
1

The Problem of Coherence of a Distributed Hash Table

Deepika Balachander

Department of Electrical and Computer Engineering, North Carolina State University

 Raleigh, NC 27695-7911, USA

deepik@ncsu.edu

Rada Chirkova

Department of Computer Science, North Carolina State University

 Raleigh, NC 27695-8206, USA

rychirko@ncsu.edu

Tiia. J. Salo

 IBM Research Triangle Park

NC 27709, USA

tjsalo@us.ibm.com

May 8, 2013

2

(1)Introduction:

The fundamental problem being investigated is the maintenance of data consistency in a distributed

system setup. Consider a set of some N >= 1 computers sharing a common hash table stored at a remote

centralized repository. Each system is interested in a portion of the hash table, and these portions may

overlap. So as to facilitate ease of access, we are allowed to cache a portion of the hash table at each

system. Each system can read data cached at its location, or send requests straight to the remote

repository.

There are three problems to be understood and analyzed here. One, when read requests come in from a

computer, we need to figure out whether those requests can be answered by their local caches or whether

such requests need to be propagated to the remote centralized repository. Two, based on the trail of read

requests coming in from the computers, we should be able to predict the entries of interest and cache them

in advance at the computer location. Three, the most important problem is to provide a consistent view of

the shared resource to all the N computers at all times. We refer to these three problems collectively as

"the problem of coherence of a distributed hash table."

Here onwards, the set of N computers is interchangeably referred to as clients and the remote centralized

repository as server and vice versa.

Work on the problem at hand has the potential to impact a number of other important settings, and is

hence an important problem to solve. The problem of coherence of a distributed hash table is closely

related to a number of other problems, including maintenance of materialized views (MVs) in a

distributed environment, cache coherence in multiprocessor systems, and concurrent processing of tasks

in distributed computing. In Section 2 we discuss in length about how each of these problems are closely

tied to our area of research, why they are important and how the work presented here is different from the

work done in each of them so far.

A significant amount of research has been done in each of these related areas. However, this research can

be best described as a generalization of the problem at hand. For example, with MVs, the view being

materialized could be the answer to any query executed over the base data. However, with respect to the

studied problem, the data being locally cached or “materialized” will always be a subset of rows of the

centralized table. Numerous techniques have been developed for view maintenance of MV. However,

each of these techniques maybe far more generalized and may take a lot more factors into consideration

than what is required to provide an effective solution to the studied problem.

Hence, this project requires us to study techniques from a number of related areas of research and then

tailor them suitably to act as effective solutions to the problem at hand. This makes it interesting and

challenging at the same time.

In this technical report we study "the problem of coherence of a distributed hash table", and propose a

number of solutions for the same. We then implement and test the different solutions and compare their

relative performance under different input conditions. The goal of this report is not to provide one good

solution to the aforementioned problem but to rather provide a series of solutions where some are more

effective than the others, under certain input conditions.

3

(2)Related Work:

The problem of coherence of a distributed hash table is closely related to a number of other problems.

These include maintenance of MV in a distributed environment, cache coherence in multiprocessor

systems, and concurrent processing of tasks in distributed computing. We will now discuss in depth, how

each of these problems are related to the studied problem, their individual importance and general

methods proposed to provide solutions to them so far. In each case we will place special emphasis on how

the scope or approach of these cited works differs from the work done in our current project.

A MV is a database object that contains the results of a query. It may be a local copy of data located

remotely, or may be a subset of the rows and/or columns of a table or join result etc computed over base

data located locally /remotely .

MVs are a natural embodiment of the ideas of pre-computing and caching in databases i.e. instead of

computing a query from scratch over the base data, a database system can use results that have already

been computed, stored and maintained. The ability of MVs to speed up queries, benefit most database

applications ranging from traditional querying and reporting to data mining [1].

To draw an analogy between MVs and the problem at hand, we can think of the hash table at server to be

the base data and the caches maintained at clients to be the derived/materialized data. Past research in

MVs focuses on view selection (what are the right views to materialize to efficiently compute and

maintain the results of a given query), view use (when should MVs be used to answer queries), and view

maintenance (how to keep MVs consistent when changes are made to the base data).As you can see our

problem is closely tied to research in the area of MVs and more so in the area of maintenance and

selection.

Popular research in view maintenance analyze the problem along the timing dimension (immediate vs.

deferred maintenance), information dimension (different levels of data accessible for the purpose of

maintenance) and focuses on using auxiliary views (at times maintaining more can mean maintaining

less) to ease the problem of maintenance. Time as a dimension has been exploited in a couple of our

solutions. However our exploitation of time is not restricted to immediate and deferred maintenance (for

more information refer to section on Scenario 4).

Other relevant research in the area of MVs focuses on developing systematic and automated solutions to

the problem of view selection. In this work, view selection is done by exploiting the temporal locality of

user queries. Wherein the views cached /materialized (if any) always correspond to entries read most

recently in the past. A good direction of future work would be to develop another solution which would

exploit the spatial locality of user queries.

In a shared memory multiprocessor with a separate cache memory for each processor, it is possible to

have many copies of any one instruction operand: one copy in the main memory and one in each cache

memory. When one copy of an operand is changed, the other copies of the operand must be changed also.

Cache coherence is the discipline that ensures that changes in the values of shared operands are

propagated throughout the system in a timely fashion. Caches were developed as a bridge between a high-

speed processor and a relatively slow memory. By storing subsets of the memory (by the principle of

locality of reference) in a fast access region (i.e. the cache), the performance of the system is improved

because most memory accesses can be satisfied by the cache instead of main memory [2].

4

We can draw a parallel between the problem of cache coherence in multiprocessor systems and the

problem at hand by equating the caches of different processors to the local caches at the client computers

and the main memory to the storage at the remote centralized repository. The localities of reference which

can be exploited include temporal and spatial locality. The only difference between in the 2 problems is

that while the local copies cached at the individual processors can be directly modified in a

multiprocessor system, our problem limits all direct modifications to the centralized repository or

equivalently main memory. In other words, we support only reads by client and not both reads and writes.

The two basic methods for insuring cache consistency in multiprocessor systems are hardware

implementations and software protocols.

 In a hardware implementation, special hardware is added to the machine to detect cache accesses and

implement a suitable consistency protocol which is transparent to the programmer and compiler. Popular

hardware based approaches include directory based and snooping based protocols.

 In a software approach, it is the responsibility of the compiler to generate consistent code. Parallel code

may be made consistent by the compiler by inserting additional consistency instructions in the code.

However, the static compiler analysis cannot detect run-time consistency conflicts. Hence, hardware

based implementations are better as they can not only be implemented more efficiently but can also detect

dynamic sharing sequences[2].

However, applying hardware solutions to the problem at hand would limit the clients to only those having

a particular hardware configuration. This can be too restrictive, and hence we are interested in developing

software solutions to the studied problem.

In addition, there are two basic enforcement strategies for insuring that cache lines are consistent. They

are write-update (WU) and write-invalidate (WI). In the write-update protocol, after every write of a data

item by a processor, the copy of the data item in other processor caches and main memory is updated to

the new value. For write-invalidate, a write by a processor on a data item causes a message to be sent to

other processor’s caching the data item to invalidate the cache line containing this data item. If a

processor requires a data item that was previously invalidated, it will reload it into the cache from main

memory [2]. In this project, we develop a set of software protocols based on the aforementioned strategies

of WU and WI.

As mentioned previously, another area of research closely related to the problem at hand, is distributed

computing. In general, distributed computing is any computing that involves multiple computers remote

from each other that each have a role in a computation problem or information processing. In business

enterprises, distributed computing generally has meant putting various steps in business processes at the

most efficient places in a network of computers. In the typical transaction using the 3-tier model, user

interface processing is done in the PC at the user's location, business processing is done in a remote

computer, and database access and processing is done in another computer that provides centralized

access for many business processes. Typically, this kind of distributed computing uses the client/server

communications model and a parallel can be drawn between distributed computing and the problem at

hand by coalescing the operations of step 2 and step 3 of the 3 tier-model to a single step which is

performed at a remote centralized repository.

A common way to address scalability requirements of distributed environment is to employ server

replication and client caching of objects that encapsulate the service state. When there are a number of

copies of the same object, there exists the problem of maintaining consistency among them. As we do not

perform server replication we limit our interest (in distributed computing) to maintaining consistency of

client caches.

 Broadly speaking there are 2 models for consistency in distributed systems. Strong consistency, wherein

after an update completes any subsequent access will return the updated value, the opposite of strong

5

consistency is weak consistency. We are interested in strong consistency and common approaches to

achieve strong consistency include Lock-Based approaches and QUORAM-ASSEMBLY methods.

Consistency with Concurrency is automatically achieved as a part of our current solution as we make an

assumption that obviates the need to handle such cases explicitly (refer Section on problem specification).

However in the absence of this assumption, our solution cannot guarantee strong consistency and

ensuring the same under all conditions would be a good line of future work.

Another important point to note is that the aforementioned problems not independent of each other.

Semantic Caching [3], is a technique which combines the ideas of caching and materialized views. A

semantic cache remembers the semantic descriptions of its contents as view definitions, so that we can

determine the completeness of query answers determined over caches and query the source only when

needed. This idea has been applied to a wide range of settings, including caching for web [4] and mobile

as well as other types of distributed systems.

6

(3) Specifications, Requirements and Measures:

The problem being studied is “the problem of coherence of a distributed hash table” .The system under

study consists of N (where N>= 1) client computers and a single centralized server which houses the

shared hash table. The system design makes a few general assumptions as follows-:

1) The system supports only reads (for (key, value) pairs in the hash table) by clients.

2) The client caches are initially empty. Their size is unbounded.

3) When a (key, value) pair is changed at server, the corresponding entry if previously cached at a client

now becomes invalid. In order to inform clients of this now obsolete cache entry, the server broadcasts an

invalidate message specific to this key to all active clients. On receiving the invalidate message, a client,

checks to see if the corresponding (key, value) pair is cached in it, and if so, marks it invalid.

Broadcasting ensures that all clients are synchronized in their awareness of an obsolete cache entry.

4) Clients become immediately aware of obsolete cache entries i.e. there is no race condition between the

server announcing a hash-table entry to be invalid and a client requesting that entry. Thus, whenever the

server announces a hash-table entry to be invalid, each client either has requested the old value

previously, or will wait until reception of the broadcasted- invalidate message to request the new value.

There are no read requests made in the interim of a change in (key, value) pair at server and the reception

of a broadcasted invalidate message at client. This assumption guarantees consistency with concurrency.

5) Unless otherwise stated, the size of pull history (if maintained) at server is unbounded.

6) Broadcasting, i.e. pushing updates to all clients on change in a given (key, value) pair irrespective of

their interest is NOT proposed as a solution.

The clients start by pulling hash entries from server and caching them. When a (key, value) pair to be read

by client has a valid entry in its local cache , the read request can be satisfied at the client itself rather than

being re-directed as a pull to server. Thus the goal of maintaining a cache is to satisfy read requests in an

economical manner. However, hash entries are volatile and changes can be made to them at server. Client

read requests cannot be satisfied by stale/obsolete cache entries and we need to develop one or more

solutions to maintain the coherence of (key, value) pairs in client caches as changes are made to their

counterparts at server.

Thus, the objective of the system design to satisfy all read requests made by clients in an economical

manner while factoring in the cost of communication and the cost of maintaining coherence of client

caches. To achieve the above objective we have a proposed a number of solutions.

Once we have developed different algorithms/solutions to solve the fundamental problem (of cache

consistency in a distributed environment), we need to quantify each solution so that we can compare the

performance of one against another under different input conditions. As the goal is to satisfy various read

requests in an economical manner, we list out the various operations involved and the costs incurred in

each case. Performance metrics at server are broadly categorized into Processing Overhead and Storage

Overhead.

Processing Overhead-:

7

1) Pulls made by the client are charged to the server. Pulls are a consequence of obsolete or missed cache

entries at client and each pull has an associated constant cost called the PULLCHARGE.

2) Though used pushes (a push made for a (key, value) pair which will be later read at client is called a

used push, all other pushes are unused) made from server to client are free of charge. The server incurs an

additional cost for every unused push it makes. However, the server has no way of knowing in advance

whether a push is used or unused. To approximate the above calibration, the server charges all pushes

with a blanket PUSHCHARGE and on termination divides the net PUSHCHARGE by the total number of

read requests made. Lower the aforementioned ratio less is cost spent on pushes.

3) The cost to make changes to the centralized hash table is assumed to be zero. Also, the cost of all

actions taken as a consequence of the aforementioned operation, (except for making a push) is assumed to

be zero. E.g. broadcasting invalidates, scanning the pull histories of different clients to determine if they

contain the changed key, etc.

4) The cost to retrieve values from the hash table or any other data structures is assumed to be zero.

However, any additional processing done at the server other than the very basic fetch operation,

corresponds to additional costs, and must be accounted for while quantifying an algorithm. The associated

costs in each case equals COST OF ONE OPERATION * no. of times it is performed. E.g. creating pull

history, maintaining pull history etc.

5) One exception to the above rule is the periodic scanning of pull histories (if done) at server. The

periodic scanning of pull histories is accounted for like any other operation (COST OF ONE

OPERATION * no. of times it is performed), however the net cost is amortized over the total number of

read requests made at client. This is because the scanning of pull histories has a direct impact on cache

maintenance similar to making pushes.

Storage Overhead-:

1) The cost associated with storing the centralized hash table is zero.

2) Though an assumption for unbounded cache size is made at client, the same does not hold good for the

server. Therefore any data structure maintained at server with the exception of the original hash table is

charged to server. The cost associated with storing additional data structures is given as COST OF

STORING ONE INSTANCE* no. of such instances. E.g. storage of pull history, storage of

THRESHOLDTIME etc

3) Each node of the pull history, irrespective of which Scenario it corresponds to, is associated with a

constant storage cost given by PULLSTORAGECOST. Here, we do not take into consideration the

different levels of information maintained by pull history nodes of different Scenarios for e.g. The pull

history is Scenario 1 is just a list of keys, however the pull history in Scenario 4 is a list keys and their

associated timestamps.

Thus we choose to conduct the performance evaluation of different scenarios with a greater emphasis on

processing overhead than storage overhead. Analyzing the performances of different scenarios with equal

or greater importance to storage overhead is a good line of future work.

8

The total (processing and storage) overhead at server is the sum of the net processing and storage costs

incurred at server over all clients. For each Scenario we also determine the best case and worst case

performance at server. In computer science, best or worst case performance of a given algorithm

corresponds to conditions when the resource utilization by the algorithm, is at its very least (minimum),

or at its very most (maximum) respectively. Usually the resource being considered is running time, but it

could also be memory or other resources. We consider the processing and storage overhead for the

purpose of our analysis.

 To determine the best case and worst case of a given Scenario we use the performance measures and

constants specified below-:

r: Number of Read requests made at client

R: Number of unique Read requests made at client

N: Number of clients connected to server

STORESIZE: Fixed size of centralized hash table

f(C)
*
: frequency at which i th entry in hash table changes where i= 1, 2, 3…..STORESIZE =1/ (time to

change 1 (key, value) pair in hash table * STORESIZE).

This can be achieved if entries in the hash table rather than being changed randomly are changed in a

(systematic) round-robin fashion where we loop back to the beginning of the hash table on reaching the

end.

PULLCHARGE = 100, is the cost incurred in pulling a (key,value) pair from server to client.

PUSHCHARGE = 30, is the cost incurred in pushing an update to a single (key,value) pair from server to

client.

COSTOFADDEDPUSH= 10, is the cost incurred in adding an extra update to an existing push so as to

gain the advantage of batching.

PULLCREATIONCOST = 1, is the cost incurred in traversing a single node in pull history (during the

process of pull history creation) or adding a single node to the existing pull history.

STORAGECOST = 1, is the cost incurred in terms of memory usage in adding a single node to the

existing pull history.

STORAGECOSTM = 1, is the cost incurred in terms of memory usage in storing a parameter m in

Scenario 3.

STORAGECOSTN = 1, is the cost incurred in terms of memory usage in storing a parameter n in

Scenario 3.

STORAGECOSTCOUNT = 1, is the cost incurred in terms of memory usage(per client) in storing the

count of the # of pushes made so far, in Scenario 3.

9

STORAGECOSTTHRESHOLD = 1, is the cost incurred in terms of memory usage in storing parameter

THRESHOLDTIME, in Scenario 4.

STORAGECOSTDEFAULTTIMEOUT = 1, is the cost incurred in terms of memory usage in storing

parameter DEFAULTTIMEOUT, in Scenario 5.

PULLMAINTENANCECOST = 1,is the cost incurred in traversing a single node of pull history, during

the process of making periodic scans in Scenario 5.

* For purposes of performance evaluation we assume that incoming read requests arrive at certain

minimum rate such that f(C) cannot be increased to > 1/r

10

(4)Summary of the Proposed Scenarios:

The primary objective of this technical report is to study “the problem of coherence of a distributed

hash table” and to provide one or more economical solutions for the same. To achieve the above

objective we have proposed a number of solutions and tested them under varying input conditions.

Each solution along with the broad class of input conditions for which it has been tested constitutes a

scenario. We will now discuss briefly the different scenarios being proposed and study their

comparative merits.

Scenario 0 is the most basic scenario where the server puts no effort into minimizing the cost of

communication or the cost of cache maintenance. Here no assumptions are made about the client’s

requests/interests, they can either be stable or evolve with time. When a (key, value) pair to be read

by a client has a valid entry in local cache, it is read from the cache, else the request is re-directed as a

pull to server.

Under circumstances when all client reads are unique or when hash entries of client interest are

slightly volatile or completely non-volatile, this system design can be shown to be the most

economical among all solutions being proposed. This can be attributed to the fact that this scenario

makes the least investment among all scenarios in order to reduce the overall system cost. However,

in cases where the hash entries of client interest are moderate -to- highly volatile, the same key may

be repeatedly pulled off server resulting in a high system cost.

In Scenario 1 the server maintains a data structure, the pull history, to reduce costs of communication

and cache maintenance. The pull history is maintained on a per client basis and is an unordered list of

the unique keys requested by a client in the past. This scenario makes an assumption that the client’s

requests/interests stabilize with time. Thus, when a change is made to a (key,value) pair at server, the

serves pushes updates to all clients who contain the aforementioned key in their pull history. This

ensures that client caches are always up to date. Since the requests of clients are stable, all pushes

made are of client interest and the cost of cache maintenance is zero (as stated by assumptions, used

pushes are free of charge).

In this scenario when a read (for a specific key) is made by a client, for the first time, it is pulled from

server. Thereafter all requests for the key are satisfied by cache. Hence, this scenario is more

economical than Scenario 0 when hash entries of client interest (which is assumed to be stable) are

moderate-to- highly volatile.

Scenario 2 uses the solution proposed in Scenario 1 and tests its effectiveness against evolving client

interests. In accordance to the proposed solution, whenever a change is made to a (key, value) pair at

server, the server pushes updates to all clients who contain the aforementioned key in their pull

history. This results in an increased system cost because, clients’ interests evolve with time, and a key

pulled in the past may no longer be of client interest, and as stated by assumptions, the server is

charged for every unused push it makes. Thus Scenario 2 may be as bad Scenario 0 if not worse when

client interests (which evolve with time) are volatile.

To minimize the number unnecessary/unused pushes, the solution proposed in Scenario 2 is extended

in Scenario 3. In Scenario 3 the pull history per client is an ordered (based on time of latest pull) list

11

of unique keys, pulled by clients in the past. Also, the length of the pull history is limited to some

maxLengthOfPullHistory. If a new entry has to be added to the pull history, which is of length

maxLengthOfPullHistory, the oldest entry is deleted. Further, in Scenario 3 the number of contiguous

pushes made per client is also limited to some value, once the threshold is reached,pushes to the client

resume only on receiving a pull.

If the maxLengthOfPullHistory is fixed to equal (or be slightly greater/lesser than) the number of

keys in client’s current interest and the threshold number of pushes is kept as high as infinity, the

number of unused pushes can be reduced to zero(or made close to zero).Under such conditions

Scenario 3 is far more economical than Scenario 2 and Scenario 0. However, if the

maxLengthOfPullHistory is much lesser or greater than the number of keys in client’s current interest

, the threshold number of pushes can be kept as low as 1 so that the performance is no worse than

Scenario 0. It should be noted for stable requests the number of keys of client’s current interest equal

the number of unique requests made in the past, and for this specific case can be approximated to

infinity.

However, there is no way to know how many keys would be in client interest. Hence it is difficult to

fix the value of maxLengthOfPullHistory to get a performance improvement over Scenario 0and

Scenario 2. To overcome the above drawback, Scenario 4 was proposed. The solution in Scenario 4 is

similar to that proposed in Scenario 2, except that each key in pull history is also associated with the

timestamp of its latest pull. The system also has a threshold parameter for staleness,

THRESHOLDTIME, such that, each time the server scans the pull history of a client, it deletes all

pull entries time stamped at time Current Time- THRESHOLDTIME or earlier. THRESHOLDTIME

is chosen to be the minimum possible time such that the probability of a client being interested in a

key pulled at Current Time –THRESHOLDTIME or earlier is low. As long as THRESHOLDTIME is

chosen well, the number of unused pushes can be minimized and even reduced to zero. Though the

number of pulls /number of unused pushes maybe slightly more than the number of pulls /number of

unused pushes made in ideal case in Scenario 3, Scenario 4 is more practical than Scenario 3 and with

a high probability provides a performance improvement over Scenario 0 and Scenario 2. It should be

noted for stable requests THRESHOLDTIME should equal infinity, as all keys pulled in the past are

of client’s current interest.

All scenarios discussed so far make immediate client updates, however Scenario 5 explores the idea

of deferred updates. In Scenario 5, the server maintains pull histories per client similar to Scenario 1.

In addition, each key in the pull history has an associated field to specify whether it has been changed

since last pull/push. This helps the server scan through the pull histories of all clients once every

DEFAULTTIMEOUT, and push updates to only those clients who have 1(or more) keys which have

been changed since last pull/push. Hence updates to clients are not immediate but potentially

periodic. This scenario has been tested for both stabilized and varying client interests. For stabilized

interests, (provided DEFAULTTIMEOUT is chosen to be suitably small), this scenario is as good as

Scenario 1. In case of varying client interests, this scenario can perform as well as Scenario 2,(by

choosing small to intermediate values of DEFAULTTIMEOUT), in cases where Scenario 2 is better

than Scenario 0 , and no worse than Scenario 0 otherwise (by choosing DEFAULTTIMEOUT = ∞).

12

Thus we have proposed a number of solutions to fulfill the objective of satisfying read requests at

clients in an economical manner. The effectiveness of a given solution is dependent on input

parameters such as the stability of incoming read requests and the frequency of changes made at the

centralized hash table etc. Our goal with this project is to test the different solutions under various

input conditions and to determine a niche case for each , where its performance is the best amongst all

solutions being proposed. This would help us develop a feel/ intuition for the performance of each

solution (under various input conditions) and help us pick the best given a set of arbitrary input

conditions.

13

(5)Scenario 0:

High Level Intuition :

In Scenario 0 the client does all the work and the server does zero work. When a previously read (key

,value) pair needs to be read again at the client, it is simple read off local cache if no changes have been

made to the (key, value)pair since it was last read. However, if the (key, value) pair to be read is missing

in local cache or has an obsolete cache entry, a pull needs to be issued from client to server.

Pseudo Code:

1) Client starts by pulling requests from server into an empty cache.

2) When a (key,value) pair to be read is missing in the client cache or is declared obsolete a pull is issued

by client to server. All other requests are satisfied by valid cache entries.

Details of Implementation:

Server:

At the server a hash table (i.e. a set of (key, value) pairs) is read off a notepad file and is stored in an array

of hash nodes of size STORE SIZE. Different values hashing to the same location are saved using

separate chaining. The size of the array can be changed such that the separate chains are at maximum 3

nodes deep to ensure a reasonably good performance.

Once the hash table is setup, the server waits on a socket listening for client connections. Once the server

connects to a client, the number of active clients is incremented by one and the client is allocated its own

individual socket. The client can use this socket to send read requests to server and this mechanism helps

the server communicate with many clients simultaneously. When a client requests a value corresponding

to a given key (Pull), the server fetches the same off the hash table and returns it to the client. Each time a

pull takes place, the server outputs a) the ID of the client that has done the pull b) the total number of

pulls so far from that client and c) the total number of pulls overall so far.

Clients can also request to be disconnected from the server. Each time a client disconnects, the server

decrements the number of active clients and outputs a) the ID of the client which has disconnected, b) the

amount by which it charged the server c) the list of keys it read during its lifetime and the number of

reads it made for each. The server also maintains an “importance” co-efficient for each client. By default

the importance co-efficient for all clients is unity. This co-efficient helps the server weigh in the costs of

different clients by factoring in their relative importance such that the net cost at server is skewed in the

direction of the more important clients.

A module associated with server can be used to make changes to (key, value) pairs stored in hash table.

When a change is made to a given (key, value)pair, the server broadcasts an invalidate message to notify

all clients in the system.

The server can also quit if the number of active clients is zero. Just before the server quits/exits, it outputs

a) the total number of pulls made per client and b) the total number of pulls made over all clients, over the

course of its service duration.

14

Client:

Each client maintains a local cache, which is initially empty. The cache is designed to be a list of unique

keys requested by client in the past. Each key in the cache has an associated value, a state and a count of

the number of it has been read. The state helps differentiate valid and in-valid entries and the count plays

a role in performance evaluation. The client first connects to the server so that any read requests which

lead to cache misses or obsolete/in-valid cache entries can be redirected to it (as pulls).

When a pull for a given key is made from client to server, the pulled key is added to local cache (if not

already present) , its value and count are updated to reflect current pull and its state is set to “valid”. If

instead the read request is satisfied by a local cache entry, its count is simply incremented by one.

In addition to receiving replies for pulls , clients also receives key specific “in-validate” messages. When

such a message is received, the client checks to see if the aforementioned key has an entry in its local

cache. If so, the state of such an entry is now made “in-valid”. This ensures that read requests made for

the same key in the future are re-directed to server (as pulls) rather than being satisfied by the now

“invalid” cache entry.

Clients have the ability to disconnect from server. Just before disconnection it sends a message to server

containing the list of keys it read during its lifetime and the number of reads it made for each. This is done

with the help of the count values for entries in local cache, and is used by server to compute amortized

(per client) maintenance costs.

Performance Evaluation:

In scenario 0, by definition, there is zero work done at the server. Also no additional data structure is

maintained at server.

Whenever clients request to read (key, value) pairs from server, the server responds by retrieving the

same from the centralized hash table and delivering the result to the client. Hence the only cost incurred

by the system is the net pull charge. Where, the “pull charge” accounts for the cost incurred in re-

directing read requests from client to server and in communicating the returned result/(key, value) pair

from server to client.

The NET PROCESSING OVERHEAD per client is the sum of all pull charges incurred at the server due

to that client.

 NET PROCESSING OVERHEAD = NET PULL CHARGE =

Since no additional data structure is maintained at server, NET STORAGE OVERHEAD per client is 0.

 NET STORAGE OVERHEAD= 0

The total processing and storage overhead over all clients is calculated as,

15

The best case performance for Scenario 0 occurs under conditions when no changes are made to the

centralized hash table, and the number of clients associated with the server = 1. Under such conditions,

each read request made for the first time gets pulled off the server and any read request made for a

previously read (key, value) pair is satisfied using local cache.

Scenario

Conditions for Best
Case

Total Processing Overhead for
Best Case

Total Storage Overhead for
Best Case

0 r >= R
f(C)= 0
N=1

=
= 100R
=ϴ(R)

0

The worst case performance for Scenario 0 occurs when the (key, value) pairs stored at the centralized

hash table are changed with a high frequency, and the number of clients associated with server is some N

>= 1. Specifically we require f(C) =1/r ,i.e. all (key, value) pairs are changed exactly once between any

two read requests issued by a client .Under such conditions, each read request by a client results in a pull

being made to server, causing the server to incur an extremely high pull charge.

Scenario

Conditions for Worst
Case

Total Processing Overhead for
Worst Case

Total Storage Overhead for
Worst Case

0 r>=R
f(C)= 1/r
N>= 1

=
 =100nr
=ϴ(Nr)

0

16

 (6) Scenario 1:

High Level Intuition :

In Scenario 1 the server maintains per client pull histories. An implicit assumption is made that a client is

interested in all (key,value) pairs that feature in its pull history. When any change is made to a (key,

value) pair at server, it pushes updates to all clients interested in it immediately. Thus only when a key is

being read for the first time at client, a pull is issued to server , thereafter all read requests are satisfied by

local cache entries. As the interests of the clients stabilize with time, all push updates are valid and since

valid pushes are free of charge (as opposed to Pulls) Scenario 1 provides a significant performance

improvement over Scenario 0.

Pseudo Code:

1) Client starts by pulling requests from server into an empty cache.

2) When a (key,value) pair to be read is missing in the client cache or is declared obsolete a pull is issued

by client to server. All other requests are satisfied by valid cache entries.

3) The Server maintains the pull history for each client and when a (key,value) pair is changed at server, it

pushes updates to all interested
*
 clients immediately.

*
 In Scenario 1a client is interested in a (key, value) pair if he pulled it off server previously. The above

assumption is true as client interests in Scenario 1 are required to be stabilized.

Details of Implementation:

Server:

The Server as implemented in Scenario 1 is the same as Scenario 0 with the exception of maintaining per

client pull histories.

When a client requests the server for a value corresponding to a given key (issues a pull), the server

fetches the same off the hash table and returns it to the client. The requested key is then made a part of the

client’s pull history. The pull history for each client is a linked list of previously requested keys and is

identified by the client’s unique ID. In the future when the server modifies a (key, value) pair it will

immediately push updates to all clients which contain the aforementioned key in their Pull history. This

helps keep the client cache entries current and valid at all times.

It is important to keep in mind that in Scenario 1 the Server is charged for every Pull issued to it, but all

pushes are free of charge as the client interests stabilize with time.

Client:

The Client as implemented for Scenario 1 is exactly the same as that in Scenario 0.

However unlike Scenario 0 , clients in Scenario 1 receive regular updates from the server. When an

update for a given key is received at client, the clients checks to see if an entry corresponding to the given

key is present in local cache; If so the entry is modified to reflect the current update.

17

 Here as the interests of Clients stabilize with time all cache entries are significant and all push updates

are necessary.

Performance Evaluation:

In Scenario 1 the server does a certain amount of additional work and bookkeeping in order to reduce the

net pull charge . For each active client the server maintains a “pull history”. This data structure is a

reflection of all the unique pull requests made by a given client in the past. The additional work at server

can be categorized into creating and maintaining the pull history while the additional bookkeeping/storage

corresponds to the space needed to store the pull history itself. The cost of maintaining the pull history , is

the processing burden incurred by the server in pushing updates to interested clients when changes have

been made to the centralized hash table. This helps ensure that the client cache entries always up to date.

Thus the net processing overhead per client is calculated as,

 NET PROCESSING OVERHEAD = NET PULL CHARGE + NET COST FOR CREATING AND

MAINTAINING PULL HISTORY

where,

NET PULL CHARGE =

COST OF CREATING PULL HISTORY =

 COST OF MAINTAINING PULL HISTORY = NET PUSH CHARGE =

The net storage overhead per client is calculated as,

NET STORAGE OVERHEAD =

The total processing and storage overhead over all clients is calculated as,

The best case performance for Scenario 1 occurs under conditions when no changes are made to the

centralized hash table, and the number of clients associated with the server = 1. Under such conditions,

each read request made for the first time gets pulled off the server and any read request made for a

18

previously read (key, value) pair is satisfied using local cache. Any extra overhead incurred by this

scenario as opposed to Scenario 0 is due to the creation of pull history.

Scenario

Conditions for
Best Case

Total Processing Overhead for Best
Case

Total Storage Overhead for
Best Case

1 r >= R
f(C)= 0
N=1

=

= 101R
=ϴ(R)

=
=ϴ(R)

The worst case performance for Scenario 1 occurs when the (key, value) pairs stored at the centralized

hash table are changed with a high frequency, and the number of clients associated with server is some n

>= 1. Specifically we require f(C) =1/r ,i.e. all (key, value) pairs are changed exactly once between any

two read requests issued by a client .Under such conditions, the first time a key is read at a client, it is

pulled off the server, any read requests made thereafter (for the same key) are satisfied using local cache.

This is possible because each time a (key, value) pair is changed at server, an update is sent to all

interested
*
 clients immediately.

Scenario # Conditions for Worst Case Total Processing Overhead for
Worst Case

Total Storage
Overhead for Worst
Case

1 r>=R
f(C)= 1/r
N>=1

=

 $

=O(NR)

=

=ϴ(NR)

*In Scenario 1a client is interested in a (key, value) pair if he pulled it off server previously. The above

assumption is true as client interests in Scenario 1 are required to be stabilized.

$
 Under the conditions for Worst Cast performance, the number of pushes received per client =

1+2+ 3+……+R-1+ ……R+R(r-R times) =
 + r-R(R)

19

 (7) Scenario 2:

High Level Intuition :

The operation of Scenario 2 is the same as Scenario 1 except that the interests of clients evolve with time.

Hence it may so happen that a client may receive a large number of pushes for keys outside its current

interest. Unused pushes cost the Server, and hence under certain circumstances the net cost of sending

unused pushes may exceed the net cost of satisfying requests by equivalent pulls and the performance

Scenario 2 may deteriorate to be worse than that of Scenario 0.

Pseudo Code:

1) Client starts by pulling requests from server into an empty cache.

2) When a (key,value) pair to be read is missing in the client cache or is declared obsolete a pull is issued

by client to server. All other requests are satisfied by valid cache entries.

3) The Server maintains the pull history for each client and when a (key,value) pair is changed at server, it

pushes updates to all interested
*
 clients immediately.

*In Scenario 2, a client is assumed to be interested in a (key, value) pair if he pulled it off server

previously. The above assumption is false as client interests in Scenario 2 evolve with time.

Details of Implementation:

Server:

The Server as implemented for Scenario 2 is exactly the same as Scenario 1.

Client:

The Client as implemented for Scenario 2 is exactly the same as that in Scenario 1.

However in case of Scenario 2 where Client interests evolve with time, only cache entries of current

interest are significant. Other cache entries are insignificant and push updates for them are unnecessary.

This sending of unnecessary information by server leads to an increased system cost in Scenario 2 as

compared to Scenario 1.

Performance Evaluation:

 The formulae to compute the processing and storage overhead of Scenario 2 is the same as Scenario 1.

However the two Scenarios differ in their input conditions and hence differ in the actual amount of cost

incurred. In Scenario 1, the interests of the clients have stabilized with time, hence all pushes made from

server to client are of client’s interest and are ideally charged zero. In Scenario 2, the interests of the

clients evolve with time; hence pushes made from server to client may not always serve a purpose and

contribute to unnecessary overhead

The best case performance for Scenario 2 occurs under conditions when no changes are made to the

centralized hash table, and the number of clients associated with the server = 1. Under such conditions,

20

each read request made for the first time gets pulled off the server and any read request made for a

previously read (key, value) pair is satisfied using local cache. Any extra overhead incurred by this

scenario as opposed to Scenario 0 is due to the creation of pull history. The evolving interests of the

clients are modeled by the fact that r=c’R, where 1<=c’<=1.5.

Scenario

Conditions for
Best Case

Total Processing Overhead for Best
Case

Total Storage Overhead for
Best Case

2 r = c’ R
1<= c’ <= 1.5
f(C)= 0
N=1

=

= 101R
=ϴ(R)

=
=ϴ(R)

The worst case performance for Scenario 2 occurs when the (key, value) pairs stored at the centralized

hash table are changed with a high frequency, and the number of clients associated with server is some N

>= 1. Specifically we require f(C) =1/r ,i.e. all (key, value) pairs are changed exactly once between any

two read requests issued by a client .Under such conditions, the first time a key is read at a client, it is

pulled off the server, any read requests made thereafter (for the same key) are satisfied using local cache.

This is possible because each time a (key, value) pair is changed at server, an update is sent to all

interested
*
 clients immediately.

Scenario # Conditions for Worst Case Total Processing Overhead for
Worst Case

Total Storage
Overhead for Worst
Case

2 r = c’ R
1<= c’ <= 1.5
f(C)= 1/r
N>=1

=

 $

=O(NR)

=

=ϴ(NR)

*In Scenario 2, a client is assumed to be interested in a (key, value) pair if he pulled it off server

previously. The above assumption is false as client interests in Scenario 2 evolve with time.

$
 Under the conditions for Worst Cast performance, the number of pushes received per client =

1+2+ 3+……+R-1+ ……R+R(r-R times) =
 + r-R(R)

21

(8) Scenario 3:

High Level Intuition :

To overcome the drawback of receiving unused pushes, Scenario 3 makes use of 2 additional parameters.

One, being the maxLengthOfPullHistory and two, being threshold number of pushes(called

DEFAULTPUSHTHRESHOLD). Of the two, maxLengthOfPullHistory is the more important parameter.

The maxLengthOfPullHistory in the ideal case is exactly equal to the number of keys of current interest.

In this case, the threshold number of pushes can be as high as infinity. An implicit assumption made here,

is that the keys of current interest are always the keys requested most recently in time. This assumption

holds good in case of both stabilized and evolving client interests. Since pushes are made based on the

keys in pull history, by restricting it to only keys of current interest, we can reduce the number of unused

pushes to zero. However, if we end up overestimating/underestimating the length of Pull History by a

large margin, we may receive a large number of unused pushes. Under such circumstances it is better to

keep the threshold of number of pushes as low as possible (i.e. 1).As it may be more economical to

satisfy requests by making required pulls than receiving a large number of unnecessary pushes to keep a

few entries (correspond to keys of current interest)of local cache valid.

NOTE:In case of stable requests the maxLengthOfPullHistory and threshold number of pushes can be

made equal to some infinity to have the same effect as Scenario 1

Pseudo Code:

1) Client starts by pulling requests from server into an empty cache.

2) When a (key,value) pair to be read is missing in the client cache or is declared obsolete, a pull is issued

by client to server. All other requests are satisfied by valid cache entries.

3) The Server maintains the pull history for each client and orders the keys in the Pull History in a manner

such that the head always reflects the oldest Pull and tail the latest. Each key appears at most once in the

pull history and the pull history is updated as a consequence of pulls alone.

4) The size of the pull history is restricted to some m; which is a command-line input parameter. Once m

has been reached and a new entry has to be made, the oldest entry or the head of the pull history is

deleted.

5) When a (key,value) pair is changed at server, it pushes updates to all interested
*
 clients immediately.

The max number of pushes which can be made by server per client is restricted by a pre-defined

parameter n. Once the server has counted to n-1 for a particular client, it does not do the next push, and

waits until a pull comes from the client.

6)Once the pull has come, the server: a) resets the n-counter; b) responds to the pull; c) adds to the client's

pull history the key at the tail position, dropping if necessary the oldest entry/head from the pull history.

*
 It is assumed in Scenario 3 that a client is interested in a (key, value) pair only if it is a part of its pull

history at the time when the check is made. The validity of this assumption depends on the value of

maxLengthOfPullHistory

22

 Details of Implementation:

Server:

 The Server in Scenario 3 is identical to Scenario 1/2 . However, it does some additional bookkeeping in

order to reduce the number of unused pushes when client requests evolve with time. The first extra

information maintained at Server in this scenario is the ordered pull history. Here the pull history is

ordered such that, the head corresponds to the key pulled earliest in time, the tail corresponds to the one

pulled latest in time. The purpose of this is to help the server exercise control over the contents of pull

history and to limit it to only keys of current interest or the ones requested most recently in time. This is

achieved with the help of a pre-defined parameter maxLengthPullHistory. maxLengthPullHistory, is the

longest the pull history of each client can get. When a new entry has to be made to the client’s pull history

and it is already at its maximum length, then the oldest entry or the head is deleted and the new entry is

added at the tail. If the pull history is kept short automatically the number of pushes made by the server

per client will also be kept small.

Another additional parameter maintained at the server is the number of pushes made per client. We have a

default threshold parameter, DEFAULTPUSHTHRESHOLD, which ensures that at max number of

pushes that can be made before receiving a pull is DEAULTPUSHTHRESHOLD-1. Once the maximum

number of pushes has been reached, no more pushes are made until a Pull is issued. This ensures that

updates are not unnecessarily pushed to clients who have stopped making read requests for (key,value)

pairs currently being updated.

Client:

 The Client in Scenario 3 is identical to the clients in Scenario 1/2 .

However, clients in Scenario 3 may not always receive an update when a (key,value) pair cached within it

is updated. The server has a pre-defined threshold called DEFAULTPUSHTHRESHOLD such that it can

never send more than DEFAULTPUSHTHRESHOLD-1 pushes to any one client before receiving a pull

from it. Also the length of the pull history (per client) maintained at server is limited, therefore it may so

happen that a (key,value) pair is cached at client but it does NOT feature in the server’s pull history for it.

As the server pushes updates only for (key,value) pairs which feature in a client’s pull history, changes

made to other (key,value) pairs do not result in updates.

Performance Evaluation:

Scenario 3 (when compared with Scenario 2) does some additional bookkeeping and processing to reduce

the number of unused pushes made when client requests evolve with time. The additional bookkeeping

includes storing the max length of pull history (m) threshold # of pushes (n), and a count of the number of

pushes made per client.While, the additional processing involves, one, creating and maintaining an

ordered pull history of length at most ‘m’and two, ensuring that no pushes are made (until such time a

pull is received) once the threshold of ‘n-1’ has been reached. The latter operation requires us to check a

condition in constant time and is hence not accounted for explicitly, while computing Processing

Overhead.

23

The formula for computing NET STORAGE OVERHEAD and NET PROCESSING OVERHEAD per

client is as follows-:

 NET PROCESSING OVERHEAD = NET PULL CHARGE + NET COST FOR CREATING AND

MAINTAINING PULL HISTORY

where,

NET PULL CHARGE =

COST OF CREATING PULL HISTORY * =

 COST OF MAINTAINING PULL HISTORY# = NET PUSH CHARGE =

*The cost of Creating Pull history is grossly overestimated here, where we assume it is equal to 2 times

the cost to traverse the entire length of pull history post insertion. This is the cost only in the rare case

when a duplicate node is present, and is located at the very end of the pull history. In general duplicates

are rare and the cost is typically equal to the cost of traversing the length of pull history once.

It is assumed in Scenario 3 that a client is interested in a (key, value) pair only if it is a part of its pull

history at the time when the check is made. The validity of this assumption depends on the value of

maxLengthOfPullHistory.

NET STORAGE OVERHEAD =

The total processing and storage overheads over all clients are as follows-:

TOTAL STORAGE OVERHEAD =

24

The best case performance of Scenario 3 is similar to Scenario 0, and occurs under conditions where no

changes are made to the centralized hash table and the number of clients associated with the server equals

1. Since we know that f(C) = 0, we can adjust the maxLengthPullHistory / m to be 0 as there are no

changes made to the centralized hash table for which updates need to be pushed to clients. This helps

bring down the pull history creation and maintenance cost to zero giving us a performance improvement

over Scenario 1 & 2.

Scenario

Conditions for Best Case Total Processing Overhead for
Best Case

Total Storage Overhead for
Best Case

3 r >= R
f(C)= 0
N= 1
maxLengthPullHistory = 0
DEFAULTPUSHTHRESHOLD =
1

=
= 100R
=ϴ(R)

=O(1)

The worst case performance for Scenario 3 occurs when the (key, value) pairs stored at the centralized

hash table are changed with a high frequency, and the number of clients associated with server is some N

>= 1. Specifically we require f(C) =1/r ,i.e. all (key, value) pairs are changed exactly once between any

two read requests issued by a client . Under extreme these conditions (high value of f(C)), it is cheaper to

make a required pull than to make pushes for all changed keys immediately. By choosing

maxLengthPullHistory/ m and DEFAULTPUSHTHRESHOLD/n to be ∞ as we can ensure that

whenever possible pushes are made in place of pulls. This guarantees worst case performance and hence,

the first time any key is read at a client, it is pulled off the server, and any read request made thereafter

(for the same key) is satisfied using local cache.

Scenario

Conditions for Worst Case Total Processing Overhead for
Worst Case

Total Storage
Overhead for Worst
Case

3 r >= R
f(C)= 1/r
maxLengthPullHistory = ∞
DEFAULTPUSHTHRESHOLD
= ∞
N>=1

=

 $

 =

=

 %

=ϴ(NR)

% The O (1) storage costs correspond to the constant amount of memory spent in storing parameters m ,

n and a count of the # of pushes made per client.

25

$
 Under the conditions for Worst Cast performance, the lengths of pull history traversed ,post

pull history creation = 1+ 2+ 3…+R =

 and thus the cost of Pull history Creation

= 2* Length of pull history ,post insertion = (R+1) *PULLCREATIONCOST

26

(9) Scenario 4:

High Level Intuition :

Scenario 4 proposes another solution to minimize the number of unused pushes. The solution is based on

a system wide accepted value called THRESHOLD TIME such that, any entry in pull history time

stamped, at current time- THRESHOLD TIME or earlier is considered stale and eliminated. If

THRESHOLD TIME is too small then the solution proposed would be identical to Scenario 0. If

THRESHOLD TIME is too large then the solution would have the same effect as Scenario 2. Hence in

the ideal case THRESHOLD TIME should be chosen to be the minimum possible value such that any key

pulled at time current time -THRESHOLD TIME or earlier would no longer be of client’s current interest

and can be eliminated. Thus by limiting the Pull History to only keys of client interest we can minimize

the number of unused pushes, while simultaneously keeping the number of pulls as low as possible.

NOTE:In case of stable requests the THRESHOLD TIME can made equal to some infinity to have the

same effect as Scenario 1

Pseudo Code:

1) Client starts by pulling requests from server into an empty cache.

2) When a (key,value) pair to be read is missing in the client cache or is declared obsolete a pull is issued

by client to server. All other requests are satisfied by valid cache entries.

3) The Server maintains the pull history for each client and each key in the pull history is associated with

the timestamp of its last pull(by the given client). Each key appears at most once in the pull history and

the pull history is updated on pulls and pushes.

4) When a (key,value) pair is changed at server, it pushes updates to all interested
*
 clients immediately.

5)There is a single system-wide threshold for the staleness (relative) of a timestamp in pull history and

each time the server scans the pull histories of clients(on a pull or before a push), it will piggyback on this

scanning to drop all stale entries in pull history.

*
In Scenario 4 a client is interested in a (key, value) pair, if the key is a part of its recorded pull history at

the time the check is made. The validity of this assumption depends on the accuracy of

THRESHOLDTIME.

Details of Implementation:

Server:

The Server in Scenario 4 is identical to Scenario 1/2. However, the Server in Scenario 4 does additional

bookkeeping in order to reduce the number of unused pushes made when clients requests evolve with

time. The first extra information maintained at server in this scenario, is the time stamped pull history.

Here each key in pull history is associated with the time stamp of when the last pull for the same was

made. Also ,the server holds a pre-defined a universal constant ,THRESHOLDTIME to determine

staleness of pull entries. A stale/obsolete entry is one whose associated time stamp is current time –

27

THRESHOLDTIME or earlier. Since the server regularly scans the Pull history (one, when a (key,value)

pair is changed at hash store and two, when a pull from the corresponding client arrives), each time it

does so it can automatically discard all pull entries which are now obsolete. Thus by this approach the

pull history is always limited to those keys which have been requested most recently in time, and are

hence of client’s current interest.

Since pushes are made to clients based on their pull histories, limiting the pull histories of clients to the

most recently requested keys also limits the number of unused push updates made and in the ideal case

reduces them to zero.

Client:

The Client in Scenario 4 is identical to the clients in Scenario 1/2.

However, clients in Scenario 4 may not always receive updates when a (key,value) pairs cached within

them are changed. This can be attributed to the fact that the Server in Scenario 4 always limits the pull

histories of clients to keys which have been pulled most recently in time(Current time –

THRESHOLDTIME or earlier) and only pushes updates for the same.

Performance Evaluation:

Scenario 4 (when compared with Scenario 2) does some additional bookkeeping and processing to reduce

the number of unused pushes made when client requests evolve with time.

The additional bookkeeping involves storing a threshold value, THRESHOLDTIME to indicate staleness,

and the additional processing involves creating and maintaining a pull history containing only those

entries which are fresh (i.e. entries whose associated timestamp is strictly earlier than Current Time-

THRESHOLDTIME). The formula for computing NET PROCESSING OVERHEAD and NET

STORAGE OVERHEAD per client is as given below-:

 NET PROCESSING OVERHEAD = NET PULL CHARGE + NET COST FOR CREATING AND

MAINTAINING PULL HISTORY

where,

NET PULL CHARGE =

COST OF CREATING PULL HISTORY =

 COST OF MAINTAINING PULL HISTORY# = NET PUSH CHARGE =

28

NET STORAGE OVERHEAD =

#
A client is interested in a (key, value) pair in Scenario 4 only if it is a part of its pull history at the time

when the check is made. The validity of this assumption depends on the accuracy of THRESHOLDTIME.

The total processing and storage overheads over all clients are as follows-:

TOTAL STORAGE OVERHEAD =

The best case performance of Scenario 4 occurs under conditions when no changes are made to the

centralized hash table and the number of clients associated with server = 1. As there are no changes being

made to the hash table, we have no updates to send and hence no information about past requests needs to

be maintained. Thus, the THRESHOLDTIME is chosen to be infinitesimally small such that, every pull

request deletes all previously requested keys from the client’s pull history (if any) such that the NET

STORAGE OVERHEAD at server per client at is at most one. This gives us a performance (with respect

to storage) similar to Scenario 0.

Scenario

Conditions for
Best Case

Total Processing Overhead for Best
Case

Total Storage Overhead for Best
Case

4 THRESHOLDTIME
<< 1/r
r >= R
f(C)= 0
N=1

=

= R(102) -1
= ϴ(R)

=

STORAGECOSTTHRESHOLD
= O(1)

The worst case performance for Scenario 4 occurs when the (key, value) pairs stored at the centralized

hash table are changed with a high frequency, and the number of clients associated with server is some N

>= 1. Specifically we require f(C) =1/r, i.e. all (key, value) pairs are changed exactly once between any

two read requests issued by a client.

As THRESHOLDTIME is chosen to be ∞, no key is ever deleted from a client’s pull history, and clients

receive updates when any (key, value) pair they requested in the past is changed. Thus under the extreme

condition, where f(C) = 1/r, between any 2 read requests issued by a client, it receives as many updates as

the current length of its pull history.

Scenario

Conditions for
Worst Case

Total Processing Overhead for
Worst Case

Total Storage Overhead for
Worst Case

4 THRESHOLDTIME
= ∞

=

 =NR +

STORAGECOSTTHRESHOLD

29

r >= R
f(C)= 1/ r
n>=1

 =

=ϴ(NR)

30

(10) Scenario 5:

High Level Intuition :

In Scenario 5 deferred updates are made in place of immediate updates. When client’s interests stabilize

with time, all updates are valid and all pushes are free of charge. Under such circumstances, deferred

updates cannot provide a performance improvement over immediate updates. However by ensuring

periodic updates occur often enough (small values of DEFAULTTIMEOUT) Scenario 5 can be made to

perform equivalent to Scenario 1.

When client interests evolve with time, unused pushes pose a problem. By applying deferred updates in

place of immediate updates, the cost of pushes (unused) can be minimized(due to the benefits of

batching). In the extreme case where it may be more economical to satisfy requests by making equivalent

pulls than receiving a large number of (unused)pushes, Scenario 5 can be tweaked

(DEFAULTTIMEOUT= ∞) to perform equivalent to Scenario 0, where the number of pushes made equal

zero.

Pseudo Code:

1) Client starts by pulling requests from server into an empty cache.

2) When a (key,value) pair to be read is missing in the client cache or is declared obsolete a pull is issued

by client to server. All other requests are satisfied by valid cache entries.

3) The Server maintains the pull history for each client and each key in the pull history is associated with

a field which indicates whether this (key,value) pair has been changed since the last pull/push(“changed”,

“unchanged”).

4) When a client pulls an entry from server. The key is made a part of client pull history (if not already

present) and its associated field is set to “unchanged” to indicate that no changes have been made to the

key since its last pull.

5) When a (key,value) pair is changed at server, the pull histories of all clients containing this key are

updated to reflect the now “changed” state.

6) The Server periodically scans the pull history of all clients .If there are 1 or more keys in a client’s pull

history which have been changed since the last push/pull, the server pushes updates for all such keys at

once via batching .The associated fields of these keys are then set to reflect the current “unchanged” state.

Details of Implementation:

Server: The Server in Scenario 5 is identical to Scenario 1/ 2. However ,it performs deferred updates in

place of immediate updates. To facilitate the above operation, each key in a client’s pull history is

associated with a field indicating whether a given key has been changed since its last push/pull. When a

(key,value) pair is changed at server, the pull histories of all clients containing this key are updated to

reflect the now “changed” state. Conversely, when a pull for a given key arrives from a client, the server

adds the key to corresponding pull history(if not already present) and sets its state to “unchanged”.

31

Periodically the Server checks the pull histories of all clients, if there are 1 or more keys in a given

client’s pull history which have been changed since the last push/pull, the server pushes updates for all

such keys simultaneously (batching). It then sets their associated fields to reflect the current “unchanged”

state. This periodic scanning by Server is done at the rate of once per DEFAULTTIMEOUT, where

DEFAULTTIMEOUT, is a pre-determined constant.

Client:

The Client in Scenario 5 is identical to the clients in Scenario 1/2.

However, clients in Scenario 5 do not receive immediate updates when a (key, value) pairs cached within

them are changed. This can be attributed to the fact that the Server in Scenario 5 pushes updates

periodically rather than as an immediate consequence of changes being made to the centralized hash table.

Performance Evaluation:

In Scenario 5, we perform deferred updates in place of immediate updates. Hence, we do not push updates

as an immediate consequence of changes made to the centralized hash table. Rather, we periodically

(every DEFAULTTIMEOUT) scan the pull histories of all clients, and push updates to only those clients

who contain one or more changed keys in their pull histories. Thus the additional work done at server in

Scenario 5 (when compared with Scenario 0) is the periodic scanning of pull histories followed by

possible pushing of updates. The additional bookkeeping at Scenario 5(when compared with Scenario 0)

corresponds to storing a per client “pull history”. The “pull history” is a list of all unique keys requested

by a client in the past and each key in the pull history is associated with a Boolean value indicating

whether it has been changed since last pull/push.

Thus the net processing overhead per client is calculated as,

 NET PROCESSING OVERHEAD = NET PULL CHARGE + NET COST FOR CREATING AND

MAINTAINING PULL HISTORY

where,

NET PULL CHARGE =

COST OF CREATING PULL HISTORY =

COST OF MAINTAINING PULL HISTORY

=

32

NET COST OF SCANNING PULL HISTORY ENTRIES*

=

NET PUSH CHARGE

=

It should be noted that Cost of a single push in Scenario 5 is >=PUSHCHARGE depending on the number

of keys for which an update is being pushed.

The net storage overhead per client is calculated as,

NET STORAGE OVERHEAD =

*The cost of Scanning Pull history is grossly overestimated here, where we assume it is equal to 2 times

the cost of traversing the entire length of pull history each time it is scanned. This is the cost only in the

rare case when there the one node to be updated is located at the very end of pull history. Typically the

cost is closer to traversing the length of pull history 1.5 times.

The total processing and storage overhead over all clients is calculated as,

TOTAL STORAGE OVERHEAD =

The best case performance of Scenario 5 occurs under conditions when no changes are made to the

centralized hash table and the number of clients associated with server = 1. As there are no changes being

made to the hash table, we have no updates to send and hence the time period to scan for deferred updates

can be kept as high as ∞, giving us a performance as close as possible to Scenario 1.

Scenario

Conditions for Best
Case

Total Processing Overhead
for Best Case

Total Storage Overhead for Best Case

5 DEFAULTTIMEOUT = = +

33

= ∞
r>=R
f(C) = 0
N=1

 =

STORAGECOSTDEFAULTTIMEOUT
 =ϴ(R)

The worst case performance for Scenario 5 occurs when the (key, value) pairs stored at the centralized

hash table are changed with a high frequency, and the number of clients associated with server is some N

>= 1. Specifically we require f(C) =1/r, i.e. all (key, value) pairs are changed exactly once between any

two read requests issued by a client.

Since DEFAULTTIMEOUT is chosen as the time to change 1 (key, value) pair in the hash table, and as

all hash table entries are changed between any 2 read requests made by a client, the number of scans made

between any 2 read requests issued by client is equal to size of the hash table i.e. STORESIZE. At each

timeout, the entire pull history is at max scanned twice and possibly updates for one or more keys are

issued. However, we scan the pull history after each change, and hence there is at most one key updated

in pull history since last scan, and thus rather than gaining the advantage of batching, each time only an

update for a single key is pushed. The pushing of individual updates and high rate of scanning under

conditions where f(C) itself is high gives the worst case performance of Scenario 5.

Scenario

Conditions for
Worst Case

Total Processing Overhead for
Worst Case

Total Storage Overhead for Worst
Case

5 DEFAULTTIMEOUT
= time to
change 1
(key,value) pair in
the entire hash
table
r>=R
f(C) = 1/r
N>=1

=

 #

 =

=NR +
STORAGECOSTDEFAULTTIMEOUT
=ϴ(NR)

#Under conditions of the worst case performance the PULLMAINTEANCECOST is multiplied by

parameter STORESIZE, as STORESIZE is the maximum number of scans which can be performed

between any 2 read requests made by the client.

34

(11) Experimental Results:

In this section, via a series of test cases, we developed niche cases for each scenario. For each test case we

ran, we picked the winning scenario, i.e .the one which performed best under the given set of test

conditions and designated it to be the niche case for that scenario. The aim of these experiments/test cases

was to develop a feel/intuition for the performance of each scenario. Now that we are done with our

experiments, given any arbitrary set of input conditions, we can predict with reasonable accuracy the

scenario (among all the scenarios being proposed) which will perform best under the aforementioned

conditions.

TEST 1: Stable requests with no modifications at server

Time stamped sequence of operations performed in TEST 1:

Time Pulls/Reads

at Client in

Scenario 0

Action at

Server

1 Read A

2 Read B

3 Read C

4 Read A

5 Read B

6 Read C

7 Read A

Numerical Results
*
:

Scenario # Net Processing

Overhead

Net Storage

Overhead

Scenario 0 300 0

Scenario 1 303 3

Scenario 2 Not applicable for stabilized requests

Scenario 3(Parameters set to

model Scenario 0, i.e

maxLengthPullHistory = 0,

DEFAULTPUSHTHRESHOLD=

∞)

303 1

Scenario 4(Parameters set to

model Scenario 0, i.e

THRESHOLDTIME = 0.1)

305 1

Scenario 5(Parameters set to

model Scenario 0, i.e

DEFAULTTIMEOUT = ∞)

306 3

35

Inference: Scenario 0 wins, as it is the one which incurs the least cost among all scenarios being

proposed. This can be attributed to the fact that Scenario 0 makes the least investment among all scenarios

to reduce the cost of cache maintenance, which is zero by default for the conditions of this test case.

Behavior of Winning Scenario:

Time Pulls/Reads Action at

Server

1 Pull A

2 Pull B

3 Pull C

4 Read A

5 Read B

6 Read C

7 Read A

TEST 2: Stable requests with few updates to keys between read requests for the same (key, value) pairs

at client.

Time stamped sequence of operations performed in TEST 2:

Time Pulls/Reads Action at

Server

1 Read A

2 Read B

3 Read C

4 Update A

5 Update B

6 Update C

7 Read A

8 Read B

9 Read C

10 Read A

Numerical Results
*
:

Scenario # Net Processing

Overhead

Net Storage

Overhead

Scenario 0 600 0

Scenario 1 315.8571 3

Scenario 2 Not applicable for stabilized requests

36

Scenario 3(Parameters set to

model Scenario 1, i.e

maxLengthPullHistory = ∞

,DEFAULTPUSHTHRESHOLD=

∞)

318.8571 4

Scenario 4(Parameters set to

model Scenario 1, i.e

THRESHOLDTIME = ∞)

318.8571 3

Scenario 5(Parameters set to

model Scenario 1, i.e

DEFAULTTIMEOUT =

1.5(largest value of timeout such

that a key pulled in the past need

not be pulled again at client))

323.7142 3

Inference: Scenario 1 wins, as it is the one which incurs the least cost among all scenarios being

proposed. This can be attributed to the fact that Scenario 1, under the conditions of this test case, makes

no unused pushes and reads as much as possible from local cache. All requests for a given key (except the

first) are satisfied by local cache.

Behavior of Winning Scenario:

Time Pulls/Reads Action at

Server

Pull History

at Server

1 Pull A A

2 Pull B B->A

3 Pull C C->B->A

4 Update

A(Push A)

 ‘’

5 Update

B(Push B)

 ‘’

6 Update

C(Push C)

 ‘’

7 Read A ‘’

8 Read B

9 Read C ‘’

10 Read A ‘’

TEST 3: Stable Requests with many updates to key between read requests for the same (key, value) pair

at client.

Time stamped sequence of operations performed in TEST 3:

Time Pulls/Reads Action at

37

Server

1 Read A

2 Read B

3 Read C

4 Update A

5 Update B

6 Update C

7 Update A

8 Update B

9 Update C

10 Read A

11 Read B

12 Read C

Numerical Results
*
:

Scenario # Net Processing

Overhead

Net Storage

Overhead

Scenario 0 600 0

Scenario 1 333 3

Scenario 2 Not applicable for stabilized requests

Scenario 3(Parameters set to

model Scenario 5, i.e

maxLengthPullHistory = ∞

,DEFAULTPUSHTHRESHOLD=

∞)

336 4

Scenario 4(Parameters set to

model Scenario 5, i.e

THRESHOLDTIME = ∞)

336 3

Scenario 5(Parameters set to

provide an improvement over

Scenario 1, i.e

DEFAULTTIMEOUT =

2.5(largest value of timeout such

that a key pulled in the past need

not be pulled again at client))

331 3

Inference: Scenario 5 wins as it is the one which incurs the least cost among all scenarios being

proposed. This can be attributed to the fact that Scenario 5, makes periodic updates in place of immediate

updates, and is thus able to push updates to more than a key at once, gaining the advantage of batching.

Batching helps reduce the cost of cache maintenance.

38

Behavior of Winning Scenario:

Time Pulls/Reads Action at

Server

Pull History

at Server

1 Pull A A(U)

2 Pull B A(U)->B(U)

2.5 Scanning all Pull Histories to make deferred

updates

3 Pull C A(U)->

B(U)->C(U)

4 Update A A(C)->

B(U)->C(U)

5 Update B A(C)->

B(C)->C(U)

5 Scanning all Pull Histories to make deferred

updates ; Push A,B

6 Update C A(U)->

B(U)->C(C)

7 Update A A(C)->

B(U)->C(C)

7.5 Scanning all Pull Histories to make deferred

updates ; Push C,A

8 Update B A(U)->

B(C)->C(U)

9 Update C A(U)->

B(C)->C(C)

10 Read A

10 Scanning all Pull Histories to make deferred

updates ; Push B,C

11 Read B A(U)->

B(U)->C(U)

12 Read C ‘’

TEST 4: Evolving Requests with Modifications at Server

Time stamped sequence of operations performed in TEST 4:

Time Pulls/Reads Action at

Server

1 Read A

2 Read B

3 Read C

39

Numerical Results
*
:

Scenario # Net Processing

Overhead

Net Storage

Overhead

Scenario 0 800 0

Scenario 1 Not applicable for evolving requests

Scenario 2 636 6

Scenario 3(Parameters set to

provide an improvement over

Scenario 2, i.e

maxLengthPullHistory =

1(number of keys of interest from

the past)

,DEFAULTPUSHTHRESHOLD=

∞)

628.5 2

Scenario 4(Parameters set to

provide an improvement over

Scenario 2, i.e

THRESHOLDTIME = 5.5(the

minimum possible value such that

no key requested at time current

time – THRESHOLDTIME or

earlier is of current interest))

628.75 3

4 Update A

5 Update B

6 Update C

7 Update D

8 Update E

9 Update F

10 Read C

11 Read D

12 Read E

13 Update A

14 Update B

15 Update C

16 Update D

17 Update E

18 Update F

19 Read E

20 Read F

40

Scenario 5(Parameters set to

provide an improvement over

Scenario 0, i.e

DEFAULTTIMEOUT =

1.5(largest value of timeout such

that a key pulled in the past need

not be pulled again at client))

657.25 6

Inference: Scenario 3 and 4 win as they are the ones which incur the least cost among all scenarios being

proposed. This is because both Scenario 3 and Scenario 4 make an effort to reduce the number of unused

pushes made when client requests evolve with time, thereby reducing the cost of cache maintenance.

Behavior of Winning Scenarios:

Scenario 3:

Time Pulls/Reads Action at

Server

Pull History

at Server

1 Pull A A

2 Pull B B

3 Pull C C

4 Update A ‘’

5 Update B ‘’

6 Update C

(Push C)

 ‘’

7 Update D ‘’

8 Update E ‘’

9 Update F ‘’

10 Read C ‘’

11 Pull D D

12 Pull E E

13 Update A ‘’

14 Update B ‘’

15 Update C ‘’

16 Update D ‘’

17 Update E

(Push E)

 ‘’

18 Update F ‘’

19 Read E ‘’

20 Pull F F

41

Scenario 4:

*The numerical results stated above are an accurate estimate of the costs incurred per client per scenario.

In fact, the formula to compute the pull creation cost in certain scenarios is an overestimation of the actual

cost incurred in most cases. However, all numerical data presented here are accurate measurements and

no approximation has been performed. However, it should be noted that the Net Processing Overhead and

Net Storage Overhead mentioned above are the costs incurred per client and not the costs computed over

all clients in the system, hence they do not include system wide O(1) costs such as

STORAGECOSTTHRESHOLD, STORAGECOSTM etc.

Time Pulls/Reads Action at

Server

Pull History

at Server

1 Pull A A(1)

2 Pull B A(1)->B(2)

3 Pull C A(1)-> B(2)

-> C(3)

4 Update A

(Push A)

 ‘’

5 Update B

(Push B)

 ‘’

6 Update C

(Push C)

 ‘’

7 Update D B(2)-> C(3)

8 Update E C(3)

9 Update F

10 Read C

11 Pull D D(11)

12 Pull E D(11)->

E(12)

13 Update A ‘’

14 Update B ‘’

15 Update C ‘’

16 Update D

(Push D)

 ‘’

17 Update E

(Push E)

E(12)

18 Update F

19 Read E

20 Pull F F(13)

42

(12)Conclusion:

The fundamental problem being investigated is the problem of data consistency in a distributed system

setup. Given a system of N>=1 client computers, interested in a common centralized hash table, we wish

to design one more techniques to facilitate easy and inexpensive access to the aforementioned table by

taking advantage of local client caches. Through the course of this technical report, we have studied “the

problem of coherence of a distributed hash table” (under the realm stated assumptions) in detail and

proposed as many as five solutions for the same.

The objective of this report is to not provide one solution to the problem at hand, but to rather develop a

suite of solutions where one is more appropriate than others based on applied input conditions. To achieve

the above objective, the performance of each solution has been quantized, and the solutions have been

implemented and tested. Based on the costs incurred by the different solutions under different input

conditions, we have developed a good feel/intuition of the performance of each algorithm, and given a set

of test input conditions, we can now predict (with a reasonable degree of accuracy) the algorithm which

would perform the best, under the aforementioned conditions.

43

(13)Future Work:

This technical report studies “the problem of coherence in a distributed hash table”, in detail, but does so

under a realm of stated assumptions. The assumptions limit the scope of the problem, and changes in

assumptions stated, can broaden or enhance the scope of the problem.

However, even within the realm of stated assumptions there are a few problems which are yet to be

investigated. Firstly, though we have proposed few solutions, which achieve cache consistency, by taking

advantage of the temporal locality of user queries, we are yet to propose solutions which take advantage

of spatial locality of user queries. Secondly, we have implicitly assumed that strong consistency is

expected by all user queries, however not all applications require strong consistency of user queries and

under certain conditions slightly stale data can be tolerated. Thirdly, the performances of all solutions

proposed thus far have been thoroughly analyzed from the point of processing overhead. However, the

storage overhead (or memory requirements) of the algorithms have not been considered as important.

Hence modifying existing solutions to overcome the aforementioned limitations would be a good line of

future work.

A second line of future work can be achieved by relaxing the assumptions which limit the scope of the

problem. Changes to stated assumptions could include but not be limited to, one, supporting both reads

and writes at clients and two, removing the assumption which obviates the need to worry about

concurrency while achieving consistency.

44

References :

 [1] R. Chirkova and J. Yang, “Materialized Views,” Foundations and Trends in Databases, vol. 4, no. 4,

pp. 295–405, 2011.

[2] R. Lawrence, “A Survey of Cache Coherence Mechanisms in Shared Memory Multiprocessors”, May

1998.

[3] S. Dar, M. J. Franklin, B. T. J´onsson, D. Srivastava, and M. Tan, “Semantic data caching and

replacement,” in Proceedings of the 1996 International Conference on Very Large Data Bases, pp. 330–

341, Mumbai (Bombay), India, September 1996.

[4] A. Labrinidis, Q. Luo, J. Xu, and W. Xue, “Caching and materialization for web databases,”

Foundations and Trends in Databases, vol. 2, no. 3, pp. 169–266, 2009.

