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(1)Introduction: 

The fundamental problem being investigated is the maintenance of data consistency in a distributed 

system setup. Consider a set of some N >= 1 computers sharing a common hash table stored at a remote 

centralized repository. Each system is interested in a portion of the hash table, and these portions may 

overlap. So as to facilitate ease of access, we are allowed to cache a portion of the hash table at each 

system. Each system can read data cached at its location, or send requests straight to the remote 

repository. 

There are three problems to be understood and analyzed here. One, when read requests come in from a 

computer, we need to figure out whether those requests can be answered by their local caches or whether 

such requests need to be propagated to the remote centralized repository. Two, based on the trail of read 

requests coming in from the computers, we should be able to predict the entries of interest and cache them 

in advance at the computer location. Three, the most important problem is to provide a consistent view of 

the shared resource to all the N computers at all times. We refer to these three problems collectively as 

"the problem of coherence of a distributed hash table." 

Here onwards, the set of N computers is interchangeably referred to as clients and the remote centralized 

repository as server and vice versa. 

 

Work on the problem at hand has the potential to impact a number of other important settings, and is 

hence an important problem to solve. The problem of coherence of a distributed hash table is closely 

related to a number of other problems, including maintenance of materialized views (MVs) in a 

distributed environment, cache coherence in multiprocessor systems, and concurrent processing of tasks 

in distributed computing. In Section 2 we discuss  in length about how each of these problems are closely 

tied to our area of research, why they are important and how the work presented here is different from the 

work done in each of them so far.  

 

A significant amount of research has been done in each of these related areas. However, this research can 

be best described as a generalization of the problem at hand. For example, with MVs, the view being 

materialized could be the answer to any query executed over the base data. However, with respect to the 

studied problem, the data being locally cached or “materialized” will always be a subset of rows of the 

centralized table. Numerous techniques have been developed for view maintenance of MV. However, 

each of these techniques maybe far more generalized and may take a lot more factors into consideration 

than what is required to provide an effective solution to the studied problem. 

 

Hence, this project requires us to study techniques from a number of related areas of research and then 

tailor them suitably to act as effective solutions to the problem at hand. This makes it interesting and 

challenging at the same time.  

 

In this technical report we study "the problem of coherence of a distributed hash table", and propose a 

number of solutions for the same. We then implement and test the different solutions and compare their 

relative performance under different input conditions. The goal of this report is not to provide one good 

solution to the aforementioned problem but to rather provide a series of solutions where some are more 

effective than the others, under certain input conditions. 
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(2)Related Work:  

The problem of coherence of a distributed hash table is closely related to a number of other problems. 

These include maintenance of MV in a distributed environment, cache coherence in multiprocessor 

systems, and concurrent processing of tasks in distributed computing. We will now discuss in depth, how 

each of these problems are related to the studied problem, their individual importance and general 

methods proposed to provide solutions to them so far. In each case we will place special emphasis on how 

the scope or approach of these cited works differs from the work done in our current project. 

A MV is a database object that contains the results of a query. It may be a local copy of data located 

remotely, or may be a subset of the rows and/or columns of a table or join result etc computed over base 

data located locally /remotely .  

MVs are a natural embodiment of the ideas of pre-computing and caching in databases i.e. instead of 

computing a query from scratch over the base data, a database system can use results that have already 

been computed, stored and maintained. The ability of MVs to speed up queries, benefit most database 

applications ranging from traditional querying and reporting to data mining [1]. 

 

To draw an analogy between MVs and the problem at hand, we can think of the hash table at server to be 

the base data and the caches maintained at clients to be the derived/materialized data. Past research in 

MVs focuses on view selection (what are the right views to materialize to efficiently compute and 

maintain the results of a given query), view use (when should MVs be used to answer queries), and view 

maintenance (how to keep MVs consistent when changes are made to the base data).As you can see our 

problem is closely tied to research in the area of MVs and more so in the area of maintenance and 

selection.  

Popular research in view maintenance analyze the problem along the timing dimension (immediate vs. 

deferred maintenance), information dimension (different levels of data accessible for the purpose of 

maintenance) and focuses on using auxiliary views (at times maintaining more can mean maintaining 

less) to ease the problem of maintenance. Time as a dimension has been exploited in a couple of our 

solutions. However our exploitation of time is not restricted to immediate and deferred maintenance (for 

more information refer to section on Scenario 4).  

Other relevant research in the area of MVs focuses on developing systematic and automated solutions to 

the problem of view selection. In this work, view selection is done by exploiting the temporal locality of 

user queries. Wherein the views cached /materialized (if any) always correspond to entries read most 

recently in the past. A good direction of future work would be to develop another solution which would 

exploit the spatial locality of user queries.  

In a shared memory multiprocessor with a separate cache memory for each processor, it is possible to 

have many copies of any one instruction operand: one copy in the main memory and one in each cache 

memory. When one copy of an operand is changed, the other copies of the operand must be changed also. 

Cache coherence is the discipline that ensures that changes in the values of shared operands are 

propagated throughout the system in a timely fashion. Caches were developed as a bridge between a high-

speed processor and a relatively slow memory. By storing subsets of the memory (by the principle of 

locality of reference) in a fast access region (i.e. the cache), the performance of the system is improved 

because most memory accesses can be satisfied by the cache instead of main memory [2]. 
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We can draw a parallel between the problem of cache coherence in multiprocessor systems and the 

problem at hand by equating the caches of different processors to the local caches at the client computers 

and the main memory to the storage at the remote centralized repository. The localities of reference which 

can be exploited include temporal and spatial locality. The only difference between in the 2 problems is 

that while the local copies cached at the individual processors can be directly modified in a 

multiprocessor system, our problem limits all direct modifications to the centralized repository or 

equivalently main memory. In other words, we support only reads by client and not both reads and writes. 

The two basic methods for insuring cache consistency in multiprocessor systems are hardware 

implementations and software protocols. 

 In a hardware implementation, special hardware is added to the machine to detect cache accesses and 

implement a suitable consistency protocol which is transparent to the programmer and compiler. Popular 

hardware based approaches include directory based and snooping based protocols. 

 In a software approach, it is the responsibility of the compiler to generate consistent code. Parallel code 

may be made consistent by the compiler by inserting additional consistency instructions in the code. 

However, the static compiler analysis cannot detect run-time consistency conflicts. Hence, hardware 

based implementations are better as they can not only be implemented more efficiently but can also detect 

dynamic sharing sequences[2]. 

However, applying hardware solutions to the problem at hand would limit the clients to only those having 

a particular hardware configuration. This can be too restrictive, and hence we are interested in developing 

software solutions to the studied problem. 

 

In addition, there are two basic enforcement strategies for insuring that cache lines are consistent. They 

are write-update (WU) and write-invalidate (WI). In the write-update protocol, after every write of a data 

item by a processor, the copy of the data item in other processor caches and main memory is updated to 

the new value. For write-invalidate, a write by a processor on a data item causes a message to be sent to 

other processor’s caching the data item to invalidate the cache line containing this data item. If a 

processor requires a data item that was previously invalidated, it will reload it into the cache from main 

memory [2]. In this project, we develop a set of software protocols based on the aforementioned strategies 

of WU and WI. 

 

As mentioned previously, another area of research closely related to the problem at hand, is distributed 

computing. In general, distributed computing is any computing that involves multiple computers remote 

from each other that each have a role in a computation problem or information processing. In business 

enterprises, distributed computing generally has meant putting various steps in business processes at the 

most efficient places in a network of computers. In the typical transaction using the 3-tier model, user 

interface processing is done in the PC at the user's location, business processing is done in a remote 

computer, and database access and processing is done in another computer that provides centralized 

access for many business processes. Typically, this kind of distributed computing uses the client/server 

communications model and a parallel can be drawn between distributed computing and the problem at 

hand by coalescing the operations of step 2 and step 3 of the 3 tier-model to a single step which is 

performed at a remote centralized repository.   

 

A common way to address scalability requirements of distributed environment is to employ server 

replication and client caching of objects that encapsulate the service state. When there are a number of 

copies of the same object, there exists the problem of maintaining consistency among them. As we do not 

perform server replication we limit our interest (in distributed computing) to maintaining consistency of 

client caches. 

 Broadly speaking there are 2 models for consistency in distributed systems. Strong consistency, wherein 

after an update completes any subsequent access will return the updated value, the opposite of strong 
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consistency is weak consistency. We are interested in strong consistency and common approaches to 

achieve strong consistency include Lock-Based approaches and QUORAM-ASSEMBLY methods. 

Consistency with Concurrency is automatically achieved as a part of our current solution as we make an 

assumption that obviates the need to handle such cases explicitly (refer Section on problem specification). 

However in the absence of this assumption, our solution cannot guarantee strong consistency and 

ensuring the same under all conditions would be a good line of future work. 

 

Another important point to note is that the aforementioned problems not independent of each other. 

Semantic Caching [3], is a technique which combines the ideas of caching and materialized views. A 

semantic cache remembers the semantic descriptions of its contents as view definitions, so that we can 

determine the completeness of query answers determined over caches and query the source only when 

needed. This idea has been applied to a wide range of settings, including caching for web [4] and mobile 

as well as other types of distributed systems.  
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(3) Specifications, Requirements and Measures: 

The problem being studied is “the problem of coherence of a distributed hash table” .The system under 

study consists of N (where N>= 1) client computers and a single centralized server which houses the 

shared hash table. The system design makes a few general assumptions as follows-: 

1) The system supports only reads (for (key, value) pairs in the hash table) by clients.  

2) The client caches are initially empty. Their size is unbounded.  

3) When a (key, value) pair is changed at server, the corresponding entry if previously cached at a client 

now becomes invalid. In order to inform clients of this now obsolete cache entry, the server broadcasts an 

invalidate message specific to this key to all active clients. On receiving the invalidate message, a client, 

checks to see if the corresponding (key, value) pair is cached in it, and if so, marks it invalid. 

Broadcasting ensures that all clients are synchronized in their awareness of an obsolete cache entry.  

4) Clients become immediately aware of obsolete cache entries i.e. there is no race condition between the 

server announcing a hash-table entry to be invalid and a client requesting that entry. Thus, whenever the 

server announces a hash-table entry to be invalid, each client either has requested the old value 

previously, or will wait until reception of the broadcasted- invalidate message to request the new value. 

There are no read requests made in the interim of a change in (key, value) pair at server and the reception 

of a broadcasted invalidate message at client. This assumption guarantees consistency with concurrency. 

5) Unless otherwise stated, the size of pull history (if maintained) at server is unbounded. 

6) Broadcasting, i.e. pushing updates to all clients on change in a given (key, value) pair irrespective of 

their interest is NOT proposed as a solution. 

The clients start by pulling hash entries from server and caching them. When a (key, value) pair to be read 

by client has a valid entry in its local cache , the read request can be satisfied at the client itself rather than 

being re-directed as a pull to server. Thus the goal of maintaining a cache is to satisfy read requests in an 

economical manner. However, hash entries are volatile and changes can be made to them at server. Client 

read requests cannot be satisfied by stale/obsolete cache entries and we need to develop one or more 

solutions to maintain the coherence of (key, value) pairs in client caches as changes are made to their 

counterparts at server. 

Thus, the objective of the system design to satisfy all read requests made by clients in an economical 

manner while factoring in the cost of communication and the cost of maintaining coherence of client 

caches. To achieve the above objective we have a proposed a number of solutions.  

Once we have developed different algorithms/solutions to solve the fundamental problem (of cache 

consistency in a distributed environment), we need to quantify each solution so that we can compare the 

performance of one against another under different input conditions. As the goal is to satisfy various read 

requests in an economical manner, we list out the various operations involved and the costs incurred in 

each case. Performance metrics at server are broadly categorized into Processing Overhead and Storage 

Overhead.  

Processing Overhead-: 
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1) Pulls made by the client are charged to the server. Pulls are a consequence of obsolete or missed cache 

entries at client and each pull has an associated constant cost called the PULLCHARGE.  

2) Though used pushes (a push made for a (key, value) pair which will be later read at client is called a 

used push, all other pushes are unused) made from server to client are free of charge. The server incurs an 

additional cost for every unused push it makes. However, the server has no way of knowing in advance 

whether a push is used or unused. To approximate the above calibration, the server charges all pushes 

with a blanket PUSHCHARGE and on termination divides the net PUSHCHARGE by the total number of 

read requests made. Lower the aforementioned ratio less is cost spent on pushes. 

 

3) The cost to make changes to the centralized hash table is assumed to be zero. Also, the cost of all 

actions taken as a consequence of the aforementioned operation, (except for making a push) is assumed to 

be zero. E.g. broadcasting invalidates, scanning the pull histories of different clients to determine if they 

contain the changed key, etc. 

 
4) The cost to retrieve values from the hash table or any other data structures is assumed to be zero. 

However, any additional processing done at the server other than the very basic fetch operation, 

corresponds to additional costs, and must be accounted for while quantifying an algorithm. The associated 

costs in each case equals COST OF ONE OPERATION * no. of times it is performed. E.g. creating pull 

history, maintaining pull history etc.  

 

5) One exception to the above rule is the periodic scanning of pull histories (if done) at server. The 

periodic scanning of pull histories is accounted for like any other operation (COST OF ONE 

OPERATION * no. of times it is performed), however the net cost is amortized over the total number of 

read requests made at client. This is because the scanning of pull histories has a direct impact on cache 

maintenance similar to making pushes.    

 

Storage Overhead-: 

1) The cost associated with storing the centralized hash table is zero. 

2) Though an assumption for unbounded cache size is made at client, the same does not hold good for the 

server. Therefore any data structure maintained at server with the exception of the original hash table is 

charged to server. The cost associated with storing additional data structures is given as COST OF 

STORING ONE INSTANCE* no. of such instances. E.g. storage of pull history, storage of 

THRESHOLDTIME etc 

3) Each node of the pull history, irrespective of which Scenario it corresponds to, is associated with a 

constant storage cost given by PULLSTORAGECOST. Here, we do not take into consideration the 

different levels of information maintained by pull history nodes of different Scenarios for e.g. The pull 

history is Scenario 1 is just a list of keys, however the pull history in Scenario 4 is a list keys and their 

associated timestamps. 

 

Thus we choose to conduct the performance evaluation of different scenarios with a greater emphasis on 

processing overhead than storage overhead. Analyzing the performances of different scenarios with equal 

or greater importance to storage overhead is a good line of future work.  
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The total (processing and storage) overhead at server is the sum of the net processing and storage costs 

incurred at server over all clients. For each Scenario we also determine the best case and worst case 

performance at server. In computer science, best or worst case performance of a given algorithm 

corresponds to conditions when the resource utilization by the algorithm, is at its very least (minimum), 

or at its very most (maximum) respectively. Usually the resource being considered is running time, but it 

could also be memory or other resources. We consider the processing and storage overhead for the 

purpose of our analysis.  

 To determine the best case and worst case of a given Scenario we use the performance measures and 

constants specified below-: 

r: Number of Read requests made at client 

R: Number of unique Read requests made at client 

N: Number of clients connected to server 

STORESIZE: Fixed size of centralized hash table 

f(C)
*
: frequency at which i th entry in hash table changes where i= 1, 2, 3…..STORESIZE =1/ (time to 

change 1 (key, value) pair in hash table * STORESIZE).  

This can be achieved if entries in the hash table rather than being changed randomly are changed in a 

(systematic) round-robin fashion where we loop back to the beginning of the hash table on reaching the 

end. 

PULLCHARGE = 100, is the cost incurred in pulling a (key,value) pair from server to client. 

PUSHCHARGE = 30, is the cost incurred in pushing an update to a single (key,value) pair from server to 

client. 

COSTOFADDEDPUSH= 10, is the cost incurred in adding an extra update to an existing push so as to 

gain the advantage of batching. 

PULLCREATIONCOST = 1, is the cost incurred in traversing a single node in pull history (during the 

process of pull history creation) or adding a single node to the existing pull history. 

STORAGECOST = 1, is the cost incurred in terms of memory usage in adding a single node to the 

existing pull history. 

STORAGECOSTM = 1, is the cost incurred in terms of memory usage in storing a parameter m in 

Scenario 3.  

STORAGECOSTN = 1, is the cost incurred in terms of memory usage in storing a parameter n in 

Scenario 3. 

STORAGECOSTCOUNT = 1, is the cost incurred in terms of memory usage(per client) in storing the 

count of the # of pushes made so far, in Scenario 3. 
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STORAGECOSTTHRESHOLD = 1, is the cost incurred in terms of memory usage in storing parameter 

THRESHOLDTIME, in Scenario 4. 

STORAGECOSTDEFAULTTIMEOUT = 1, is the cost incurred in terms of memory usage in storing 

parameter DEFAULTTIMEOUT, in Scenario 5. 

PULLMAINTENANCECOST = 1,is the cost incurred in traversing a single node of pull history, during 

the process of making periodic scans in Scenario 5. 

* For purposes of performance evaluation we assume that incoming read requests arrive at certain 

minimum rate such that f(C) cannot be increased to > 1/r 
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(4)Summary of the Proposed Scenarios: 

The primary objective of this technical report is to study “the problem of coherence of a distributed 

hash table” and to provide one or more economical solutions for the same. To achieve the above 

objective we have proposed a number of solutions and tested them under varying input conditions. 

Each solution along with the broad class of input conditions for which it has been tested constitutes a 

scenario. We will now discuss briefly the different scenarios being proposed and study their 

comparative merits. 

Scenario 0 is the most basic scenario where the server puts no effort into minimizing the cost of 

communication or the cost of cache maintenance. Here no assumptions are made about the client’s 

requests/interests, they can either be stable or evolve with time. When a (key, value) pair to be read 

by a client has a valid entry in local cache, it is read from the cache, else the request is re-directed as a 

pull to server.  

Under circumstances when all client reads are unique or when hash entries of client interest are 

slightly volatile or completely non-volatile, this system design can be shown to be the most 

economical among all solutions being proposed. This can be attributed to the fact that this scenario 

makes the least investment among all scenarios in order to reduce the overall system cost. However, 

in cases where the hash entries of client interest are moderate -to- highly volatile, the same key may 

be repeatedly pulled off server resulting in a high system cost. 

In Scenario 1 the server maintains a data structure, the pull history, to reduce costs of communication 

and cache maintenance. The pull history is maintained on a per client basis and is an unordered list of 

the unique keys requested by a client in the past. This scenario makes an assumption that the client’s 

requests/interests stabilize with time. Thus, when a change is made to a (key,value) pair at server, the 

serves pushes updates to all clients who contain the aforementioned key in their pull history. This 

ensures that client caches are always up to date. Since the requests of clients are stable, all pushes 

made are of client interest and the cost of cache maintenance is zero (as stated by assumptions, used 

pushes are free of charge). 

In this scenario when a read (for a specific key) is made by a client, for the first time, it is pulled from 

server. Thereafter all requests for the key are satisfied by cache. Hence, this scenario is more 

economical than Scenario 0 when hash entries of client interest (which is assumed to be stable) are 

moderate-to- highly volatile. 

Scenario 2 uses the solution proposed in Scenario 1 and tests its effectiveness against evolving client 

interests. In accordance to the proposed solution, whenever a change is made to a (key, value) pair at 

server, the server pushes updates to all clients who contain the aforementioned key in their pull 

history. This results in an increased system cost because, clients’ interests evolve with time, and a key 

pulled in the past may no longer be of client interest, and as stated by assumptions, the server is 

charged for every unused push it makes. Thus Scenario 2 may be as bad Scenario 0 if not worse when 

client interests (which evolve with time) are volatile. 

To minimize the number unnecessary/unused pushes, the solution proposed in Scenario 2 is extended 

in Scenario 3. In Scenario 3 the pull history per client is an ordered (based on time of latest pull) list 
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of unique keys, pulled by clients in the past. Also, the length of the pull history is limited to some 

maxLengthOfPullHistory. If a new entry has to be added to the pull history, which is of length 

maxLengthOfPullHistory, the oldest entry is deleted. Further, in Scenario 3 the number of contiguous 

pushes made per client is also limited to some value, once the threshold is reached,pushes to the client 

resume only on receiving a pull. 

If the maxLengthOfPullHistory is fixed to equal (or be slightly greater/lesser than) the number of 

keys in client’s current interest and the threshold number of pushes is kept as high as infinity, the 

number of unused pushes can be reduced to zero(or made close to zero).Under such conditions 

Scenario 3 is far more economical than Scenario 2 and Scenario 0. However, if the 

maxLengthOfPullHistory is much lesser or greater than the number of keys in client’s current interest 

, the threshold number of pushes can be kept as low as 1 so that the performance is no worse than 

Scenario 0. It should be noted for stable requests the number of keys of client’s current interest equal 

the number of unique requests made in the past, and for this specific case can be approximated to 

infinity. 

However, there is no way to know how many keys would be in client interest. Hence it is difficult to 

fix the value of maxLengthOfPullHistory to get a performance improvement over Scenario 0and 

Scenario 2. To overcome the above drawback, Scenario 4 was proposed. The solution in Scenario 4 is 

similar to that proposed in Scenario 2, except that each key in pull history is also associated with the 

timestamp of its latest pull. The system also has a threshold parameter for staleness, 

THRESHOLDTIME, such that, each time the server scans the pull history of a client, it deletes all 

pull entries time stamped at time Current Time- THRESHOLDTIME or earlier. THRESHOLDTIME 

is chosen to be the minimum possible time such that the probability of a client being interested in a 

key pulled at Current Time –THRESHOLDTIME or earlier is low. As long as THRESHOLDTIME is 

chosen well, the number of unused pushes can be minimized and even reduced to zero. Though the 

number of pulls /number of unused pushes maybe slightly more than the number of pulls /number of 

unused pushes made in ideal case in Scenario 3, Scenario 4 is more practical than Scenario 3 and with 

a high probability provides a performance improvement over Scenario 0 and Scenario 2. It should be 

noted for stable requests THRESHOLDTIME should equal infinity, as all keys pulled in the past are 

of client’s current interest. 

All scenarios discussed so far make immediate client updates, however Scenario 5 explores the idea 

of deferred updates. In Scenario 5, the server maintains pull histories per client similar to Scenario 1. 

In addition, each key in the pull history has an associated field to specify whether it has been changed 

since last pull/push. This helps the server scan through the pull histories of all clients once every 

DEFAULTTIMEOUT, and push updates to only those clients who have 1(or more) keys which have 

been changed since last pull/push. Hence updates to clients are not immediate but potentially 

periodic. This scenario has been tested for both stabilized and varying client interests. For stabilized 

interests, (provided DEFAULTTIMEOUT is chosen to be suitably small), this scenario is as good as 

Scenario 1. In case of varying client interests, this scenario can perform as well as Scenario 2,( by 

choosing small to intermediate values of DEFAULTTIMEOUT), in cases where Scenario 2 is better 

than Scenario 0 , and no worse than Scenario 0 otherwise (by choosing DEFAULTTIMEOUT = ∞).  
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Thus we have proposed a number of solutions to fulfill the objective of satisfying read requests at 

clients in an economical manner. The effectiveness of a given solution is dependent on input 

parameters such as the stability of incoming read requests and the frequency of changes made at the 

centralized hash table etc. Our goal with this project is to test the different solutions under various 

input conditions and to determine a niche case for each , where its performance is the best amongst all 

solutions being proposed. This would help us develop a feel/ intuition for the performance of each 

solution (under various input conditions) and help us pick the best given a set of arbitrary input 

conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

(5)Scenario 0: 

High Level Intuition : 

In Scenario 0 the client does all the work and the server does zero work. When a previously read (key 

,value) pair needs to be read again at the client, it is simple read off local cache if no changes have been 

made to the (key, value)pair since it was last read. However, if the (key, value) pair to be read is missing 

in local cache or has an obsolete cache entry, a pull needs to be issued from client to server.  

Pseudo Code: 

1) Client starts by pulling requests from server into an empty cache. 

2) When a (key,value) pair to be read is missing in the client cache or is declared obsolete a pull is issued 

by client to server. All other requests are satisfied by valid cache entries. 

Details of Implementation: 

Server:  

At the server a hash table (i.e. a set of (key, value) pairs) is read off a notepad file and is stored in an array 

of hash nodes of size STORE SIZE. Different values hashing to the same location are saved using 

separate chaining. The size of the array can be changed such that the separate chains are at maximum 3 

nodes deep to ensure a reasonably good performance. 

Once the hash table is setup, the server waits on a socket listening for client connections. Once the server 

connects to a client, the number of active clients is incremented by one and the client is allocated its own 

individual socket. The client can use this socket to send read requests to server and this mechanism helps 

the server communicate with many clients simultaneously. When a client requests a value corresponding 

to a given key (Pull), the server fetches the same off the hash table and returns it to the client. Each time a 

pull takes place, the server outputs  a) the ID of the client that has done the pull  b) the total number of 

pulls so far from that client and c)  the total number of pulls overall so far. 

Clients can also request to be disconnected from the server. Each time a client disconnects, the server 

decrements the number of active clients and outputs a) the ID of the client which has disconnected, b) the 

amount by which it charged the server c) the list of keys it read during its lifetime and the number of 

reads it made for each. The server also maintains an “importance” co-efficient for each client. By default 

the importance co-efficient for all clients is unity. This co-efficient helps the server weigh in the costs of 

different clients by factoring in their relative importance such that the net cost at server is skewed in the 

direction of the more important clients. 

A module associated with server can be used to make changes to (key, value) pairs stored in hash table. 

When a change is made to a given (key, value)pair, the server broadcasts an invalidate message to notify 

all clients in the system.  

The server can also quit if the number of active clients is zero. Just before the server quits/exits, it outputs 

a) the total number of pulls made per client and b) the total number of pulls made over all clients, over the 

course of its service duration. 
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Client:  

Each client maintains a local cache, which is initially empty. The cache is designed to be a list of unique 

keys requested by client  in the past. Each key in the cache has an associated value, a state and a count of 

the number of it has been read. The state helps differentiate valid and in-valid entries and the count plays 

a role in performance evaluation. The client first connects to the server so that any  read requests which 

lead to cache misses or obsolete/in-valid cache entries can be redirected to it (as pulls). 

When a pull for a given key is made from client to server, the pulled key is added to local cache (if not 

already present) , its value and count are updated to reflect current pull and its state is set to “valid”. If 

instead the read request is satisfied by a local cache entry, its count is simply incremented by one. 

In addition to receiving replies for pulls , clients also receives key specific “in-validate” messages. When 

such a message is received, the client checks to see if the aforementioned key has an entry in its local 

cache. If so, the state of such an entry is now made “in-valid”. This ensures that read requests made for 

the same key in the future are re-directed to server (as pulls) rather than being satisfied by the now 

“invalid” cache entry. 

Clients have the ability to disconnect from server. Just before disconnection it sends a message to server 

containing the list of keys it read during its lifetime and the number of reads it made for each. This is done 

with the help of the count values for entries in local cache, and is used by server to compute amortized 

(per client) maintenance costs. 

Performance Evaluation: 

In scenario 0, by definition, there is zero work done at the server. Also no additional data structure is 

maintained at server.  

Whenever clients request to read (key, value) pairs from server, the server responds by retrieving the 

same from the centralized hash table and delivering the result to the client. Hence the only cost incurred 

by the system is the net pull charge. Where, the “pull charge” accounts for the cost incurred in re-

directing read requests from client to server and in communicating the returned result/(key, value) pair 

from server to client. 

The NET PROCESSING OVERHEAD per client is the sum of all pull charges incurred at the server due 

to that client.  

 NET PROCESSING OVERHEAD = NET PULL CHARGE =                           

            

Since no additional data structure is maintained at server, NET STORAGE OVERHEAD per client is 0. 

 NET STORAGE OVERHEAD= 0 

The total processing and storage overhead over all clients is calculated as, 
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The best case performance for Scenario 0 occurs under conditions when no changes are made to the 

centralized hash table, and the number of clients associated with the server = 1. Under such conditions, 

each read request made for the first time gets pulled off the server and any read request made for a 

previously read (key, value) pair  is satisfied using local cache. 

Scenario 
# 

Conditions for Best 
Case 

Total Processing Overhead for 
Best Case 

Total Storage Overhead for 
Best Case 

0 r >= R 
f(C )= 0 
N=1 
 

=              
= 100R 
=ϴ(R)  

0 

 

The worst case performance for Scenario 0 occurs when the (key, value) pairs stored at the centralized 

hash table are changed with a high frequency, and the number of clients associated with server is some N 

>= 1. Specifically we require  f(C) =1/r ,i.e. all (key, value) pairs are changed exactly once between any 

two read requests issued by a client .Under such conditions, each read request by a client results in a pull 

being made to server, causing the server to  incur an extremely high pull charge. 

Scenario 
# 

Conditions for Worst 
Case 

Total Processing Overhead  for 
Worst Case 

Total Storage Overhead for 
Worst Case 

0 r>=R 
f(C )= 1/r 
N>= 1 

=                
 =100nr 
=ϴ(Nr) 

0 
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 (6) Scenario 1: 

High Level Intuition : 

In Scenario 1 the server maintains per client pull histories. An implicit assumption is made that a client is 

interested in all (key,value) pairs that feature in its pull history. When any change is made to a (key, 

value) pair at server, it pushes updates to all clients interested in it immediately. Thus only when a key is 

being read for the first time at client, a pull is issued to server , thereafter all read requests are satisfied by 

local cache entries. As the interests of the clients stabilize with time, all push updates are valid and since 

valid pushes are free of charge (as opposed to Pulls) Scenario 1 provides a significant performance 

improvement over Scenario 0. 

Pseudo Code: 

1) Client starts by pulling requests from server into an empty cache. 

2) When a (key,value) pair to be read is missing in the client cache or is declared obsolete a pull is issued 

by client to server. All other requests are satisfied by valid cache entries. 

3) The Server maintains the pull history for each client and when a (key,value) pair is changed at server, it 

pushes updates to all interested
*
 clients immediately. 

*
 In Scenario 1a client is interested in a (key, value) pair if he pulled it off server previously. The above 

assumption is true as client interests in Scenario 1 are required to be stabilized.  

Details of Implementation: 

Server:  

The Server as implemented in Scenario 1 is the same as Scenario 0 with the exception of maintaining per 

client pull histories.  

When a client requests the server for a value corresponding to a given key (issues a pull), the server 

fetches the same off the hash table and returns it to the client. The requested key is then made a part of the 

client’s pull history. The pull history for each client is a linked list of previously requested keys and is 

identified by the client’s unique ID. In the future when the server modifies a (key, value) pair it will 

immediately push updates to all clients which contain the aforementioned key in their Pull history. This 

helps keep the client cache entries current and valid at all times.  

It is important to keep in mind that in Scenario 1 the Server is charged for every Pull issued to it, but all 

pushes are free of charge as the client interests stabilize with time. 

Client: 

The Client as implemented for Scenario 1 is exactly the same as that in Scenario 0.  

However unlike Scenario 0 , clients in Scenario 1 receive regular updates from the server. When an 

update for a given key is received at client, the clients checks to see if an entry corresponding to the given 

key is present in local cache; If so the entry is modified to reflect the current update. 
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 Here as the interests of Clients stabilize with time all cache entries are significant and all push updates 

are necessary.  

Performance Evaluation: 

In Scenario 1 the server does a certain amount of additional work and bookkeeping in order to reduce the 

net pull charge . For each active client the server maintains a “pull history”. This data structure is a 

reflection of all the unique pull requests made by a given client in the past. The additional work at server 

can be categorized into creating and maintaining the pull history while the additional bookkeeping/storage 

corresponds to the space needed to store the pull history itself. The cost of maintaining the pull history , is 

the processing burden incurred by the server in pushing updates to interested clients when changes have 

been made to the centralized hash table. This helps ensure that the client cache entries always up to date.  

Thus the net processing overhead per client is calculated as, 

 NET PROCESSING OVERHEAD = NET PULL CHARGE + NET COST FOR CREATING AND 

MAINTAINING PULL HISTORY 

where, 

NET PULL CHARGE =                                                

COST OF CREATING PULL HISTORY = 

                                                            

  COST OF MAINTAINING PULL HISTORY = NET PUSH CHARGE = 

 

                                   
            

                    

   

                                                                                      

The net storage overhead per client is calculated as, 

NET STORAGE OVERHEAD =                                                         

The total processing and storage overhead over all clients is calculated as,  

                          

                         
                 
                

                       

                      
                 
                

The best case performance for Scenario 1 occurs under conditions when no changes are made to the 

centralized hash table, and the number of clients associated with the server = 1. Under such conditions, 

each read request made for the first time gets pulled off the server and any read request made for a 
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previously read (key, value) pair  is satisfied using local cache. Any extra overhead incurred by this 

scenario as opposed to Scenario 0 is due to the creation of pull history.  

Scenario 
# 

Conditions for 
Best Case 

Total Processing Overhead for Best 
Case 

Total Storage Overhead for 
Best Case  

1 r >= R 
f(C )= 0 
N=1 

=              
                  
= 101R 
=ϴ(R) 

=              
=ϴ(R) 



The worst case performance for Scenario 1 occurs when the (key, value) pairs stored at the centralized 

hash table are changed with a high frequency, and the number of clients associated with server is some n 

>= 1. Specifically we require  f(C) =1/r ,i.e. all (key, value) pairs are changed exactly once between any 

two read requests issued by a client .Under such conditions, the first time a key is read at a client, it is 

pulled off the server, any read requests made thereafter (for the same key) are satisfied using local cache. 

This is possible because each time a (key, value) pair is changed at server, an update is sent to all 

interested
*
 clients immediately. 

Scenario # Conditions for Worst Case Total Processing Overhead  for 
Worst Case  

Total Storage 
Overhead for Worst 
Case  

1 r>=R 
f(C )= 1/r 
N>=1 

=                  

                   
 

 
 

           
      

 
  

         $ 

=O(NR) 
 

=    
            
=ϴ(NR) 

 

*In Scenario 1a client is interested in a (key, value) pair if he pulled it off server previously. The above 

assumption is true as client interests in Scenario 1 are required to be stabilized. 

$
 Under the conditions for Worst Cast performance, the number of pushes received per client = 

1+2+ 3+……+R-1+ ……R+R(r-R times) =        
                     + r-R(R) 
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 (7) Scenario 2: 

High Level Intuition : 

The operation of Scenario 2 is the same as Scenario 1 except that the interests of clients evolve with time. 

Hence it may so happen that a client may receive a large number of pushes for keys outside its current 

interest. Unused pushes cost the Server, and hence under certain circumstances the net cost of sending 

unused pushes may exceed the net cost of satisfying requests by equivalent pulls and the performance 

Scenario 2 may deteriorate to be worse than that of Scenario 0. 

Pseudo Code: 

1) Client starts by pulling requests from server into an empty cache. 

2) When a (key,value) pair to be read is missing in the client cache or is declared obsolete a pull is issued 

by client to server. All other requests are satisfied by valid cache entries. 

3) The Server maintains the pull history for each client and when a (key,value) pair is changed at server, it 

pushes updates to all interested
*
 clients immediately. 

*In Scenario 2, a client is assumed to be interested in a (key, value) pair if he pulled it off server 

previously. The above assumption is false as client interests in Scenario 2 evolve with time. 

Details of Implementation: 

Server: 

The Server as implemented for Scenario 2 is exactly the same as Scenario 1. 

Client: 

The Client as implemented for Scenario 2 is exactly the same as that in Scenario 1. 

However in case of Scenario 2 where Client interests evolve with time, only cache entries of current 

interest are significant. Other cache entries are insignificant and push updates for them are unnecessary. 

This sending of unnecessary information by server leads to an increased system cost in Scenario 2 as 

compared to Scenario 1. 

Performance Evaluation: 

 The formulae to compute the processing and storage overhead of Scenario 2 is the same as Scenario 1. 

However the two Scenarios differ in their input conditions and hence differ in the actual amount of cost 

incurred. In Scenario 1, the interests of the clients have stabilized with time, hence all pushes made from 

server to client are of client’s interest and are ideally charged zero. In Scenario 2, the interests of the 

clients evolve with time; hence pushes made from server to client may not always serve a purpose and 

contribute to unnecessary overhead 

The best case performance for Scenario 2 occurs under conditions when no changes are made to the 

centralized hash table, and the number of clients associated with the server = 1. Under such conditions, 
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each read request made for the first time gets pulled off the server and any read request made for a 

previously read (key, value) pair  is satisfied using local cache. Any extra overhead incurred by this 

scenario as opposed to Scenario 0 is due to the creation of pull history. The evolving interests of the 

clients are modeled by the fact that r=c’R, where 1<=c’<=1.5. 

Scenario 
# 

Conditions for 
Best Case 

Total Processing Overhead for Best 
Case 

Total Storage Overhead for 
Best Case  

2 r = c’ R 
1<= c’ <= 1.5 
f(C )= 0 
N=1 

=              
                  
= 101R 
=ϴ(R) 

=              
=ϴ(R) 

 

The worst case performance for Scenario 2 occurs when the (key, value) pairs stored at the centralized 

hash table are changed with a high frequency, and the number of clients associated with server is some N 

>= 1. Specifically we require  f(C) =1/r ,i.e. all (key, value) pairs are changed exactly once between any 

two read requests issued by a client .Under such conditions, the first time a key is read at a client, it is 

pulled off the server, any read requests made thereafter (for the same key) are satisfied using local cache. 

This is possible because each time a (key, value) pair is changed at server, an update is sent to all 

interested
*
 clients immediately. 

Scenario # Conditions for Worst Case Total Processing Overhead  for 
Worst Case  

Total Storage 
Overhead for Worst 
Case  

2 r = c’ R 
1<= c’ <= 1.5 
f(C )= 1/r 
N>=1 

=                 

                    
 

 
 

           
      

 
 

        $ 

=O(NR) 

=    
            
=ϴ(NR)  

 

*In Scenario 2, a client is assumed to be interested in a (key, value) pair if he pulled it off server 

previously. The above assumption is false as client interests in Scenario 2 evolve with time. 

$
 Under the conditions for Worst Cast performance, the number of pushes received per client = 

1+2+ 3+……+R-1+ ……R+R(r-R times) =        
                     + r-R(R) 
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(8) Scenario 3: 

High Level Intuition : 

To overcome the drawback of receiving unused pushes, Scenario 3 makes use of 2 additional parameters. 

One, being the maxLengthOfPullHistory and two, being threshold number of pushes(called 

DEFAULTPUSHTHRESHOLD). Of the two, maxLengthOfPullHistory is the more important parameter.  

The maxLengthOfPullHistory in the ideal case is exactly equal to the number of keys of current interest. 

In this case, the threshold number of pushes can be as high as infinity. An implicit assumption made here, 

is that the keys of current interest are always the keys requested most recently in time. This assumption 

holds good in case of both stabilized and evolving client interests. Since pushes are made based on the 

keys in pull history, by restricting it to only keys of current interest, we can reduce the number of unused 

pushes to zero. However, if we end up overestimating/underestimating the length of Pull History by a 

large margin, we may receive a large number of unused pushes. Under such circumstances it is better to 

keep the threshold of number of pushes as low as possible (i.e. 1).As  it may be more economical to 

satisfy requests by making required pulls than receiving a large number of unnecessary pushes to keep a 

few entries (correspond to keys of current interest)of local cache valid. 

NOTE:In case of stable requests the maxLengthOfPullHistory and threshold number of pushes can be 

made equal to some infinity to have the same effect as Scenario 1 

Pseudo Code: 

1) Client starts by pulling requests from server into an empty cache. 

2) When a (key,value) pair to be read is missing in the client cache or is declared obsolete, a pull is issued 

by client to server. All other requests are satisfied by valid cache entries. 

3) The Server maintains the pull history for each client and orders the keys in the Pull History in a manner 

such that the head always reflects the oldest Pull and tail the latest. Each key appears at most once in the 

pull history and the pull history is updated as a consequence of pulls alone. 

4) The size of the pull history is restricted to some m; which is a command-line input parameter. Once m 

has been reached and a new entry has to be made, the oldest entry or the head of the pull history is 

deleted. 

5) When a (key,value) pair is changed at server, it pushes updates to all interested
*
 clients immediately. 

The max number of pushes which can be made by server per client is restricted by a pre-defined 

parameter n. Once the server has counted to n-1 for a particular client, it does not do the next push, and 

waits until a pull comes from the client. 

6)Once the pull has come, the server: a) resets the n-counter; b) responds to the pull; c) adds to the client's 

pull history the key at the tail position, dropping if necessary the oldest entry/head from the pull history. 

*
 It is assumed in Scenario 3 that a client is interested in a (key, value) pair only if it is a part of its pull 

history at the time when the check is made. The validity of this assumption depends on the value of 

maxLengthOfPullHistory 
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 Details of Implementation: 

Server: 

 The Server in Scenario 3 is identical to Scenario 1/2 . However, it does some additional bookkeeping in 

order to reduce the number of unused pushes when client requests evolve with time. The first extra 

information maintained at Server in this scenario is the ordered pull history. Here the pull history is 

ordered such that, the head corresponds to the key pulled earliest in time, the tail corresponds to the one 

pulled latest in time. The purpose of this is to help the server exercise control over the contents of pull 

history and to limit it to only keys  of current interest or the ones requested most recently in time. This is 

achieved with the help of a pre-defined parameter maxLengthPullHistory. maxLengthPullHistory, is the 

longest the pull history of each client can get. When a new entry has to be made to the client’s pull history 

and it is already at its maximum length, then the oldest entry or the head is deleted and the new entry is 

added at the tail. If the pull history is kept short automatically the number of pushes made by the server 

per client will also be kept small.  

Another additional parameter maintained at the server is the number of pushes made per client. We have a 

default threshold parameter, DEFAULTPUSHTHRESHOLD, which ensures that at max number of 

pushes that can be made before receiving a pull is DEAULTPUSHTHRESHOLD-1. Once the maximum 

number of pushes has been reached, no more pushes are made until a Pull is issued. This ensures that 

updates are not unnecessarily pushed to clients who have stopped making read requests for (key,value) 

pairs currently being updated. 

Client: 

 The Client in Scenario 3 is identical to the clients in Scenario 1/2 . 

However, clients in Scenario 3 may not always receive an update when a (key,value) pair cached within it 

is updated. The server has a pre-defined threshold called DEFAULTPUSHTHRESHOLD such that it can 

never send more than DEFAULTPUSHTHRESHOLD-1 pushes to any one client before receiving a pull 

from it. Also the length of the pull history (per client) maintained at server is limited, therefore it may so 

happen that a (key,value) pair is cached at client but it does NOT feature in the server’s pull history for it. 

As the server pushes updates only for (key,value) pairs which feature in a client’s pull history, changes 

made to other (key,value) pairs do not result in updates.  

Performance  Evaluation: 

Scenario 3 (when compared with Scenario 2) does some additional bookkeeping and processing to reduce 

the number of unused pushes made when client requests evolve with time. The additional bookkeeping 

includes storing the max length of pull history (m) threshold # of pushes (n), and a count of the number of 

pushes made per client.While, the additional processing involves, one, creating and maintaining an 

ordered pull history of length at most ‘m’and two, ensuring that no pushes are made (until such time a 

pull is received ) once the threshold of ‘n-1’ has been reached. The latter operation requires us to check a 

condition in constant time and is hence not accounted for explicitly, while computing Processing 

Overhead. 
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The formula for computing NET STORAGE OVERHEAD and NET PROCESSING OVERHEAD per 

client is as follows-: 

 NET PROCESSING OVERHEAD = NET PULL CHARGE + NET COST FOR CREATING AND 

MAINTAINING PULL HISTORY 

where, 

NET PULL CHARGE =                                                

COST OF CREATING PULL HISTORY * =                    
                                 
   

                                                                

  COST OF MAINTAINING PULL HISTORY# = NET PUSH CHARGE = 

 

                                   
            

                    

   

                                                                              

 

*The cost of Creating Pull history is grossly overestimated here, where we assume it is equal to 2 times 

the cost to traverse the entire length of pull history post insertion. This is the cost only in the rare case 

when a duplicate node is present, and is located at the very end of the pull history. In general duplicates 

are rare and the cost is typically equal to the cost of traversing the length of pull history once.  

# 
It is assumed in Scenario 3 that a client is interested in a (key, value) pair only if it is a part of its pull 

history at the time when the check is made. The validity of this assumption depends on the value of 

maxLengthOfPullHistory. 

 

NET STORAGE OVERHEAD = 

                                                                         

                  

The total processing and storage overheads over all clients are as follows-: 

                          

                         
                 
                

TOTAL STORAGE OVERHEAD =                                   
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The best case performance of Scenario 3 is similar to Scenario 0, and occurs under conditions where no 

changes are made to the centralized hash table and the number of clients associated with the server equals 

1. Since we know that f(C) = 0, we can adjust the maxLengthPullHistory / m to be 0 as there are no 

changes made to the centralized hash table for which updates need to be pushed to clients. This helps 

bring down the pull history creation and maintenance cost to zero giving us a performance improvement 

over Scenario 1 & 2. 

 

Scenario 
# 

Conditions for Best Case Total Processing Overhead for 
Best Case 

Total Storage Overhead for 
Best Case  

3 r >= R 
f(C )= 0 
N= 1 
maxLengthPullHistory = 0 
DEFAULTPUSHTHRESHOLD = 
1 
 

=              
= 100R 
=ϴ(R)  

=O(1) 

 

The worst case performance for Scenario 3 occurs when the (key, value) pairs stored at the centralized 

hash table are changed with a high frequency, and the number of clients associated with server is some N 

>= 1. Specifically we require  f(C) =1/r ,i.e. all (key, value) pairs are changed exactly once between any 

two read requests issued by a client . Under extreme these conditions (high value of f(C)), it is cheaper to 

make a required pull than to make pushes for all changed keys immediately. By choosing 

maxLengthPullHistory/ m and DEFAULTPUSHTHRESHOLD/n  to be ∞ as we can ensure that 

whenever possible pushes are made in place of pulls. This guarantees worst case performance and hence, 

the first time any key is read at a client, it is pulled off the server, and any read request made thereafter 

(for the same key) is satisfied using local cache. 

Scenario 
# 

Conditions for Worst Case Total Processing Overhead  for 
Worst Case  

Total Storage 
Overhead for Worst 
Case  

3 r >= R 
f(C )= 1/r 
maxLengthPullHistory = ∞ 
DEFAULTPUSHTHRESHOLD 
= ∞ 
N>=1 

=                
       

                   
 

 
 

           
      

 
 

        $ 

 =       
 

=    
            
          % 

=ϴ(NR)  
 

 

% The O (1) storage costs correspond to the constant amount of  memory spent in storing parameters m , 

n and a count of the # of pushes made per client. 
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$
 Under the conditions for Worst Cast performance, the lengths of pull history traversed ,post 

pull history creation = 1+ 2+ 3…+R =      
    

      

 
 and thus the cost of Pull history Creation 

= 2* Length of pull history ,post insertion = (R+1) *PULLCREATIONCOST 
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(9) Scenario 4: 

High Level Intuition : 

Scenario 4 proposes another solution to minimize the number of unused pushes. The solution is based on 

a system wide accepted value called THRESHOLD TIME such that, any entry in pull history time 

stamped, at current time- THRESHOLD TIME or earlier is considered stale and eliminated. If 

THRESHOLD TIME is too small then the solution proposed would be identical to Scenario 0. If 

THRESHOLD TIME is too large then the solution would have the same effect as Scenario 2. Hence in 

the ideal case THRESHOLD TIME should be chosen to be the minimum possible value such that any key 

pulled at time current time -THRESHOLD TIME or earlier would  no longer be of client’s current interest 

and can be eliminated. Thus by limiting the Pull History to only keys of client interest we can minimize 

the number of unused pushes, while simultaneously keeping the number of pulls as low as possible. 

NOTE:In case of stable requests the THRESHOLD TIME can made equal to some infinity to have the 

same effect as Scenario 1 

Pseudo Code: 

1) Client starts by pulling requests from server into an empty cache. 

2) When a (key,value) pair to be read is missing in the client cache or is declared obsolete a pull is issued 

by client to server. All other requests are satisfied by valid cache entries. 

3) The Server maintains the pull history for each client and each key in the pull history is associated with 

the timestamp of its last pull( by the given client). Each key appears at most once in the pull history and 

the pull history is updated on pulls and pushes. 

4) When a (key,value) pair is changed at server, it pushes updates to all interested
*
 clients immediately. 

5)There is a single system-wide threshold for the staleness (relative) of a timestamp in  pull history and 

each time the server scans the pull histories of clients(on a pull or before a push), it will piggyback on this 

scanning to drop all stale entries in pull history. 

* 
In Scenario 4 a client is interested in a (key, value) pair, if the key is a part of its recorded pull history at 

the time the check is made. The validity of this assumption depends on the accuracy of 

THRESHOLDTIME. 

Details of Implementation: 

Server:  

The Server in Scenario 4 is identical to Scenario 1/2. However, the Server in Scenario 4 does additional 

bookkeeping in order to reduce the number of unused pushes made when clients requests evolve with 

time. The first extra information maintained at server in this scenario, is the time stamped pull history. 

Here each key in pull history is associated with the time stamp of when the last pull for the same was 

made. Also ,the server holds a pre-defined a universal constant ,THRESHOLDTIME to determine 

staleness of pull entries. A stale/obsolete entry is one whose associated time stamp is current time –
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THRESHOLDTIME or earlier. Since the server regularly scans the Pull history (one, when a (key,value) 

pair is changed at hash store and two, when a pull from the corresponding client arrives), each time it 

does so it can automatically discard all pull entries which are now obsolete. Thus by this approach the 

pull history is always limited to those keys which have been requested most recently in time, and are 

hence of client’s current interest. 

Since pushes are made to clients based on their pull histories, limiting the pull histories of clients to the 

most recently requested keys also limits the number of unused push updates made and in the ideal case 

reduces them to zero. 

Client: 

The Client in Scenario 4 is identical to the clients in Scenario 1/2. 

However, clients in Scenario 4 may not always receive  updates when a (key,value) pairs cached within 

them are changed. This can be attributed to the fact that the Server in Scenario 4 always limits the pull 

histories of clients to keys which have been pulled most recently in time(Current time –

THRESHOLDTIME or earlier) and only pushes updates for the same. 

Performance Evaluation: 

Scenario 4 (when compared with Scenario 2) does some additional bookkeeping and processing to reduce 

the number of unused pushes made when client requests evolve with time. 

The additional bookkeeping involves storing a threshold value, THRESHOLDTIME to indicate staleness, 

and the additional processing involves creating and maintaining a pull history containing only those 

entries which are fresh (i.e. entries whose associated timestamp is strictly earlier than Current Time- 

THRESHOLDTIME). The formula for computing NET PROCESSING OVERHEAD and NET 

STORAGE OVERHEAD per client is as given below-: 

 NET PROCESSING OVERHEAD = NET PULL CHARGE + NET COST FOR CREATING AND 

MAINTAINING PULL HISTORY 

where, 

NET PULL CHARGE =                                                

COST OF CREATING PULL HISTORY =                    
                                 
   

                                                         

  COST OF MAINTAINING PULL HISTORY# = NET PUSH CHARGE = 
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NET STORAGE OVERHEAD = 

                                                                           

#
A client is interested in a (key, value) pair in Scenario 4 only if it is a part of its pull history at the time 

when the check is made. The validity of this assumption depends on the accuracy of THRESHOLDTIME. 

The total processing and storage overheads over all clients are as follows-: 

                          

                         
                 
               

TOTAL STORAGE OVERHEAD =                                    
              
      

                       

The best case performance of Scenario 4 occurs under conditions when no changes are made to the 

centralized hash table and the number of clients associated with server = 1. As there are no changes being 

made to the hash table, we have no updates to send and hence no information about past requests needs to 

be maintained. Thus, the THRESHOLDTIME is chosen to be infinitesimally small such that, every pull 

request deletes all previously requested keys from the client’s pull history (if any) such that the NET 

STORAGE OVERHEAD at server per client at is at most one. This gives us a performance (with respect 

to storage) similar to Scenario 0. 

Scenario 
# 

Conditions for 
Best Case 

Total Processing Overhead for Best 
Case 

Total Storage Overhead for Best 
Case  

4 THRESHOLDTIME 
<< 1/r 
r >= R 
f(C )= 0 
N=1 
  

=                   
                     
                 
= R(102) -1 
= ϴ(R)  

= 

STORAGECOSTTHRESHOLD  
= O(1) 

 

The worst case performance for Scenario 4 occurs when the (key, value) pairs stored at the centralized 

hash table are changed with a high frequency, and the number of clients associated with server is some N 

>= 1. Specifically we require f(C) =1/r, i.e. all (key, value) pairs are changed exactly once between any 

two read requests issued by a client.  

As THRESHOLDTIME is chosen to be ∞, no key is ever deleted from a client’s pull history, and clients 

receive updates when any (key, value) pair they requested in the past is changed. Thus under the extreme 

condition, where  f(C) = 1/r, between any 2 read requests issued by a client, it receives as many updates as 

the current length of its pull history.  

Scenario 
# 

Conditions for 
Worst Case 

Total Processing Overhead  for 
Worst Case  

Total Storage Overhead for 
Worst Case  

4 THRESHOLDTIME 
= ∞ 

=                
      

 
 =NR + 

STORAGECOSTTHRESHOLD  
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r >= R 
f(C )=  1/ r 
n>=1 

                   
 

 
 

           
      

 
 

         

 =       
  

=ϴ(NR)  
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(10) Scenario 5: 

High Level Intuition : 

In Scenario 5 deferred updates are made in place of immediate updates. When client’s interests stabilize 

with time, all updates are valid and all pushes are free of charge. Under such circumstances, deferred 

updates cannot provide a performance improvement over immediate updates. However by ensuring 

periodic updates occur often enough (small values of DEFAULTTIMEOUT) Scenario 5 can be made to 

perform equivalent to Scenario 1. 

When client interests evolve with time, unused pushes pose a problem. By applying deferred updates in 

place of immediate updates, the cost of pushes (unused) can be minimized(due to the benefits of 

batching). In the extreme case where it may be more economical to satisfy requests by making equivalent 

pulls than receiving a large number of (unused)pushes, Scenario 5 can be tweaked 

(DEFAULTTIMEOUT= ∞) to perform equivalent to Scenario 0, where the number of pushes made equal 

zero. 

Pseudo Code: 

1) Client starts by pulling requests from server into an empty cache. 

2) When a (key,value) pair to be read is missing in the client cache or is declared obsolete a pull is issued 

by client to server. All other requests are satisfied by valid cache entries. 

3) The Server maintains the pull history for each client and each key in the pull history is associated with 

a field which indicates whether this (key,value) pair has been changed since the last pull/push(“changed”, 

“unchanged”). 

4) When a client pulls an entry from server. The key is made a part of client pull history ( if not already 

present ) and its associated field is set to “unchanged” to indicate that no changes have been made to the 

key since its last pull. 

5) When a (key,value) pair is changed at server, the pull histories of all clients containing this key are 

updated to reflect the now “changed” state. 

6) The Server periodically scans the pull history of all clients .If there are 1 or more keys in a client’s pull 

history which have been changed since the last push/pull, the server pushes updates for all such keys at 

once via batching .The associated fields of these keys are then set to reflect the current “unchanged” state. 

Details of Implementation: 

Server: The Server in Scenario 5 is identical to Scenario 1/ 2. However ,it performs deferred updates in 

place of immediate updates. To facilitate the above operation, each key in a client’s pull history is 

associated with a field indicating whether a given key has been changed since its last push/pull. When a 

(key,value) pair is changed at server, the pull histories of all clients containing this key are updated to 

reflect the now “changed” state. Conversely, when a pull for a given key arrives from a client, the server 

adds the key to corresponding pull history( if not already present) and sets its state to “unchanged”.  
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Periodically the Server checks the pull histories of all clients, if there are 1 or more keys in a given 

client’s pull history which have been changed since the last push/pull, the server pushes updates for all 

such keys simultaneously (batching ). It then sets their associated fields to reflect the current “unchanged” 

state. This periodic scanning by Server is done at the rate of once per DEFAULTTIMEOUT, where 

DEFAULTTIMEOUT, is a pre-determined constant.  

Client: 

The Client in Scenario 5 is identical to the clients in Scenario 1/2. 

However, clients in Scenario 5 do not receive immediate updates when a (key, value) pairs cached within 

them are changed. This can be attributed to the fact that the Server in Scenario 5 pushes updates 

periodically rather than as an immediate consequence of changes being made to the centralized hash table. 

Performance Evaluation: 

In Scenario 5, we perform deferred updates in place of immediate updates. Hence, we do not push updates 

as an immediate consequence of changes made to the centralized hash table. Rather, we periodically 

(every DEFAULTTIMEOUT) scan the pull histories of all clients, and push updates to only those clients 

who contain one or more changed keys in their pull histories. Thus the additional work done at server in 

Scenario 5 (when compared with Scenario 0) is the periodic scanning of pull histories followed by 

possible pushing of updates. The additional bookkeeping at Scenario 5(when compared with Scenario 0) 

corresponds to storing a per client “pull history”. The “pull history” is a list of all unique keys requested 

by a client in the past and each key in the pull history is associated with a Boolean value indicating 

whether it has been changed since last pull/push. 

Thus the net processing overhead per client is calculated as, 

 NET PROCESSING OVERHEAD = NET PULL CHARGE + NET COST FOR CREATING AND 

MAINTAINING PULL HISTORY 

where, 

NET PULL CHARGE =                                                

COST OF CREATING PULL HISTORY = 

                                     
                                 
   

                                                         

COST OF MAINTAINING PULL HISTORY 

=
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NET COST OF SCANNING PULL HISTORY ENTRIES* 

=                     
                                  
     

                                             

 

NET PUSH CHARGE 

=                       
                                  
   

                                                        

It should be noted that Cost of a single push in Scenario 5 is >=PUSHCHARGE depending on the number 

of keys for which an update is being pushed. 

                     

                            

                                                  

 

The net storage overhead per client is calculated as, 

NET STORAGE OVERHEAD = 

                                                       

*The cost of Scanning Pull history is grossly overestimated here, where we assume it is equal to 2 times 

the cost of traversing the entire length of pull history each time it is scanned. This is the cost only in the 

rare case when there the one node to be updated is located at the very end of pull history. Typically the 

cost is closer to traversing the length of pull history 1.5 times.  

The total processing and storage overhead over all clients is calculated as, 

                          

                         
                 
               

TOTAL STORAGE OVERHEAD =                                  
              
    

                           

The best case performance of Scenario 5 occurs under conditions when no changes are made to the 

centralized hash table and the number of clients associated with server = 1. As there are no changes being 

made to the hash table, we have no updates to send and hence the time period to scan for deferred updates 

can be kept as high as ∞, giving us a performance as close as possible to Scenario 1. 

Scenario 
# 

Conditions for Best 
Case 

Total Processing Overhead 
for Best Case 

Total Storage Overhead for Best Case  

5 DEFAULTTIMEOUT =              =               + 
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= ∞ 
r>=R 
f(C) = 0 
N=1 

 
      

 
 

                  
 =       
 

STORAGECOSTDEFAULTTIMEOUT 
 =ϴ(R) 

 

The worst case performance for Scenario 5 occurs when the (key, value) pairs stored at the centralized 

hash table are changed with a high frequency, and the number of clients associated with server is some N 

>= 1. Specifically we require f(C) =1/r, i.e. all (key, value) pairs are changed exactly once between any 

two read requests issued by a client.  

Since DEFAULTTIMEOUT is chosen as the time to change 1 (key, value) pair in the hash table, and as 

all hash table entries are changed between any 2 read requests made by a client, the number of scans made 

between any 2 read requests issued by client is equal to size of the hash table i.e. STORESIZE. At each 

timeout, the entire pull history is at max scanned twice and possibly updates for one or more keys are 

issued. However, we scan the pull history after each change, and hence there is at most one key updated 

in pull history since last scan, and thus rather than gaining the advantage of batching, each time only an 

update for a  single key is pushed. The pushing of individual updates and high rate of scanning under 

conditions where f(C) itself is high gives the worst case performance of Scenario 5.  

  

Scenario 
# 

Conditions for 
Worst Case 

Total Processing Overhead  for 
Worst Case  

Total Storage Overhead for Worst 
Case  

5 DEFAULTTIMEOUT 
=  time to  
change 1 
(key,value) pair in 
the entire hash 
table 
r>=R 
f(C) = 1/r 
N>=1 

=                
      

 
 

                   
 

 
 

           
      

 
 

        
 

 
 

                    
                   

          # 

 =       
  

=NR + 
STORAGECOSTDEFAULTTIMEOUT 
=ϴ(NR)  

 

#Under conditions of the worst case performance the PULLMAINTEANCECOST is multiplied by 

parameter STORESIZE, as STORESIZE is the maximum number of scans which can be performed 

between any 2 read requests made by the client. 
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(11) Experimental Results: 

In this section, via a series of test cases, we developed niche cases for each scenario. For each test case we 

ran, we picked the winning scenario, i.e .the one which performed best under the given set of test 

conditions and designated it to be the niche case for that scenario. The aim of these experiments/test cases 

was to develop a feel/intuition for the performance of each scenario. Now that we are done with our 

experiments, given any arbitrary set of input conditions, we can predict with reasonable accuracy the 

scenario (among all the scenarios being proposed) which will perform best under the aforementioned 

conditions. 

TEST 1: Stable requests with no modifications at server 

Time stamped sequence of operations performed in TEST 1: 

Time Pulls/Reads 

at Client in 

Scenario 0 

Action at 

Server 

1 Read A  

2 Read B  

3 Read C  

4 Read A  

5 Read B  

6 Read C  

7 Read A  

 

Numerical Results 
*
: 

Scenario # Net Processing 

Overhead 

Net Storage 

Overhead 

Scenario 0 300 0 

Scenario 1 303 3 

Scenario 2 Not applicable for stabilized requests 

Scenario 3(Parameters set to 

model Scenario 0, i.e 

maxLengthPullHistory = 0, 

DEFAULTPUSHTHRESHOLD= 

∞) 

303 1 

Scenario 4(Parameters set to 

model Scenario 0, i.e 

THRESHOLDTIME  = 0.1) 

305 1 

Scenario 5(Parameters set to 

model Scenario 0, i.e 

DEFAULTTIMEOUT  = ∞) 

306 3 

 



35 
 

Inference: Scenario 0 wins, as it is the one which incurs the least cost among all scenarios being 

proposed. This can be attributed to the fact that Scenario 0 makes the least investment among all scenarios 

to reduce the cost of cache maintenance, which is zero by default for the conditions of this test case. 

Behavior of Winning Scenario: 

Time Pulls/Reads Action at 

Server 

1 Pull A  

2 Pull B  

3 Pull C  

4 Read A  

5 Read B  

6 Read C  

7 Read A  

 

TEST 2: Stable requests with few updates to keys between read requests for the same (key, value) pairs 

at client. 

Time stamped sequence of operations performed in TEST 2: 

Time Pulls/Reads Action at 

Server 

1 Read A  

2 Read B  

3 Read C  

4  Update A 

5  Update B 

6  Update C 

7 Read A  

8 Read B  

9  Read C  

10 Read A  

 

Numerical Results 
*
: 

Scenario # Net Processing 

Overhead 

Net Storage 

Overhead 

Scenario 0 600 0 

Scenario 1 315.8571 3 

Scenario 2 Not applicable for stabilized requests 
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Scenario 3(Parameters set to 

model Scenario 1, i.e 

maxLengthPullHistory = ∞ 

,DEFAULTPUSHTHRESHOLD= 

∞) 

318.8571 4 

Scenario 4(Parameters set to 

model Scenario 1, i.e 

THRESHOLDTIME  = ∞) 

318.8571 3 

Scenario 5(Parameters set to 

model Scenario 1, i.e 

DEFAULTTIMEOUT  = 

1.5(largest value of timeout such 

that a key pulled in the past need 

not be pulled again at client)) 

323.7142 3 

 

Inference: Scenario 1 wins, as it is the one which incurs the least cost among all scenarios being 

proposed. This can be attributed to the fact that Scenario 1, under the conditions of this test case, makes 

no unused pushes and reads as much as possible from local cache. All requests for a given key (except the 

first) are satisfied by local cache. 

Behavior of Winning Scenario: 

Time Pulls/Reads Action at 

Server 

Pull History 

at Server 

1 Pull A  A 

2 Pull B  B->A 

3 Pull C  C->B->A 

4  Update 

A(Push A) 

       ‘’ 

5  Update 

B(Push B) 

       ‘’ 

6  Update 

C(Push C) 

       ‘’ 

7 Read A         ‘’ 

8 Read B   

9  Read C         ‘’ 

10 Read A         ‘’ 

 

TEST 3: Stable Requests with many updates to key between read requests for the same (key, value) pair 

at client. 

Time stamped sequence of operations performed in TEST 3: 

Time Pulls/Reads Action at 
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Server 

1 Read A  

2 Read B  

3 Read C  

4  Update A 

5  Update B 

6  Update C 

7  Update A 

8  Update B 

9  Update C 

10 Read A  

11 Read B  

12 Read C  

 

Numerical Results 
*
: 

Scenario # Net Processing 

Overhead 

Net Storage 

Overhead 

Scenario 0 600 0 

Scenario 1 333 3 

Scenario 2 Not applicable for stabilized requests 

Scenario 3(Parameters set to 

model Scenario 5, i.e 

maxLengthPullHistory = ∞ 

,DEFAULTPUSHTHRESHOLD= 

∞) 

336 4 

Scenario 4(Parameters set to 

model Scenario 5, i.e 

THRESHOLDTIME  = ∞) 

336 3 

Scenario 5(Parameters set to 

provide an improvement over 

Scenario 1, i.e 

DEFAULTTIMEOUT  = 

2.5(largest value of timeout such 

that a key pulled in the past need 

not be pulled again at client)) 

331 3 

 

Inference: Scenario 5 wins as it is the one which incurs the least cost among all scenarios being 

proposed. This can be attributed to the fact that Scenario 5, makes periodic updates in place of immediate 

updates, and is thus able to push updates to more than a key at once, gaining the advantage of batching. 

Batching helps reduce the cost of cache maintenance. 
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Behavior of Winning Scenario: 

Time Pulls/Reads Action at 

Server 

Pull History 

at Server 

1 Pull A  A(U) 

2 Pull B  A(U)->B(U) 

2.5 Scanning all Pull Histories to make deferred 

updates  

3 Pull C  A(U)-> 

B(U)->C(U) 

4  Update A A(C)-> 

B(U)->C(U) 

5  Update B A(C)-> 

B(C)->C(U) 

5 Scanning all Pull Histories to make deferred 

updates ; Push A,B 

6  Update C A(U)-> 

B(U)->C(C) 

7  Update A A(C)-> 

B(U)->C(C) 

7.5 Scanning all Pull Histories to make deferred 

updates ; Push C,A 

8  Update B A(U)-> 

B(C)->C(U) 

9  Update C A(U)-> 

B(C)->C(C)  

10 Read A   

10 Scanning all Pull Histories to make deferred 

updates ; Push B,C 

11 Read B  A(U)-> 

B(U)->C(U) 

12 Read C           ‘’ 

 

TEST 4: Evolving Requests with Modifications at Server 

Time stamped sequence of operations performed in TEST 4: 

Time Pulls/Reads Action at 

Server 

1 Read A  

2 Read B  

3 Read C  
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Numerical Results 
*
: 

Scenario # Net Processing 

Overhead 

Net Storage 

Overhead 

Scenario 0 800 0 

Scenario 1 Not applicable for evolving requests 

Scenario 2 636 6 

Scenario 3(Parameters set to 

provide an improvement over 

Scenario 2, i.e 

maxLengthPullHistory = 

1(number of keys of interest from 

the past) 

,DEFAULTPUSHTHRESHOLD= 

∞) 

628.5 2 

Scenario 4(Parameters set to 

provide an improvement over 

Scenario 2, i.e 

THRESHOLDTIME  = 5.5(the 

minimum possible value such that  

no key requested at time current 

time – THRESHOLDTIME or 

earlier is of current interest)) 

628.75 3 

4  Update A 

5  Update B 

6  Update C 

7  Update D 

8  Update E 

9  Update F 

10 Read C  

11 Read D  

12 Read E  

13  Update A 

14  Update B 

15  Update C 

16  Update D 

17  Update E 

18  Update F 

19 Read E  

20 Read F  
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Scenario 5(Parameters set to 

provide an improvement over 

Scenario 0, i.e 

DEFAULTTIMEOUT  = 

1.5(largest value of timeout such 

that a key pulled in the past need 

not be pulled again at client)) 

657.25 6 

 

Inference: Scenario 3 and 4 win as they are the ones which incur the least cost among all scenarios being 

proposed. This is because both Scenario 3 and Scenario 4 make an effort to reduce the number of unused 

pushes made when client requests evolve with time, thereby reducing the cost of cache maintenance. 

Behavior of Winning Scenarios: 

Scenario 3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time Pulls/Reads Action at 

Server 

Pull History 

at Server 

1 Pull A  A 

2 Pull B  B 

3 Pull C  C 

4  Update A         ‘’ 

5  Update B         ‘’ 

6  Update C 

(Push C) 

        ‘’ 

7  Update D         ‘’ 

8  Update E         ‘’ 

9  Update F         ‘’ 

10 Read C          ‘’ 

11 Pull D  D 

12 Pull E  E 

13  Update A         ‘’ 

14  Update B         ‘’ 

15  Update C         ‘’ 

16  Update D         ‘’ 

17  Update E 

(Push E) 

        ‘’ 

18  Update F         ‘’ 

19 Read E          ‘’  

20 Pull F  F 
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Scenario 4: 

 

 

*The numerical results stated above are an accurate estimate of the costs incurred per client per scenario. 

In fact, the formula to compute the pull creation cost in certain scenarios is an overestimation of the actual 

cost incurred in most cases. However, all numerical data presented here are accurate measurements and 

no approximation has been performed. However, it should be noted that the Net Processing Overhead and 

Net Storage Overhead mentioned above are the costs incurred per client and not the costs computed over 

all clients in the system, hence they do not include system wide O(1) costs such as 

STORAGECOSTTHRESHOLD, STORAGECOSTM etc. 

 

Time Pulls/Reads Action at 

Server 

Pull History 

at Server 

1 Pull A  A(1) 

2 Pull B  A(1)->B(2) 

3 Pull C  A(1)-> B(2) 

-> C(3) 

4  Update A 

(Push A) 

        ‘’ 

5  Update B 

(Push B) 

        ‘’ 

6  Update C 

(Push C) 

        ‘’ 

7  Update D B(2)-> C(3) 

8  Update E C(3) 

9  Update F  

10 Read C   

11 Pull D  D(11) 

12 Pull E  D(11)-> 

E(12) 

13  Update A         ‘’ 

14  Update B         ‘’ 

15  Update C         ‘’ 

16  Update D 

(Push D) 

        ‘’  

17  Update E 

(Push E) 

E(12)  

18  Update F  

19 Read E   

20 Pull F  F(13) 
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(12)Conclusion: 

The fundamental problem being investigated is the problem of data consistency in a distributed system 

setup. Given a system of N>=1 client computers, interested in a common centralized hash table, we wish 

to design one more techniques to facilitate easy and inexpensive access to the aforementioned table by 

taking advantage of local client caches. Through the course of this technical report, we have studied “the 

problem of coherence of a distributed hash table” (under the realm stated assumptions) in detail and 

proposed as many as five solutions for the same.  

The objective of this report is to not provide one solution to the problem at hand, but to rather develop a 

suite of solutions where one is more appropriate than others based on applied input conditions. To achieve 

the above objective, the performance of each solution has been quantized, and the solutions have been 

implemented and tested. Based on the costs incurred by the different solutions under different input 

conditions, we have developed a good feel/intuition of the performance of each algorithm, and given a set 

of test input conditions, we can now predict (with a reasonable degree of accuracy) the algorithm which 

would perform the best, under the aforementioned conditions. 
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(13)Future Work:  

This technical report studies “the problem of coherence in a distributed hash table”, in detail, but does so 

under a realm of stated assumptions. The assumptions limit the scope of the problem, and changes in 

assumptions stated, can broaden or enhance the scope of the problem.  

However, even within the realm of stated assumptions there are a few problems which are yet to be 

investigated. Firstly, though we have proposed few solutions, which achieve cache consistency, by taking 

advantage of the temporal locality of user queries, we are yet to propose solutions which take advantage 

of spatial locality of user queries. Secondly, we have implicitly assumed that strong consistency is 

expected by all user queries, however not all applications require strong consistency of user queries and 

under certain conditions slightly stale data can be tolerated. Thirdly, the performances of all solutions 

proposed thus far have been thoroughly analyzed from the point of processing overhead. However, the 

storage overhead (or memory requirements) of the algorithms have not been considered as important. 

Hence modifying existing solutions to overcome the aforementioned limitations would be a good line of 

future work. 

A second line of future work can be achieved by relaxing the assumptions which limit the scope of the 

problem. Changes to stated assumptions could include but not be limited to, one, supporting both reads 

and writes at clients and two, removing the assumption which obviates the need to worry about 

concurrency while achieving consistency. 
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