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Abstract

Hadoop is a widely used open source mapreduce framework. Its performance is critical
because it increases the usefulness of products and services for a large number of companies
who have adopted Hadoop for their business purposes. One of the configuration parameters
that influences the resource allocation and thus the performance of a Hadoop application is
map slot value (MSV). MSV determines the number of map tasks that run concurrently on a
node. For a given architecture, a Hadoop application has an MSV for which its performance
is best. Furthermore, there is not a single map slot value that is best for all applications. A
Hadoop application’s performance suffers when MSV is not the best. Therefore, knowing
the best MSV is important for an application. In this work, we find a low-overhead method
to predict the best MSV using two new Hadoop counters that measure per-map task CPU
utilization and IO throughput. Our experiments on a wide variety of Hadoop applications
show that using the best MSV for each application improves the aggregate performance by
5% up to 132% when compared to using a single MSV for all applications.

1 Introduction

Hadoop is an open source mapreduce framework used by hundreds of companies for a variety
of applications, which include indexing products in ecommerce webservices, log analysis, report-
ing, analytics, and machine learning [2]. The performance of Hadoop is important in increasing
the usefulness of these products.

Performance tuning in Hadoop is a complex task as it has more than 150 configuration pa-
rameters that directly or indirectly affect its resource utilization and performance. The most
common method for selecting best configuration values is trying several possible values and
manually tweaking them until a Hadoop application completes in the least amount of time [1].
This process quickly becomes cumbersome and inefficient when finding best values for more than
one Hadoop application. Thus, it is desirable to have a mechanism to select a best set of con-
figuration parameters. In this work, we find a mechanism to predict the best value of a Hadoop
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parameter called map slot value.

Map slot value (MSV) is a Hadoop configuration parameter whose misconfiguration can cre-
ate significant performance degradation. It is the maximum number of map tasks that run
concurrently on a tasktracker node. We find that a Hadoop application has a unique MSV for
which its performance is best and there is not a single MSV that has best performance for all
Hadoop applications. For example, in one of our experimental clusters there are four MSVs that
have best performance for at least one application, but these MSVs have maximum performance
degradation as high as 132%. Thus, it is important to know the best MSV for an application in
order to avoid its performance degradation.

In this paper, we present a method to reliably predict the best MSV with low-overhead.
Our method uses two new Hadoop counters that measure per-map task CPU utilization and
IO throughput. In the following sections of the paper, we present the related work, describe
Hadoop map phases, describe our modifications, present the map phase completion time results,
and describe the prediction of MSV.

2 Related work

Four areas of prior research are related to our work. The first area is optimizing configuration
parameters of Hadoop. Research in this area explores different methods to obtain the optimal
Hadoop configuration values. The methods include deriving the values from the optimal values
of other jobs [9] or using metrics obtained from extensive instrumentation to extrapolate the
optimal values [8, 7, 5]. Our work does not require knowing optimal values of other jobs or
performing extensive instrumentation.

The second area of prior research is the optimization of resource utilization by selecting the
best predefined technique. These approaches offer an important alternative method for opti-
mizing performance behavior. They select the best technique by using rules [3], using program
analysis [11] or measuring the completion time of several alternative implementations [13].

The third area of prior research is workload analysis of Hadoop jobs. These studies focus on
creating standardized benchmarks [6] or creating qualitative job classes such as small, medium,
and large duration jobs [10]. Our work can be extended to correlate the previously studied job
classes and their performance behavior.

The fourth area that is closely related to our work is the research on Hadoop schedulers. This
work does not focus on optimizing the resource utilization of the entire cluster, but rather focuses
on optimizing resource utilization within the resource bounds imposed by the fixed preconfigured
MSV [14, 12]. Our approach finds the best MSV, which ensures the efficient utilization of the
cluster resources.

In addition to prior research, PUMA is also related to our work [4]. PUMA is a Hadoop
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Figure 1: Map task phases.

benchmarking suite developed by Purdue University. PUMA includes three mapreduce programs
from the official Hadoop distribution and ten other mapreduce programs. The collection of diverse
applications makes it a suitable benchmarking suite. In our experiments, we use only six PUMA
Hadoop applications, as the combination of the six with our custom applications include the
entire range of the measured metrics. In our future work, we plan to explore more PUMA jobs.

3 Hadoop and modifications

Hadoop is a widely used cloud computing framework that runs mapreduce applications. A
Hadoop application consists of map and reduce tasks. A map task processes a block of data and
produces key-value output pairs. The map output is partitioned according to the range of the
key. A reduce task aggregates and operates on the map output key-value pairs that fall under
the assigned key range partition.

The map phase is usually the most time consuming operation of a Hadoop application. The
applications used in our work, which represent common Hadoop applications, have an average
map time of 67% of the total job runtime. The lowest map time for an application is 42% of
the total job runtime whereas the highest map time is 85% of the total job runtime. Due to this
reason, in this work we focus on optimizing the map runtime.

3.1 Map phases

A map task consists of 6 phases, which are compute, collect, sort, spill, combine, and
merge spills. These phases are shown in Figure 1. In the compute phase, a map task ap-
plies the map function to each input key-value pair. In the collect phase, the map task stores
the processed key-value pairs in a map output buffer. The sort phase occurs between collect and
spill operations. In this phase, the output key-value pairs are sorted before the spilling occurs.
When the map output buffer is full, the map task empties the buffer by spilling its content to
a spill file in the local disk. This is the spill phase. The combine phase is optional and when
present, the map task performs a local reduce operation on the map output key-value pairs. In
the merge spill phase, the spill files are merged together to produce a single map output file.

Each phase in the map task is either CPU or IO intensive. The CPU intensive phases are
compute, collect, sort, and combine. The IO intensive phases are spill and merge spills.
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3.2 Modifications

Our approach predicts the best MSV using the CPU utilization and IO throughput metrics
of a map task. The metrics are derived from the durations of the map phases. The best MSV
is the MSV setting for which an application has the shortest completion time. An application
has the best performance when all CPUs are fully utilized. Additionally, IO bound applications
suffer performance degradation when the IO bandwidth is fully consumed. Thus, the best MSV
setting either utilizes all CPUs efficiently or in case of an IO bound application fully utilizes
the IO bandwidth. For MSVs greater than the best, the parallelism is too great, resulting in
either CPU or IO performance degradation. The CPU performance degradation occurs due to
additional system overhead for the larger number of processes. The IO performance degradation
occurs due to higher contention for the IO bandwidth which lowers the overall IO throughput
of the system. On the other hand, for MSV lower than the best MSV, the parallelism is low,
resulting in either CPU and IO underutilization. When the CPU is underutilized, the CPU
user, system, and iowait time is low. When the IO resource is underutilized, there is leftover
IO bandwidth available for use. In both cases, additional tasks can be run to use the leftover
resources and improve the application completion time.

We use Hadoop counters to measure per-map task CPU utilization and IO throughput. Coun-
ters are the built-in low-overhead metrics in Hadoop. They report important task and job related
statistics. By default, Hadoop collects tens of statistical values using the counters. An example
of a Hadoop counter is HDFS BYTES WRITTEN, which records the total amount of output
data written to HDFS by reduce tasks.

We introduce two new counters CPU UTIL and IO THRPUT to measure per-map task CPU
utilization and IO throughput. CPU UTIL is the sum of the time taken by the CPU intensive
phases of a map task, which are compute, sort, and combine. IO THRPUT is the quotient of
total map output bytes divided by the map task duration. The overhead of these counters is
insignificant and is same as maintaining other existing Hadoop counters. Additionaly, we require
the counter values of only a single map task to estimate the best MSV.

4 Evaluation

In this section, we describe the experimental setup, analyze the performance of the Hadoop
applications for different MSVs, and describe the prediction of MSV using the metric values.

4.1 Experiment setup

Experiments are performed on two clusters. The first cluster consists of six IBM PowerPC
machines. Each node contains two POWER7 processors with 24 cores and 48 total CPU threads,
90GB RAM, and a 10 Gbps Ethernet network link. In the PowerPC cluster, Hadoop is config-
ured with one jobtacker and five tasktrackers. HDFS is configured with one namenode and five
datanodes. The second cluster consists of six x86 machines. Each node contains two Intel Xeon
x86 processors with 8 cores and 16 total CPU threads, 24GB RAM, and a 10 Gbps Ethernet
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Jobs CPU UTIL(%) IO THRPUT(MB/s)

terasort 36 7.31
rankedinvertedindex 40 4.42
terasort(L10,D100) 46 4.79

wordcount 58 2.84
terasort(L30,D100) 58 3.87

invertedindex 65 1.99
terasort(L60,D100) 69 3.02
termvectorperhost 75 3.77

terasort(L100,D100) 77 2.29
terasort(L200,D100) 87 1.41
terasort(L500,D100) 94 0.65

grep 97 0.01
terasort(L10,D1) 97 0.11

terasort(L10,D0.1) 98 0.01
terasort(L10,D0.01) 99 0.01

Table 1: Utilization and throughput in the ascending order of CPU UTIL for PowerPC cluster.

link. As in the PowerPC, in this cluster, Hadoop is configured with one jobtracker and five
tasktrackers. HDFS is configured with one namenode and five datanodes.

Our experiments use fifteen Hadoop jobs, among which six jobs are from PUMA benchmark
suite [4] and the remaining nine jobs are customized versions of terasort. The PUMA jobs
are grep, wordcount, invertedindex, rankedinvertedindex, terasort, and termvectorperhost. The
PUMA jobs use wikipedia dataset. Terasort and its variants use the data generated by teragen.

We use the variants of terasort in order to include the entire spectrum of CPU utilization and
IO throughput values. Among the PUMA jobs, the lowest CPU utilization of a map task is 36%
for terasort and the highest is 97% for grep. Similarly, the lowest IO throughput is 0.01MB/s
for grep and the highest is 7.31MB/s for terasort. However, the PUMA jobs do not include all
CPU utilization values between 36% and 97% or all IO throughput values between 7.31MB/s
and 0.01MB/s. In order to include the entire utilization spectrum, in the terasort application
we add variable number of extra busy loops and to inclue the entire io throughput spectrum we
vary the amount of map output data. Table 1 shows that after adding the terasort variants,
the jobs include the entire spectrum of CPU utilization from 36% to 99% and IO throughput
from 7.31MB/s to 0.01 MB/s. The terasort variants are listed by showing the number of busy
loops and amount of output data. For the terasort variant terasort(L10, D100), L represents
the number of busy loops and D represents the percentage of input data that is converted to
the output. Thus, terasort(L10, D100) executes 10 extra busy loops for each key-value pair and
outputs 100% of the input data. The highest number of busy loops is 500 and the lowest amount
of output data is 0.01%. Listing 1 shows the map function implementation of terasort(L10,D1).
The busy loop is specially constructed to avoid compiler optimization.
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Listing 1: Map function of terasort(L10,D1).

/* terasort(L10,D1) = terasort with 10 busy loops and 1% data output */

public int counter = 0;

public void map(K key, V val, OutputCollector<K, V> output, Reporter reporter)

throws IOException {

int tempval = 0;

int output_factor = 100; //1% data output

for(int i=0; i< key.toString().length(); i++)

{ tempval+=1;

}

reporter.setStatus("Busy loop " + tempval);

if(counter++%output_factor == 0)

{ output.collect(key, val);

}

}

4.2 Performance analysis

Table 2 shows the normalized performance behavior of the fifteen applications for different
MSVs and normalized MSVs for PowerPC cluster with 150GB data. The normalized MSV is
the MSV relative to the number of CPU threads in a node.1 For the PowerPC machines, a
normalized MSV of 1 means an actual MSV of 48, which is equal to 1 map task per CPU thread
(or 2 map tasks per core). The best performance value is 1 and denotes the shortest completion
time of an application for the set of MSVs used in the experiments. The best MSV is the one
for which an application has the shortest completion time. In the PowerPC cluster, MSV is set
to values from 8 to 64 with increments of 8. Beyond 64, the applications suffer slowdown and
those results are omitted.

The Table 2 shows that there is a best value for each application and there is not a single
MSV that is best for all applications. Every application in the table has a unique best MSV.
For example, terasort and wordcount have best MSVs of 24 and 56. Additionally, the table does
not have a single MSV that is best for all applications. The last row shows the number of best
values for different MSVs. MSVs 24, 32, 40, and 56 are best for 3, 1, 3, and 8 applications. One
significant MSV is 40, which has lowest aggregate performance value of 16.10. The aggregate
value is 7.3% higher than the theoretical best aggregate performance value of 15. But, it has a
maximum slowdown of 20% for terasort(L10,D10). Thus, picking MSV 40 for all applications is

1The machines used in our experiments have hyperthreading enabled due to which the CPU schedulable
contexts as seen by operating system is greater than the number of cores. In a hyperthreaded system, the metric
CPU UTIL measures the utilization of the threads, and a 100% utilization occurs when all threads are busy
rather than when all cores are busy.
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Data size=150GB, CPU cores per node=24, CPU threads per node=48

Job
MSV(normalized)

8 16 24 32 40 48 56 64
(0.17) (0.33) (0.50) (0.67) (0.83) (1) (1.17) (1.33)

terasort 1.80 1.17 1(258s) 1.02 1.18 1.89 2.32 2.51
rankedinvertedindex 2.24 1.30 1.09 1.01 1(453s) 1.11 1.09 1.23
terasort(L10,D100) 2.13 1.28 1.07 1.01 1(350s) 1.16 1.03 1.19

word count 2.56 1.57 1.26 1.26 1.06 1.08 1(564s) 1.04
terasort(L30,D100) 1.97 1.34 1.20 1.14 1.08 1.19 1(470s) 1.17

invertedindex 2.38 1.49 1.21 1.21 1.06 1.09 1(620s) 1.02
terasort(L60,D100) 1.72 1.19 1.13 1.15 1.11 1.14 1(689s) 1.13
termvectorperhost 2.07 1.38 1.16 1.16 1.02 1.08 1(694s) 1.02

terasort(L100,D100) 1.64 1.15 1.08 1.10 1.07 1.01 1(948s) 1.09
terasort(L200,D100) 1.64 1.16 1.10 1.10 1.10 1.13 1(1539s) 1.12
terasort(L500,D100) 1.59 1.15 1.08 1.11 1.09 1.06 1(3459s) 1.05

grep 1.73 1.18 1.05 1.05 1(245s) 1.11 1.39 1.40
terasort(L10,D1) 1.65 1.13 1(173s) 1.01 1.20 1.59 1.90 1.98

terasort(L10,D0.1) 1.81 1.22 1(175s) 1.05 1.11 1.47 1.62 1.84
terasort(L10,D0.01) 1.63 1.08 1.02 1(190s) 1.02 1.54 1.68 2.06

Aggregate 28.56 18.79 16.45 16.38 16.10 18.65 19.03 20.85
# of best values 0 0 3 1 3 0 8 0

Table 2: Normalized performance and the best completion time (in braces) for different MSVs
on the PowerPC cluster with 150GB datasize.

not a best solution. Additionally, while MSV of 56 is best for the most applications, it has a
slowdown of 132% for terasort. This further reinforces that a single MSV is not a best choice for
all applications.

In order to test if these results are generally applicable, we also run these applications on
both a larger dataset size and a different architecture (x86). Tables 3 and 4 show the normalized
performance behavior of the PowerPC cluster for 300GB dataset and x86 cluster for 150GB
dataset. The results show performance behavior similar to the PowerPC cluster with 150GB
data size. In Table 3, MSVs 24, 32, 40, and 56 are best for at least one application. MSV 32 has
the lowest aggregate performance value of 16.03, which is 6.9% higher than the theoretical best
aggregate performance value of 15. It has a maximum slowdown of 13%. Similarly, in Table 4,
MSVs 8, 12, and 16 are best for at least one application. As the number of cores and threads
are different in the x86 cluster, for the experiment, MSV is set to values from 4 to 24 with
increments of 4. Beyond 24, the applications suffer slowdown. MSV 12 has the lowest aggregate
performance value of 16.09 which is 7.3% higher than the best aggregate performance value. It
has a maximum slowdown of 16%. Thus, in the three cases tested, there is not a single MSV
that is best for all applications.
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Data size=300GB, CPU cores per node=24, CPU threads per node=48

Job
MSV(normalized)

8 16 24 32 40 48 56 64
(0.17) (0.33) (0.50) (0.67) (0.83) (1) (1.17) (1.33)

terasort 1.73 1.13 1(519s) 1.06 1.57 2.42 2.49 2.92
rankedinvertedindex 2.28 1.32 1.09 1.02 1(771s) 1.22 1.47 2.09
terasort(L10,D100) 2.18 1.27 1.09 1(663s) 1.03 1.42 1.14 1.73

word count 2.47 1.52 1.22 1.09 1.03 1.03 1(1110s) 1.02
terasort(L30,D100) 1.92 1.32 1.12 1.10 1.04 1.02 1(939s) 1.11

invertedindex 2.34 1.49 1.20 1.09 1.03 1.02 1.01 1(1307s)
terasort(L60,D100) 1.74 1.19 1.14 1.09 1.05 1.03 1(1328s) 1.09
termvectorperhost 2.04 1.35 1.18 1.12 1.07 1.02 1(1368s) 1.03

terasort(L100,D100) 1.70 1.17 1.15 1.11 1.04 1.03 1(1800s) 1.09
terasort(L200,D100) 1.64 1.16 1.14 1.13 1.07 1.05 1(3030s) 1.06
terasort(L500,D100) 1.60 1.14 1.13 1.11 1.09 1.05 1(6814s)) 1.07

grep 2.09 1.33 1.17 1.05 1(513s) 1.01 1.06 1.03
terasort(L10,D1) 1.53 1.08 1(248s) 1.01 1.02 1.20 1.17 1.23

terasort(L10,D0.1) 1.54 1.11 1(238s) 1.02 1.08 1.18 1.21 1.26
terasort(L10,D0.01) 1.56 1.11 1(232s) 1.04 1.09 1.24 1.23 1.28

Aggregate 28.36 18.69 16.63 16.03 16.24 17.94 17.78 20.01
# of best values 0 0 4 1 2 0 7 1

Table 3: Normalized performance the best completion time (in braces) for different MSVs on
PowerPC cluster with 300GB datasize.

4.3 Prediction

Using the values of the two metrics CPU UTIL and IO THRPUT, we can predict the best
MSV for a Hadoop application. Figure 2 shows the normalized best MSVs for the CPU utiliza-
tion and IO throughput combinations of all 15 applications. The figure also contains a line plot
that shows the normalized MSVs for different CPU utilization values.

Figure 2 shows applications divided into three general regions: IO-intensive, Balanced, and
CPU-intensive. Each region includes applications with different ranges of CPU UTIL and
IO THRPUT metrics and has a predictable range of best MSV. IO-intensive region has ap-
plications with low CPU UTIL (36% to 60%) and high IO THRPUT (3MB/s to 7MB/s). The
normalized best MSVs of applications in this region are less than 1.0. Balanced region has appli-
cations with medium CPU UTIL (60% to 90%) and medium IO THRPUT (0.1MB/s to 3MB/s).
The normalized best MSVs of applications in this region are greater than 1.0. CPU-intensive
region has applications with high CPU UTIL (90% to 100%) and low IO THRPUT (0.1MB/s).
The best normalized MSVs of applications in this region are less than 1.0. The normalized best
MSVs greater than 1.0 means that the number of map tasks exceeds the number of CPU threads
in the system. This indicates that the applications are scalable. On the other hand, the best
normalized MSVs less than 1.0 indicate that the applications are not scalable and face resource
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Data size=150GB, CPU cores per node=8, CPU threads per node=16

Job
MSV(normalized)

4 8 12 16 20 24
(0.25) (0.50) (0.75) (1) (1.25) (1.5)

terasort 1.14 1(2688s) 1.05 1.11 1.34 1.46
rankedinvertedindex 1.09 1(1676s) 1.11 1.24 1.35 1.44
terasort(L10,D100) 1.13 1(2172s) 1.09 1.21 1.31 1.44

word count 1.88 1.04 1(1337s) 1.17 1.12 1.21
terasort(L30,D100) 1.39 1.12 1(2670s) 1.05 1.11 1.42

invertedindex 2.36 1(509s) 1.09 1.41 1.95 2.13
terasort(L60,D100) 1.24 1.24 1.01 1(2732s) 1.17 1.41
termvectorperhost 1.56 1.10 1.09 1(536s) 1.13 1.20

terasort(L100,D100) 1.61 1.29 1.14 1(2871s) 1.23 1.40
terasort(L200,D100) 1.54 1.18 1.13 1(3114s) 1.11 1.21
terasort(L500,D100) 1.85 1.25 1.16 1(3960s) 1.09 1.27

grep 1.57 1.12 1(352s) 1.05 1.09 1.10
terasort(L10,D1) 1.04 1(883s) 1.05 1.08 1.06 1.07

terasort(L10,D0.1) 1.03 1(884s) 1.03 1.09 1.11 1.13
terasort(L10,D0.01) 1.07 1(871s) 1.08 1.10 1.12 1.13

Aggregate 21.5 16.34 16.09 16.51 18.29 20.02
# of best values 0 7 3 5 0 0

Table 4: Normalized performance the best completion time (in braces) for different MSVs on
x86 cluster with 150GB datasize.

bottlenecks. The scalable nature of Balanced region and the bottlenecks of IO-intensive and
CPU-intensive regions are described with examples in the following paragraphs.

Figures 3, 4, and 5 show the CPU and IO behavior of a tasktracker node for an application
of each region. The figures show the node behavior including the completion time for all MSVs
and help to explain the performance of an application when the MSV is best. In the figures, the
CPU utilization is divided into user, system, and iowait states. The user is the time spent by the
map tasks, the system is the time spent by the kernel, and the iowait is the time spent waiting
for the IO operation to complete. Each figure is described as follows.

Figure 3 shows the node behavior of terasort, which falls in IO-intensive region. The fig-
ure shows 24 as best MSV. In Figure 3, the IO throughput steadily increases until MSV is 24.
For MSV greater than 24, the IO throughput decreases and there is a increase in iowait. This
suggests that beyond 24 MSV, increasing parallelism merely increases IO pressure and overhead
due to the IO pressure. This explains the lower relative best MSV for jobs in IO-intensive region.

Figure 4 shows the node behavior of invertedindex, which falls in Balanced region. The figure
shows 56 as the best MSV. In Figure 4, the user CPU increases until MSV is 56. After 56, the
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IO-intensive

CPU-intensive

Balanced

Figure 2: Classification for jobs running on PowerPC cluster.

464s
302s

258s 263s 304s
488s

599s
648s

Figure 3: Average CPU utilization, IO throughput, and completion time (shown in relative
vertical heights) of an IO-intensive application (terasort).

user CPU levels off without showing performance improvement. IO throughput on the other
hand is almost constant and does not peak, which suggests a lack of IO bottleneck. Due to this
reason, there is not any noticeable iowait. This behavior results in the jobs having best MSV
greater than the number of CPU threads.

Figure5 shows the node behavior of grep, which falls in CPU-intensive region. The figure

10



1476s
973s 750s 750s 657s 676s

620s 632s

Figure 4: Average CPU utilization, IO throughput, and completion time (shown in relative
vertical heights) of a Balanced application (invertedindex).

343s424s
289s 257s 257s 245s

272s 341s

Figure 5: Average CPU utilization, IO throughput, and completion time (shown in relative
vertical heights) of a CPU-intensive application (grep).

shows 40 as the best MSV. In Figure 5, the user CPU steadily increases until MSV is 40. After
40, the sys CPU increases and the user CPU levels off and decreases in small amount. This
suggests that due to the high CPU utilization of grep, the system overhead increases. The IO
throughput on the other hand is 0.1MB/s for all MSVs.
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IO-intensive

CPU-intensive

Balanced

Figure 6: Classification for jobs running on x86 cluster.

Prediction for x86 cluster. The prediction for x86 cluster is similar to the PowerPC, ex-
cept the difference in region boundaries. The IO throughput of a x86 node and a PowerPC node is
40MB/s and 100MB/s respectively.2 Due to this reason, applications with medium IO THRPUT
metric value suffer from IO bottleneck in the x86 cluster whereas they do not suffer from IO bot-
tleneck in the PowerPC cluster. As a result, the applications with medium IO THRPUT belong
to IO-intensive region of x86 cluster instead of belonging to Balanced region. Additionally, as
these applications with medium IO THRPUT have relatively higher CPU UTIL values, the Bal-
anced region starts at a higher CPU UTIL value in the x86 cluster. This is observed in Figure 6,
which shows the normalized MSV for all applications based on CPU UTIL and IO THRPUT
metric values. From the figure, we can observe that the Balanced region starts at 69% which is
relatively higher than 58% for PowerPC.

Relation between CPU UTIL metric and the best MSV. In the prediction Figures 2
and 6, we observe a inverse linear relation between the CPU UTIL and IO THRPUT metrics.
In order to illustrate the relation between CPU UTIL metric and the best MSV, in Figure 7 we
plot the normalized best MSVs for different CPU UTIL metric values for both the clusters. The
characteristics of the three regions are similar for both clusters. The noticeable difference is the
starting CPU UTIL boundary of Balanced region. Balanced region for PowerPC starts at 58%
whereas for x86 it starts at 69%. The distinction is due to the IO capacity of the two clusters.
The IO throughput of applications with CPU UTIL between 58% and 69% creates IO bottleneck
in the x86 cluster but not in the PowerPC cluster. This shows that the region boundaries are
dependent upon each cluster’s CPU and IO capacities.

2A node in the x86 cluster has a single SAS hard disk, whereas a PowerPC node has 5 SAS hard disks in
RAID-5 configuration.
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58 69

Figure 7: Job classification using only CPU UTIL metric.

MSV selection
PowerPC x86

150GB 300GB 150GB

Best single MSV 16.10(20%) 16.03(13%) 16.09(16%)
Predicted MSV using the regions 15.19(6%) 15.21(6%) 15.50(11%)

Table 5: Aggregate normalized performance values and maximum slowdown percentages (inside
braces) for the three tested cases.

Performance characteristics of using predicted MSV. To find the effectiveness of the
regions, we compare the performance of applications when using the region specific MSVs and
a best single MSV for all applications. For the fifteen jobs, the best aggregate normalized per-
formance value is 15. For the IO-intensive, Balanced, and CPU-intensive regions, we select the
normalized MSVs 0.67,1.17, and 0.67 for the PowerPC cluster and 0.75, 1, and 0.75 for the x86
cluster. The best single MSV for PowerPC is 0.67 and for x86 it is 0.75. Table 5 shows the
performance values for these two schemes. Using a single predicted MSV for applications in each
region has a better aggregate performance value compared to using a single fixed MSV for all
applications. For the three cases, the aggregate slowdown when using region based predicted
MSV is 1.2%, 1.4%, and 3.3%, which is lower than the slowdown of 7.3%, 6.8%, and 7.3% when
using a single fixed MSV. In the braces alongside the performance values, the table shows in
percentage the maximum slowdown of jobs when using the predicted MSVs. By using the re-
gion based predicted MSVs, the maximum slowdown decreases to as less as 6% from 20% when
compared to using a single best MSV.

In this section, we showed the performance results of Hadoop jobs for two clusters: PowerPC
and x86, and two data sizes for PowerPC cluster: 150GB and 300GB. Our findings show that we
can predict the performance behavior based on the two metrics CPU UTIL and IO THRPUT.
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The performance characteristics fall into three general regions: IO-intensive, Balanced, and CPU-
intensive. The IO-intensive region contains jobs with high IO throughput and low CPU utiliza-
tion and the normalized best MSV is below 1. The Balanced region contains jobs with medium
CPU utilization and medium IO throughput and the normalized best MSV is 1 or above. The
CPU-intensive region contains jobs with high CPU utilization and low IO throughput and the
best MSV is below 1. The CPU utilization or IO throughput value at which the regions separate
differs depending upon a node’s hardware characteristics.

5 Conclusion

Optimizing resource allocation to improve performance in Hadoop is an important area of
research. Improved Hadoop performance adds value to hundreds of Hadoop deployments in
commercial as well as research organizations. In this work, we explored the performance behavior
of fifteen Hadoop applications that included wide range of CPU and IO characteristics. We
observed that each Hadoop application has a unique MSV for which it has the best performance.
MSV is a Hadoop configuration parameter whose misconfiguration deteriorates the performance
of a Hadoop application. Additionally, there is not a single MSV that is best for all applications.
Based on these findings, we developed a method to predict the best MSV. Our method uses
two new Hadoop counters that measure per-map task CPU utilization and IO throughput. Our
results showed that based on the counter values the applications form three distinct regions.
Each region’s application has a specific range of MSV that results in its best performance. When
using the region based predicted MSVs, the aggregate performance degradation is only 1%, which
is comparatively less than 7% when using a single MSV for all applications. Furthermore, the
slowdown for any application is as low as 6% when using region based prediction compared to 20%
when using a single MSV. Our results also show that, based on the hardware characteristics of
a cluster, the boundary of the regions are different for different clusters. Thus, the low-overhead
method of using metric values to predict MSV is an efficient approach for estimating the best
configuration parameter value and achieving best performance for Hadoop applications.
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