the formula F . That is,
for each j ∈ [1, m], the relation MV [U] has exactly two
tuples, U(1, j) and U(0, j). For instance, the relation
MV [U] for our running example would have four tuples:
MV [U] = {U(1, 1), U(0, 1), U(1, 2), U(0, 2)}. Here, the
first two tuples correspond to the two possible truth
assignments, 1 and 0, to the variable Y1 in the formula F
in the example. Similarly, the last two tuples in MV [U]
correspond to the two possible truth assignments, 1 and
0, to the variable Y2 in the formula F in the example.

For the general case of the formula F , the above con-
struction generates, for a given F , both the ground tu-
ple t̄ = () and the elements P, Σ (= ∅), V, and MV in
the materialized-view setting MΣ that we are produc-
ing for F . To complete the construction of the input
instance (MΣ, Q, t̄) for the given F , we now specify the
CQ query Q:

Q()←
∧m
j=1 P (Yj , j)

∧l
i=1R(Zi,1, Zi,2, Zi,3, i).

Intuitively, the Boolean query Q has a separate sub-
goal, P (Yj , j), for each j ∈ [1, m], that is for each
Yj among the variables Y1, . . ., Ym of the input for-
mula F . The query Q also has a separate subgoal,
R(Zi,1, Zi,2, Zi,3, i), for each i ∈ [1, l], that is for each
Ci(Zi,1, Zi,2, Zi,3) among the clauses C1, . . ., Cl of the
input formula F . By design, Q uses in each of its R-
subgoals all the variables of the form Zi,k in the same
way as they are used in the corresponding clause Ci in
the formula F . (Recall that for each variable of the form
Zi,k in the clauses of F , this variable is either among
the variables X̄ of F or among the variables Ȳ of F .) In
addition, also by design of the query Q, for each variable
Yj among Y1, . . ., Ym in the formula F , the same vari-
able name Yj is used in the P -subgoal of Q with j the
value of the second argument of the subgoal. It follows
that for each variable that is used as the first argument
of some P -subgoal of the query Q, this same variable

must occur in the conjunction
∧l
i=1R(Zi,1, Zi,2, Zi,3, i)

in the body of Q.
As an illustration, the query Q for the formula F in

our running example is as follows:

Q()← P (Y1, 1), P (Y2, 2), R(X1, X2, Y1, 1), R(X1, X2, Y2, 2).

We have completed the construction of the instance
(MΣ, Q, t̄) for each 3-CNF propositional formula F .
By construction, the instance (MΣ, Q, t̄) is CQ weakly
acyclic and has Σ = ∅ and t̄ = (). Further, each of P, Σ,
and V, in the materialized-view settingMΣ constructed
for the input formula F , does not depend on F ; thus,
both the formulation and the size of each of P, Σ, and
V are fixed across all the input formulae F . In contrast,
the size of each of Q and MV in the instance (MΣ, Q, t̄)
is linear in the size of the input formula F . As a result,
the overall size of the instance (MΣ, Q, t̄) is polynomial
(linear) in the size of the input formula F .

It turns out that for each formula F , the materialized-
view settingMΣ that we construct for F is a valid set-
ting by definition. Indeed, for each such F and for the
corresponding settingMΣ = (P, Σ, V, MV), there ex-
ists a ground instance I(1,1,...,1)(F) of schema P such
that V ⇒I(1,1,...,1)(F),Σ MV , as follows. (Intuitively,

the m-tuple (1, 1, . . . , 1) in the name of this instance
I(1,1,...,1)(F) refers to the fact that this instance rep-
resents an assignment of the truth value 1 to each of
the m variables Y1, . . ., Ym of the input formula F .)

I(1,1,...,1)(F) is the union of the instance I
(1,1,...,1)
(P,S) (F),

as specified below, with the instance I
(1,1,...,1)
(R) (F) that

has the same set of tuples for the relation R as the
instance MV has in the relation for V (see the spec-
ification of MV [V] above). As an illustration, in our

running example, the instance I
(1,1)
(R) (F) has the same

fourteen tuples as we saw above in the relation MV [V],
except that these same tuples are now in the relation R
in I(1,1)(F):

I
(1,1)
(R) (F) = {R(1, 1, 1, 1), R(1, 1, 0, 1), R(1, 0, 1, 1),

R(1, 0, 0, 1), R(0, 1, 1, 1), R(0, 1, 0, 1),
R(0, 0, 1, 1), R(0, 0, 0, 2), R(0, 0, 1, 2),
R(0, 1, 0, 2), R(0, 1, 1, 2), R(1, 0, 0, 2),
R(1, 0, 1, 2), R(1, 1, 0, 2)}.

For the general case, the instance I
(1,1,...,1)
(P,S) (F) is of

the following form:

I
(1,1,...,1)
(P,S) (F) = {P (1, 1), P (1, 2), . . . , P (1,m), S(1, 1),

S(0, 1), S(1, 2), S(0, 2), . . . , S(1,m), S(0,m)}.

As an illustration, for our running example, the in-

stance I
(1,1)
(P,S)(F) is as follows:

I
(1,1)
(P,S)(F) = {P (1, 1), P (1, 2), S(1, 1), S(0, 1),

S(1, 2), S(0, 2)}.

The entire instance I(1,1)(F) for our running example

is the union of the instances I
(1,1)
(P,S)(F) and I

(1,1)
(R) (F) as

given above.
In the general case, intuitively, the tuples in the rela-

tion S in I
(1,1,...,1)
(P,S) (F) mirror the instance MV [U], by

definition of the view U and of MV [U]. The tuples

P (1, 1), P (1, 2), . . ., P (1,m) in I
(1,1,...,1)
(P,S) (F) give us a

key part of this proof, by representing a particular as-
signment of the truth values 1 and 0, one value to each

32

Yj (j ∈ [1, m]) among the variables Y1, . . ., Ym of the
formula F . The particular assignment of the truth val-
ues 1 and 0 to the variables Ȳ of F that is represented
in the instance I(1,1,...,1)(F) is the assignment of the
truth value 1 to each of the m variables. We represent
this fact in the name of the instance I(1,1,...,1)(F), by
using this assignment as an m-tuple (1, 1, . . . , 1) in the
superscript in the name.

It is straightforward to verify that the ground instance
I(1,1,...,1)(F) satisfies V ⇒I(1,1,...,1)(F),Σ MV . Further, it
is straightforward to verify that there exist 2m − 1 more
ground instances of schema P, as follows. Each such in-
stance, denote it for now by J , differs from the instance
I(1,1,...,1)(F) only in whether the first argument of one
or more P -tuple(s) in J is the value 0, instead of 1 as
it is in I(1,1,...,1)(F). It is straightforward to verify that
for each such instance J , we have that V ⇒J,Σ MV in
the context of the settingMΣ that we have constructed
for the given formula F . Clearly, the total number of
such instances J , including the instance I(1,1,...,1)(F),
is 2m, as the value 1 of the first argument of P (1, j) in
I(1,1,...,1)(F) can be flipped to 0 independently for each
j ∈ [1, m].

For each instance J constructed as above, we name
the instance using the same notation as for the instance
I(1,1,...,1)(F), by adorning the name I(F) with an m-
tuple (a1, a2, . . . , am) in the superscript, where aj for
each j ∈ [1, m] is either 1 or 0, and (aj) is precisely the
first argument of the P -atom in the instance such that
this P -atom has j as its second argument. For exam-
ple, the instance I(0,0,...,0)(F) is the instance that differs
from the instance I(1,1,...,1)(F) only in that the first ar-
gument of each P -tuple in J is the value 0, instead of 1
as it is in I(1,1,...,1)(F).

To the 2m instances of the form I(a1,a2,...,am)(F) as
defined above, we refer collectively as the core instances
(of schema P) for the input formula F . In addition to
these core instances, there is an infinite number of other
ground instances of schema P, where for each instance,
I, we have that V ⇒I,Σ MV in the context of the setting
MΣ that we have constructed for the given formula
F . By definition of MΣ, each such instance I can be
obtained by unioning one of the core instances for F ,
call the instance K, with a finite set of ground atoms of
the form P (c, d), where either (i) d is a constant that is
not in the set [1, m], or (ii) d is in the set [1, m], while
c is a constant distinct from the value g in the atom
P (g, d) in the “core part”K of the instance I.

For each ground instance I that satisfies V ⇒I,Σ MV
and by definition of the query Q that we have con-
structed for the given formula F , we obtain the fol-
lowing useful observations.

Lemma M.1. Given a 3-CNF propositional formula
F and the instance (MΣ, Q, t̄) for F . Then, for all
ground instances I of schema P such that V ⇒I,Σ MV
in the context of the instance (MΣ, Q, t̄), the relation
R is the same in all the instances I, and the relation S
is also the same in all the instances I. 2

This result is immediate from the definitions of the
views U and V . The result of Lemma M.1 implies that
in each ground instance I of schema P such that V ⇒I,Σ

MV , (i) the relation R is the same in I as the relation

R in the fixed instance I(1,1,...,1)(F) defined above, and
(ii) the relation S is the same in I as the relation S in
I(1,1,...,1)(F).

Lemma M.2. Given a 3-CNF propositional formula
F and the instance (MΣ, Q, t̄) for F . Then, for each
ground instance I of schema P such that V ⇒I,Σ MV
in the context of the instance (MΣ, Q, t̄), the relation
P in I has for each j ∈ [1, m] an atom of the form
P (ej , j), with the constant ej ∈ {1, 0}. 2

Proof. This result is immediate from the definitions
of the views U and W and from the specifications of the
relations MV [U] and MV [W] in MΣ as constructed
for the given formula F . Indeed, recall that MV [W]
= {(1), (2), . . . , (m)}. By definition of the view W , for
each j ∈ [1, m] we have that the tuple (j) in MV [W]
witnesses, in each ground instance I of schema P such
that V ⇒I,Σ MV , the presence of a ground P -atom
P (ej , j) and of a ground S-atom S(ej , j) with the same
arguments. Now consider an arbitrary ground atom
S(d, f) in any ground instance I of schema P such that
V ⇒I,Σ MV . By definition of the view U and by the
contents of the relation MV [U], the value d in this atom
S(d, f) must be one of 1 and 0, and the value f in S(d, f)
must belong to the set [1, m]. Thus, via the definition
of the view W and the contents of the relation MV [W]
as discussed above, we obtain that each ground atom
of the form P (ej , j) as above must have its value ej
restricted to one of 1 and 0. The claim of the lemma
follows.

Lemma M.3. Given a 3-CNF propositional formula
F and the instance (MΣ, Q, t̄) for F . Let I be a ground
instance of schema P such that V ⇒I,Σ MV in the
context of the instance (MΣ, Q, t̄). Then there exists
a core instance K for F such that there is an identity
homomorphism from K to I. 2

Lemma M.4. Given a 3-CNF propositional formula
F and the instance (MΣ, Q, t̄) for F . Let I be a ground
instance of schema P such that V ⇒I,Σ MV in the
context of the instance (MΣ, Q, t̄). Then for each val-
uation, µ, from Q to I, the image of all the P -subgoals
of Q under µ is the relation for P in one of the core
instances for F . 2

(Toward the proof of Lemma M.4, recall that by de-
sign of the queryQ, the first argument of each P -subgoal
of the query Q must also occur as one of the first three
arguments of at least one R-subgoal of Q.)

By the above lemmae and by the structure of all
the ground instances I of schema P such that V ⇒I,Σ
MV , it must be that, in the context of the instance
(MΣ, Q, t̄):

(*) For each I such that V ⇒I,Σ MV and for each val-
uation, µ, from the query Q to I, the image µ(body(Q))
of the body of the query Q under µ is a subset of one
of the core instances for F .

Specifically, by construction of the query Q, for any
such core instance K for F , all the ground atoms in the
relation P in K must be present in the set µ(body(Q)).
(Recall that in each core instance, K, for the input for-
mula F , the relation P intuitively represents exactly

33

one specific assignment of values 1 an 0 to the m ≥ 1
variables Ȳ of the formula F . Further, each specific as-
signment of values 1 an 0 to the m ≥ 1 variables Ȳ of
the formula F is represented by a separate core instance
for F .)

As an illustration, consider the queryQ of our running
example and the instance I(1,1)(F) of schema P for that
example. (Both the query Q and the instance I(1,1)(F)
for this running example have already been given in
this proof.) Consider a mapping µ = { X1 → 1, X2
→ 0, Y1 → 1, Y2 → 1 }. We can show that µ is a
valuation from the query Q to the instance I(1,1)(F).
The image µ(body(Q)) of the body of the query Q under
the valuation µ includes all the ground atoms in the
relation P in the instance I(1,1)(F), that is both atoms
P (1, 1) and P (1, 2) in I(1,1)(F).

We now proceed to show that for the input formula
F and for the corresponding instance (MΣ, Q, t̄) con-
structed for F as above, the following two statements
are equivalent:

(I) For each assignment of truth values 1 and 0 to the
variables Ȳ in the formula F , there exists an as-
signment of truth values 1 and 0 to the variables X̄
in F such that F is true under these assignments;
and

(II) The tuple () is an answer to the query Q on all the
ground instances I of schema P such that V ⇒I,Σ

MV in the context of the instance (MΣ, Q, t̄).

Note that by the definition in Section 4.1, the state-
ment (II) says that the tuple () is a certain-answer tuple
for the query Q w.r.t. the setting MΣ. Thus, once we
show the equivalence of the statements (I) and (II), our
proof of Πp

2 hardness of the certain-query-answer prob-
lem for CQ weakly acyclic inputs with Σ = ∅ will be
complete.

We begin the proof of the equivalence of the state-
ments (I) and (II) by making the following observation.
Denote by R(Q) the conjunction of the R-subgoals of
the query Q in the instance (MΣ, Q, t̄) for the given for-
mula F . Further, denote by P(Q) the conjunction of the
P -subgoals of the query Q in the instance (MΣ, Q, t̄).
Consider any ground instance I of schema P such that
V ⇒I,Σ MV in the context of the instance (MΣ, Q, t̄).
Let ν be any mapping of the set Z̄ of the variables (X̄
and Ȳ) of the formula F into the set {0, 1}. Similarly to
the argument in [3] (as also used in the proof of Theo-
rem 3.3 in [21]), we can show that any such mapping ν is
a satisfying assignment for the formula F if and only if
ν(R(Q)) is a subset of the instance I. By Lemma M.1,
we have that any such mapping ν is a satisfying as-
signment for the formula F if and only if ν(R(Q)) is a
subset of each ground instance J of schema P such that
V ⇒J,Σ MV in the context of the instance (MΣ, Q, t̄).
From the above reasoning and from Lemmae M.2–M.3,
we obtain the following result of Lemma M.5.

We first introduce some notation. In the remainder
of the proof of Theorem M.1, let µ

(a1,...,am)

(Ȳ)
, with aj ∈

{0, 1} for each j ∈ [1, m], denote the mapping from the
set of variables Ȳ of the formula F to the set {0, 1}, such

that µ
(a1,...,am)

(Ȳ)
(Yj) = aj for each j ∈ [1, m]. Further,

let µ(X̄) denote a mapping from the set of variables X̄

of the formula F to the set {0, 1}.
Lemma M.5. Given a 3-CNF formula F with m ≥ 1

variables Ȳ and with n ≥ 0 variables X̄, let (a1, . . . , am)
be an arbitrary m-tuple such that aj ∈ {0, 1} for each
j ∈ [1, m]. Let µ(X̄) be an arbitrary mapping from the

set of variables X̄ of the formula F to the set {0, 1}.
Let (MΣ, Q, t̄) be the instance that we have constructed
for the formula F as above. Finally, let I be a ground
instance of the schema P, such that V ⇒I,Σ MV in the
context of the instance (MΣ, Q, t̄), and such that the
set {P (a1, 1), . . . , P (am,m)} is a subset of the instance
I.

Then the following two statements are equivalent:

• The assignment µ
(a1,...,am)

(Ȳ)
∪ µ(X̄) of the variables

of the formula F to elements of the set {0, 1} is a
satisfying assignment for the formula F ; and
• The empty tuple () is in the answer to the query Q

on the instance I due to the valuation µ
(a1,...,am)

(Ȳ)
∪

µ(X̄) from body(Q) to I. 2

We are now ready to show the equivalence of the
statements (I) and (II) as formulated above.

(I)→ (II): Suppose that for eachm-tuple (a1, . . . , am),
such that aj ∈ {0, 1} for each j ∈ [1, m], we have that
there exists a mapping µ(X̄) from the set of variables X̄

of the formula F to the set {0, 1}, such that

µ
(a1,...,am)

(Ȳ)
∪ µ(X̄)

is a satisfying assignment for the formula F . Fix an
arbitrary ground instance I of the schema P such that
V ⇒I,Σ MV . Then, by Lemmae M.2 and M.5, the
empty tuple () is in the relation Q(I).

(II)→ (I): Consider the set K of the 2m core instances
(of schema P) for the formula F . By construction of
the set K, for each m-tuple (a1, . . . , am) such that aj ∈
{0, 1} for each j ∈ [1, m], there exists an instance K ∈
K such that the set {P (a1, 1), . . . , P (am,m)} is a subset
of the instance K, and the relation K[P] has no other
tuples.

Fix an arbitrary instance K ∈ K; the relation K[P] =
{P (a1, 1), . . . , P (am,m)} specifies a particular m-tuple
(a1, . . . , am) such that aj ∈ {0, 1} for each j ∈ [1, m].
By our assumption (II), there exists a mapping µ(X̄)

from the set of variables X̄ of the formula13 F to the
set {0, 1}, such that

µ(K) = µ
(a1,...,am)

(Ȳ)
∪ µ(X̄)

is a valuation from the query Q to the instance K that
produces the empty tuple () in the relationQ(K). Thus,
by Lemma M.5, the mapping µ(K) of the variables
of the formula F to the set {0, 1} is a satisfying as-
signment for the formula F . The claim of (I) follows
from the observation (made above) that for each m-
tuple (a1, . . . , am) such that aj ∈ {0, 1} for each j ∈
[1, m], there exists an instance K ∈ K such that the
set {P (a1, 1), . . . , P (am,m)} is in the instance K. This
completes the proof of Theorem M.1.

13Recall that the set Z̄ = X̄ ∪ Ȳ is the set of all variables
of the formula F , and is also the set of all variables of the
query Q in (MΣ, Q, t̄).

34

