A Comprehensive Field Study of End-User
Programming on Mobile Devices

Sihan Li
North Carolina State University
Raleigh NC, USA
sli20@ncsu.edu

Abstract—TouchDevelop represents a radically new
programming environment that enables users to develop
mobile applications directly on mobile devices. TouchDevelop
has successfully drawn a huge number of end users, who
have published thousands of TouchDevelop scripts online. To
enhance end-user programming on mobile devices, we conduct
the first comprehensive field study of 17322 TouchDevelop
scripts and 4275 users. Our study consists of an overall study
on the characteristics of scripts (e.g., structural features, code
reuse) and users (e.g., expertise), and a longitudinal study on
how they evolve over time. Our study results show important
characteristics of scripts such as dense external method calls,
high code reuse ratio, and also reveal interesting evolution
patterns of users. The findings and implications in our study
provide valuable guidelines for improving tool support or
services for end users and increasing the popularity of end-user
programming on mobile devices.

I. INTRODUCTION

In recent years, mobile devices especially smartphones
have become a prevalent computing platform for most people.
A report [[1]] shows that there were 835 million smartphone
users in 2011, and the number will keep increasing. As the
usage of mobile devices grows, it becomes a very common
activity to create mobile applications (also known as apps).
The Apple and Android stores offer around one million apps
for download [2].

Traditionally, developers use object-oriented programming
languages (e.g., Java, Objective-C, C#) to write programs on
their separate PC, with an emulator to simulate the device
environment, and then deploy the programs to the mobile
device. Such an off-device development manner requires the
installation of an SDK on the PC, advanced programming
languages, and complex deployment of the apps to the mobile
device. These requirements pose high barriers to end-user
programming of apps.

Microsoft TouchDevelop [3], [4] represents an emerging
development model for mobile applications. It lowers the
end-user programming barriers by enabling on-device app
development and providing a fairly simple scripting language.
With TouchDevelop, anyone can program their mobile device
directly on this device; no PC is required for developing and
deploying TouchDevelop scripts (i.e., apps). The target users
of TouchDevelop are students, hobbyists, power users, and
developers. The declared scope of TouchDevelop scripts is for
fun (e.g., games), for personalizing mobile devices, and for
creating productivity tools (e.g., meeting arrangement).

Tao Xie
North Carolina State University
Raleigh NC, USA
xie@csc.ncsu.edu

Nikolai Tillmann

Microsoft Research

Redmond WA, USA
nikolait @microsoft.com

Due to such a radically new programming environment,
TouchDevelop brings up numerous important questions on
end-user programming on mobile devices. For example, from
the perspective of apps, what kinds of apps can be created
by TouchDevelop? What are unique characteristics of the apps
created by TouchDevelop, compared to those created with the
traditional PC-based approach? From the perspective of end
users, how do they learn programming with TouchDevelop?
What are their programming behaviors? Answers to these
questions may not only provide important guidelines for
enhancing end-user programming and improving tool support
or services to end users, but also reveal valuable opportunities
for drawing more end users and increasing the popularity
of on-device app development. Although there have been
some studies on the functionalities and code changes of
TouchDevelop scripts [S] and the programming productivity
with TouchDevelop [6]], a lot of questions still remain
unaddressed, calling for more efforts for investigation.

In this paper, we present the first comprehensive field
study of end-user programming on mobile devices. Our goal
is to provide valuable implications for different stakeholders
around mobile-device programming, e.g., the improvement of
tool support and services for end users, the increase of usage
popularity for service providers, and research opportunities
for researchers. Our study investigates 17322 TouchDevelop
scripts and 4275 users, consisting of two parts: an overall study
on the characteristics of scripts and users, and a longitudinal
study on their evolution over time. The first part analyzes
different aspects of both scripts (e.g., structural features
and code reuse) and users (e.g., expertise) to provide basic
understandings of them. The second part studies how scripts
and users evolve over time, and attempts to find trends or
identify patterns of their evolution.

Specifically, our study intends to answer the following
research questions:
RQ1: How do TouchDevelop scripts look like? We are
interested in TouchDevelop scripts’ structural features such as
lines of code, defined methods, and method calls per script.
RQ2: What is the code reuse ratio of TouchDevelop scripts?
It is important to understand code reuse of TouchDevelop
scripts since code reuse becomes extremely helpful in
on-device development for reducing programming burdens on
end users due to the virtual keyboard and limited screen size.
RQ3: What kinds of TouchDevelop users are there? It is
useful to distinguish different kinds of users based on their
expertise so that we could provide customized supports for

TABLE 1. OUR MAJOR FINDINGS OF END-USER PROGRAMMING ON MOBILE DEVICES AND THEIR IMPLICATIONS

Characteristics of scripts and users

Implications

(1) TouchDevelop scripts are typically small; 72.6% of
them are less than 100 LOC. However, there are still 5.4%
relatively large scripts with more than 500 LOC. The largest
script has 5030 LOC and is a rich-feature game.

Users usually write small scripts with TouchDevelop, but it
is possible to use TouchDevelop to create large scripts with
rich features.

(2) On average, a TouchDevelop script contains 106 external
method calls (e.g., built-in TouchDevelop API method
calls); every two lines of code contain at least one external
method call.

TouchDevelop scripts heavily rely on external methods to
achieve functionalities. Enriching the built-in APIs might
help further increase the diversity of the scripts and the
popularity of TouchDevelop.

(3) TouchDevelop scripts have a high code reuse ratio:
57.9% of them have a paren

Users tend to modify existing scripts instead of creating
scripts from scratch.

(4) In many cases (74.3%), users reuse their own code, i.e.,
having their script’s parent as a script written by themselves.
Among 50 sampled parent/child pairs, most child scripts
(78.0%) are just updated versions of their parents with small
modifications.

There is lack of code reuse across different users. A code
search engine of the code base may help users find others’
scripts and adding some descriptions on the code may
increase the chance of being reused. A version control
system might be necessary for managing script updates.

(5) In terms of expertise, 74.2% of the users are novices,
21.6% of the users are ordinary users, and 4.2% of the users
are experts.

How to engage these novices is crucial to further
increase the popularity of TouchDevelop. Since we have a
considerable population for each kind of users, we suggest
to provide customized rather than uniform services to each
kind of users, e.g., different Uls.

Evolution of scripts and users over time

Implications

(6) The number of scripts published per time period (nearly
3 months) increases with an average rate of 58.8%.

TouchDevelop is increasingly popular.

(7) The average size of the scripts in each time period stays
small and stable, but the number of relatively large scripts
increases with an average rate of 153.3%.

It is important to better support users to create large scripts.
It might be helpful to make the TouchDevelop language
more powerful and expressive or enrich the built-in APIs.

(8) On average, the code reuse ratio increases by
3.6 percentages; the number of scripts created as
librariencreases with an average rate of 63.0%.

Code reuse is becoming popular. Since more libraries are
created by users, it is necessary to provide ways to discover
them, document them, and detect duplicates.

(9) In terms of publishing scripts, 22.1% of the users are
very active initially and become less active later. 9.6% of the
users are not very active initially but become more active
some time later. 68.3% of the users try publishing one or
two scripts and then stop.

It would be useful to conduct user studies on why many
users try TouchDevelop and leave, why those active users
become less active, and what motivates those earlier less
active users to become more active later. Such information
could be used to design better strategies to retain users.

(10) 16.3% of the users learn most language features
initially and learn only a few later. 12.4% of the users learn
some language features initially and also learn quite a lot at
a certain point later. 71.3% of the users learn a few initially
and then stop learning.

Users have different learning behaviors. We suggest to
provide an adaptive tutoring system that recommends
tutorials to users based on their history of language-feature
usage and the kind of scripts that they are writing.

each kind of users and better assess their scripts or comments.
RQ4: How are TouchDevelop scripts changing over time?
Finding the trends of how TouchDevelop scripts change in
terms of their size and code reuse could guide future tool
development to better accommodate these trends.

RQS5: what is the wusers’ progress of developing
TouchDevelop scripts? We want to investigate users’
programming behaviors and learning process by looking at
their published scripts and language-feature usage so as to
design strategies for engaging more users.

Our major findings and implications are summarized in
Table [l The details of our study are discussed in the later
sections. Our paper makes the following main contributions,

'A TouchDevelop script can inherit another script and directly modify its
code. The script being inherited is called the parent.

2 A TouchDevelop script can be created as a library for other scripts to reuse
its defined methods. Without causing confusion, in this paper, we refer to such
scripts as libraries.

e We discover special characteristics of TouchDevelop
scripts on the aspects of structure and code reuse.

e We reveal important trends of TouchDevelop scripts
and find interesting patterns of TouchDevelop users’
programming progress.

e We provide valuable implications for improving future
tool support or services for end users and increasing the
popularity of end-user programming on mobile devices.

II. BACKGROUND: TOUCHDEVELOP
A. The TouchDevelop Programming Environment

Microsoft TouchDevelop [3l], [4] is a novel programming
environment that enables users to program their mobile devices
directly on the devices. TouchDevelop scripts are written and
run in the TouchDevelop IDE, which can be installed on either
a Windows Phone or a web browser for other platforms such
as Android and iOS. To ease programming on mobile devices,

action main()
// Finds songs not played yet.
var found := 0
var songs := media— 2 songs
for each song in songs
where true
do
found := found + >display song(song)
("Songs played with this script: " I| @played) — post to wall
("Songs never played: " Il found) — post to wall

event active song changed
// Increment the song played counter.
Mplayed := Mplayed + 1
action display song(song : Song) returns result : Number
// Post a song to the wall if not played yet and returns 1;
// otherwise returns 0.
if song—play count = 0 then
song—post to wall

result:=1
else
result:=0

o

Fig. 1. A ”new song” example that finds songs not played yet and posts
them to the wall.

the IDE provides a semi-structured code editor, which presents
users with a small number of possible choices (e.g., different
types of statement) at each step. In this manner, the users build
the skeleton of the script via touching to select choices, leaving
only variable names and expressions for typing.

Besides the IDE, TouchDevelop also provides a fairly
simple scripting language that has both imperative and
object-oriented characteristics. It allows users to not only
define methods, modify local variables, but also access
properties of objects. However, for simplicity, the language
supports only built-in types: primitives and a set of types
for objects. In other words, it does not allow users to
define new types or properties. One important feature of the
TouchDevelop language is that it provides rich interfaces to
access a wide range of hardware and resources on the mobile
device including various sensors, the camera, media, etc. Such
feature largely facilitates the on-device programming.

A TouchDevelop script typically consists of actions, events,
and global data. An action is just like a function in C or a
method in Java. It contains a sequence of statements, and can
take parameters and return computation results. An event is
a special action that is executed whenever the corresponding
event occurs (e.g., phone shaking). The global data refer to
global variables that are either persistent on the mobile devices
or in the cloud. Such variables can be shared by multiple
applications. Figure (1| shows a simple TouchDevelop script
that finds songs not played yet and posts them to the wall.
The script contains two actions and one event. The main action
is the entry of the script and calls the display song action to
determine whether a song has been played. The active song
changed event is executed whenever the player changes a song.
This event increases the global variable played, which is the
counter of songs played, by one.

TouchDevelop maintains a cloud that provides many

services to users. First, users could publish/download their
scripts to/from the cloud. All published scripts are available
with source code, and users are encouraged to share their
scripts or extend others’ scripts. Each script/user is assigned
an unique ID once published/registered. Moreover, the cloud
stores many important statistics of every published script
and its author and provides public interfaces (cloud API)
for retrieving the information of scripts and users. Anyone
could write customized queries (e.g., retrieving all scripts IDs
published by a certain user) in a program or directly in the
address bar of web browsers, and the cloud responds queries
with either JSON objects or plain texts.

B. TouchDevelop Scripts and Users

From a database point of view, the script and the user are
two critical entities in the TouchDevelop ecosystem. There is a
one-to-many relation between the user and the script: one user
can publish multiple scripts while one script can only have one
user as its author. The script entity and the user entity also
have a set of attributes. We next describe some key attributes
that are investigated in our study of the script and the user,
respectively.

For the script entity, we primarily investigate the attributes
related to code reuse. TouchDevelop provides three ways for a
script to reuse code. First, a script could inherit a parent script
and directly modify the code of the parent script. Second, a
script can be created as a library; other scripts can reference
the library script and use the actions and events defined in
it. Third, a script can reuse the TouchDevelop built-in APIs,
which are the properties and methods of object types provided
by TouchDevelop. These three code-reuse fashions respectively
correspond to three attributes of a script: whether the script has
a parent, whether the script is a library, and how many built-in
API calls the script includes.

There are three important attributes that reflect the expertise
of a user. First, the number of the published scripts indicates
the activeness of the user. Second, users can give positive
reviews to each other on their published scripts and posted
comments. Hence, the number of the received positive reviews
indicates the quality of the user’s scripts and comments. Third,
TouchDevelop keeps track of what TouchDevelop-language
features are used by each user. The TouchDevelop-language
features include TouchDevelop build-in APIs as well as basic
programming language concepts and keywords such as the
concept of using parameters in an action and the if keyword
for if statement. The number of language features used by the
user indicates how much they have learnt about TouchDevelop
programming.

III. METHODOLOGY
A. Subjects

The subjects in our study were all the TouchDevelop scripts
published in the cloud and users who published these scripts,
starting from the publish time of the first script (late July, 2011)
to the time of our final experiment (early February, 2013). In
total, there were 17322 TouchDevelop scripts and 4275 users
included in our study. For each script, we downloaded the
following resources: the source code, id, and publish time
of the script, the id of the script author, the parent of the

TABLE II. METRICS ON THE SOURCE CODE OF TOUCHDEVELOP

SCRIPTS
Metric Description
#LOC the number of lines of source code
4IM the number of internal methods defined by
users, i.e., actions and events
4EM the number of external methods defined by
TouchDevelop or other library scripts
#IMC the number of internal method calls
#EMC the number of external method calls
EMC the average number of external method calls
Density per line of code, i.e., EMC/LOC

script (if any), and information on whether the script is a
library. For each user, we downloaded the id of the user,
the number of scripts published by the user, the number of
TouchDevelop-language features used by the user, and the
number of positive reviews given to the user’s scripts and
comments. We obtained all these data from the TouchDevelop
cloud through the cloud APIs.

B. Metrics and Approaches

To answer RQ1 on the structural features of TouchDevelop
scripts, we used a set of metrics listed in Table All these
metrics were calculated on every single TouchDevelop script.
The internal methods referred to the actions and events defined
in the script by the user, while the external methods were
TouchDevelop built-in APIs or actions defined in other library
scripts. We constructed the abstract syntax tree (AST) of each
script using the TouchDevelop script parser, and traversed the
AST to compute IM, EM, IMC, and EMC.

To answer RQ2 on the code reuse of TouchDevelop scripts,
we adopted the same definition of code reuse ratio from the
previous work [5] for comparison purpose. The code reuse
ratio of scripts was defined as the percentage of scripts that had
a parent among all scripts. To further study how users reused
code, we first investigated where the reused code came from:
the user herself or other users. This reused-code ownership was
determined by checking whether the author of the parent script
was the same author of the child script. We then checked what
is the percentage of newly modified code in the child script. We
obtained the LOC of modifications in the child script by using
an internal cloud API, which compared the code differences
between two TouchDevelop scripts, and computed the ratio of
the LOC of the modifications to the LOC of the child script.
Moreover, to see how users modified the inherited scripts, we
randomly sampled 50 parent/child script pairs, and manually
went through the source code of each pair to understand the
code modifications.

To answer RQ3 on characteristics of TouchDevelop
users, we first classified users based on their expertise.
We employed the Gaussian Mixture Model (GMM) based
clustering algorithm [7]] to group users with similar expertise,
and chose three important indicators of the user expertise
as the input attributes to the clustering algorithm, namely,
the number of scripts published by the user, the number
of TouchDevelop-language features used by the user, and
the number of positive reviews given to the user’s scripts
and comments. We used Bayesian Information Criteria (BIC)

to estimate the number of clusters in the input instead
of arbitrarily choosing a number. BIC was shown to be
effective for Community Question Answering (CQA) datasets
to determine how many users should be labeled as experts [8].
After clustering, we then analyze the characteristics of the
users from each cluster and compared different clusters.

To answer RQ4 on the evolution of TouchDevelop scripts,
we first equally divided the whole time period, ranging from
the publish time of the first script to the publish time of the
last script, into 6 smaller time periods (nearly 3 months per
time period). Then we compared scripts from each time period
in different aspects to find the trends of the script evolution.
For example, we investigated how the number and the size of
the scripts in each time period changed over time, and whether
the code reuse ratio increased or not.

To answer RQS5 on the programming progress of
TouchDevelop users, we investigated how many scripts or
TouchDevelop-language features were published or used over
time by each individual user. The number of published scripts
could indicate the activeness of the user while the number
of newly used TouchDevelop-language features could reflect
how much they learned about TouchDevelop. Particularly, we
selected users who started publishing scripts more than one
year ago, and collected the published scripts and newly used
language features in each of their first 12 months (starting
from the time when each user published their first script). We
used the number of published scripts or newly used language
features in each month as 12 attributes and again employed
the GMM clustering to group users with similar behaviors.
After clustering, we analyzed each cluster to identify common
evolution patterns of users. This approach was adopted from
previous work [9]], where they successfully used it to capture
evolution patterns of experts in CQA.

IV. CHARACTERISTICS OF SCRIPTS AND USERS
A. Structural Features of TouchDevelop Scripts

Since TouchDevelop provides its own scripting language,
we want to see how TouchDevelop scripts look like and what
features they have, compared to programs written in other
languages from a structural perspective. We apply the set of
software metrics listed in Table [IIl to the source code of all
TouchDevelop scripts, and find some special characteristics on
their structural features.

Table shows the results of each metrics for all scripts.
First, TouchDevelop scripts are typically small and simple. In
the LOC column, the majority of the scripts (72.6%) has less
than 100 LOC; the average number of LOC is only 133.1. In
the IM and IMC columns, 23.1% of the scripts have only one
internal method (i.e., each of these scripts has only have the
default main action); and 53.1% of the scripts has no internal
method call (i.e., only the code in the main action is executed).
These results indicate that users usually write small scripts with
TouchDevelop, and TouchDevelop is suitable for writing small
scripts for fun or for personalizing mobile devices.

However, there are still 5.4% scripts relatively large scripts
with more than 500 LOC. The largest TouchDevelop script has
5030 LOC and 103 actions, and is a rich-feature game. This
finding implies that it is entirely possible to use TouchDevelop
to create large scripts with rich features.

TABLE III. RESULTS OF STRUCTURAL METRICS FOR ALL TOUCHDEVELOP SCRIPTS
#LOC Ratio #IM Ratio #EM Ratio | #IMC Ratio #EMC Ratio
(0, 100] 72.6% 1 23.1% [0, 10] 44.6% 0 53.1% [0, 50] 66.2%
(100, 500] | 22.0% | (1, 10] | 60.5% | (10,50] | 41.8% | (O, 10] | 30.3% | (50, 100] | 12.4%
(500, 1000] 2.8% | (10, 50] | 14.8% | (50, 100] | 10.0% | (10, 50] | 13.1% | (100, 500] | 16.6%
> 1000 2.6% > 50 1.6% > 100 3.6% > 50 3.5% > 500 4.8%
Avg. 133.1 Avg. 6.6 Avg. 232 Avg. 8.6 Avg. 105.5

Finding 1: (1) TouchDevelop scripts are typically small;
72.6% of them are less than 100 LOC. However, there are
still 5.4% relatively large scripts with more than 500 LOC.
The largest script has 5030 LOC and is a rich-feature game.
Implication: Users usually write small scripts with
TouchDevelop, but it is possible to use TouchDevelop to
create large scripts with rich features.

From Table we can find that there are lots of external
method calls in TouchDevelop scripts. The average number of
EMC in a script is 105.5, much larger than the average number
of IMC. These EMCs are primarily built-in API methods
provided by TouchDevelop (e.g., the properties and methods
of TouchDevelop built-in object types) and also a few actions
defined in other library scripts. Besides, the average EMC
density of all scripts is 0.6, which is very high, meaning that on
average there is at least one EMC in every two lines of code. In
addition, we also find a strong correlation between the number
of lines of code and the number of external method calls. On
the entire dataset, the correlation coefficient is 0.9.

These results are within our expectation because the
TouchDevelop scripting language is relatively high-level. For
those low-level features (e.g., accessing the hardware or
resources of the mobile devices), TouchDevelop provides
built-in implementations, and users are supposed to utilize
the built-in APIs rather than implement them by their own.
The implication from these results is that a lot of code logic
lies outside the scripts, and the scripts heavily rely on built-in
TouchDevelop APIs to achieve functionalities. Enriching the
built-in APIs might help further increase the diversity of the
scripts and the popularity of TouchDevelop.

Finding 2: On average, a TouchDevelop script contains
106 external method calls (e.g., built-in TouchDevelop API
method calls); every two lines of code contain at least one
external method call.

Implication: TouchDevelop scripts heavily rely on external
methods to achieve functionalities. Enriching the built-in
APIs might help further increase the diversity of the scripts
and the popularity of TouchDevelop.

B. Code Reuse in TouchDevelop Scripts

Due to the virtual keyboard and limited screen size,
programming on a mobile device is much more difficult than
programming on a PC. Hence, code reuse becomes extremely
helpful for reducing programming burdens on end users. We
investigated how TouchDevelop scripts reused code, found
some interesting findings, and provided our suggestions based
on the findings.

Overall, the code reuse ratio of TouchDevelop scripts is
high. 57.9% of all the scripts have a parent script. By inheriting

a parent script, the child script can directly modify the code
of the parent script instead of starting from scratch. Such
high code reuse ratio is reasonable in the case of on-device
programming where users desire to save the typing efforts.
It may take less time for users to find the needed code and
understand it than to implement it by their own.

Finding 3: TouchDevelop scripts have a high code reuse
ratio: 57.9% of them have a parent.

Implication: Users tend to modify existing scripts instead
of creating scripts from scratch.

To dig deeper on where the reused code came from, we
found that among all the parent/child pairs, there are 74.3%
of them with the parent and the child having the same author.
This result indicates that in many code-reuse cases, the user
just reuse her own code. There is a lack of code reuse across
different users. There might be two inhibitors that prevent users
from reusing others’ code: (1) there is no effective way for
users to find out others’ code that they need to reuse; (2)
users have a hard time in understanding others’ code without
documentations. To alleviate these problems, a code search
engine of the entire code base might help users to find the code
they need effectively. In addition, although typing is difficult on
mobile devices, users could still add some brief descriptions
on their code to help other users to understand it, and thus
increase the chance of the code being reused.

We then computed the ratio of the modified code against
all the code in the child script and found that on average, for
each child script, the modified code accounts for only 8.5% of
the entire code. This result indicates that the modifications on
the parent scripts are relatively small. Furthermore, from the
sampled parent/child pairs, there are 39 out of 50 (78.0%) child
scripts that are just updated versions of their parents with small
modifications. The average ratio of the modified code in each
39 child script is 7.9%. Many modifications do not implement
substantial functionalities. Based on this finding, we suggest
to provide a version control system for managing the updates
of apps rather than updating apps in a code reuse manner.

Finding 4: In many cases (74.3%), users reuse their own
code, i.e., having their script’s parent as a script written
by themselves. Among 50 sampled parent/child pairs, most
child scripts (78.0%) are just updated versions of their
parents with small modifications that for 7.9% of the code
in the child scripts on average.

Implication: There is lack of code reuse across different
users. A code search engine of the code base may help
users find others’ scripts and adding some descriptions
on the code may increase the chance of being reused. A
version control system might be necessary for managing
script updates.

1000
[
5
S 100
e o Novice
_02’ Ordinary
g 10 Expert
[oN
I+

0l
1000

100 1000

100
10

language features 0 1 # scripts

Fig. 2. The classification of users based on their expertise. The stars
represent the experts, the dots represent the ordinary users, and the small
circles represent the novices.

C. User Classification

Figure 2] shows the results of the GMM clustering on 4275
users, with the number of published scripts, the number of used
TouchDevelop-language features, and the number of received
positive reviews as the input attributes. Overall, the users are
clustered into three groups. We regard the group of users
with most published scripts, language features, and positive
reviews as experts (represented by stars), the group with least
of these metrics as novices (represented by small circles), and
the remaining group as ordinary user (represented by dots).

In particular, there are 74.2% novices, 21.6% ordinary
users, and 4.2% experts. Although the expert group is relatively
small, each group of users has a considerable population. As
shown in Figure 2] there are big differences between each kind
of users on these three metrics. For example, some experts use
hundreds of language features but many novices use only a few.
Since we have three very different kinds of users each with
a considerable population, we suggest to provide customized
services rather than uniform services to each kind of users.
For example, we may recommend tutorials very often to the
novices, but much less frequently to the experts. We may also
keep the Ul for the experts compact whereas provide a detailed
UI with more descriptions for the novices. Moreover, we can
see that the novice group, which has the largest population,
is inactive in general: many of them publish fewer than 10
scripts. It would be very useful to investigate these users and
understand what keeps them remaining to be a novice, e.g.,
lack of interest with TouchDevelop or there are difficulties in
learning TouchDevelop. Engaging these novices would help
TouchDevelop further increase its popularity.

Finding 5: In terms of expertise, 74.2% of the users are
novices, 21.6% of the users are ordinary users, and 4.2%
of the users are experts.

Implication: How to engage these novices is crucial to
further increase the popularity of TouchDevelop. Since we
have a considerable population for each kind of users, we
suggest to provide customized rather than uniform services
to each kind of users, e.g., different Uls.

TABLE IV. INCREASING TRENDS OF SCRIPTS OVER 6 TIME PERIODS

#Script | #L. Script | #Library | Reuse R.
T 939 13 0 43.9%
T 1701 95 0 53.3%
T3 2252 150 257 57.2%
Ty 3171 147 377 59.3%
Ts 2586 230 175 58.2%
T 6673 284 518 62.1%

V. EVOLUTION OF SCRIPTS AND USERS OVER TIME
A. How Do Scripts Change Over Time?

As described in Section we divide the entire time period
into 6 smaller time periods, with an equal length of nearly
three months. Note that the entire time period starts from the
publish time of the very first TouchDevelop script and ends at
the time we conducted our experiment. We apply the same set
of previous metrics separately on the scripts from each of the 6
time periods and compare the results across time periods to see
their changes. Table [[V| shows the results of metrics that have
an increasing trend over time periods. The first column lists
the 6 time periods. The other columns represent the number
of published scripts, the number of scripts with more than 500
LOC, the number of library scripts, and the code reuse ratio
in each time period, respectively.

In general, the number of published scripts per time
periods increases with an average rate of 58.8%. Such increase
of the script number indicates the growing popularity of
TouchDevelop. From the structural perspective, the average
size of the scripts in each time period stays small and does
not change much. However, there are more and more relatively
large scripts published in each time period, with an average
increasing rate of 153.3% as shown in the third column. Such
trend indicates the growing popularity of writing large scripts
with TouchDevelop. We suggest to provide better support for
writing large scripts in the future. For example, we could make
the TouchDevelop language more powerful and expressive so
that it could allow users to create more sophisticated scripts.
Enriching the built-in APIs might also be helpful.

Finding 6: The number of scripts published per time period
(nearly 3 months) increases with an average rate of 58.8%.
Implication: TouchDevelop is becoming popular.

Finding 7: The average size of the scripts in each time
period stays small and does not change much, but the
number of relatively large scripts increases with an average
rate of 153.3%.

Implication: It is important to better support users to create
large scripts. It might be helpful to make the TouchDevelop
language more powerful and expressive or enrich the
built-in APIs.

On the aspect of code reuse, the ratio of code reuse has an
average increase of 3.6 percentage per time period, implying
the growth of popularity of code reuse. In addition, there is an
increasing trend in the number of library scripts. In Table
the number of library scripts is O in the first two time periods,
and then it keeps increasing generally. As there are more and
more library scripts created, we need to find an effective way

published scripts

1 2 3 4 5 6 7 8 9 10 11 12
month

Fig. 3. Evolution patterns on the number of the published scripts of the users.

to manage them. For example, in order for users to find their
desired libraries, it is necessary to provide search support of
library scripts. We also need to provide documents for the
libraries so as to help users to better reuse them. Moreover,
since any user can create library scripts, it is important to
ensure the quality of the libraries and also detect duplicated
libraries.

Finding 8: On average, the code reuse ratio increases by
3.6 percentages; the number of scripts created as libraries
increases with an average rate of 63.0%.

Implication: Code reuse is becoming popular. Since more
libraries are created by users, it is necessary to provide ways
to discover them, document them, and detect duplicates.

B. How Is The Evolution of Users?

To investigate how users evolve, we need users that have
been using TouchDevelop for long enough time. We select
those who started publishing scripts more than one year ago
and find 816 such users. We apply the GMM to cluster these
816 users based on the number of their published scripts and
the number of their newly used language features, respectively.

Figure [3] shows the mean number of users’ published
scripts in their first 12 months for different clusters. Each line
represents a cluster and each data point is the mean number
of the published scripts in a certain month by each user from
a cluster. Although there are 4 clusters found by GMM, they
can be summarized into 3 patterns because some clusters are
just the variants of each other and they belong to the same
cluster. In Figure 3] Line A represents a pattern that 22.1%
of the users are very active initially, publishing many scripts,
and become less active later, publishing only a few. Lines B
and Bl represent anther pattern that 9.6% of the users are
not very active initially but become more active at some time
later. Line C represents the third pattern that 68.3% of the
users try publishing one or two scripts initially and then stop
publishing. Since so many users belong to the third pattern, it is
very important to know why these users stop publishing so that
we could design better strategies or improve TouchDevelop to
retain these users. In addition, knowing what motivates those
earlier less active users to become more active later may also
give hints to increase popularity.

[(e]
o

| —a—D

o 80 ——E
70 -¢-E1}ll
-+= E2
60, ——F

newly used language feature

2 N W b g

month

Fig. 4. Evolution patterns on the number of the newly used language features
of the users.

Finding 9: In terms of publishing scripts, 22.1% of the
users are very active initially and become less active
later. 9.6% of the users are not very active initially but
become more active some time later. 68.3% of the users
try publishing one or two scripts and then stop.
Implication: It would be useful to conduct user studies on
why many users try TouchDevelop and leave, why those
active users become less active, and what motivates those
earlier less active users to become more active later. Such
information could be used to design better strategies to
retain users.

Figure [] shows the mean number of users’ newly used
language features for different clusters. Note that the clusters
in Figures [3|and [are not the same. There are also 3 patterns of
the users’ learning behaviors. Line D represents the first pattern
that 16.3% of the users learn most language features initially
and learn only a few later. Lines E, E1, and E2 represent the
second pattern that 12.4% of the users learn some language
features initially and also learn quite a lot at a certain point
later. Line F represents the third pattern that 71.3% of the users
learn a few language features initially and then stop learning.
We further sample 20 users from the second pattern and check
why there is an increase later in their learning curve. We
find the major reason to be that users switch their focus from
writing one kind of scripts to another so that they use many
new built-in APIs related to the new kind of script. Since the
users have different learning behaviors, we suggest to provide
an adaptive tutoring system that recommends tutorials related
to the kind of scripts that the user is writing and also avoids
tutorials that the user already knows based on the language
features used by the user.

Finding 10: 16.3% of the users learn most language
features initially and learn only a few later. 12.4% of the
users learn some language features initially and also learn
quite a lot at a certain point later. 71.3% of the users learn
a few initially and then stop learning.

Implication: Users have different learning behaviors.
We suggest to provide an adaptive tutoring system that
recommends tutorials to users based on their history of
language-feature usage and the scripts that they are writing.

VI. RELATED WORK

The most related work was an earlier study on
TouchDevelop scripts [3]. Both their work and our work
studied the code reuse ratio of TouchDevelop scripts and code
modifications between parent scripts and child scripts. We had
similar results on code modifications: most of the modifications
were minor tweaks to existing functionalities. However, our
results on code reuse ratio were quite different. In their paper,
they claimed that the code reuse ratio was only 5% because
they had to randomly sample about 2000 scripts until they
found 100 scripts with a parent. Our results, nevertheless
indicated that 57.9% of all scripts had a parent. We informed
the authors of this difference and together figured out two
possible reasons: the code reuse ratio of scripts was increasing;
their sampling might be an “unlucky” one, which sampled
more scripts without a parent. Besides different results, their
study focused on functionalities of scripts and problems posted
by users, whereas our work mainly studied the structural
features of scripts and the evolution of scripts and users.
Moreover, their entire study was done manually so that they
investigated only a small portion of scripts. However, our study
was more comprehensive by including all scripts and users.

There were also some other studies on end-user
programming with TouchDevelop. Nguyen et al. [6] conducted
a user study to compare programming productivity of
TouchDevelop with the traditional off-device approach. They
found that for small tasks, a programmer was more
productive in writing TouchDevelop apps than writing Android
apps. Tillmann et al. [10], [11] presented their successful
experience on teaching middle and high school students
programming using TouchDevelop, and proposed to switch
future programming teaching to mobile devices.

Besides the preceding studies, there was some other
work related to TouchDevelop on security and programming
language. Xiao et al. [[12]] used static information-flow analysis
to reveal how private information was used inside apps so as
to assist users in granting permissions to apps. Burckhardt et
al. [13]] designed specialized cloud types at the programming
language level to achieve consistent data storage for mobile
devices. Our study results might serve as motivations for future
research on programming on mobile devices.

A lot of research was done by the data-mining community
on the users in question-answering forums. Much such
research focused on developing algorithms or approaches to
either identify experts or analyze the behaviors of experts.
Bouguessa et al. [8] developed an approach leveraging
Bayesian Information Criterion to determine experts in the
Yahoo! Answers forum. Pal et al. [9] proposed an approach to
identify the evolution patterns of experts in the Stack Overflow
forum. We borrowed their approaches in our study to classify
TouchDevelop users and analyze their evolution patterns.

There were plenty of studies on end-user programming
in other domains including web applications [14], [15[], [[L6],
spreadsheets [[17]], animations [18], and other domain-specific
visual languages [19]. Many of them [15], [17], [18], [19]
studied what kinds of programs the end users create and what
challenges they face, and gave suggestions to tackle these
challenges, while others [14], [16] conducted user studies on
the behaviors of end users during their programming process.

ACKNOWLEDGEMENTS

This work is supported in part by NSF grants
CCF-0845272, CCF-0915400, CNS-0958235, CNS-1160603,
an NSA Science of Security Lablet grant, a NIST grant,
a Microsoft Research Software Engineering Innovation
Foundation Award, and NSF of China No. 61228203. We thank
Christopher Scaffidi for discussing with us on code reuse and
providing some of their experimental data. We also thank Yuan
Yao for his valuable feedback.

VII. CONCLUSION

In this paper, we have presented the first comprehensive
field study of end-user programming on mobile devices. We
studied 17322 TouchDevelop scripts and 4275 TouchDevelop
users, investigating not only the characteristics of scripts and
users, but also their evolution. Our findings included: (1)
TouchDevelop scripts are small and contain lots of external
method calls; (2) the code reuse ratio of TouchDevelop scripts
is high; (3) many TouchDevelop users are novices; (4) there
are increasing trends of code reuse ratio and the number of
large scripts; (5) TouchDevelop users have some patterns in
publishing scripts and learning language features. Based on
these findings, we have provided a list of implications for
improving tool support or services for end users and increasing
the popularity of end-user programming on mobile devices.

REFERENCES

[1] “The future of mobile,” Business Insider. [Online]. Available:
http://www.businessinsider.com/the- future-of-mobile-deck-2012-3#- 1

[2] R. Minelli and M. Lanza, “Software analytics for mobile applications
- insights & lessons learned,” in CSMR, 2013, pp. 144-153.

[3] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich,
“TouchDevelop: programming cloud-connected mobile devices via
touchscreen,” in SIGPLAN, ONWARD, 2011, pp. 49-60.

[4] N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, and
S. Burckhardt, “TouchDevelop: app development on mobile devices,”
in FSE, Demo, 2012, pp. 39:1-39:2.

[5] B. Athreya, F. Bahmani, A. Diede, and C. Scaffidi, “End-user
programmers on the loose: A study of programming on the phone for
the phone,” in VL/HCC, 2012, pp. 75-82.

[6] T. A. Nguyen, S. T. Rumee, C. Csallner, and N. Tillmann, “An
experiment in developing small mobile phone applications comparing
on-phone to off-phone development,” in USER, 2012, pp. 9-12.

[71 C. Stauffer and W. E. L. Grimson, “Adaptive background mixture
models for real-time tracking,” in CVPR, 1999, pp. 246-252.

[8] M. Bouguessa, B. Dumoulin, and S. Wang, “Identifying authoritative
actors in question-answering forums: the case of Yahoo! answers,” in
KDD, 2008, pp. 866-874.

[9] A. Pal, S. Chang, and J. Konstan, “Evolution of experts in question
answering communities,” in AAAI 2012, pp. 274-281.

[10] N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, J. Bishop,
A. Samuel, and T. Xie, “The future of teaching programming is on
mobile devices,” in ITiCSE, 2012, pp. 156-161.

[11] N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, and T. Xie,
“Engage your students by teaching computer science using only mobile
devices with touchDevelop,” in CSEE&T, 2012, pp. 87-89.

[12] X. Xiao, N. Tillmann, M. Fahndrich, J. De Halleux, and M. Moskal,
“User-aware privacy control via extended static-information-flow
analysis,” in ASE, 2012, pp. 80-89.

[13] S. Burckhardt, M. Fihndrich, D. Leijen, and B. P. Wood, “Cloud types
for eventual consistency,” in ECOOP, 2012, pp. 283-307.

[14] B. Myers, S. Y. Park, Y. Nakano, G. Mueller, and A. Ko, “How
designers design and program interactive behaviors,” in VL/HCC, 2008,
pp. 177-184.

http://www.businessinsider.com/the-future-of-mobile-deck-2012-3#-1

[15]

[16]

(17]

(18]

[19]

C. Bogart, M. Burnett, A. Cypher, and C. Scaffidi, “End-user
programming in the wild: A field study of coscripter scripts,” in
VL/HCC, 2008, pp. 39-46.

N. Zang and M. B. Rosson, “What’s in a mashup? and why? Studying
the perceptions of web-active end users,” in VL/HCC, 2008, pp. 31-38.
C. Chambers and C. Scaffidi, “Struggling to Excel: A field study of
challenges faced by spreadsheet users,” in VL/HCC, 2010, pp. 187-194.
A. Dahotre, Y. Zhang, and C. Scaffidi, “A qualitative study of animation
programming in the wild,” in ESEM, 2010, pp. 29:1-29:10.

M. Jones and C. Scaffidi, “Obstacles and opportunities with using visual
and domain-specific languages in scientific programming,” in VL/HCC,
2011, pp. 9-16.

	Introduction
	Background: TouchDevelop
	The TouchDevelop Programming Environment
	TouchDevelop Scripts and Users

	Methodology
	Subjects
	Metrics and Approaches

	Characteristics of Scripts and Users
	Structural Features of TouchDevelop Scripts
	Code Reuse in TouchDevelop Scripts
	User Classification

	Evolution of Scripts and Users Over Time
	How Do Scripts Change Over Time?
	How Is The Evolution of Users?

	Related Work
	Conclusion
	References

