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ABSTRACT
We study the following problem: Given a set of an-
swers, MV , to some fixed queries, V, on an (unavail-
able) database instance of interest, I, and given another
query, Q: Which of the answer tuples to Q on I are “de-
terministically assured” by the contents of MV ? That
is, which tuples t̄ must necessarily be present in the an-
swer to the query Q on the instance I, based on the
information in V, in MV , and (optionally) in the set Σ
of integrity constraints that must hold on I? (We say
that there is information leakage of Q via MV and V iff
at least one such tuple t̄ exists.) Note that the instance
I is not available for making the determination.

We perform a theoretical investigation of the above
problem of information-leak disclosure. We focus on the
relational setting, and assume that Q and the queries in
V are conjunctive queries, and the set Σ of integrity con-
straints (when present) is “weakly acyclic” [18]. We use
data-exchange techniques to develop a sound and com-
plete algorithm for solving the problem in this setting.
The results of this paper are applicable to fundamen-
tal problems in information management, especially in
database security and privacy. One immediate appli-
cation is in contexts where database users are assigned
data-access privileges using fine-grained access control,
intuitively via view definitions. In such contexts, our
algorithm would permit database owners to detect in-
formation leakage in cases where a database user, or a
group of possibly colluding users, are given privileges
that will enable the users to deterministically derive
some sensitive information contained in the database.

1. INTRODUCTION
In this paper we consider the following basic question:

Given a set of answers, MV , to some fixed queries on
some (unavailable) database instance of interest, I, and
given another query, Q: Which of the answer tuples
to Q on I are “deterministically assured” by the con-
tents of MV ? Formally, consider an instance I of some
database schema P. For a set V of n ≥ 1 queries V1,
V2, . . ., Vn defined on the schema P, denote by MV
the union of the answers Vj(I) to the queries Vj on the
instance I, for all j ∈ [1, n]. The problem is as follows:
Given a query Q over the schema P, return the set of
all tuples, t̄, of domain values, such that each t̄ must be
in the answer Q(I) to the query Q on the instance of
interest I. (We say that there is information leakage of
Q via MV and V if and only if at least one such tuple t̄
exists.) The information available for making the deter-
mination of whether a tuple t̄ must be in Q(I) includes

the following: the definition of the schema P; the def-
initions of the queries Q, V1, V2, . . ., Vn; the instance
MV ; and (optionally) integrity constraints Σ that must
hold on all instances of the schema P. Note that the in-
stance I is not available for making the determination.
This problem builds on the problems considered in [1]
by adding integrity constraints to the problem inputs.

It turns out that this abstract problem arises natu-
rally in fine-grained database-access control. Indeed, in
organizational databases that are designed for shared
access, individual users typically access the stored data
based on their privileges. In many cases, such access
privileges are expressed using detailed levels of granular-
ity of the database data [7]. Representative mechanisms
for formally specifying fine-grained user-access privi-
leges include Oracle Virtual Private Database (VPD)
[27, 28] and label-based access control in DB2 [9].

Not surprisingly, management of fine-grained access
control is rather challenging. In one particular challenge
that we address in this paper, a user or a group of users
may obtain sensitive data using more than one data-
access policy at a time. (E.g., a user may work on mul-
tiple projects, with each project independently granting
partial access to the same data.) As a result, sensitive
information may be leaked inadvertently to unautho-
rized users when they combine privileges from multi-
ple access-control rules, each of which is seemingly safe.
Then it is natural for the owners of the data to want to
determine whether any such information leakage is pos-
sible when certain data have been disclosed to the users.
What complicates this problem further is that an ad-
versary may not only be aware of specific access-control
rules, but also be equipped with domain knowledge, as
reflected by database integrity constraints. Formalizing
“sensitive information” as our query Q of interest, and
formalizing access-control rules as views V, leads natu-
rally to the formal problem outlined in the beginning of
this section. Consider an illustration.

EXAMPLE 1.1. Suppose a relation Emp stores in-
formation about employees of a company. Let the at-
tributes of Emp be Name, Dept, and Salary, with self-
explanatory attribute names: Emp(Name,Dept,Salary).

We assume for simplicity that no integrity constraints
hold on the database schema P containing the relation
Emp. (In particular, the only primary key of Emp is all
its attributes.) Thus, the set Σ of dependencies holding
on the schema P is the empty set.

Let a “secret query” Q ask for the salaries of all the
employees. We can formulate the query Q in SQL as

(Q): SELECT DISTINCT Name, Salary FROM Emp;
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Consider two views, V and W, that are defined for some
class(es) of users, in SQL on the schema P. The view
V returns the department name for each employee, and
the view W returns the salaries in each department:

(V): DEFINE VIEW V(Name, Dept) AS
SELECT DISTINCT Name, Dept FROM Emp;

(W): DEFINE VIEW W(Dept, Salary) AS
SELECT DISTINCT Dept, Salary FROM Emp;

Suppose that some user(s) are authorized to see the
answers to V and W, and that at some point the user(s)
can see the following set MV of answers to these views.

MV = { V(JohnDoe, Sales), W(Sales, $50000) } .
Consider a tuple t̄ = (JohnDoe, $50000) of domain

values in MV . Assume that these users are interested in
finding out whether t̄ is in the answer to the secret query
Q on the “back-end” instance, I. (That is, applying the
queries V and W to I has generated the instance MV .)
We can show that the relation Emp in such an instance
I is uniquely determined by V, W, and MV :

Emp in I is { Emp(JohnDoe, Sales, $50000) } .
The only answer to the secret query Q on this instance

I is the above tuple t̄. Thus, the presence of the tuple
t̄ in the answer to Q on the organizational database of
interest is in this case deterministically assured by the
information that these users are authorized to access. 2

As detecting information leakage is an important chal-
lenge in real-life database access, a variety of formaliza-
tions of the problem have been studied, please see [7,
12] for overviews. In influential papers [23, 24] by Mik-
lau and Suciu, the problem considered in [23, 24] is the
same at the informal level as our basic question above.
(As a result, the solutions that we obtain in this current
paper address, at the pragmatic level, the same real-life
challenges as the solutions developed in [23, 24].) That
is, the papers [23, 24] focus on the problem of deter-
mining, for a fixed finite set V of views to be published,
whether the published answers will logically disclose in-
formation about a fixed confidential query Q.

At the same time, the formalization of this problem
in [23, 24], inspired by Shannon’s notion of perfect se-
crecy [29], is as follows: There is no information leak-
age of the query Q via the views V if and only if the
probability of an adversary guessing the answer to Q is
the same (or, in another scenario, is almost the same)
whether the adversary knows the answers to V or not.
The information-leakage problem is addressed in [23, 24]
using this formalization, in the absence of any specific
fixed answers to the views V and using the assumption
that the database of interest is given as a probability
distribution over a fixed finite domain of values. Data-
exchange approaches [6] are not used in the technical de-
velopment in [23, 24]; rather, the term “data exchange”
is used in [23, 24] informally as a reference to today’s
universal sharing of data (as in, e.g., on the Web).

It is possible that the solutions given in [23, 24] could
be extended to address part of our basic question, as
follows. Suppose that, for a set of databases of interest
(given via an appropriate domain and probability dis-
tribution), for a query Q, and for views V, there is no
information leakage of Q via V by the definition of [23,
24]. Then, conceivably, one could show formally that for
each possible set, MV , of answers to the views V, there
is no deterministic information leakage of Q w.r.t. V

and MV , in the sense of our basic question. While such
a result might presumably be proved, the proof would
still leave open the following possibility. Suppose that
for a particular set MV ∗, there is no deterministic in-
formation leakage of Q w.r.t. V and MV ∗, even though
by the results of [23, 24] there is probabilistic informa-
tion leakage of Q via V, intuitively due to some other
set MV ′ of answers to the views V. Clearly, any such
set MV ′ must not be disclosed to the users, due to the
associated threat of (deterministic) leakage of the sen-
sitive information Q. At the same time, any set MV ∗

as above can be safely disclosed to the users, even in
presence of the “general” information leakage of Q via
V shown using the results of [23, 24].

In this paper, we formalize the basic question outlined
in the beginning of this section; our formalization is a
natural extension of that in [1]. We then perform a theo-
retical study of the formal problem, in the relational set-
ting and under the following restrictions, which we will
be referring to collectively as “the CQ weakly-acyclic
setting”: (1) The given queries Q, V1, . . ., Vn are all
SQL select-project-join queries with equality compar-
isons and possibly with constants. (That is, we assume
that Q, V1, . . ., Vn are expressed in the common lan-
guage of conjunctive (CQ) queries.) (2) We assume that
for each given set Σ of integrity constraints (dependen-
cies) on the input database schema P, the set Σ is a
finite set of “weakly-acyclic dependencies” [18], which is
a common assumption in the literature.

Our contributions. The specific contributions of
this work are as follows:

• We formalize the problem of “deterministic assur-
ance” of the presence of some tuples in the answer
to a fixed query, Q, on some database of interest, I,
by the contents of the answers MV to other fixed
queries V on the same database I. In our formal-
ization, a problem instance, usually denoted Ds,
includes a schema P, a set Σ of dependencies on
P, a set V, a set MV , and a query Q. If any in-
stance I of schema P exists such that I satisfies Σ
and such that the set of answers on I to the views
V is exactly MV , then we say that Ds is a valid
problem instance. For each valid problem instance
Ds, the problem of information-leak disclosure is
to determine the set of tuples that must be present
in the answer to the query Q on the instance I due
to the information given by Ds.
• We perform a theoretical study of the problem

of information-leak disclosure in the CQ weakly-
acyclic setting. Specifically, we introduce and study
two approaches that arise naturally in the context
of the problem: the “rewriting approach” (Sec-
tion 5) and the “data-exchange approach” (Sec-
tion 6). While both approaches are sound, neither
approach yields a sound and complete algorithm
for all CQ weakly-acyclic inputs.

• Then, in Section 7 we introduce a modification of
our “data-exchange approach” of Section 6. The
resulting “view-verified data-exchange approach”
yields a sound and complete algorithm for all prob-
lem inputs in the CQ weakly-acyclic setting.

• We prove that the problem of information-leak dis-
closure is Πp

2 complete for the class of CQ weakly
acyclic instances. (We assume, same as in [33],
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that the parts P, Σ, and V of the problem input
Ds are fixed, while Q and MV can vary.)

• Finally, we provide an algorithm for determining
whether a given CQ weakly acyclic instance Ds of
the problem of information-leak disclosure is valid.

The results of this paper are applicable to a number of
fundamental problems in information management, es-
pecially in database security and privacy. Consider, for
instance, a database where user privileges are defined
through views. Following the principles of least priv-
ilege and separation of duty [16], it would be natural
to ask whe- ther a user, or a group of possibly collud-
ing users, are given privileges that will enable the users
to deterministically derive some sensitive information.
Questions of this type are particularly important and
challenging for fine-grained access control, where priv-
ileges may be granted to users in a much more elabo-
rate manner than table-level or column-level access con-
trol. As a result, sensitive information may be leaked
in very subtle ways, which are hard to discover by man-
ual inspection of access-control rules. Similarly, when
a data owner wants to share information with a third
party (e.g., through views), it is crucial to understand
whether, e.g., private information of individuals may be
leaked because of such sharing [31, 12].

The remainder of this paper is organized as follows.
In Section 2 we review related work. We then provide
the background definitions in Section 3, and formalize
in Section 4 the problem of information-leak disclosure,
which we focus on in this paper. In Sections 5–7 we
present three approaches to addressing the problem in
the CQ weakly acyclic setting. Further, in Section 7
we solve the problem of determining the validity of a
CQ weakly acyclic problem input, and show that the
problem of information-leak disclosure is Πp

2 complete
in the CQ weakly acyclic setting, even when Σ = ∅.
2. RELATED WORK

As observed in Section 1, to the best of our knowl-
edge, the formal problem that we address in this current
paper has not been considered in the open literature.
(Abiteboul and Duschka in [1] consider the special case
where the set of dependencies is empty, apply in their
analysis a different type of complexity metric than we do
in this paper, and do not provide algorithms alongside
their complexity results.) The work [23, 24] addresses a
problem that is similar to ours at the informal level; see
Section 1 for a detailed discussion of [23, 24]. Gener-
ally, the literature on privacy-preserving query answer-
ing and data publishing is represented by work on data
anonymization and on differential privacy; [12] is a re-
cent survey. Most of that work focuses on probabilistic
inference of private information, while in this paper we
focus on the possibilistic situation, where an adversary
can deterministically derive sensitive information. Fur-
ther, our model of sensitive information goes beyond
associations between individuals and their private sen-
sitive attributes.

Policy analysis has been studied for various types of
systems, including operating systems, role-based access
control, trust management, and firewalls [20, 4, 5, 22].
Typically, two types of properties are studied. The first
type is static properties: Given the current security set-
ting (e.g., non-management privileges of users), can cer-
tain actions or events (e.g., separation of duty) happen?
Our analysis of information leakage in database policies

falls into this category. What is different is that our
policy model is much more elaborate, as we deal with
policies defined by database query languages. The other
type of properties in policy analysis is dynamic proper-
ties when a system evolves; that direction is not closely
related to the topic of our paper.

The problem of inference control, with a focus on pre-
venting unauthorized users from computing sensitive in-
formation, has been studied extensively in the database-
security literature. The inputs to the problem can be
considered the same as ours; the set V is interpreted
as free-form queries, defined (within a given query lan-
guage) by the user, who asks them sequentially on a
database instance I. In addition, a fixed procedure for
inference of the sensitive information is specified; the
adversary user is assumed to use only that procedure in
computing sensitive information. The “security moni-
tor” in the system logs all the queries, and temporarily
withholds the answer to the latest query posed by the
user. It then applies the fixed inference procedure to
the log and to the latest answer. In case sensitive infor-
mation is derived in this process, the monitor chooses
what to do (e.g., to refuse to give the user the latest
answer) to prevent the leakage. Work in this direction
has been done in statistical databases [17] and in con-
trolled query evaluation (CQE) [8]. Some of the work
(e.g., [10]) uses chase with dependencies to determine
leakage.

In contrast, our goal is to determine whether there
exists any procedure that would be guaranteed to derive
all and only the sensitive information, for all problem
instances in a given class. None of the procedures that
we have seen in the literature on inference control yields
sound and complete algorithms for our class of interest
in this current paper, CQ weakly acyclic instances.

Zhang and Mendelzon in [33] addressed the problem
of letting users access authorized data, via rewriting the
users’ queries in terms of their authorization views; this
problem is different from ours. Toward that goal, [33]
explored the notion of “conditional query containment,”
which in this current paper we extend to the case Σ 6= ∅.
The results of [33], which we use in our work, include a
powerful reduction of the problem of testing conditional
containment of CQ queries to that of testing uncondi-
tional containment of modifications of the queries.

Our results of Sections 6–7 build on the influential
framework for data exchange [18] by Fagin and col-
leagues. Our MV -induced dependencies of Section 7
resemble target-to-source dependencies Σts introduced
into (peer) data exchange in [19]. The difference is that
Σts are embedded dependencies defined at the schema
level. In contrast, our disjunctive MV -induced depen-
dencies embody the given set of view answers MV .

Finally, our problem can be linked at the abstract
level to the work of Nash and colleagues [26] on whether
a query Q is determined by views V. The focus in [26] is
on whether views V determine the entire answer to the
query Q. Our interest in this paper is in determining
the maximal set Qs(I) of the tuples in the answer to Q
on an instance I, such that Qs(I) is deterministically
assured by the set MV of answers to V on I.

3. PRELIMINARIES
3.1 Instances and Queries

Schemas and instances. A schema P is a finite
sequence < P1, . . . , Pm > of relation symbols, with each
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Pi having a fixed arity ki ≥ 0. An instance I of P assigns
to each Pi ∈ P a finite ki-ary relation I[Pi], which is a
set of tuples. For tuple membership in relation I[Pi], we
use the notation t̄ ∈ I[Pi]. Each element of each tuple
in an instance belongs to one of two disjoint infinite sets
of values, Const and Var. We call elements of Const
constants, and denote them by lowercase letters a, b,
c, . . . ; the elements of Var are called (labeled) nulls,
denoted by symbols ⊥, ⊥1, ⊥2, . . . .

Sometimes we use the notation Pi(t̄) ∈ I instead of t̄
∈ I[Pi], and call Pi(t̄) a fact of I. When all the values in
Pi(t̄) are constants, we say that Pi(t̄) is a ground fact,
and t̄ is a ground tuple. The active domain of instance
I, denoted adom(I), is the set of all elements of Const
∪ Var that occur in any facts in I. When each fact
in I is a ground fact, we call I a ground instance. End
users of relational data are interested only in ground
instances; non-ground instances are typically used as
formal technical tools, as in, e.g., data exchange [6].

Queries. In this paper we focus on the class of
queries called “conjunctive queries” (CQ queries). In
the definitions, we will be using the following notion of
relational atom. Let Qvar be an infinite set of values
disjoint from Const ∪ Var; we call Qvar the set of
(query) variables. We denote variables by uppercase
letters X, Y , . . .. Then P (t̄), with P a k-ary relation
symbol and t̄ a k-vector, is a relational atom whenever
each value in t̄ is an element of Const ∪ Qvar.

A CQ-rule over schema P, with output relation symbol
Q /∈ P, of arity k ≥ 0 of Q, is an expression of the form

Q(X̄) ← P1(Ū1) ∧ . . . ∧ Pn(Ūn).

Here, n ≥ 1; the vector X̄ has k elements; for each i ∈
[1, n], Pi is a relation symbol in P, of arity ki ≥ 0; and
Q(X̄), P1(Ū1), . . . , Pn(Ūn) are all relational atoms. We
consider only safe rules: That is, each variable in X̄ also
occurs in at least one of Ū1, . . ., Ūn. All the variables
of the rule that do not appear in X̄ (i.e., the nonhead
variables of the rule) are assumed to be existentially
quantified. We call the atom Q(X̄) the head of the
rule, call X̄ the head vector of the rule, and call the
conjunction of its remaining atoms the body of the rule.
Each atom in the body of the rule is called a subgoal
of the rule. The conjunction in the body of a rule is
usually written using commas, as P1(Ū1), . . . , Pn(Ūn).

A conjunctive query (CQ query) is a query defined by
a single CQ-rule. Consider a CQ query defined by a
CQ-rule with a k-ary (k ≥ 0) output relation symbol
Q and with head vector X̄. Wherever clear from the
context, we will be referring to the query as Q(X̄), or
even just as Q. We will be using head(Q) and body(Q)

as names for the head and body of the (rule for) Q.
Semantics of CQ queries. We now define the se-

mantics of a CQ query Q. In the definition, we will need
the notions of homomorphism and of valuation. Con-
sider two conjunctions, ϕ(Ȳ ) and ψ(Z̄), of relational
atoms. Then a mapping h from the set of elements of
Ȳ to the set of elements of Z̄ is called a homomorphism
from ϕ(Ȳ ) to ψ(Z̄) whenever (i) h(c) = c for each con-
stant c in Ȳ , and (ii) for each conjunct of the form p(Ū)
in ϕ(Ȳ ), the relational atom p(h(Ū)) is a conjunct in
ψ(Z̄). (For a vector S̄ = [s1s2 . . . sl], for some l ≥ 1, we
define h(S̄) as the vector [h(s1)h(s2) . . . h(sl)]. By con-

vention, a homomorphism is an identity mapping when
applied to empty vectors and to empty tuples.)

We define homomorphisms in the same way for the
case where either one of ϕ(Ȳ ) and ψ(Z̄) (or both) is a
conjunction of facts. We will denote homomorphisms
by lowercase letters g, h, . . . , possibly with subscripts.

We call each homomorphism from a conjunction ϕ(Ȳ )
of relational atoms to a conjunction ψ(Z̄) of facts, a
valuation from ϕ(Ȳ ) to ψ(Z̄). We will use Greek letters
µ, ν, . . . , possibly with subscripts, for valuations.

Consider a k-ary CQ query Q(X̄) and an instance I,
which we interpret as a conjunction of all the facts in
I. Then the answer to Q on I, denoted Q(I), is

Q(I) = { ν(X̄) | ν is a valuation from body(Q) to I } .

(When X̄ is the empty vector, i.e., Q is a Boolean query,
which is the case k = 0, then ν(X̄) is the empty tuple.)

Query containment. A query Q1 is contained in
query Q2, denoted Q1 v Q2, if Q1(I) ⊆ Q2(I) for every
instance I. A classic result of [11] by Chandra and Mer-
lin states that a necessary and sufficient condition for
the containment Q1 v Q2, for CQ queries Q1 and Q2 of
the same arity, is the existence of a containment map-
ping from Q2 to Q1. A containment mapping [11] from
query Q2(X̄2) to query Q1(X̄1) is a homomorphism h
from body(Q2) to body(Q1) such that h(X̄2) = X̄1.

Canonical database. Every CQ query Q can be re-
garded as a symbolic instance I(Q). I(Q) is defined as
the result of turning each subgoal Pi(. . .) of Q into a
tuple in the relation I(Q)[Pi]. The procedure is to keep
each constant in the body of Q, and to replace con-
sistently each variable in the body of Q by a distinct
constant different from all the constants in Q. The tu-
ples that correspond to the resulting ground facts are
the only tuples in the canonical database I(Q) for Q,
which is unique up to isomorphism.

3.2 Dependencies and Chase
Embedded dependencies. We consider dependen-

cies σ of the form

σ : φ(Ū , V̄ )→ ∃W̄ ψ(Ū , W̄ )

with φ and ψ conjunctions of relational atoms, possi-
bly with equations added. Such dependencies, called
embedded dependencies, are expressive enough to spec-
ify all usual integrity constraints, such as keys, foreign
keys, and inclusion dependencies [2]. If ψ comprises a
single equation, then σ is an equality-generating depen-
dency (egd). If ψ consists only of relational atoms, then
σ is a tuple-generating dependency (tgd). We follow [18]
in allowing constants in egds and tgds. Each set Σ of
embedded dependencies is equivalent to a set of tgds
and egds [2]. We write I |= Σ if instance I satisfies all
elements of Σ. All sets Σ we refer to are finite.

Query containment under dependencies. We
say that query Q is contained in query P under set of
dependencies Σ, denoted Q vΣ P, if for every instance
I |= Σ we have Q(I) ⊆ P (I). Queries Q and P are
equivalent under Σ, denoted Q ≡Σ P, if both Q vΣ P
and P vΣ Q hold. Q and P are equivalent (in the
absence of dependencies), denoted Q ≡ P , if Q ≡∅ P .

Chase for CQ query. Given a CQ query Q(X̄) ←
ξ(X̄, Ȳ ) and a tgd σ of the form φ(Ū , V̄ )→ ∃W̄ ψ(Ū , W̄ );
assume w.l.o.g. that Q has none of the variables in W̄ .
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The chase of Q with σ is applicable if there is a ho-
momorphism h from φ to ξ, such that h cannot be ex-
tended to a homomorphism h′ from φ ∧ ψ to ξ. Then,
a chase step on Q with σ and h is a rewrite of Q into
Q′(X̄) ← ξ(X̄, Ȳ )∧ψ(h(Ū), W̄ ). It can be shown that
Q′ ≡{σ} Q and that Q′ v Q.

We now define a chase step with an egd. Assume a
CQ query Q as before and an egd σ of the form φ(Ū)→
U1 = U2. The chase of Q with σ is applicable if there is a
homomorphism h from φ to ξ such that h(U1) 6= h(U2)
and at least one of h(U1) and h(U2) is a variable; let
w.l.o.g. h(U1) be a variable. Then a chase step on Q
with σ and h is a rewrite of Q into a query, Q′, that
results from replacing all occurrences of h(U1) in Q by
h(U2). Again, we have Q′ ≡{σ} Q and Q′ v Q. If,
for a homomorphism h as above, h(U1) and h(U2) are
distinct constants, then we say that chase with σ fails
on Q. In this case, Q(I) = ∅ on all I |= {σ}.

A Σ-chase sequence C (or just chase sequence, if Σ is
clear from the context) for CQ query Q0 is a sequence
of CQ queries Q0, Q1, . . . such that each query Qi+1
(i ≥ 0) in C is obtained from Qi by a chase step Qi ⇒σ

Qi+1 using a dependency σ ∈ Σ. A chase sequence
Q = Q0, Q1, . . . , Qn is terminating if I(Qn) |= Σ, where
I(Qn) is the canonical database for Qn. In this case we
denote Qn by (Q)Σ and say that (Q)Σ is the (terminal)
result of the chase. All chase results for a given CQ
query are equivalent in the absence of dependencies [14].

Weakly acyclic dependencies [18]. Let Σ be a set
of tgds over schema T. We construct the dependency
graph of Σ, as follows. The nodes (positions) of the
graph are all pairs (T, A), for T ∈ T and A an attribute
of T . We now add edges: For each tgd ϕ(X̄) → ∃ Ȳ
ψ(X̄, Ȳ ) in Σ, and for each X ∈ X̄ that occurs in ϕ in
position (T , A) and that occurs in ψ, do the following.

• For each occurrence of X in ψ in position (S, B),
add a regular edge from (T, A) to (S, B); and

• For each existentially quantified variable Y ∈ Ȳ
and for each occurrence of Y in ψ in position (R,
C), add a special edge from (T , A) to (R, C).

For a set Σ of tgds and egds, with Σt the set of all tgds
in Σ, we say that Σ is weakly acyclic if the dependency
graph of Σt does not have a cycle going through a special
edge. Chase of CQ queries terminates in finite time
under sets of weakly acyclic dependencies [18].

The following result is immediate from [2, 13, 14].

Theorem 3.1. Given CQ queries Q1, Q2 and set Σ
of embedded dependencies. Then Q1 vΣ Q2 iff (Q1)Σ v
(Q2)Σ in the absence of dependencies. 2

Chase of instance. Given an instance I of schema
P and given a set Σ of egds and tgds; we interpret I as a
conjunction of its facts. We follow [14] in defining chase
of I with Σ in the same way as chase of a CQ query
with Σ. That is, in the chase steps we treat each null
in I as a distinct variable (in the chase for CQ queries).
Further, each chase step with a tgd that has existential
variables introduces, in the result of the chase step, a
distinct new null for each existential variable of the tgd.
Chase sequences and chase termination are also defined
in the same way as for CQ queries; the result I ′ of the
chase of I with Σ always satisfies Σ, that is I ′ |= Σ.

4. THE PROBLEM STATEMENT
In this section we formalize the problem of information-

leak disclosure. Suppose that we are given a schema P
and a set of dependencies Σ on P. Let V be a finite set
of relation symbols not in P, with each symbol (view
name) V ∈ V of some arity kV ≥ 0. Each V ∈ V is
associated with a kV -ary query on the schema P. We
call V a set of views on P, and call the query for each
V ∈ V the definition of the view V , or the query for V .
We assume that the query for each V ∈ V is associated
with (V in) the set V. We call a ground instance MV
of schema V a set of view answers for V.

Let I be a ground instance of schema P. We say that
I is a Σ-valid base instance for V and MV , denoted by
V ⇒I,Σ MV , whenever (a) I |= Σ, and (b) the answer
V (I) to the query for V on the instance I is identical to
the relation MV [V ] for V in the instance MV . Further,
we say that MV is a Σ-valid set of view answers for V,
denoted by V ⇒∗,Σ MV , whenever there exists a Σ-
valid base instance for V and MV .

Definition 4.1. (Specific instance of informat-
ion-leak problem) Given schema P, set of dependen-
cies Σ on P, set V of views on P, query Q over P, and
a (Σ-valid) set MV of view answers for V. Then we
say that the tuple Ds = (P, Σ, V, Q, MV ) is a (valid)
specific instance of the information-leak problem. 2

In Definition 4.1, the intuition for P and Σ is that of
the schema and associated dependencies on a database
of interest, which (database) belongs to some organiza-
tion. The set V is, intuitively, the access policies given
to users of the database, with each user accessing the
database via a subset of V. The query Q is a “secret
query” on the database of interest. That is, the organi-
zation does not want any answer to Q disclosed to the
users that access the database via the views V. Finally,
MV is a set of answers to the users’ access policies V
over some (single) instance of the database of interest.
Example 1.1 illustrates this intuition.

CQ weakly acyclic information-leak instances.
In this paper, we assume that a single malicious user
(attacker), or several attackers colluding together, con-
sider some valid specific instance Ds = (P, Σ, V, Q,
MV ) of the information-leak problem.1 In the remain-
der of this paper we consider only those instances Ds
where (i) MV 6= ∅. (This technical requirement is
clearly nonrestrictive in the context of the problem.)
We will focus on those instances where (ii) the query Q
is a CQ query, and (iii) the queries for all the views in
V are also CQ queries. (We call each set V that satisfies
(iii) a set of CQ views.) In addition, for all the queries
that we consider in this paper as defined in terms of the
views in V, we consider throughout this paper only (iv)
CQ such queries, unless specified explicitly. We will re-
fer to instances Ds that satisfy (i)–(iv) as CQ instances
of information leak. Finally, we will focus on (v) weakly
acyclic sets Σ of dependencies. Whenever the condi-
tions (i)–(v) hold together on an instance Ds of the
information-leak problem, we will refer to Ds as a CQ
weakly acyclic information-leak instance (or setting).

Assumptions about the attackers’ knowledge.
We assume that the presumed attackers have access to
all and only the given instance Ds. That is, they know

1In Section 7.3 we address the problem of determining the
validity of a given instance of the information-leak problem.
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the schema P in Ds and the set Σ of dependencies on P.
They also have access to the definition of Q, to all the
queries for V, and to (the contents of) all the relations
in the instance MV . We assume specifically that the
attackers have not been given any instance I such that
V ⇒I,Σ MV , and that they do not have access to the
answer to the query Q on any such instance I.

Definition 4.2. (Information leak and its dis-
closure) Given a valid specific instance Ds = (P, Σ,
V, Q, MV ) of the information-leak problem, with k ≥
0 the arity of the query Q. Consider a tuple t̄ of k (not
necessarily distinct) constants. (In case where k = 0,
we set t̄ to the empty tuple.) Then we say that:

(1) t̄ is a potential information leak (for Q) in Ds iff
for all I such that V ⇒I,Σ MV we have t̄ ∈ Q(I);

(2) t̄ is a disclosed information leak in Ds iff one can
prove deterministically using the attackers’ knowl-
edge that t̄ is a potential information leak in Ds;
and

(3) There is a disclosure of an information leak in Ds
iff some tuple t̄ is a disclosed information leak in
Ds. Any such t̄ is called a witness of the inform-
ation-leak disclosure in Ds. 2

The intuition for Definition 4.2 is as follows. Sup-
pose that attackers are examining a set of view answers
MV that is available to them, trying to find answers
to the secret query Q on the ground instance, call it I,
of schema P such that I has actually given rise to the
set MV . (That is, I is an actual instance of the orga-
nizational data, such that V ⇒I,Σ MV and such that
the set MV was obtained by applying to I the queries
for V.) However, by our assumptions about the attack-
ers’ knowledge, the attackers have no way of determin-
ing which ground instance J of P, with the property V
⇒J,Σ MV , is that desired actual instance I behind the
set MV . Thus, their best bet is to find all the tuples t̄
that are in the answer to Q on all instances J as above.
This reasoning justifies item (1) of Definition 4.2. Items
(2) and (3) of Definition 4.2 concern approaches that the
attackers might select for proving that a fixed tuple t̄
satisfies item (1) as above. In this paper we consider
three such approaches, please see Sections 5–7.

Definition 4.3. (Problem of information-leak
disclosure) Given a valid specific instance Ds of the
information-leak problem, the problem of information-
leak disclosure for Ds is to determine whether there is
a disclosure of an information leak in Ds. 2

In this paper, we address the problem of information-
leak disclosure by developing approaches that output
the set of potential information leaks for each input Ds.
Clearly, only those approaches that are sound and com-
plete algorithms (for certain classes of inputs) can be
used to solve correctly the problem as in Definition 4.3.

The intent of the use of the word “specific” for an in-
stance Ds is to point out the presence in Ds of a fixed
set of view answers MV in the context of the problem
of information-leak disclosure. In contrast, a “general”
instance of the problem, one that does not fix any set
MV , would be considered in the context of a more gen-
eral question: Does there exist any (Σ-valid) instance
MV that would permit attackers to deterministically
derive any answer to the secret query Q on the database

of interest? As we are not considering the more general
question here, in the remainder of this paper we will not
be using the word “specific” explicitly when referring to
instances of the information-leak problem.

5. THE REWRITING APPROACH
In this section we introduce an approach, called “the

rewriting approach,” to solving the problem of informat-
ion-leak disclosure for CQ inputs. We argue that this
approach arises naturally in the context of the problem;
in a sense, it is the first thing to come to one’s mind
when thinking about the problem. This approach re-
sults in a sound and complete algorithm for the special
case where the input set of dependencies Σ is the empty
set. Due to the space limit, all the technical details on
this approach can be found in Appendix B.

5.1 The Big Picture
To the best of our knowledge, the problem of inform-

ation-leak disclosure as in Definition 4.3 has not been
considered in the open literature. (Abiteboul and Duschka
in [1] consider the special case where the set of depen-
dencies is empty, apply in their analysis a different type
of complexity metric than we do in this paper, and do
not provide algorithms alongside their complexity re-
sults.) Thus, we have undergone a systematic study of
potential approaches to solving this problem. As dis-
cussed in Section 4, our focus has been on developing
approaches that output the set of potential information
leaks for each input Ds.

In Sections 5–7 we introduce three classes of appro-
aches to solving the problem of information-leak disclo-
sure. As the approach of Section 7 results in a sound
and complete algorithm for the class of CQ weakly acyclic
inputs, we concentrate our discussion on that approach
in the limited page space. At the same time, our re-
sults are also conclusive for the approaches of Sections 5
and 6; for this reason, we provide a brief outline of each
approach in the main body of the paper. All the tech-
nical details on the approaches of Sections 5 and 6 can
be found in Appendices B and F, respectively.

5.2 Rewritings to Find Secret-Query Answers
Our rewriting approach formalizes a likely thought

process of the presumed attackers. (See Appendix A for
an illustration). Recall that in any instance Ds of the
problem of information-leak disclosure, attackers deal
directly with a ground instance MV . They know that
MV is a set of answers to the access-policy views V on
the underlying database of interest. Thus, intuitively, a
question that is natural for the attackers to ask is which
values in adom(MV ) can be put together to form an an-
swer to the secret query Q, on all possible underlying
databases of interest. (Our approach can also incorpo-
rate constants from definitions of the views in V, and is
also applicable to the case where Q is a Boolean query.)

A natural way to formalize this idea is to put to-
gether a query, call it R, in terms of the relations in the
instance MV , and to then prove that R is “contained,”
in some precise sense (in particular, w.r.t. the views in
V), in the secret query Q. We refer to all queries R over
the schema of MV as “rewritings” (in terms of V), as
indeed they would be defined in terms of the relation
symbols in V, that is in terms of views. Hence our name
for this approach to information-leak disclosure.

Observe that, in the setR(MV ) of answers to a rewrit-
ing R on an instance MV , not all the tuples in R(MV )
would necessarily be in the answer to the query Q. That
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is, the formal containment that we are looking for would
not hold for all rewritings R. Thus, we restrict the scope
of rewritings R to those CQ rewritings whose head in-
cludes only constants. That is, for a ground k-ary tuple
t̄ built using only values from adom(MV ), we consider
only those k-ary rewritings R whose head is exactly t̄.

We have shown that to solve the problem of information-
leak disclosure for CQ inputs, for each tuple t̄ as above
it is sufficient to consider one CQ rewriting, denoted
R∗t̄ , whose body is the conjunction of all the tuples in
the instance MV . That is, for each tuple t̄ the rewrit-
ing R∗t̄ is a representative, in a precise sense, of all the
CQ rewritings of the form R(t̄). Denote by (R∗t̄ )

exp the
equivalent expansion of R∗t̄ in terms of the schema P.

Now our rewriting approach is as follows. Given a
valid CQ input instance Ds of information leak, with k
the arity of its query Q. For each k-tuple t̄ that can
be generated from the set adom(MV ), the approach
outputs t̄ if and only if it can be shown formally that
(R∗t̄ )

exp is “appropriately contained” in Q.
We have studied several alternative formal definitions

of the term “appropriately contained.” In particular,
we have introduced a definition that generalizes a key
notion of [33] due to Zhang and Mendelzon. Specifically,
the definition of conditional query containment of [33]
is a restriction of our Definition 5.1 to the case Σ = ∅.
Definition 5.1. (Σ-conditional query containm-

ent) Given schema P, set Σ of dependencies on P,
and set MV of view answers for a set of views V. For
queries Q1 and Q2 over P, we say that Q1 is Σ-condit-
ionally contained in Q2 w.r.t. MV , denoted Q1 vΣ,MV
Q2, iff for each instance, I, of P such that V ⇒I,Σ

MV , we have Q1(I) ⊆ Q2(I). 2

We show that when Definition 5.1 is the meaning of
“appropriate containment” in our rewriting approach,
the approach captures exactly (in a sound and com-
plete way) the potential information leaks for a given
CQ instance Ds. That is, for each class E of sets of
dependencies, we have that whenever the set Σ in Ds
belongs to E , then a k-tuple t̄ is a potential information
leak in the instance Ds if and only if t̄ is output by our
rewriting approach with (R∗t̄ )

exp vΣ,MV Q the meaning
of “appropriate containment” in the approach.

Clearly, the missing part is a decidable test for the
containment (R∗t̄ )

exp vΣ,MV Q. The main result of [33]
provides a decidable (and Πp

2 complete) test for the CQ
case with Σ = ∅. (Please see Appendix D for the de-
tails.) Thus, for the class of CQ instances Ds with Σ
= ∅, our rewriting approach is a sound and complete
algorithm for disclosing information leaks. By this al-
gorithm, the tuple t̄ of Example 1.1 is a potential infor-
mation leak for the setting in the example.

To extend our rewriting approach to the case of in-
puts Ds with Σ 6= ∅, one could try to develop a decidable
test for Q1 vΣ,MV Q2 for the case where Σ 6= ∅. As the
Πp

2 complete test of [33] for Σ = ∅ is quite elaborate, it
is not immediately clear how such an extension can be
done. However, we observe that to solve the problem of
information-leak disclosure (in the CQ case), we do not
need to solve the problem of Σ-conditional containment
between two queries w.r.t. a given set MV of view an-
swers. Instead, for our purpose it is sufficient to solve a
restriction of this problem to the case where the query
Q1 “represents exactly” the set MV . (Recall our defi-

nition of the rewriting R∗t̄ in terms of tuple t̄ and of set
MV .) This realization permits us to solve in Section 7
the problem of information-leak disclosure in the CQ
weakly acyclic setting, even though we have not been
able to develop a decidable test for Q1 vΣ,MV Q2 for
the case where Q1 and Q2 are CQ queries and Σ 6= ∅.

Finally, we have shown that our rewriting approach is
sound for CQ inputs with Σ 6= ∅ whenever one of v, vΣ,
and v∅,MV is used as the notion of “appropriate con-
tainment” in the approach. We show (in Appendix E)
that none of these containment notions makes the ap-
proach complete for CQ weakly acyclic inputs.

6. THE DATA-EXCHANGE APPROACH
In Section 5 we considered an approach in which at-

tackers would put together ground tuples using con-
stants in the set of view answers MV that is available
to them. The hope of the attackers is that these tuples
could be shown to also be answers to the secret query Q,
on all possible organizational databases that could have
generated MV . For those attackers that have taken a
course on data exchange, Definition 4.2 might suggest
immediately a more sophisticated approach to disclos-
ing information leaks. Indeed, item (1) of Definition 4.2
spells out the notion of “certain answers” to the secret
query Q, in a data-exchange setting where we are given
a “source instance” MV and a “target schema” P. In
this current section we pursue this intuition.

The main, perhaps surprising, result of this section
is that the high(er)-tech data-exchange approach is not
as powerful as the rewriting approach of Section 5, even
for those CQ instances Ds where the set Σ of dependen-
cies is the empty set. (For instance, the sound rewriting
approach returns a nonempty set of disclosed informa-
tion leaks in the setting of Example 1.1, while the data-
exchange approach returns the empty set for the same
input.) As it turns out, the data-exchange approach
can be extended to yield a sound and complete algo-
rithm for the problem of information-leak disclosure for
all CQ weakly-acyclic inputs, including those for which
Section 5 provides no solutions. We introduce the sound
and complete extension in Section 7.

In this section, we first review in Section 6.1 the basics
of data exchange. Then, in Section 6.2, we introduce
and discuss the data-exchange approach to disclosure
of information leaks. All the technical details of the
discussion can be found in Appendix F.

6.1 Reviewing Data Exchange
Given schemas S = < S1, . . ., Sm > and T = < T1,

. . ., Tn >, with no relation symbols in common, denote
by <S, T> the schema < S1, . . ., Sm, T1, . . ., Tn >. If
I is an instance of S and J an instance of T, then (I,
J) denotes an instance K of < S, T > such that K[Si]
= I[Si] and K[Tj ] = J [Tj ], for i ∈ [1, m] and j ∈ [1, n].

Definition 6.1. (Data-exchange setting) A data-
exchange setting M is a triple (S, T, Σ), where S and
T are disjoint schemas and Σ is a finite set of dependen-
cies over <S, T>. S in M is called the source schema,
and T is called the target schema. 2

Instances of S are called source instances and are al-
ways ground instances. Instances of T are target in-
stances. Given a source instance I, we say that a target
instance J is a solution for I (under M) if (I, J) |= Σ.
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It is customary in the data-exchange literature2 to
restrict the study to the class of settings whose set Σ
can be split into two sets Σst and Σt, as follows:

1. Σst is a set of source-to-target dependencies (stds),
that is, tgds of the form ϕS(X̄) → ∃ ȳ ψT(X̄, Ȳ ),
where ϕS(X̄) and ψT(X̄, Ȳ ) are conjunctions of
relational atoms in S and T, respectively; and

2. Σt, the set of target dependencies, is the union of
a set of tgds and egds defined over the schema T.

In this paper, we assume all data-exchange settings
to be of the formM = (S, T, Σ), where Σ = Σst ∪ Σt,
for Σst a set of stds and Σt a set of target dependen-
cies. Intuitively, the stds can be viewed as a tool for
specifying how the source data get translated into tar-
get data. In addition, the target dependencies are the
usual database constraints, to be satisfied by the trans-
lated data. The data-exchange settings of this form are
not restrictive from the database point of view.

Solutions for a given source instance are not necessar-
ily unique, and there are source instances that have no
solutions. Universal solutions are, intuitively, “the most
general” solutions among all possible solutions. For-
mally, given a solution J for source instance I, we say
that J is a universal solution for I if for every solu-
tion J ′ for I, there exists a homomorphism from J to
J ′. Constructing a universal solution for a given source
instance I can be done by chasing I with Σst ∪ Σt.
The chase may never terminate or may fail; in the lat-
ter case, no solution exists [18]. If the chase does not
fail and terminates, then the resulting target instance
is guaranteed to be a universal solution for I.

The problem of checking for the existence of solutions
is known to be undecidable, please see [6]. At the same
time, the following positive result is due to [18].

Theorem 6.1. [18] Let M = (S, T, Σst ∪ Σt) be
a fixed data-exchange setting, such that Σt is weakly
acyclic. Then there is a polynomial-time algorithm such
that for every source instance I, the algorithm decides
whether a solution for I exists. Then, whenever a so-
lution for I exists, the algorithm computes a universal
solution for I in polynomial time. 2

The universal solution of Theorem 6.1, called the canon-
ical universal solution [18], is the result of the chase.

Query answering: Assume that a user poses a query
Q over the target schema T, and I is a given source
instance. Then the usual semantics for the query an-
swering is that of certain answers [6]. Let M be a
data-exchange setting, let Q be a query over the tar-
get schema T ofM, and let I be a source instance. We
define certainM(Q, I), the set of certain answers of Q
with respect to I under M, as

certainM(Q, I) =
⋂
{ Q(J) | J is a solution for I }.

Computing certain answers for arbitrary FO queries
is an undecidable problem. For unions of CQ queries
(UCQ queries), which is a query language including all
CQ queries, we have the following positive result:

Theorem 6.2. [18] Let M = (S, T, Σst ∪ Σt) be a
data-exchange setting with Σt a weakly acyclic set, and
let Q be a UCQ query. Then the problem of comput-
ing certain answers for Q under M can be solved in
polynomial time. 2
2We refer the reader to [6] for an excellent detailed survey
of the literature on data exchange.

To compute the certain answers to a UCQ query Q
w.r.t. a source instance I, we first check whether a
solution for I exists. If there is no solution, the setting is
inconsistent w.r.t. I. Otherwise, compute an arbitrary
universal solution J for I, and then compute the set
Q↓(J) of all those tuples in Q(J) that do not contain
nulls. It can be shown that Q↓(J) = certainM(Q, I).

6.2 Data Exchange for Information Leaks
Suppose that potential attackers are given a valid CQ

instanceDs = (P, Σ, V, Q, MV ) of the information-leak
problem. By Definition 4.2, the attackers are interested
in finding tuples t̄ of elements of adom(MV ), such that
for all instances I with V ⇒I,Σ MV , we have t̄ ∈ Q(I).

In this subsection we show how a straightforward re-
formulation of Ds turns the above problem into an in-
stance of the problem of computing certain answers in
data exchange. We first construct a set Σst of tgds, as
follows. For a view V in the set of views V in Ds, con-
sider the query V (X̄)← body(V )(X̄, Ȳ ) for V . (As Ds is
a CQ instance, the query for each V ∈ V is a CQ query.)
We associate with this V ∈ V the tgd σV : V (X̄)→ ∃Ȳ
body(V )(X̄, Ȳ ). We then define the set Σst to be the set
of tgds σV for all V ∈ V. Then Ds can be reformulated
into the following data-exchange setting:

M(de)(Ds) = (V, P, Σst ∪ Σ),

with a source instance MV and a query Q on the target
schema P. We call the triple (M(de)(Ds), MV , Q) the
associated data-exchange instance for Ds.

For valid CQ weakly acyclic instances Ds, we intro-
duce the following algorithm, which we call the data-
exchange approach to disclosing information leaks. First,
we compute the canonical universal solution, JDs

de , for
the source instance MV in the data-exchange setting
M(de)(Ds). If JDs

de does not exist, then we output the
empty set of answers. Otherwise we output, as a set
of potential information leaks in Ds, the set of all those
tuples inQ(JDs

de ) that do not contain nulls. When we as-
sume, similarly to [33], that everything in Ds is fixed ex-
cept for MV and Q, then from Theorem 6.2 due to [18]
we obtain immediately that this algorithm always ter-
minates and runs in polynomial time. We have shown
that this data-exchange approach is sound.

It turns out that our data-exchange approach is not
complete for CQ weakly acyclic instances Ds with Σ =
∅, nor for those with Σ 6= ∅. (Due to the space limit, we
have placed all the details into Appendix F.2.) We now
discuss a feature of the data-exchange approach that
prevents us from using it as a complete algorithm for
the problem of disclosing information leaks. In Section 7
we will eliminate this feature of the data-exchange ap-
proach, in a modification that will yield a sound and
complete algorithm for disclosing information leaks for
all CQ weakly acyclic instances Ds.

Why is the data-exchange approach not complete when
applied to CQ weakly acyclic inputs? Intuitively, the
problem is that its canonical universal solution JDs

de
“covers too many target instances.” Let us rewrite the
set MV of Example 1.1 using, to save space, constants
c, d, and f , as MV = {V (c, d),W (d, f)}. Now let us
evaluate the queries for the views V and W of Exam-
ple 1.1 over the canonical solution JDs

de = {E(c, d,⊥1),
E(⊥2, d, f)} for that example. We obtain that the an-
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swer to the view V on JDs

de is {V (c, d), V (⊥2, d)}. Sim-

ilarly, the answer to W on JDs

de is {W (d,⊥1), W (d, f)}.
Thus, if we replace ⊥1 in JDs

de by any constant except
f , or replace ⊥2 by any constant except c, then any
ground instance obtained from JDs

de using these replace-
ments would “generate too many tuples” (as compared
with MV ) in the answer to either V or W .

We now generalize over this observation. Fix a valid
CQ weakly acyclic instance Ds, and consider the canon-
ical universal solution (if one exists) JDs

de generated by
the data-exchange approach with Ds as input. (In the

remainder of this paper, we will refer to JDs

de as the
canonical data-exchange solution for Ds.) By definition

of JDs

de , for each V ∈ V, the answer to the query for V

on JDs

de is a superset of the relation MV [V ]. Suppose

that the answer on JDs

de to at least one view V ∈ V is
not a subset of MV [V ], as it is the case in the example

that we have just discussed. Then JDs

de , as a template
for instances of schema P, describes not only instances
that“generate”exactly the set MV in Ds, but also those
instances that generate proper supersets of MV . The
latter instances are not of interest to the potential at-
tackers. (Recall that attackers are interested only in
the instances I of schema P such that V ⇒I,Σ MV .)

As a result, when the data-exchange approach uses JDs

de
to obtain certain answers to the secret query Q, it can
easily miss those certain answers that characterize only
those instances that are of interest to the attackers.

7. VIEW-VERIFIED DATA EXCHANGE
The problem with the data-exchange approach of Sec-

tion 6 is that its canonical universal solution, when
turned into a ground instance, may produce a proper
superset of the given set of view answers MV . (See
Section 6.2.) That is, the canonical data-exchange so-
lution does not necessarily describe ground solutions for
Ds “tightly enough.” The approach that we introduce in
this section builds on data exchange, by “tightening” its
universal solutions using adom(MV ). This approach,
which we call view-verified data exchange, solves cor-
rectly the problem of disclosing information leaks in the
CQ weakly-acyclic setting. We also use the approach of
this section to solve the problem of deciding whether a
given instance Ds of information leak is valid.

7.1 Chase with MV-Induced Dependencies
In Section 7.2 we will define view-verified data ex-

change for CQ weakly acyclic instances Ds of informa-
tion leak. Given a Ds with set of views V and set of
view answers MV , the idea of the approach is to force
the canonical data-exchange solution JDs

de for Ds to gen-
erate only the relations in MV as answers to the queries
for V. (By definition of JDs

de , the answer on JDs

de to the
query for each V ∈ V is always a superset of the rela-
tion MV [V ].) We achieve this goal by chasing JDs

de us-
ing “MV -induced” dependencies. Intuitively, applying
MV -induced dependencies to the instance JDs

de forces

some nulls in JDs

de to become constants in adom(MV ).
As a result, for at least one view V ∈ V, some formerly
non-ground tuples in the answer to V on the instance
become ground tuples in MV [V ].

We now formally define MV -induced dependencies.

Let V (X̄) ← φ(X̄, Ȳ ) be a CQ query of arity kV ≥ 0,
and MV be a ground instance of a schema that in-
cludes the kV -ary relation symbol V . First, in case
where MV [V ] = ∅, we define the MV -induced impli-
cation constraint (MV -induced ic) ιV for V as

ιV : φ(X̄, Ȳ )→ false. (1)

(Each MV -induced ic is an implication constraint, i.e.,
a Horn rule with the empty head. See [32] for the dis-
cussion and references on implication constraints.)

Second, in case where kV ≥ 1, suppose MV [V ] = {t̄1,
t̄2, . . ., t̄mV

}, with mV ≥ 1. Then the MV -induced
generalized egd (MV -induced ged) τV for V is

τV : φ(X̄, Ȳ )→ ∨mV
i=1(X̄ = t̄i). (2)

Here, X̄ = [S1, . . . , SkV ] is the head vector of the query
for V , with Sj ∈ Const ∪ Qvar for j ∈ [1, kV ]. For
each i ∈ [1, mV ] and for the ground tuple t̄i = (ci1, . . . ,
cikV ) ∈ MV [V ], we abbreviate by X̄ = t̄i the conjunc-

tion ∧kVj=1(Sj = cij). MV -induced geds are a straight-

forward generalization of disjunctive egds of [15, 18].
We now define chase of instances with MV -induced

dependencies. Consider first MV -induced implication
constraints. Given an instance K of schema P and an
MV -induced ic ιV as in Eq. (1), suppose there exists
a homomorphism h from the antecedent φ(X̄, Ȳ ) of ιV
to K. The intuition here is that we want to make sure
that K does not “generate” any tuples in the relation
MV [V ]; however, by the existence of h, the instance
K does generate at least one such tuple. We then say
that chase with ιV (and h) fails on the instance K and
produces the set {ε}, with ε denoting the empty instance.

Now let τ as in Eq. (2) be anMV -induced generalized
egd for a V ∈ V. The intuition here is that K must
“generate” only the tuples in the relation MV [V ]; we
make this happen by assigning nulls in K to constants
in MV [V ]. (If such assignments are not possible, chase
with τ fails on K.) Example 7.1 is the running example.

Our definition of the chase step with τ as in Eq. (2)
is a straightforward extension of the definition of [18]
for their disjunctive egds, as follows. Consider the con-
sequent of τ , of the form ∨mV

i=1(X̄ = t̄i). Recall that
for each i ∈ [1, mV ], the expression X̄ = t̄i is of the

form ∧kVj=1(Sj = cij). Denote by τ (1), . . ., τ (mV ) the fol-

lowing mV dependencies obtained from τ : (φ(X̄, Ȳ ) →
X̄ = t̄1), . . ., (φ(X̄, Ȳ ) → X̄ = t̄mV

), and call them the
dependencies associated with τ . For each i ∈ [1, mV ],
τ (i) is an embedded dependency that can be equiva-
lently represented by kV egds τ (i,1), . . ., τ (i,kV ). Here,
for each j ∈ [1, kV ], the egd τ (i,j) is φ(X̄, Ȳ )→ Sj = cij .

Given a τ as in Eq. (2) and an instance K of schema
P, suppose that there exists a homomorphism h from
φ(X̄, Ȳ ) to K such that ∧kVj=1(h(Sj) = h(cij)) is not a

tautology for any i ∈ [1, mV ]. Then we say that τ is
applicable to K with the homomorphism h. It is easy to
see that it is also the case that each of τ (1), . . ., τ (mV )

can be applied to K with h. That is, for each i ∈ [1,
mV ], the chase of K is applicable with at least one egd
τ (i,j) in the equivalent representation of τ (i) as a set
of egds. For each i ∈ [1, mV ], let Ki be the result of
applying all the egds τ (i,1), . . ., τ (i,kV ) to K with h.
Note that chase with τ (i,j) and h can fail on K for some
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i and j. For each such i, we say that chase with τ (i)

fails on K and produces the empty instance ε.
Similarly to [18], we distinguish two cases:

• If the set {K1, . . ., KmV
} contains only empty in-

stances, we say that chase with τ (and h) fails on
K and produces the set {ε}.
• Otherwise, let K(τ) = {Ki1 , . . ., Kip} be the set of

all nonempty elements of {K1, . . ., KmV
}. We say

that K(τ) is the result of applying τ to K with h.

Similarly to the approach of [18], in addition to chase
steps with MV -induced dependencies we will also use
chase steps with egds and tgds as in Section 3.2. For the
chase step of each type, we will use the set notation for
uniformity: K ⇒σ,h K′ denotes that a chase step with
dependency σ and homomorphism h applied to instance
K yields a set of instances K′. Whenever chase with an
egd fails on K, the set K′ is the set {ε} by convention;
in all other cases where σ is an egd or a tgd, the set K′
is a singleton set. For σ as in Eq. (1)–(2), the set K′ is
in some cases {ε} as defined above.

Definition 7.1. (MV -enhanced chase) Let Σ be a
set of egds and tgds, let Σ(MV ) be a set of MV -induced
dependencies, and let K be an instance.

• A chase tree of K with Σ ∪ Σ(MV ) is a tree (finite
or infinite) such that:

– The root is K, and
– For every node Kj in the tree, let Kj be the

set of its children. Then there must exist some
dependency σ in Σ ∪ Σ(MV ) and some homo-
morphism h such that Kj ⇒σ,h Kj.

• A finite MV -enhanced chase of K with Σ ∪ Σ(MV )

is a finite chase tree T , such that for each leaf Kp

of T , (a) Kp is ε, or (b) there is no dependency σ

in Σ ∪ Σ(MV ) and no homomorphism h such that
σ can be applied to Kp with h. 2

EXAMPLE 7.1. Consider Ds = ({E}, ∅, {V,W},
Q, MV ′′), with all the elements except MV ′′ as in Ex-
ample 1.1;3 MV ′′ = { V (c, d), V (g, d),W (d, f) }.

By definition, Ds is a CQ instance with Σ = ∅. Ds is
also valid, as witnessed by instance {E(c, d, f), E(g, d, f)}.
The data-exchange approach of Section 6 yields the fol-
lowing canonical data-exchange solution JDs

de for Ds:

JDs

de = { E(c, d,⊥1), E(g, d,⊥2), E(⊥3, d, f) } .

The set of answers without nulls to the query Q on JDs

de
is empty. Thus, the data-exchange approach applied to
Ds discovers no potential information leaks.

In applying the view-verified data-exchange approach
to the input Ds, we first construct the MV ′′-induced
generalized egds, τV and τW , one for each of the two
views in Ds. (As MV ′′ has no empty relations, we do
not need to construct MV ′′-induced ics for Ds.)

τV : E(X,Y, Z)→ (X = c ∧ Y = d) ∨ (X = g ∧ Y = d).
τW : E(X,Y, Z)→ (Y = d ∧ Z = f).

3Please see Example F.1 for the details.

The two dependencies associated with τV are τ
(1)
V :

E(X,Y, Z)→ (X = c∧Y = d) and τ
(2)
V : E(X,Y, Z)→

(X = g ∧ Y = d). Each of τ
(1)
V and τ

(2)
V can be equiva-

lently represented by two egds. For instance, the egd rep-

resentation for τ
(1)
V is via τ

(1,1)
V : E(X,Y, Z) → X = c

and τ
(1,2)
V : E(X,Y, Z) → Y = d. Similarly, there is

one dependency τ
(1)
W (= τW ) associated with τW ; an

equivalent representation of τ
(1)
W is via two egds.

Consider homomorphism h
(1)
V : {X → c, Y → d,

Z →⊥1} from the antecedent E(X,Y, Z) of τV to the

instance JDs

de . As applying h
(1)
V to the consequent of

τ
(1)
V gives us the tautology (c = c ∧ d = d), we conclude

that τV is not applicable to JDs

de with h
(1)
V .

Consider now the homomorphism h
(2)
V : {X →⊥3,

Y → d, Z → f} from the antecedent of τV to JDs

de .

Applying h
(2)
V to the consequent of τV gives us the ex-

pression (⊥3= c ∧ d = d) ∨ (⊥3= g ∧ d = d), which has
no tautologies among its disjuncts. Thus, τV is appli-

cable to JDs

de with h
(2)
V . The chase step with τV and h

(2)
V

transforms JDs

de into instances J1 and J2, as follows.

J1 = { E(c, d,⊥1), E(g, d,⊥2), E(c, d, f) } .
J2 = { E(c, d,⊥1), E(g, d,⊥2), E(g, d, f) } .

(J1 results from assigning ⊥3:= c, and J2 from ⊥3:= g.)
We then use the same procedure to apply τW to each

of J1 and J2. In each case, the chase steps assign the
value f to each of ⊥1 and ⊥2. As a result, the following
instance JDs

vv is obtained from each of J1 and J2:

JDs
vv = { E(c, d, f), E(g, d, f) } . 2

7.2 Solving CQ Weakly Acyclic Instances
We now define the view-verified data-exchange ap-

proach to the problem of disclosing information leaks.
Let Ds = (P, Σ, V, Q, MV ) be a CQ instance of

information leak. Then the set Σ
(MV )
Ds

of MV -induced
dependencies for Ds is a set of up to |V| elements, as
follows. For each V ∈ V such that kV 6= 0 or MV [V ]

6= {()}, Σ
(MV )
Ds

has one MV -induced implication con-
straint or one MV -induced generalized egd, by the rules
as in Eq. (1)–(2) in Section 7.1.4

For CQ weakly acyclic instances Ds we introduce the
following view-verified data-exchange approach to inf-
ormation-leak disclosure. First, we compute (as in Sec-

tion 6) the canonical universal solution JDs

de for the
source instance MV in the data-exchange setting
M(de)(Ds). If JDs

de does not exist, we stop and output
the answer that Ds is not valid. Otherwise we obtain a

chase tree of JDs

de with Σ ∪ Σ
(MV )
Ds

, where Σ
(MV )
Ds

is the
set of MV -induced dependencies for Ds. If the chase
tree is finite, denote by JDs

vv the set of all the nonempty

4We omit from Σ
(MV )
Ds

the dependencies, of the form

φ(X̄, Ȳ ) → true, for the case where kV = 0 and MV [V ]
6= ∅. By the results in this section, adding these dependen-

cies to Σ
(MV )
Ds

would not change any chase results.
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leaves of the tree. We call each J ∈ JDs
vv a view-verified

universal solution for Ds. If JDs
vv = ∅, then we stop

and output the answer that Ds is not valid. Otherwise,
for each J ∈ JDs

vv we compute the set Q↓(J) of all the
tuples in Q(J) that do not contain nulls. Finally, the
output of the approach for the input Ds is the set⋂

J∈JDs
vv

Q↓(J). (3)

The view-verified data-exchange approach to disclos-
ing information leaks addresses the shortcoming of the
data-exchange approach, see Section 6. Recall that the
canonical universal solution JDs

de of the latter approach
might not cover “tightly enough” all the instances of in-
terest to the attackers. In the view-verified approach,
we address this problem, by using our extension of the
chase to generate from JDs

de a set JDs
vv of instances that

are each “tighter” than JDs

de in this sense.
In Section 7.3 we will show that the view-verified

data-exchange approach is a sound and complete algo-
rithm for the problem of disclosing information leaks for
CQ weakly acyclic inputs. In particular, we will see that
the set JDs

vv is well defined, in that the chase tree in the
view-verified data-exchange approach is always finite.
We will also see that the set JDs

vv is “just tight enough,”
in the following sense: Denote by certain(Q,Ds) the set
of all the potential information leaks for Ds, see Defini-
tion 4.2 (1). Then the expression in Eq. (3), which is
the intersection of all the “certain-answer expressions”
for Q and for the individual elements of the set JDs

vv , is
exactly the set certain(Q,Ds).
EXAMPLE 7.2. Recall the instance Ds of informa-

tion leak in Example 7.1, and the instance JDs
vv ob-

tained in that example. JDs
vv is the (only) view-verified

universal solution for Ds. The set of answers without
nulls to the query Q on JDs

vv is {(c, f), (g, f)}. Thus,
(c, f), (g, f) are potential information leaks discovered
for the instance Ds by the view-verified data-exchange
approach. Both (c, f) and (g, f) (and nothing else) are
also discovered by the rewriting algorithm of Section 5,
which is sound and complete for Ds. 2

7.3 Correctness, Validity, and Complexity
In this subsection, we show that the view-verified

data-exchange approach is sound and complete for all
CQ weakly acyclic inputs. We also show how the ap-
proach can be used to decide whether a CQ weakly
acyclic instance Ds is valid. Finally, we prove that the
problem of information-leak disclosure is Πp

2 complete
for CQ weakly acyclic inputs, under the assumption,
same as in [33], that all elements of Ds except MV and
Q are fixed. That is, the size of a given instance Ds
is the size of its instance MV and query Q, with the
remaining elements of Ds being fixed.

View-verified data exchange is an algorithm.
We begin by obtaining a basic observation that builds
on the results of [18] for chase with tgds and disjunctive
egds (as defined in [18]). It is immediate from Proposi-
tion 7.1 that view-verified data exchange always termi-
nates in finite time for CQ weakly acyclic inputs.

Proposition 7.1. Given a CQ weakly acyclic instance
Ds of information leak, such that its canonical data-
exchange solution JDs

de exists. Then we have that:

(1) MV -enhanced chase of JDs

de with Σ ∪ Σ
(MV )
Ds

is a
finite tree, T , such that:

(a) T is of polynomial depth in the size of Ds, and

(b) The number of leaves in T is up to exponential
in the size of Ds; and

(2) For each nonempty leaf J of T , we have that:

(a) J is of polynomial size in the size of Ds, and

(b) Each grounded version of J is a Σ-valid base
instance for V and MV . 2

(A grounded version of instance K results from replac-
ing consistently all its nulls with distinct new constants.)

The proof of Proposition 7.1 relies heavily on the re-
sults of [18], particularly on its Theorem 3.9. Recall the
“decomposition,” in Section 7.1, of MV -induced gener-
alized egds into egds as defined in Section 3.2. Intu-
itively, given a CQ weakly acyclic instance Ds and for
each node K on each path from the root JDs

de of the
tree T for Ds, we can obtain K by chasing the root of
T using only egds and weakly acyclic tgds.5 The key

observation here is that even though the set Σ
(MV )
Ds

of
dependencies is not fixed (in fact, its size is linear in
the size of the instance MV in Ds), all the constants

that contribute to the size of Σ
(MV )
Ds

are already used

in the root JDs

de of the tree T , by definition of JDs

de . In
addition, the antecedent of each MV -induced general-

ized egd in Σ
(MV )
Ds

is of constant size, by definition of
the size of Ds. As a result, we can build on Theorem
3.9 and Proposition 5.6 of [18] to obtain items (1)(a)
and (2)(a) of our Proposition 7.1.

Item (2)(b) of Proposition 7.1 is by definition of MV -
enhanced chase, and (1)(b) is by construction of the tree
T . Appendix G provides a lower bound, via an example
where for a CQ instance Ds with Σ = ∅, the number of
leaves in a chase tree is exponential in the size of Ds.

Soundness and completeness. By Proposition 7.1
(2)(b), the view-verified data-exchange approach is a
complete algorithm when applied to CQ weakly acyclic
instances Ds. (That is, for each potential information-
leak tuple t̄ for a Ds in this class, view-verified data
exchange outputs t̄.) We now make a key observation
toward a proof that this algorithm is also sound for
such instances. (Soundness means that for each tuple t̄
that this approach outputs for a Ds in this class, t̄ is a
potential information leak for Ds.)
Proposition 7.2. Given a CQ weakly acyclic instan-

ce Ds = (P, Σ, V, Q, MV ) of information leak. Then,
for each instance I such that V ⇒I,Σ MV , there ex-
ists a homomorphism from some view-verified universal
solution for Ds to I. 2

The intuition for the proof of Proposition 7.2 is as fol-
lows. For a given Ds, whenever an instance I exists such
that V ⇒I,Σ MV , a canonical data-exchange solution

JDs

de for Ds must also exist. By definition of JDs

de , there

must be a homomorphism from JDs

de to the instance I.

We then start applying MV -enhanced chase to JDs

de , to
5Besides the egds and tgds of Section 3.2, chase on each path
in T may use MV -induced implication constraints. How-
ever, the only role of the latter constraints is to obtain the
instance ε and thus to terminate the respective path in T .
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simulate some rooted path, P(T ), in the chase tree T for
Ds. (The tree is finite by Proposition 7.1.) In following
the path P(T ) via the chase, we make sure that there
is a homomorphism from each node in the path to I,
by always choosing an “appropriate” associated depen-
dency τ (i) for each MV -induced generalized egd τ that
we are applying in the chase. By V ⇒I,Σ MV , such a
choice always exists, and the path P(T ) terminates in
finite time in a nonempty instance, J . By definition, J
is a view-verified universal solution for Ds. By our sim-
ulation of the path P(T ) “on the way to” I, there exists
a homomorphism from J to I.

Validity of instance Ds. By the results of [18],
when for a givenDs no canonical data-exchange solution
exists, then Ds is not a valid instance. We refine this
observation into a sufficient and necessary condition for
validity of CQ weakly acyclic instances Ds. (The only-
if part of Proposition 7.3 follows from Proposition 7.2,
and its if part is by Proposition 7.1 (2)(b).)

Proposition 7.3. Given a CQ weakly acyclic instance
Ds of information leak, Ds is valid iff the set JDs

vv of
view-verified universal solutions for Ds is not empty. 2

Correctness of view-verified data exchange. By
Proposition 7.2, view-verified data exchange is sound.
By Proposition 7.3, it outputs a set of potential infor-
mation leaks iff its input is valid. We now conclude:

Theorem 7.1. View-verified data exchange is a sound
and complete algorithm for discovering potential infor-
mation leaks for CQ weakly acyclic input instances. 2

Complexity of information-leak disclosure. We
now show that finding potential information leaks for
CQ weakly acyclic inputs is Πp

2 complete. (We assume,
as in [33], that all elements of Ds except MV and Q are
fixed.) By Theorem 7.1, this result also determines the
runtime complexity of view-verified data exchange.

We first observe that the problem is in Πp
2.

Proposition 7.4. The problem of information-leak
disclosure is in Πp

2 for CQ weakly acyclic inputs. 2

Indeed, to compute the expression of Eq. (3) for a
given CQ weakly acyclic instance Ds, by Proposition 7.1
we can compute in polynomial time each view-verified
universal solution J for Ds as a nonempty leaf in the
chase tree for Ds. We then compute in polynomial time
the set Q↓(J), and intersect Q↓(J) with the partial ex-
pression for Eq. (3). We maintain the latter expression
between creation of successive instances J . The result
of Proposition 7.4 follows.

It turns out that the problem is also Πp
2 hard.

Theorem 7.2. The problem of information-leak dis-
closure is Πp

2 hard for CQ inputs with Σ = ∅. 2

The Πp
2-completeness result is an immediate corollary:

Theorem 7.3. The problem of information-leak dis-
closure is Πp

2 complete for CQ weakly acyclic inputs. 2

The result of Theorem 7.2 is by reduction from the
∀∃-CNF problem. Starting off from the reduction of
[25], we use a modification that is similar in spirit to
that suggested in [33]. The goal of our modification is
to comply with our assumptions about the input size,
specifically with the assumption that the input view
definitions are fixed. (In [25] it is assumed that both
the queries and the view definitions can vary.) The
proof of Theorem 7.2 can be found in Appendix H.
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APPENDIX
A. ELABORATION ON EXAMPLE 1.1

In this appendix we elaborate on Example 1.1, to il-
lustrate the intuition behind the “rewriting approach”
of Section 5.

EXAMPLE A.1. Consider a relation Emp, which is
used for storing information about employees of a com-
pany. Let the attributes of Emp be Name, Dept, and
Salary, with self-explanatory attribute names: Emp(Name,
Dept, Salary).

We assume that no integrity constraints hold on the
database schema P containing the relation Emp. (In par-
ticular, the only primary key of Emp is all its attributes.)
Thus, the set Σ of dependencies holding on schema P
is the empty set.

Let a secret query Q ask for the salaries of all the
employees. We can formulate the query Q in SQL as

(Q): SELECT DISTINCT Name, Salary FROM Emp;

Consider two views, V and W, that are defined for some
class(es) of users, in SQL on the schema P. The view V
returns the department for each employee, and the view
W returns the salaries in each department:

(V): DEFINE VIEW V(Name, Dept) AS
SELECT DISTINCT Name, Dept FROM Emp;

(W): DEFINE VIEW W(Dept, Salary) AS
SELECT DISTINCT Dept, Salary FROM Emp;

Suppose that some user(s) are authorized to see the
answers to V and W, and that at some point in time the
user(s) can see the following set MV of answers to these
views.

MV = { V(JohnDoe, Sales), W(Sales, $50000) } .

Then one “conjunctive fact-expression” CMV that the
user(s) can put together based on this database MV is

CMV = V(JohnDoe, Sales) AND W(Sales, $50000) .

Let tuple t̄ = ( JohnDoe, $50000 ) be the tuple that
the user hypothesizes is in the answer to the secret query
Q on all the instances of the relation Emp that satisfy
the (empty set of) dependencies Σ and that generate
the above database MV . Observe that the tuple t̄ is
made up from values JohnDoe and $50000, which “are
generated by” the expression CMV . Thus, knowing the
associations between the values in the tuple t̄ and the
respective attribute names in MV , we can “put together”
this expression CMV and this tuple t̄ as a SQL query,
Rvw, in terms of the views V and W and in presence of
the constants from the database MV , as follows:

(Rvw): SELECT DISTINCT Name, Salary FROM V, W
WHERE Name = ‘JohnDoe’ AND V.Dept = W.Dept
AND V.Dept = ‘Sales’ AND Salary = ‘$50000’;

That is, by defining the query Rvw we formalize the
rather natural process of the user “putting together” tu-
ples in the available database MV and of his then using
some of the values from the selected tuples to put forth
a tuple of constants that is hypothetically in the answer
to the secret query.
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By definition of the SQL query Rvw, the above tuple
t̄ = ( JohnDoe, $50000 ) is the only possible answer
to Rvw on all possible instances of the relations V and
W. It is easy to see that this answer to the query Rvw
is compatible with (i.e., can be obtained by asking the
query Rvw on) the above database MV . (Intuitively,
this is true because we have constructed Rvw from the
tuples in the above database MV .) 2

B. THE REWRITING APPROACH
In this appendix we provide the technical details on

our rewriting approach (see Section 5) to the disclosure
of information leaks.

B.1 The Intuition
The rewriting approach formalizes the thought pro-

cess of the presumed attackers, as outlined in Exam-
ple 1.1. We argue that this approach is natural for
attackers to use. Recall that in any instance of the
problem of information-leak disclosure, attackers deal
directly with a ground instance MV . They know that
MV is a set of answers to the access-policy views V on
the underlying database of interest. Thus, intuitively, a
question that is natural for the attackers to ask is which
values in adom(MV ) can be put together to form an an-
swer to the secret query Q, on all possible underlying
databases of interest. (In general, the attackers could
consider in their pursuit not just values in adom(MV ),
but also constants mentioned in the queries for V and
in the secret query Q. It is straightforward to reflect
this in our setting, by adding extra head arguments to
the definitions of the respective views. Thus, we do not
explicitly consider this extension in this paper.)

How can this question be answered deterministically,
as required by Definition 4.2? A natural approach would
be to put together a query, call it R, in terms of the re-
lations in the instance MV , and to then prove that R is
“contained,” in some precise sense (in particular, w.r.t.
the views in V), in the secret query Q. We will be refer-
ring to all queries R over schema V as “rewritings” (in
terms of V), as indeed they would be defined in terms
of the relation symbols in V. (Another reason to refer
to such queries R as “rewritings” is that we will need
to define their expansions shortly.) Hence our name for
this approach to information-leak disclosure.

A challenge arises immediately when attackers pursue
this train of thought: In the set R(MV ) of answers to
a rewriting R on an instance MV , not all the tuples
in R(MV ) would necessarily be in the answer to the
secret query Q. That is, the formal containment that
we are looking for would not hold for all rewritings R.
(As an illustration, suppose that Q returns names of
employees with high salaries, and that R returns names
of employees in the accounting department. Clearly, the
answer to R is not necessarily a subset of the answer to
Q, on any particular database of interest.)

At the same time, by Definition 4.2, for each individ-
ual tuple t̄ ∈ R(MV ), it makes sense to ask the question
of whether the query R(t̄) is contained in Q in the ap-
propriate precise sense. The intuition is that R(t̄) is the
result of binding the head vector of R to a tuple, t̄, in
the relation R(MV ); as a result, t̄ is the only answer to
R(t̄) on the instance MV . We focus on such rewritings
R(t̄) in this paper.

B.2 Defining the Rewriting Approach
We now formalize the rewriting approach. Our in-

tent is to tie the definitions of rewritings that attackers
can formulate on view answers, to the definition of the
secret query Q. After defining rewritings of the form
R(t̄), we recall the standard notion of expansion of a
view-based rewriting; an expansion of a rewriting is its
equivalent reformulation over the schema P used to de-
fine the query Q. We then formalize the rewriting ap-
proach, using the notion of containment of queries over
the same schema w.r.t. a set of view answers MV and
a set of dependencies Σ.

Head-instantiated rewriting R(t̄). Intuitively, an
attackers’ goal in this approach is to form candidate
answers, t̄, to the secret query by using constants that
are in adom(MV ) and that thus presumably originate
from the actual database I of interest, V ⇒I,Σ MV .
Observe that not all V-based rewritings could be used
toward this goal. Consider, for instance, a rewriting
Rf (f) ← V (X), defined using a constant f and a sub-
goal V (X) for a view V and variable X. Clearly, regard-
less of the contents of the set MV of answers to the view
V , the answer Rf (f)(MV ) to Rf on MV is always the
set { (f) }. To rule out rewritings such as Rf (f), we
define a desirable type of rewritings as follows.

For an integer k ≥ 0 and for a k-tuple t̄ of constants,
consider a safe k-ary CQ rewriting R over schema V and
with head vector t̄. We say that R is a head-instantiated
rewriting for t̄ iff there exists a safe k-ary CQ rewrit-
ing R(g)(X̄), a grounding rewriting for R, that satisfies
two conditions. First, the head vector X̄ of R(g) does
not include constants. Second, there exists a mapping,
h, that maps all the elements of X̄ to constants and
that maps the remaining terms in R(g) to themselves,
such that the rewriting resulting from applying h to the
definition of R(g) is exactly R.

EXAMPLE B.1. Consider rewritings Rvw and R̃vw
that use constants c, d, and f . (R̃vw also uses a variable
Z.)

Rvw(c, f)← V (c, d),W (d, f).
R̃vw(c, f)← V (c, Z),W (Z, f).

Suppose that c, d, and f stand for ‘johnDoe’, ‘sales’,
and ‘$50000’, respectively; then Rvw is an equivalent
CQ reformulation of the rewriting Rvw of Example 1.1.
By applying this “translation of constants” to the in-
stance MV of Example 1.1, we obtain an instance MV ′

= {V (c, d),W (d, f)}.
Each of Rvw and R̃vw is a head-instantiated rewriting

for (c, f), as the respective grounding rewritings are

R
(g)
vw(X,Y )← V (X, d),W (d, Y ).

R̃
(g)
vw(X,Y )← V (X,Z),W (Z, Y ). 2

By definition, for each head-instantiated rewriting R
for a tuple t̄, the answer to R on an instance I of schema
V is nonempty (and is exactly { t̄ }) iff there exists a val-
uation from the body of R onto a subset I ′ of I such that
adom(I ′) contains all constants in t̄. Further, consider
an arbitrary safe CQ rewriting R′′ and any instance
MV such that R′′(MV ) 6= ∅. Then for each tuple t̄ in
R′′(MV ), the result R′′(t̄) of binding the head vector of
R′′ to t̄ (while consistently renaming the terms in the
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body of R′′ as well) is a head-instantiated rewriting for
t̄, such that the answer to R′′(t̄) on MV is not empty.

Expansion of a rewriting. We now take a step
back, from head-instantiated rewritings to general CQ
rewritings, to recall the standard notion of expansion
of a CQ rewriting. First, given a set of views V and
a ground instance I of schema P, consider an instance
over schema V ∪ P, which results from adding to I the
relation V (I) for each relation symbol V ∈ V. We call
the latter instance the V-enhancement of I, and denote
it by I(+V). Now given a rewriting R over the schema
V, consider a query, R′, over the schema P such that for
each instance I of P we have R′(I) = R(I(+V)). We call
such a query R′ an expansion of R (over P), and denote
it by Rexp. We will use the following straightforward
but important property of Rexp:

Proposition B.1. For a set V of views over schema
P: Let R be a rewriting such that Rexp exists, and let
MV be an instance of schema V. Then for each instance
I of schema P such that V ⇒I,∅ MV , we have Rexp(I)
= R(MV ). 2

In case where V is a set of CQ views and R is a
CQ query over V, the standard process in the liter-
ature of constructing Rexp is to replace each subgoal
of R with the body of the query for the correspond-
ing relation symbol in V. In this process, care is taken
to perform two operations on each query, of the form
V (X̄) ← body(V ), whose body in Rexp corresponds to
a subgoal of R of the form V (Z̄). First, we bind the
arguments of the query for V to the vector Z̄, in two
steps, (A) and (B). The step (A) is to extend the ho-
momorphism,6 h, that maps each element of the head
vector X̄ of the query for V to the same-position ele-
ment of Z̄, to a homomorphism hV (Z̄), whose domain

is the set of all arguments of body(V ), such that hV (Z̄)

is the identity mapping for each value that is not in the
domain of h. Then, (B) is to apply hV (Z̄) to body(V ),

with conjunction of relational atoms hV (Z̄)(body(V )) as

the output. Second, before conjoining hV (Z̄)(body(V ))
with the current body, bodyRexpcurr, of the query Rexp, we
rename all the variables in hV (Z̄)(body(V )) consistently
into “fresh” variables not occuring in bodyRexpcurr. The
query Rexp that is obtained by this two-step process is
unique up to variable renaming.

Conditional containment: We can now use con-
tainment to directly relate a rewriting R, via Rexp, to
the secret query Q. The notion of containment we will
use is relative to the fixed instance MV accessible to
the attackers, and is also relative to the set Σ of depen-
dencies known to hold on each instance (of schema P)
of interest to the attackers:

Definition B.1. (Σ-conditional query contain-
ment) Given schema P, set Σ of dependencies on P,
and set MV of view answers for a set of views V. For
queries Q1 and Q2 over P, we say that Q1 is Σ-condition-
ally contained in Q2 w.r.t. MV , denoted Q1 vΣ,MV Q2,
iff for each instance, I, of P such that V ⇒I,Σ MV , we
have Q1(I) ⊆ Q2(I). 2

6It is easy to show that if such a h cannot be constructed,
then R is unsatisfiable on all instances of the schema V.

Definition 5.1 is more general than what is required in
the context of the information-leak problem. In fact, in
Definition 5.1 we generalize a key definition of [33] due
to Zhang and Mendelzon. Specifically, the definition
of conditional query containment of [33] is our Defini-
tion 5.1 in the special case where the set of dependencies
Σ is the empty set.

For notational convenience in the results to follow, we
now introduce Σ-conditional containment of a rewriting
in a query modulo a set of views: For a rewriting R over
V such that Rexp exists, and for a query Q over P, we
say that R is Σ-conditionally contained in Q w.r.t. MV
and modulo V, denoted R vV,Σ,MV Q, iff Rexp vΣ,MV
Q holds.

The rewriting approach: We are now ready to
specify the rewriting approach to the problem of inform-
ation-leak disclosure. For an instance MV of schema
V, we say that a head-instantiated rewriting R(t̄) is
MV -validated iff the set R(t̄)(MV ) is not the empty

set. (The rewritings Rvw and R̃vw of Example B.1 are
both MV ′-validated.) Given a valid instance Ds of the
information-leak problem, the rewriting approach to the
problem of information-leak disclosure for Ds is to find
an MV -validated head-instantiated rewriting R for t̄
such that R vV,Σ,MV Q. This approach is sound:

Proposition B.2. Given a valid instance Ds = (P,
Σ, V, Q, MV ) of the information-leak problem, with
k ≥ 0 the arity of the query Q. Let t̄ be a k-tuple of
values from adom(MV ). Suppose that there exists an
MV -validated head-instantiated rewriting R for t̄ such
that R vV,Σ,MV Q. Then t̄ is a potential information
leak in Ds. 2

The proof is very simple: Any rewriting R satisfying
the conditions of Proposition B.2 must have t̄ as its only
answer on the given instance MV . Thus, by Proposi-
tion B.1, Rexp (which exists because the containment
R vV,Σ,MV Q is stated in Proposition B.2 to be well
defined) has t̄ as its only answer on all instances I such
that V ⇒I,Σ MV . From the containment Rexp vΣ,MV

Q we conclude that on all such instances I, the tuple t̄
is an element of the set Q(I). Hence, by Definition 4.2,
t̄ is a potential information leak in Ds.

B.3 One Rewriting Is Enough
Suppose that we are given an instance Ds of the inf-

ormation-leak problem, with set of view answers MV .
For k ≥ 0 the arity of the secret query Q in Ds, attack-
ers can generate from adom(MV ) all k-tuples t̄. Then,
Proposition B.2 gives the attackers a tool for testing
each such t̄ as a potential information-leak tuple for Ds,
assuming that the attackers can come up with an “ap-
propriate” rewriting R for each t̄, and that there exists
an algorithm for checking the containment R vV,Σ,MV

Q for each such R and t̄. We will consider in the next
subsection some such algorithms. However, in this cur-
rent subsection we show that to solve this generate-and-
test problem for a given instance Ds, it is not necessary
to also generate various bodies for rewritings R. Each
valid Ds is associated with a single CQ rewriting for
each t̄, with all these rewritings (for Ds) having the
same body. The main result of this subsection is that
for all CQ information-leak instances, these rewritings
alone can be used to capture exactly the set of all po-
tential information leaks.
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Intuitively, we are to construct the desired rewritings
from the facts in the instance MV . Indeed, by the re-
quirement that MV in each Ds be a ground instance,
each fact in MV can be viewed equivalently as a rela-
tional atom whose all arguments are constants. Given
a fixed MV and a k-ary (k ≥ 0) tuple t̄ of values from
adom(MV ), we say that a CQ rewriting R with head
vector t̄ is an MV -induced rewriting for t̄ iff each sub-
goal of R is a fact in MV . Further, an MV -induced
rewriting R for t̄ is a maximal MV -induced rewriting
for t̄ iff each fact in MV is also a subgoal of R. In
Example B.1, Rvw is a maximal MV ′-induced rewrit-
ing for the tuple (c, f), and R̃vw is not an MV ′-induced
rewriting.

We now list useful properties of MV -induced rewrit-
ings.

Proposition B.3. Given a valid instance Ds of the
information-leak problem. For a k ≥ 0, let t̄, t̄1, and t̄2
be k-tuples of values from adom(MV ), for the MV in
Ds. Then:

(1) Each MV -induced rewriting R for t̄ is an MV -
validated head-instantiated rewriting for t̄ whenever
each element of t̄ occurs in the body of R;

(2) For each t̄, there is exactly one maximal MV -induced
rewriting, which is an MV -validated head-instantiated
rewriting for t̄; and

(3) The maximal MV -induced rewritings for t̄1 and for
t̄2 have the same body, for all choices of t̄1 and t̄2.

2

The next result says that when we have the maxi-
mal MV -induced rewriting for some tuple t̄ of values
from adom(MV ), then we do not need to consider any
other head-instantiated rewritings for t̄ in our rewriting
approach.

Proposition B.4. Given a valid CQ instance Ds of
the information-leak problem. For k ≥ 0 the arity of
the query Q in Ds, let t̄ be a k-tuple of values from
adom(MV ). Let R be an MV -validated head-instantiated
rewriting for t̄ such that R vV,Σ,MV Q. Then for the
maximal MV -induced rewriting R∗t̄ for t̄, we have R∗t̄
vV,Σ,MV Q. 2

The following result says that maximal MV -induced
rewritings alone can be used to capture exactly the po-
tential information leaks in the CQ information-leak
setting. This result is an immediate corollary of Propo-
sitions B.3 and B.4.

Theorem B.1. Given a valid CQ instance Ds of the
information-leak problem, with k ≥ 0 the arity of the
query Q. For a k-tuple t̄ of values from adom(MV ):
The tuple t̄ is a potential information leak in Ds iff for
the maximal MV -induced rewriting R∗t̄ for t̄, we have
R∗t̄ vV,Σ,MV Q. 2

Proof. If: The proof of this direction parallels the
proof of Proposition B.2.

Only-If: By Definition 4.2, for the given tuple t̄ we
have that t̄ is in the setQ(I) for all instances I of schema
P such that V ⇒I,Σ MV . By Proposition B.3, we have
that t̄ is the only answer on the instance MV to the
maximal MV -induced rewriting R∗t̄ for t̄. Thus, for

the expansion of R∗t̄ , denote this expansion by (R∗t̄ )
exp,

we have by Proposition B.1 that for each instance I of
schema P such that V ⇒I,Σ MV , we have (R∗t̄ )

exp(I)
= {(t̄)}. (In more detail, we have by Proposition B.1
that for each instance J of schema P such that V ⇒J,∅
MV , we have (R∗t̄ )

exp(J) = {(t̄)}. The conclusion that
(R∗t̄ )

exp(I) = {(t̄)} for each instance I of schema P such
that V ⇒I,Σ MV follows from the fact that the set of
all such instances I is a subset of the set of all such
instances J .) Thus, by the definitions of expansions of
rewriting and of the containment vV,Σ,MV , we obtain
immediately that R∗t̄ vV,Σ,MV Q.

It follows from Theorem B.1 that the converse of
Proposition B.2 also holds. Hence we obtain the fol-
lowing result.

Theorem B.2. Given a valid CQ instance Ds of the
information-leak problem, with k ≥ 0 the arity of Q. For
a k-tuple t̄ of values from adom(MV ): There exists an
MV -validated head-instantiated rewriting R for t̄ such
that R vV,Σ,MV Q iff t̄ is a potential information leak
in Ds. 2

B.4 Using the Rewriting Approach
It would be nice to be able to use Theorem B.2 to

solve the problem of information-leak disclosure in the
CQ setting. The missing part is an algorithm for check-
ing the containment R vV,Σ,MV Q for each R and t̄.
In this subsection, we locate an algorithm and provide
a sound and complete solution for those instances Ds
where Σ = ∅, and then suggest solutions for the case Σ
6= ∅. Our rewriting approach fails to provide complete
solutions for the case where Σ 6= ∅. To address this
issue, we develop in Section 7 an alternative approach
for disclosing information leaks. The latter approach is
sound and complete for all information-leak instances
in the CQ weakly acyclic setting.

B.4.1 The Case Where Σ = ∅
We present here a sound and complete algorithm for

solving the problem of information-leak disclosure for all
instances Ds in the CQ setting with Σ = ∅. The algo-
rithm builds on the results of [33]. Zhang and Mendel-
zon addressed in [33] the problem of letting users ac-
cess authorized data, via rewriting the users’ queries in
terms of their authorization views. Toward that goal,
[33] explored the notion of “conditional query contain-
ment.” (We extended this notion to the case of de-
pendencies in our Definition 5.1.) The results of [33]
include a powerful reduction of the problem of testing
conditional containment of CQ queries to that of test-
ing unconditional containment of modifications of the
queries. We present this result here in terms of the def-
initions introduced in Section 4 of this current paper.
(Appendix D provides details on this result of [33]. The
language UCQ6= of unions of CQ queries with disequal-
ities, which are mentioned in Theorem B.3, is defined
in Appendix C.)

Theorem B.3. [33] Given a schema P, a set of CQ
views V on P, an ∅-valid set MV of view answers for
V, and CQ queries Q1 and Q2 on the schema P. Then
Q1 v∅,MV Q2 if and only if for the UCQ6= query Q′′1
constructed from Q1 by an algorithm given in [33], we
have Q′′1 v Q2. 2
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As the problem of unconditional containment of a
UCQ6= query in a CQ query is decidable [21] (see Ap-
pendix C), by Theorem B.3 so is the problem of deter-
mining whether Q1 v∅,MV Q2 for CQ queries Q1 and
Q2 w.r.t. a set V of CQ views and a set of view an-
swers MV . It is shown in [33] that when P and V are
fixed whereas MV , Q1, and Q2 are allowed to vary, the
problem of deciding whether Q1 v∅,MV Q2 holds is Πp

2
complete.

We can use Theorem B.3 to show that the tuple t̄ of
Example 1.1 is a potential information leak in the CQ
information-disclosure setting of that example. Indeed,
for the expansion Rexpvw of the rewriting Rvw of Exam-
ple 1.1, we have by Theorem B.3 that Rexpvw (t̄) v∅,MV

Q. The desired conclusion about the tuple t̄ then follows
from Proposition B.2.

Theorems B.1 and B.3 suggest immediately a sound
and complete algorithm for disclosing information leaks
for CQ information-leak instances Ds with Σ = ∅, as
follows.

The rewriting-based algorithm for disclosing
information leaks for CQ instances Ds with Σ =
∅: First, for MV the set of view answers in Ds and for
k ≥ 0 the arity of the query Q in Ds, generate all k-
tuples of values from adom(MV ). Then, for each such
tuple t̄, check whether for the maximal MV -induced
rewriting R∗t̄ for t̄, we have (R∗t̄ )

exp vΣ,MV Q. In case
of each positive answer to the latter question, return
the respective t̄ as a potential information leak in Ds.
Assuming that P and V are fixed whereas MV and Q
are allowed to vary (the same assumption as that made
in [33]), we obtain that the total number of such tuples t̄
is polynomial in the size of the problem input, and that
the containment test for each such t̄ is Πp

2 complete.

B.4.2 The Case Where Σ 6= ∅
Given an instance Ds and tuple t̄ as in the setting of

Theorem B.2, one could still approach the problem of
disclosing information leaks in Ds using the rewriting-
based algorithm for disclosing information leaks for in-
stances Ds with Σ = ∅, see Section B.4.1. The caveat
is that the algorithm is no longer complete in the case
Σ 6= ∅.

Indeed, for a CQ instance Ds with Σ 6= ∅, for all k-
tuples t̄ of values from adom(MV ), and for each (fixed)
MV -validated head-instantiated rewriting R for t̄, ob-
serve that each of (1)–(3) below is a sufficient condition
for (*):

(1) Rexp(t̄) v Q,

(2) Rexp(t̄) vΣ Q, and

(3) Rexp(t̄) v∅,MV Q .

(*) Rexp(t̄) vΣ,MV Q.

For each i ∈ [1, 3], the logical implication (i) ⇒ (∗) is
immediate from the definitions, once we observe that
the containment in (∗) can be obtained from the con-
tainment in (i) by dropping a subset of the instances
in question. The containment test for each of (1) and
(3) is decidable for CQ instances Ds, and the contain-
ment test for (2) is decidable for weakly acyclic such
instances, see Section 3.2.

Not surprisingly, one can show by counterexample
that the implication (∗) ⇒ (i) does not hold for any

i ∈ [1, 3]. Our example that works for all three values
of i can be found in Appendix E.

The converse of the logical implication (3) ⇒ (∗) in
particular does not necessarily hold. Thus, we can use
the rewriting-based algorithm for CQ instances Ds with
Σ = ∅ (Section B.4.1) only as a sound, but not complete,
approach for solving the problem of disclosing informa-
tion leaks in CQ instances Ds with Σ 6= ∅. Further, each
of (1) and (2) can be substituted for (3) in the rewriting-
based algorithm of Section B.4.1, to obtain a sound –
but again not complete – algorithm for solving the prob-
lem of disclosing information leaks in CQ instances Ds
with Σ 6= ∅. (In case where (2) is used in the above
algorithm, the set Σ must be such (e.g., weakly acyclic)
that the test Rexp(t̄) vΣ Q is decidable.)

To address the problem of incompleteness of the above
three algorithms for solving the problem of disclosing
information leaks in CQ instances Ds with Σ 6= ∅, one
could in principle try to extend to the case Σ 6= ∅ the
containment test of Theorem B.3 due to [33]. As the
test of [33] is highly sophisticated, it is not immediately
obvious how to approach this extension problem. Ob-
serve however that to solve the problem that we focus on
in this current paper, we do not have to solve the prob-
lem of containment of queries, as the latter problem is
more general than what we need. Recall that proving
that a tuple t̄ is a potential information leak for an in-
stance Ds is a matter of showing that t̄ is in the answer
to the secret query Q on each instance, I, of schema
P, such that I “is compatible with” MV and Σ in Ds.
Thus, intuitively, we are considering the query Q w.r.t.
the instance MV , rather than w.r.t. any query over
MV . We develop this intuition fully in Section 7, where
we introduce an alternative approach for disclosing in-
formation leaks. Our approach of Section 7 is sound and
complete for all CQ weakly acyclic information-leak in-
stances. We begin developing the ideas of Section 7 in
Section 6, where we show that the idea of data exchange
can be used toward solving our problem of disclosing in-
formation leaks.

C. UCQ6= QUERIES
In this appendix we extend the definition of CQ queries

given in Section 3.1, to the language of unions of CQ
queries with nonequalities. We refer to the queries in
the latter language as UCQ6= queries.

In the definitions for UCQ6= queries, we will be using
the following notions of relational atom and of (dis)equal-
ity atom. Let Qvar be an infinite set of values disjoint
from Const ∪ Var, we call Qvar the set of (query)
variables. We will denote variables by uppercase letters
X, Y , . . . . Then P (t̄), with P a k-ary relation symbol
and t̄ a k-vector of values, is a relational atom whenever
each value in t̄ is an element of Const ∪ Qvar. Fur-
ther, a (dis)equality atom is a built-in predicate of the
form S θ T , where θ is one of = and 6=, and each of S
and T is an element of Const ∪ Qvar.

A CQ6=-rule over schema P, with output relation sym-
bol Q /∈ P, with arity k ≥ 0 of Q, is an expression of
the form

Q(X̄) ← P1(Ū1) ∧ . . . ∧ Pn(Ūn) ∧ C.

Here, n ≥ 1, the vector X̄ has k elements, for each i
∈ [1, n], Pi is a relation symbol in P, of arity ki > 0,
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Q(X̄), P1(Ū1), . . . , Pn(Ūn) are relational atoms, and C
is a (possibly empty) conjunction of (dis)equality atoms.
We consider only safe rules: That is, each variable in
X̄, as well as each variable occurring in C, also occurs
in at least one of Ū1, . . ., Ūn. All the variables of the
rule that do not appear in X̄ (i.e., the nonhead variables
of the rule) are assumed to be existentially quantified.
We call the atom Q(X̄) the head of the rule, call X̄
the head vector of the rule, and call the conjunction of
its remaining atoms the body of the rule. Each atom
in the body of the rule is called a subgoal of the rule.
The conjunction in the body of a rule is usually written
using commas, as P1(Ū1), . . . , Pn(Ūn), C.

A conjunctive query with disequalities (a CQ6= query)
is a query defined by a single CQ6=-rule. Further, a
conjunctive query (a CQ query) is a CQ6= query with
the empty set C of (dis)equalities in the body of its rule.
Consider a CQ6= query defined by a CQ6=-rule with a
k-ary (k ≥ 0) output relation symbol Q and with head
vector X̄. Wherever clear from the context, we will be
referring to the query as simply Q(X̄), or even just as
Q. We will be using head(Q) and body(Q) as concise
names for the head and for the body of the (rule for)
Q.

Finally, for a k-ary relation symbol Q, with k ≥ 0,
let S(Q) = { Q(1), . . . , Q(l) } be a finite nonempty set
of CQ6=-rules over schema P, such that Q is the output
relation symbol in each rule. Then we say that the set
S(Q) defines a UCQ6= query Q over P.

Semantics of UCQ6= queries. We now define the
semantics of a UCQ6= query Q. In the definition, we
will need the notions of homomorphism and of valua-
tion. Consider two conjunctions, ϕ(Ȳ ) and ψ(Z̄), of
relational atoms. Then a mapping h from the set of
elements of Ȳ to the set of elements of Z̄ is called a ho-
momorphism from ϕ(Ȳ ) to ψ(Z̄) whenever (i) h(c) = c
for each constant c in Ȳ , and (ii) for each conjunct of the
form p(Ū) in ϕ(Ȳ ), the relational atom p(h(Ū)) is a con-
junct in ψ(Z̄). (For a vector S̄ = [s1s2 . . . sl], for some l
≥ 0, we define h(S̄) as the vector [h(s1)h(s2) . . . h(sl)].)
We will denote homomorphisms by lowercase letters g,
h, . . . , possibly with subscripts.

We define homomorphisms in the same way for the
case where either one of ϕ(Ȳ ) and ψ(Z̄) (or both) is
a conjunction of facts. Further, for a conjunction C
of (dis)equality atoms and two conjunctions ϕ(Ȳ ) and
ψ(Z̄) of relational atoms or of facts, we say that each
homomorphism, h, from ϕ(Ȳ ) to ψ(Z̄) is also a homo-
morphism from ϕ(Ȳ ) to ψ(Z̄) ∧ C.

Finally, suppose we are given a conjunction ϕ(Ȳ ) of
relational atoms, a conjunction ψ(Z̄) of facts, and a
conjunction C of (dis)equalities over variables in Ȳ and
over constants in Const. Suppose that there is a ho-
momorphism, h, from ϕ(Ȳ ) to ψ(Z̄), such that for each
(dis)equality of the form S θ T in C, the values h(S)
and h(T ) are distinct elements of Const ∪ Var when-
ever θ is 6=, and are the same element of Const ∪ Var
whenever θ is =. Then we say that h is a valuation from
ϕ(Ȳ ) ∧C to ψ(Z̄). We will use Greek letters µ, ν, . . . ,
possibly with subscripts, for valuations.

Now given a k-ary CQ6= query Q(X̄) and given an

instance I, which we interpret as a conjunction of all
the facts in I. Then the answer to Q on I, denoted
Q(I), is

Q(I) = { ν(X̄) | ν is a valuation from body(Q) to I } .

(When X̄ is the empty vector, i.e., Q is a Boolean query,
ν(X̄) is the empty tuple.) Further, for a UCQ6= query
Q defined by l ≥ 1 CQ6= rules { Q(1), . . . , Q(l) }, and
for an instance I, the answer to Q on I is the union
∪li=1Q

(i)(I).
Query containment. A query Q1 is contained in

query Q2, denoted Q1 v Q2, if Q1(I) ⊆ Q2(I) for ev-
ery instance I. A classic result [11] by Chandra and
Merlin states that a necessary and sufficient condition
for the containment Q1 v Q2, for CQ queries Q1 and
Q2 of the same arity, is the existence of a containment
mapping from Q2 to Q1. Here, a containment mapping
[11] from CQ query Q2(X̄2) to CQ query Q1(X̄1) is a
homomorphism h from body(Q2) to body(Q1) such that

h(X̄2) = X̄1. By the results in [21], this containment
test of [11] remains true when Q1 has built-in predi-
cates. Thus, the same test holds in particular when Q1

is a CQ6= query. It follows that, for Q1 a UCQ6= query
and for Q2 a CQ query, determining whether Q1 v Q2
is decidable. Indeed, this containment holds iff for each

CQ6= query Q
(i)
1 in the definition of Q1, for all i ∈ [1,

l], we have Q
(i)
1 v Q2.

D. CONDITIONAL CONTAINMENT FOR
CQ QUERIES

Zhang and Mendelzon in [33] addressed the problem
of letting users access authorized data, via rewriting
the users’ queries in terms of their authorization views.
Toward that goal, [33] explored the notion of “condi-
tional query containment.” The results of [33] include a
powerful reduction of the problem of testing conditional
containment of CQ queries to that of testing uncondi-
tional containment of modifications of the queries. In
this appendix we review these results of [33].

We begin by reviewing the definition of conditional
containment of queries [33]. Some of the definitions
here are restricted versions of the definitions given in
Section 4. We provide the restricted definitions here for
this appendix to be self contained.

Suppose that we are given a schema P and a set V
of relation symbols not in P, with each symbol (view
name) V ∈ V of some arity kV ≥ 0. Each symbol V ∈
V is defined via a kV -ary query on the schema P. We
call V a set of views on P, and call the query for each
V ∈ V the definition of the view V , or the query for V .
We assume that the query for each V ∈ V is associated
with (V in) the set V. Consider a ground instance MV
of schema V, we call MV a set of view answers for V.
Then for a ground instance I of schema P, we say that I
is a valid instance (of P) for V and MV [33] whenever
for each V ∈ V, the answer V (I) to the query for V
on the instance I is identical to the relation MV [V ] for
V in the instance MV . For a given set MV of view
answers for a set of views V, we say that MV is a valid
set of view answers for V whenever there exists at least
one valid instance for V and MV .

Now given queries Q1 and Q2 on the schema P, we
say that Q1 is conditionally contained in Q2 w.r.t. (V
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and) MV [33], denoted7 Q1 vMV Q2, if the relation
Q1(I) is a subset of the relation Q2(I) for each valid
instance I for V and MV .

It is easy to see that for all instances MV of all
schemas V, the containment Q1 v Q2 is a sufficient con-
dition for the containment Q1 vMV Q2. Not surpris-
ingly, Q1 vMV Q2 does not imply Q1 v Q2, something
more sophisticated is clearly called for. The authors of
[33] report the following powerful test for conditional
containment of CQ queries. (We say that V is a set of
CQ views if the query for each element of V is a CQ
query. The language of UCQ6= queries, which are men-
tioned in Theorem D.1, is defined in Appendix C.)

Theorem D.1. [33] Given a schema P, a set of CQ
views V on P, a valid set MV of view answers for V,
and CQ queries Q1 and Q2 on the schema P. Then
Q1 vMV Q2 if and only if for the UCQ6= query Q′′1
constructed for Q1 by an algorithm given in [33], we
have Q′′1 v Q2. 2

Theorem D.1 reduces the problem of testing condi-
tional containment of CQ queries, Q1 vMV Q2, to the
problem of testing (unconditional) containment in Q2

of a UCQ6= modification of Q1. The latter containment
can be decided by a test due to [21] (see Appendix C
here). The required modification of Q1 is done by an
intricate algorithm given in [33]. We outline here briefly
the intuition for the construction of Q′′1 from Q1.

We say that an instance I of schema P underproduces
MV if, for at least one V ∈ V, the relation V (I) is a
proper subset of the relation MV [V ]. By definition,
each valid instance for V and MV does not underpro-
duce MV .

The construction ofQ′′1 fromQ1 proceeds in two steps.
The first step guarantees that its output, a CQ query
Q∗1, has the empty answer on all instances of P that
underproduce MV . The output of the second step, a
UCQ6= query Q′′1 , has the same property as Q∗1 does.
In addition, for each instance, I, of schema P such that
I does not underproduce MV , and for each valuation,
ν, from the query Q′′1 to I, all the facts in ν(body(Q′′

1 ))
collectively constitute a valid instance for V and MV .
The result of Theorem D.1 is shown in [33] to follow
from these properties and from the fact that for all valid
instances I for V and MV , Q′′1(I) = Q1(I).

E. NONCONTAINMENT EXAMPLE, Σ 6= ∅
In this appendix we show by example that whenRexp(t̄)
vΣ,MV Q holds for some choice of R, t̄, Σ, MV , and Q,
then none of the following necessarily holds:

(1) Rexp(t̄) v Q,

(2) Rexp(t̄) vΣ Q, and

(3) Rexp(t̄) v∅,MV Q .

EXAMPLE E.1. Recall the relation Emp(Name, Dept,
Salary) of Example 1.1. Suppose that the schema P
that contains Emp also includes relations HQDept(Dept)
and OfficeInHQ(Name, Address). The intent of HQDept
is to store the names of the departments that are located
7To avoid overcrowding the symbol v, we assume that in
the notation vMV , the name MV of an instance of schema
V uniquely identifies the relevant set V.

in the headquarters of the company, OfficeInHQ asso-
ciates employees working in the headquarters with their
office addresses.

As before, we assume that the only primary key of
the Emp relation is its three attributes together. The key
of the relation OfficeInHQ is Name, which we express
using egd τ :

τ : OfficeInHQ(X,Y ) ∧OfficeInHQ(X,Z)→ Y = Z .

Suppose that for all the departments located in the
company headquarters, all their employees have their
offices in the headquarters. We express this constraint
using a tgd σ:

σ : Emp(X,Y, Z) ∧HQDept(Y )→ ∃S OfficeInHQ(X,S) .

We assume that σ and τ constitute all the integrity
constraints Σ on the schema P, that is, Σ = { σ, τ }.

Recall the views V and W introduced in Example 1.1:

(V): DEFINE VIEW V(Name, Dept) AS
SELECT DISTINCT Name, Dept FROM Emp,

(W): DEFINE VIEW W(Dept, Salary) AS
SELECT DISTINCT Dept, Salary FROM Emp,

Let U be another view available to some class(es) of
the database users. U returns the names of all the de-
partments that are located in the company headquarters:

(U): DEFINE VIEW U(Dept) AS SELECT * FROM HQDept,

Let the secret query Q’ return the names and salaries
of all the employees who work in the company headquar-
ters. (Note that Q’ is different from the secret query Q
of Example 1.1.)

(Q’): SELECT DISTINCT E.Name, Salary FROM Emp E, OfficeInHQ
WHERE E.Name = OfficeInHQ.Name,

Suppose that a user, or several users together, are au-
thorized to see the answers to all three views U, V, and
W, and that at some point in time the user(s) can see
the following set MV ′ of answers to these views.

MV ′ = { U(Sales), V(JohnDoe, Sales),
W(Sales, $50000) }.

Recall the tuple t̄ = ( JohnDoe, $50000 ) and the
rewriting Rvw of Example 1.1:

(Rvw): SELECT DISTINCT Name, Salary FROM V, W
WHERE V.Name = ‘JohnDoe’ AND V.Dept = W.Dept
AND V.Dept = ‘Sales’ AND Salary = ‘$50000’,

We can show that the expansion Rexpvw of the rewriting
Rvw is contained in the secret query Q’ in presence of
the set of dependencies Σ and of the database MV ′.
(Thus, Rvw is contained in Q’ modulo the set of views V
= { U, V, W } and in presence of Σ and of MV ′, i.e., Rvw
vV,Σ,MV ′ Q′.) At the same time, none of the following
containments hold: Rexpvw v Q′, Rexpvw vΣ Q′, and Rexpvw
vMV ′ Q′. We conclude that the information-leak tuple
t̄, fixed as above, is detectable by the containment Rvw
vV,Σ,MV ′ Q′, but not by the containments Rvw vV Q′,
Rvw vV,Σ Q′, or Rvw vV,MV ′ Q′.

We now prove all the containment and non-containment
statements of the preceding paragraph, for the queries
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Rexpvw and Q’ over the schema P. First, we render in
Datalog the queries Rvw, Rexpvw , Q’, and the queries for
the three views. (For conciseness, in the remainder of
this example we will refer to the constants JohnDoe,
Sales, and $50000 as c, d, and f , respectively, and
will refer to each relation name in P by the first letter
of the name.)

Rvw(c, f) ← V (c, d),W (d, f).
Rexpvw (c, f) ← E(c, d, Z), E(X, d, f).
Q′(X,Z) ← E(X,Y, Z), O(X,S).
U(X) ← H(X).
V (X,Y ) ← E(X,Y, Z).
W (Y,Z) ← E(X,Y, Z).

(1) The noncontainment of Rexpvw (c, f) in Q′ is im-
mediate from the containment test of [11] and from the
absence in the definition of Rexpvw (c, f) of a subgoal with
predicate OfficeInHQ. (As a result, the subgoal of Q′

with predicate OfficeInHQ cannot be mapped into the
body of Rexpvw (c, f).) We conclude that Rvw vV Q′ does
not hold.

(2) We observe that the result of chasing the query
Rexpvw (c, f) with the dependencies Σ is identical to Rexpvw (c, f).
Recall that Rexpvw (c, f) vΣ Q′ holds iff that chase result
(which is identical to Rexpvw (c, f)) is contained in Q′ in
the absence of dependencies. We then use the reasoning
of item (1) to conclude that Rexpvw vΣ Q′ does not hold.
Thus, Rvw vV,Σ Q′ does not hold either.

(3) Consider the following instance I of schema P:

I = {H(d), E(c, d, f)}.
It is easy to verify that for the set V = { U, V, W }, the
result of applying the queries for V to I is exactly the
database MV ′ as given above. We check that Q′(I) =
∅ and that Rexpvw (c, f)(I) = { (c, f) }. As a result, the
containment Rexpvw vMV ′ Q′ does not hold. We conclude
that Rvw vV,MV ′ Q′ does not hold either.

(4) Finally, consider the result of chasing the instance
I of (3) with the dependencies Σ:

I(Σ) = {H(d), E(c, d, f), O(c, j)}.
(Here, j is some constant value.)

It is easy to argue that for each instance J of schema
P that satisfies Σ and that gives rise to MV ′ (when
the queries for V are applied to J), J must have the
relations for Emp and for HQDept exactly as in I. Fur-
ther, the relation for OfficeInHQ in any such instance
J must have exactly one ground fact with c as the first
argument, and any nonnegative number of ground facts
with other values (than c) of the first argument. Finally,
in any such instance J , each pair of distinct ground
facts in the relation for OfficeInHQ must differ on the
value of their first argument.

It follows that on any instance J of schema P that sat-
isfies Σ and that gives rise to MV ′, the relation Q′(J) is
Q′(J) = { (c, f) }, and the relation Rexpvw (c, f)(J) is also
{ (c, f) }. As a result, the containment Rexpvw vΣ,MV ′

Q′ does hold. We conclude that Rvw vV,Σ,MV ′ Q′ holds
as well. 2

F. THE DATA-EXCHANGE APPROACH
In this appendix we discuss all the technical details of

the data-exchange approach of Section 6 to disclosure
of information leaks.

F.1 A Sound Data-Exchange Approach
Suppose that potential attackers are given a valid CQ

instanceDs = (P, Σ, V, Q, MV ) of the information-leak
problem. By Definition 4.2, the attackers are interested
in finding tuples t̄ of elements of adom(MV ), such that
for all instances I satisfying V ⇒I,Σ MV , we have t̄ ∈
Q(I).

We now show how a straightforward reformulation of
Ds turns the above problem into an instance of the prob-
lem of computing certain answers in data exchange. We
first construct a set Σst of tgds, as follows. For a view
V in the set of views V in Ds, consider the query V (X̄)
← body(V )(X̄, Ȳ ) for V . (As Ds is a CQ instance, the
query for each V in V is a CQ query.) We associate with
this V ∈ V the tgd σV : V (X̄)→ ∃Ȳ body(V )(X̄, Ȳ ). We
then define the set Σst to be the set of tgds σV for all V
∈ V. Then Ds can be reformulated into a data-exchange
setting

M(de)(Ds) = ( V, P, Σst ∪ Σ ),

with a source instance MV and a query Q on the target
schema P. We call the triple (M(de)(Ds), MV , Q ) the
associated data-exchange instance for Ds.

The following observation is immediate from Defini-
tion 4.2 and from the definitions in Section 6.1.

Proposition F.1. Given a valid CQ instance Ds of
the information-leak problem, with its associated data-
exchange instance ( M(de)(Ds), MV , Q ). Then for
each tuple t̄ that is a certain answer of Q with respect
to MV under the data-exchange setting M(de)(Ds), we
have that t̄ is a potential information leak in the instance
Ds. 2

For valid CQ weakly acyclic instances Ds, we intro-
duce the following algorithm, which we call the data-
exchange approach to disclosing information leaks. First,
we compute the canonical universal solution, JDs

de , for
the source instance MV in the data-exchange setting
M(de)(Ds). If JDs

de does not exist, then we output the
empty set of answers. Otherwise we output, as a set of
potential information leaks in Ds, the set of all those
tuples in Q(J (de)(Ds)) that do not contain nulls. When
we assume, same as in Section 5, that everything in Ds
is fixed except for MV and Q, then from Theorem 6.2
due to [18] we obtain immediately that this algorithm
always terminates and runs in polynomial time. By
Proposition F.1, this data-exchange approach is sound.

F.2 The Data-Exchange Approach Is Not
Complete

By Theorem B.2 and Proposition F.1, we have that
for CQ weakly acyclic instances Ds, the potential in-
formation leaks that can be disclosed using the data-
exchange approach can in principle also be disclosed by
our rewriting approach:

Theorem F.1. Given a valid CQ weakly acyclic in-
stance Ds of the information-leak problem. Let T be
the set of tuples output by the data-exchange approach
applied to Ds. Then for each t̄ ∈ T , there exists an
MV -validated head-instantiated rewriting R for t̄ such
that R vV,Σ,MV Q. 2
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Even in the light of the result of Theorem F.1, we
cannot just abandon the data-exchange approach in fa-
vor of the rewriting approach when working with valid
CQ weakly acyclic instances Ds of information leak. It
is true that we have a sound and complete rewriting ap-
proach for disclosing information leaks for CQ instances
Ds with Σ = ∅, please see Section B.4.1. However, the
lack of a decidable containment test for the contain-
ment vΣ,MV prevents us from extending the algorithm
of Section B.4.1 into a sound and complete rewriting ap-
proach for those CQ instances Ds where Σ 6= ∅, please
see Section B.4.2. Thus, in principle, we could use the
soundness (by Proposition F.1) of the data-exchange
approach to try to disclose information-leak tuples for
those CQ weakly acyclic instances Ds for which we do
not have a sound and complete rewriting-based algo-
rithm.

It turns out that, as we will see in this subsection, the
data-exchange approach is not complete for CQ weakly
acyclic instances Ds with Σ = ∅, as well as for those with
Σ 6= ∅. In the remainder of this section, we discuss a
feature of the data-exchange approach that prevents us
from using it as a complete algorithm for the problem
of disclosing information leaks. In Section 7 we will
eliminate this feature of the data-exchange approach, in
a modification that will give us a sound and complete
algorithm for disclosing information leaks for all CQ
weakly acyclic instances Ds.

We now prove that the data-exchange approach is not
complete for CQ instances Ds with Σ = ∅.

EXAMPLE F.1. Recall Example 1.1; the Datalog ver-
sions of its two views and of its secret query Q are as
follows:

V (X,Y ) ← E(X,Y, Z).
W (Y,Z) ← E(X,Y, Z).
Q(X,Z) ← E(X,Y, Z).

(We abbreviate the relation name Emp to E.)
Using the agreement as in Example B.1 for the con-

stants used in Example 1.1, we represent the set of view
answers of Example 1.1 as MV ′ = { V (c, d),W (d, f) }.
In the same notation, the tuple t̄ of Example 1.1 is re-
cast as (c, f).

Consider the information-leak instance Ds = ({E},
∅, {V,W}, Q, MV ′), with all the elements as defined
above. By definition, Ds is a CQ weakly acyclic in-
stance. (Ds is also valid, by the existence of the in-
stance {(c, d, f)} of schema {E}.) The data-exchange
approach applied to Ds yields the following canonical
universal solution, JDs

de , for the source instance MV ′ in

the data-exchange setting M(de)(Ds):

JDs

de = { E(c, d,⊥1), E(⊥2, d, f) } .

(The first tuple in JDs

de is due to the tuple V (c, d) in
MV ′, and the second tuple is due to W (d, f) in MV ′.)
It is easy to see that each of the two answers to the
secret query Q on the instance JDs

de has nulls and thus
cannot qualify as a potential information leak in Ds. 2

When given as input the instance Ds of Example F.1,
the data-exchange approach outputs the empty set of
potential information leaks. As that instance Ds is

a CQ instance with Σ = ∅, the sound and complete
rewriting-based algorithm of Section B.4.1 for disclosure
of information leaks is applicable to Ds, and outputs {
(c, f) } when given Ds as input. We conclude that the
data-exchange approach is incomplete when applied to
CQ instances of information leak with Σ = ∅. Further,
by applying similar reasoning to the example of Ap-
pendix E, we obtain that the data-exchange approach
is also incomplete when applied to CQ weakly acyclic
instances of information leak with Σ 6= ∅.

Why is the data-exchange approach not complete when
applied to CQ weakly acyclic instances of information
leak? Intuitively, the problem is that the canonical
universal solution JDs

de in the data-exchange approach
“covers too many target instances.” Let us evaluate the
queries for the views V and W of Example F.1 over
the solution JDs

de of that example. We obtain that the

answer to the view V on the instance JDs

de is { V (c, d),

V (⊥2, d) }. Similarly, the answer to W on JDs

de is {
W (d,⊥1), W (d, f) }. Thus, if we replace ⊥1 in JDs

de by
any constant except f , or replace ⊥2 by any constant
except c, then any ground instance obtained from JDs

de
using these replacements would “generate too many tu-
ples” (as compared with MV ′) either in the answer to
V or in the answer to W .

We now generalize over this observation. Fix a valid
CQ weakly acyclic instanceDs, and consider the canoni-
cal universal solution JDs

de generated by the data-exchange
approach when given Ds as input. (In the remainder of

this paper, we will refer to JDs

de as the canonical data-

exchange solution for Ds.) By definition of JDs

de , for

each view V ∈ V, the answer to the query for V on JDs

de
is always a superset of the relation MV [V ]. Suppose

that the answer on JDs

de to at least one view V ∈ V is
not a subset of MV [V ], as is the case in the example

that we have just discussed. Then JDs

de , as a template
for instances of schema P, describes not only instances
that“generate”exactly the set MV in Ds, but also those
instances that generate proper supersets of MV . The
latter instances are not of interest to the potential at-
tackers. (Recall that attackers are interested only in
the instances I of schema P such that V ⇒I,Σ MV .)

As a result, when the data-exchange approach uses JDs

de
to obtain certain answers to the secret query Q, it can
easily miss those certain answers that characterize only
those instances that are of interest to the attackers.

G. THE NUMBER OF LEAVES INMV -ENH-
ANCED CHASE CAN BE EXPONENTIAL
IN THE SIZE OF THE INPUT

In this appendix we show by example a family of CQ
instances with Σ = ∅, such that the number of leaves in a
chase tree for each instance in the family is exponential
in the size of the instance. As usual and similarly to
[33], we assume that the size of a given instance Ds
is the size of its instance MV and query Q, with the
remaining elements of Ds being fixed.

EXAMPLE G.1. Consider schema P with two bi-
nary relations P and R, and with Σ = ∅. Let the set of
views V = {V,W} be associated with two CQ queries,
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as follows:

V (X)← P (X,Y ), R(Y,Z).
W (Z)← R(Y, Z).

For a n ≥ 1, consider a set MV(n) of answers for V,
with n + 2 tuples. The relation MV(n)[V ] has n tuples
V (1), V (2), . . . , V (n), and MV(n)[W ] has tuples W (0)
and W (1).

Let the secret CQ query Q be

Q(X,Z)← P (X,Y ), R(Y, Z).

Let the instance D(n)
s be the tuple ( P, Σ, V, Q, MV(n)

), with components as described above.

The canonical universal solution J
D(n)

s

de for MV(n) has
two tuples P (i,⊥(i,1)) and R(⊥(i,1),⊥(i,2)) for V (i) in
MV(n), for each i ∈ [1, n]. It also has the tuples R(⊥(n+1,1)

, 0) and R(⊥(n+2,1), 1) for MV(n)[W ].
The process of creating view-verified universal solu-

tions for D(n)
s involves assigning either 0 or 1 indepen-

dently to each of the nulls ⊥(i,2), for all i ∈ [1, n]. It is
easy to see that this process creates 2n nonisomorphic
databases, one for each assignment of zeroes and ones
to each element of the vector [⊥(1,2), ⊥(2,2), . . ., ⊥(n,2)].
The expression 2n is exponential in the size of the set

MV(n) of view answers in D(n)
s . 2

H. THE PROBLEM OF INFORMATION-
LEAK DISCLOSURE IS ΠP

2 HARD FOR
CONJUNCTIVE INPUTS WITH Σ = ∅

In this appendix we prove Theorem 7.2, which states
that the problem of information-leak disclosure with CQ
inputs is Πp

2 hard, even when the set Σ of dependencies
in the input instance Ds is the empty set.

Proof. (Theorem 7.2) In this proof, we build on the
constructions from the proof of Theorem 3.3 in [25].
The reason that we modify the reduction of [25] is that
we need to comply with our assumptions about the size
of the instances Ds, specifically with the assumption
that the input view definitions are fixed. (In [25] it is
assumed that both the queries and the view definitions
can vary.) Thus, our variation on the reduction of [25]
is similar in spirit to the modification suggested in [33].

Similarly to the reduction in [25], we reduce the ∀∃-
CNF problem, known to be Πp

2 complete [30], to our
problem. The ∀∃-CNF problem is defined as follows:
Given a 3-CNF propositional formula F with variables
X̄ and Ȳ , is it the case that for each truth assignment
to Ȳ , there exists a truth assignment to X̄ that satisfies
F?

We are given a 3-CNF formula F , with variables

Z̄ = {X1, . . . , Xn} ∪ {Y1, . . . , Ym}

The formula F has clauses C̄ = {C1, . . . , Cl}. Clause Ci
contains the three variables (either positive or negated)
Zi,1, Zi,2, and Zi,3.

For ease of exposition, in the main body of this proof
we will assume that in the instance of the ∀∃-CNF
problem under consideration, we have m ≥ 1. (In the

last paragraph of the proof, we outline how to modify
the main body of the proof so that it would also go
through for each input instance with m = 0.)

For the input formula F , with m ≥ 1, we begin build-
ing the corresponding instance Ds(F ) of information
leak. The schema P = {P,R, S} in Ds(F ) uses three
relation symbols: R of arity kR = 4, and two binary
relation symbols P and S. Intuitively, for each i ∈ [1, l]
and for the clause Ci in F , in each instance of schema
P we will have in R a nonempty set of tuples whose
fourth argument is the constant i. Further, for each j ∈
[1, m] and for the variable Yj in F , in each instance of
schema P we will have in each of P and S a nonempty
set of tuples whose second argument is the constant j.

The set Σ in the instance Ds(F ) is the empty set: Σ
= ∅.

We now define the set of views V = {U, V,W} in the
instance Ds(F ). First, for the clauses C̄ in F we intro-
duce the following view V :

V (Z1, Z2, Z3, i) ← R(Z1, Z2, Z3, i).

The answer to this view simply mirrors the relation R.
The instance Ds(F ) includes a set MV of answers to

the views in V. The relation MV [V ] in MV records, for
each i ∈ [1, l] and for the clause Ci in F , the seven (out
of the total eight possible) satisfying assignments for
the clause. (We follow [25] in using 1 for true and 0 for
false.) The fourth argument of each tuple in MV [V ]
for these seven assignments (for Ci) is always i.

As a running example, we use the following example
from the proof of Theorem 3.3 in [25]: Consider the
formula

F = (X1 ∨X2 ∨ Y1) ∧ (¬X1 ∨ ¬X2 ∨ ¬Y2).

The seven satisfying assignments to X1, X2, and Y1 in
the first clause C1 = (X1 ∨X2 ∨ Y1) of F are (1, 1, 1),
(1, 1, 0), (1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0), and (0, 0, 1).
For the second clause C2 = (¬X1 ∨ ¬X2 ∨ ¬Y2) of F ,
the seven satisfying assignments to X1, X2, and Y2 are
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), and
(1, 1, 0).

By construction of the view V and by our intuition
for the relation R, see above, we construct the rela-
tion MV [V ] from these fourteen assignments as fol-
lows. First, the seven assignments as above for C1 are
adorned, in the fourth argument of V , by the index 1
of C1, as follows: V (1, 1, 1, 1), V (1, 1, 0, 1), V (1, 0, 1, 1),
V (1, 0, 0, 1), V (0, 1, 1, 1), V (0, 1, 0, 1), and V (0, 0, 1, 1).
Similarly, the seven assignments as above for C2 get
adorned, in the fourth argument of V , by the index 2
of C2, as follows: V (0, 0, 0, 2), V (0, 0, 1, 2), V (0, 1, 0, 2),
V (0, 1, 1, 2), V (1, 0, 0, 2), V (1, 0, 1, 2), and V (1, 1, 0, 2).
These fourteen tuples together constitute the relation
MV [V ] in the instance Ds(F ) for the formula F in this
running example.

We continue defining the views in the set V = {U, V,W},
for the instanceDs(F ). For them≥ 1 variables Y1, . . . , Ym
in F , we introduce a unary view W :

W (j) ← P (Yj , j), S(Yj , j).

In the setMV forDs(F ), the relationMV [W ] is {(1), (2),
. . . , (m)}. Intuitively, for each j ∈ [1, m], the tu-
ple (j) in MV [W ] witnesses, in each ground instance
I of schema P such that V ⇒I,Σ MV , the presence
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of a ground P -atom P (yj , j) and of a ground S-atom
S(yj , j) with the same arguments (yj is some constant
value).

Finally, we define the view U in the set V = {U, V,W}
for the instance Ds(F ):

U(Y, j) ← S(Y, j).

The answer to this view simply mirrors the relation S.
Now in the set MV that we are constructing, the re-
lation for U provides the two possible assignments, 1
and 0, to each variable among Y1, . . . , Ym in the set
of variables Ȳ in the formula F . That is, for each j
∈ [1, m], the relation MV [U ] has exactly two tuples,
U(1, j) and U(0, j). For instance, the relation MV [U ]
for our running example would have four tuples: MV [U ]
= {U(1, 1), U(0, 1), U(1, 2), U(0, 2)}. Here, the first two
tuples correspond to the two possible assignments, 1
and 0, to the variable Y1 in the formula F in the exam-
ple. Similarly, the last two tuples in MV [U ] correspond
to the two possible assignments, 1 and 0, to the variable
Y2 in the formula F in the example.

The above construction generates, for a given formula
F , the elements P, Σ, V, and MV in the instance Ds(F )
of information leak that we are producing for F . To
complete the construction of Ds(F ) for the given F , we
now specify the secret query Q in Ds(F ):

Q()←
∧m
j=1 P (Yj , j)

∧l
i=1R(Zi,1, Zi,2, Zi,3, i).

Intuitively, the Boolean query Q has a separate sub-
goal, P (Yj , j), for each j ∈ [1, m], that is for each
Yj among the variables Y1, . . ., Ym of the input for-
mula F . The query Q also has a separate subgoal,
R(Zi,1, Zi,2, Zi,3, i), for each i ∈ [1, l], that is for each
Ci(Zi,1, Zi,2, Zi,3) among the clauses C1, . . ., Cl of the
input formula F . By design, Q uses in its R-subgoals
all the variables of the form Zi,k in the same way as
they are used in the formula F . (Recall that for each
variable of the form Zi,k in the clauses of F , this vari-
able is either among the variables X̄ of F or among the
variables Ȳ of F .) In addition, also by design of the
query Q, for each variable Yj among Y1, . . ., Ym in the
formula F , the same variable name Yj is used in the
P -subgoal of Q with j the value of the second argu-
ment of the subgoal. It follows that for each variable
that is used as the first argument of some P -subgoal
of the query Q, this same variable must occur in the

conjunction
∧l
i=1R(Zi,1, Zi,2, Zi,3, i) in the body of Q.

As an illustration, the query Q for the formula F in
our running example is as follows:

Q()← P (Y1, 1), P (Y2, 2), R(X1, X2, Y1, 1), R(X1, X2, Y2, 2).

We have completed the construction of the instance
Ds(F ) for an arbitrary input 3-CNF propositional for-
mula F . By construction, the instance Ds(F ) = (P, Σ,
V, Q, MV ) is a CQ instance of information leak. More-
over, Σ = ∅ in Ds(F ). In this instance Ds(F ), each of
P, Σ, and V does not depend on the input formula F ;
thus, both the formulation and the size of each of P,
Σ, and V are fixed across all the input formulae F . In
contrast, the size of each of Q and MV in Ds(F ) is lin-
ear in the size of the input formula F . As a result, the
overall size of the instance Ds(F ) is polynomial (linear)
in the size of the input formula F .

It turns out that the instance Ds(F ) is also valid,
by the existence of a ground instance I(1,1,...,1)(F ) of
schema P such that V ⇒I(1,1,...,1)(F ),Σ MV , as follows.

(Intuitively, the m-tuple (1, 1, . . . , 1) in the name of this
instance I(1,1,...,1)(F ) refers to the fact that this in-
stance represents an assignment of the value 1 to each
of the m variables Y1, . . ., Ym of the input formula F .)

I(1,1,...,1)(F ) is the union of the instance I
(1,1,...,1)
(P,S) (F ),

as specified below, with the instance I
(1,1,...,1)
(R) (F ) that

has the same set of tuples for the relation R as the in-
stance MV has in the relation for V . As an illustration,

in our running example, the instance I
(1,1)
(R) (F ) has the

same fourteen tuples as we saw above in the relation
MV [V ], except that these same tuples are now in the
relation R in I(1,1)(F ):

I
(1,1)
(R) (F ) = {R(1, 1, 1, 1), R(1, 1, 0, 1), R(1, 0, 1, 1),

R(1, 0, 0, 1), R(0, 1, 1, 1), R(0, 1, 0, 1),
R(0, 0, 1, 1), R(0, 0, 0, 2), R(0, 0, 1, 2),
R(0, 1, 0, 2), R(0, 1, 1, 2), R(1, 0, 0, 2),
R(1, 0, 1, 2), R(1, 1, 0, 2)}.

For the general case, the instance I
(1,1,...,1)
(P,S) (F ) is of

the following form:

I
(1,1,...,1)
(P,S) (F ) = {P (1, 1), P (1, 2), . . . , P (1,m), S(1, 1),

S(0, 1), S(1, 2), S(0, 2), . . . , S(1,m), S(0,m)}.

As an illustration, for our running example, the in-

stance I
(1,1)
(P,S)(F ) is as follows:

I
(1,1)
(P,S)(F ) = {P (1, 1), P (1, 2), S(1, 1), S(0, 1), S(1, 2), S(0, 2)}.

The entire instance I(1,1)(F ) for our running example

is the union of the instances I
(1,1)
(P,S)(F ) and I

(1,1)
(R) (F ) as

given above.

Intuitively, the tuples in the relation S in I
(1,1,...,1)
(P,S) (F )

mirror the instance MV [U ], by definition of the view U
and of MV [U ]. The tuples P (1, 1), P (1, 2), . . ., P (1,m)

in I
(1,1,...,1)
(P,S) (F ) give us a key part of this proof, by rep-

resenting a particular assignment of values 1 and 0, one
value to each Yj (j ∈ [1, m]) among the variables Y1,
. . ., Ym of the formula F . The particular assignment
of values 1 and 0 to the variables Ȳ of F that is rep-
resented in the instance I(1,1,...,1)(F ) is the assignment
of the value 1 to each of the m variables. We repre-
sent this fact in the name of the instance I(1,1,...,1)(F ),
by using this assignment as m-tuple (1, 1, . . . , 1) in the
superscript in the name.

It is straightforward to verify that the ground instance
I(1,1,...,1)(F ) satisfies V ⇒I(1,1,...,1)(F ),Σ MV . Further, it
is straightforward to verify that there exist 2m − 1 more
ground instances of schema P, as follows. Each such in-
stance, denote it for now by J , differs from the instance
I(1,1,...,1)(F ) only in whether the first argument of one
or more P -tuple(s) in J is the value 0, instead of 1 as
it is in I(1,1,...,1)(F ). It is straightforward to verify that
for each such instance J , we have that V ⇒J,Σ MV
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in the context of the instance Ds(F ). Clearly, the to-
tal number of such instances J , including the instance
I(1,1,...,1)(F ), is 2m, as the value 1 of the first argument
of P (1, j) in I(1,1,...,1)(F ) can be flipped to 0 indepen-
dently for each j ∈ [1, m].

For each instance J constructed as above, we name
the instance using the same notation as for the instance
I(1,1,...,1)(F ), by adorning the name I(F ) with an m-
tuple (a1, a2, . . . , am) in the superscript, where aj for
each j ∈ [1, m] is either 1 or 0. For example, the in-
stance I(0,0,...,0)(F ) is the instance that differs from the
instance I(1,1,...,1)(F ) only in that the first argument of
each P -tuple in J is the value 0, instead of 1 as it is in
I(1,1,...,1)(F ).

To the 2m instances of the form I(a1,a2,...,am)(F ) as
defined above, we refer collectively as the core instances
(of schema P) for the input formula F . In addition
to these core instances, there is an infinite number of
other ground instances of schema P, where for each in-
stance, I, we have that V ⇒I,Σ MV in the context of
the instance Ds(F ). By definition of Ds(F ), each such
instance I can be obtained by unioning one of the core
instances for F , call the instance K, with a finite set of
ground atoms of the form P (c, d), where either (i) d is
a constant that is not in the set [1, m], or (ii) d is in
the set [1, m], while c is a constant distinct from the
value g in the atom P (g, d) in the “core part”K of the
instance I.

For each ground instance I that satisfies V ⇒I,Σ MV
and by definition of the query Q in Ds(F ), we obtain
the following useful observations.

Lemma H.1. Given a 3-CNF propositional formula
F and the instance Ds(F ) of information leak for F .
Then, for all ground instances I of schema P such that
V ⇒I,Σ MV in the context of the instance Ds(F ), the
relation R is the same in all the instances I, and the
relation S is also the same in all the instances I. 2

This result is immediate from the definitions of the
views U and V . The result of Lemma H.1 implies that
in each ground instance I of schema P such that V ⇒I,Σ

MV , (i) the relation R is the same in I as the relation
R in the fixed instance I(1,1,...,1)(F ) defined above, and
(ii) the relation S is the same in I as the relation S in
I(1,1,...,1)(F ).

Lemma H.2. Given a 3-CNF propositional formula
F and the instance Ds(F ) of information leak for F .
Then, for each ground instance I of schema P such that
V ⇒I,Σ MV in the context of the instance Ds(F ), the
relation P in I has for each j ∈ [1, m] an atom of the
form P (ej , j), with the constant ej ∈ {1, 0}. 2

Proof. This result is immediate from the definitions
of the views U and W and from the specifications of the
relations MV [U ] and MV [W ] in Ds(F ). Indeed, recall
that MV [W ] = {(1), (2), . . . , (m)}. By definition of the
view W , for each j ∈ [1, m] we have that the tuple (j) in
MV [W ] witnesses, in each ground instance I of schema
P such that V ⇒I,Σ MV , the presence of a ground
P -atom P (ej , j) and of a ground S-atom S(ej , j) with
the same arguments. Now consider an arbitrary ground
atom S(d, f) in any ground instance I of schema P such

that V ⇒I,Σ MV . By definition of the view U and by
the contents of the relation MV [U ], the value d in this
atom S(d, f) must be one of 1 and 0, and the value f
in S(d, f) must belong to the set [1, m]. Thus, via the
definition of the view W and the contents of the relation
MV [W ] as discussed above, we obtain that each ground
atom of the form P (ej , j) as above must have its value
ej restricted to one of 1 and 0. The claim of the lemma
follows.

Lemma H.3. Given a 3-CNF propositional formula
F and the instance Ds(F ) of information leak for F .
Let I be a ground instance of schema P such that V
⇒I,Σ MV in the context of the instance Ds(F ). Then
there exists a core instance K for F such that there is
an identity homomorphism from K to I. 2

Lemma H.4. Given a 3-CNF propositional formula
F and the instance Ds(F ) of information leak for F .
Let I be a ground instance of schema P such that V
⇒I,Σ MV in the context of the instance Ds(F ). Then
for each valuation, µ, from Q to I, the image of all the
P -subgoals of Q under µ is the relation for P in one of
the core instances for F . 2

(Toward the proof of Lemma H.4, recall that by design
of the query Q, the first argument of each P -subgoal of
the query Q must also occur as one of the first three
arguments of at least one R-subgoal of Q.)

By the above lemmae and by the structure of all the
ground instances I of schema P such that V ⇒I,Σ MV ,
it must be that, in the context of the instance Ds(F ):

(*) For each I such that V ⇒I,Σ MV and for each val-
uation, µ, from the query Q to I, the image µ(body(Q))
of the body of the query Q under µ is a subset of one
of the core instances for F .

Specifically, by construction of the query Q, for any
such core instance K for F , all the ground atoms in the
relation P in K must be present in the set µ(body(Q)).
(Recall that in each core instance, K, for the input for-
mula F , the relation P intuitively represents exactly
one specific assignment of values 1 an 0 to the m ≥ 1
variables Ȳ of the formula F . Further, each specific as-
signment of values 1 an 0 to the m ≥ 1 variables Ȳ of
the formula F is represented by a separate core instance
for F .)

As an illustration, consider the queryQ of our running
example and the instance I(1,1)(F ) of schema P for that
example. (Both the query Q and the instance I(1,1)(F )
for this running example have already been given in
this proof.) Consider a mapping µ = { X1 → 1, X2
→ 0, Y1 → 1, Y2 → 1 }. We can show that µ is a
valuation from the query Q to the instance I(1,1)(F ).
The image µ(body(Q)) of the body of the query Q under
the valuation µ includes all the ground atoms in the
relation P in the instance I(1,1)(F ), that is both atoms
P (1, 1) and P (1, 2) in I(1,1)(F ).

We now proceed to show that for the input formula F
and for the corresponding instance Ds(F ) constructed
as above, the following two statements are equivalent:

(I) For each assignment of values 1 and 0 to the vari-
ables Ȳ in the formula F , there exists an assign-
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ment of values 1 and 0 to the variables X̄ in F
such that F is true under these assignments; and

(II) The tuple () is an answer to the query Q on all the
ground instances I of schema P such that V ⇒I,Σ

MV in the context of the instance Ds(F ).

Note that by Definition 4.2, the statement (II) says that
the tuple () is a potential information-leak tuple in the
instance Ds(F ). Thus, once we show the equivalence of
the statements (I) and (II), our proof of Πp

2 hardness
of the problem of information-leak disclosure for CQ
inputs with Σ = ∅ will be complete.

We begin the proof of the equivalence of the state-
ments (I) and (II) by making the following observation.
Denote by R(Q) the conjunction of the R-subgoals of
the query Q in the instance Ds(F ). Further, denote by
P(Q) the conjunction of the P -subgoals of the query Q
in the instance Ds(F ). Consider any ground instance I
of schema P such that V ⇒I,Σ MV in the context of
the instance Ds(F ). Let ν be any mapping of the set
Z̄ of the variables (X̄ and Ȳ ) of the formula F into the
set {0, 1}. Similarly to the argument in [3] (as also used
in the proof of Theorem 3.3 in [25]), we can show that
any such mapping ν is a satisfying assignment for the
formula F if and only if ν(R(Q)) is a subset of the in-
stance I. By Lemma H.1, we have that any such map-
ping ν is a satisfying assignment for the formula F if
and only if ν(R(Q)) is a subset of each ground instance
J of schema P such that V ⇒I,Σ MV in the context
of the instance Ds(F ). From the above reasoning and
from Lemmae H.2–H.3, we obtain the following result
of Lemma H.5.

We first introduce some notation. In the remainder
of the proof of Theorem 7.2, let µ

(a1,...,am)

(Ȳ )
, with aj ∈

{0, 1} for each j ∈ [1, m], denote the mapping from the
set of variables Ȳ of the formula F to the set {0, 1}, such

that µ
(a1,...,am)

(Ȳ )
(Yj) = aj for each j ∈ [1, m]. Further,

let µ(X̄) denote a mapping from the set of variables X̄

of the formula F to the set {0, 1}.

Lemma H.5. Given a 3-CNF formula F with m ≥ 1
variables Ȳ and with n ≥ 0 variables X̄, let (a1, . . . , am)
be an arbitrary m-tuple such that aj ∈ {0, 1} for each
j ∈ [1, m]. Let µ(X̄) be an arbitrary mapping from the

set of variables X̄ of the formula F to the set {0, 1}.
Let Ds(F ) be the instance of information leak that is
associated with the formula F . Finally, let I be a ground
instance of the schema P, such that V ⇒I,Σ MV in the
context of the instance Ds(F ), and such that the set
{P (a1, 1), . . . , P (am,m)} is a subset of the instance I.

Then the following two statements are equivalent:

• The assignment µ
(a1,...,am)

(Ȳ )
∪ µ(X̄) of the variables

of the formula F to elements of the set {0, 1} is a
satisfying assignment for the formula F ; and

• The empty tuple () is in the answer to the query Q

on the instance I due to the valuation µ
(a1,...,am)

(Ȳ )
∪

µ(X̄) from body(Q) to I. 2

We are now ready to show the equivalence of the
statements (I) and (II) as formulated above.

(I)→ (II): Suppose that for eachm-tuple (a1, . . . , am),
such that aj ∈ {0, 1} for each j ∈ [1, m], we have that
there exists a mapping µ(X̄) from the set of variables X̄

of the formula F to the set {0, 1}, such that

µ
(a1,...,am)

(Ȳ )
∪ µ(X̄)

is a satisfying assignment for the formula F . Fix an
arbitrary ground instance I of the schema P such that
V ⇒I,Σ MV . Then, by Lemmae H.2 and H.5, the empty
tuple () is in the relation Q(I).

(II)→ (I): Consider the set K of the 2m core instances
(of schema P) for the formula F . By construction of
the set K, for each m-tuple (a1, . . . , am) such that aj ∈
{0, 1} for each j ∈ [1, m], there exists an instance K ∈
K such that the set {P (a1, 1), . . . , P (am,m)} is a subset
of the instance K, and the relation K[P ] has no other
tuples.

Fix an arbitrary instance K ∈ K; the relation K[P ] =
{P (a1, 1), . . . , P (am,m)} specifies a particular m-tuple
(a1, . . . , am) such that aj ∈ {0, 1} for each j ∈ [1, m].
By our assumption (II), there exists a mapping µ(X̄)

from the set of variables X̄ of the formula8 F to the set
{0, 1}, such that

µ(K) = µ
(a1,...,am)

(Ȳ )
∪ µ(X̄)

is a valuation from the query Q to the instance K
that produces the empty tuple () in the relation Q(K).
Thus, by Lemma H.5, the mapping µ(K) of the vari-
ables of the formula F to the set {0, 1} is a satisfying
assignment for the formula F . The claim of (I) follows
from the observation (made above) that for each m-
tuple (a1, . . . , am) such that aj ∈ {0, 1} for each j ∈
[1, m], there exists an instance K ∈ K such that the
set {P (a1, 1), . . . , P (am,m)} is in the instance K. This
completes the proof of Theorem 7.2.

We now outline how to modify the main body of the
proof, given above, so that it would also go through
for each input instance with m = 0. First, we replace
MV [W ] by the relation MV [W ] = { (0) }. Second, we
replace the conjunction of the P -subgoals in the query
Q by a single subgoal P (Y0, 0). (Note that for the first
argument Y0 of the subgoal P (Y0, 0) of the query Q,
we have, unlike the case m ≥ 1, that Y0 is not in the
conjunction of the R-subgoals of the query Q.) Third,
we replace MV [U ] by MV [U ] = { U(1, 0), U(0, 0) }.
Fourth, we use I(1) and I(0) and as the only two “core”
instances I. Here, I(1) has P = {P (1, 0)}, and I(0) has
P = {P (0, 0)}. The other relations (R and S) in each
of I(1) and I(0) mirror R and S in the core relations for
m ≥ 1. With these modifications, the proof above goes
through for all input formulae with m = 0.

8Recall that the set Z̄ = X̄ ∪ Ȳ is the set of all variables
of the formula F , and is also the set of all variables of the
query Q in Ds(F ).
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