
On the Design of Empirical Studies to Evaluate Software
Patterns: A Survey

Maria Riaz
North Carolina State University

Dept. of Computer Science
Raleigh, NC, USA

mriaz@ncsu.edu

Laurie Williams
North Carolina State University

Dept. of Computer Science
Raleigh, NC, USA

williams@csc.ncsu.edu

Jianwei Niu
University of Texas – San Antonio
Department of Computer Science

San Antonio, Texas, USA

niu@cs.utsa.edu

Travis Breaux
Carnegie Mellon University

Institute for Software Research
Pittsburgh, Pennsylvania, USA

breaux@cs.cmu.edu

ABSTRACT
Software patterns are created with the goal of capturing expert
knowledge so it can be efficiently and effectively shared with the
software development community. However, patterns in practice
may or may not achieve these goals. Empirical studies of the use
of software patterns can help in providing deeper insight into
whether these goals have been met. The objective of this paper is
to aid researchers in designing empirical studies of software
patterns by summarizing the study designs of software patterns
available in the literature. The important components of these
study designs include the evaluation criteria and how the patterns
are presented to study participants. We select and analyze 19
distinct empirical studies and identify 17 independent variables in
three different categories (participants demographics; pattern
presentation; problem presentation). We also extract 10 evaluation
criteria with 23 associated observable measures. Additionally, by
synthesizing the reported observations, we identify challenges
faced during study execution. Provision of multiple domain-
specific examples of pattern application and tool support to assist
in pattern selection are helpful for the study participants in
understanding and completing the study task. Capturing data
regarding the cognitive processes of participants can provide
insights into the findings of the study.

Categories and Subject Descriptors
Architecture and design, Empirical studies of software
engineering, Patterns and frameworks.

General Terms
Documentation, Design, Experimentation, Human Factors.

Keywords
Software patterns, experiment design, empirical evaluation,
knowledge transfer

1. INTRODUCTION
Software has become increasingly pervasive in modern
information systems, from control systems in transportation and
energy to mobile apps that pull data into a user’s personal context.
While the availability of frameworks and tools enable developers
to build more complex systems by reusing software components,
designing reliable software continues to depend on the availability
of expert knowledge [1]. Software design patterns [13] are one
approach for capturing and sharing expert knowledge. Design
patterns are generic, reusable structures that a software developer
can “instantiate” into their system design to solve a problem. The
Visitor Pattern, for example, allows developers to elegantly
compartmentalize “processing code” for a collection of objects
from different classes to improve maintainability [13].
Architectural patterns in building design [2] inspired design
patterns in software engineering. The success of design patterns
then inspired many other software patterns, such as enterprise
application architectural patterns [10] and software product line
patterns [8]. But, how can we know the software patterns meet
their goal of efficiently and effectively sharing expert knowledge
to the software development community such that the community
is aided by the patterns?

Despite the intuitive appeal of pattern-based design, software
engineering researchers have sought to empirically evaluate
design pattern use in experimental settings in addition to
qualitative appraisal [26]. Empirical evidence of the benefits of
the use of a type of software patterns may increase the use of the
patterns in the community.

Pattern discovery is primarily an expert’s affair: repetitive
solutions to slightly dissimilar problems leads to the expert’s
creative insight of a common, generalizable pattern. This skillset
relies on the Revised Bloom Taxonomy’s highest level of learning
(analyze and create) [31]. An advantage of design patterns is that
a less experienced designer can reuse the pattern, thus appealing
to lower, more pervasive learning levels (remember and
understand) [31]. The objective of this paper to aid researchers in
designing empirical studies of software patterns by providing: (1)
evaluation criteria and observation measures used to empirically
assess the efficiency and effectiveness of software design patterns
in imparting expert knowledge; and (2) pattern presentation
attributes that affect (increase or decrease) this effectiveness. To
this end, we report our results from a software engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGSOFT’12, FSE-20, November 10–17, 2012, Research Triangle
Park, North Carolina, USA.
Copyright 2012 ACM 1-58113-000-0/00/0010…$10.00.

literature survey on the topic of the empirical assessment of
software design patterns.

The software patterns community has identified several assertions
to promote the value of patterns to designers, such as: facilitation
and ease of reuse; identification and capture of abstract concepts;
aide in defining interfaces and interactions; means of shared
documentation; construction of software with defined properties;
and provision of common vocabulary [4]. Experimental
evaluation can provide a scientific basis for verifying or refuting
these assertions. However, multiple parameters effect the
experiment design including factors such as: level of participants'
expertise in applying software patterns; the manner of pattern
documentation and presentation to participants in an empirical
setting; the evaluation criteria used to assess quality of the
outcome (a software artifact) after applying the patterns; and the
method used for empirical evaluation. Our literature survey
reported herein to identify these parameters can be used by
software design patterns researchers and developers as an
experimental design roadmap when evaluating patterns for
efficiency and effectiveness.

The remainder of our paper is organized as follows: In Section 2,
we provide a brief background of different areas in which
software patterns are used. We document our methodology for
conducting the survey in Section 3. In Section 4, we present the
results of the survey to answer our research questions. In Section
5, we discuss and analyze the results and present our observations.

2. BACKGROUND
Schmidt et al. [26] defines software pattern as a means of
providing successful solutions to common software problems.
Software patterns are created with the goal of capturing expert
knowledge so it can be efficiently and effectively shared with the
software development community. Design patterns [13] provide
successful solutions to recurring problems in the context of a
software design. In addition to design, concept of software
patterns is used in the requirements [26], analysis [11],
architecture [12] and configuration managements [12] among
others. We focus on the empirical evaluation of software design
patterns in different domains for the purpose of this literature
survey.

3. METHODOLOGY
We conducted a literature survey following the principles of
evidence-based software engineering, as discussed in [4]. In this
section, we describe our methodology for conducting the literature
survey.

3.1 Research Questions
We established the following research questions to focus our
analysis of the studies in our survey.

RQ1. What are the demographics, including skill levels, of study
participants involved in the study?

RQ2. How are the software patterns documented and presented to
the participants?

RQ3. How are the problems (to be solved using the patterns)
selected, documented and presented to the participants?

RQ4. What are the evaluation criteria used in the studies?

RQ5. What are the observable measures collected in the studies?

3.2 Inclusion and exclusion criteria
The inclusion criteria determines which papers are studied to
answer our research questions; included papers must be:

1) A peer reviewed publication, in the field of software
engineering, evaluating one or more criteria of design pattern
application based on:
a) Experimental studies involving human participants
b) Case studies involving human participants

2) A peer reviewed publication, in the field of software
engineering, evaluating one or more criteria of software
pattern application based on:
a) Experimental studies involving human participants
b) Case studies involving human participants

We excluded the following papers:

1) Publications not related to computer science and software
engineering

2) A peer reviewed publication, in the field of software
engineering discussing:
a) Design patterns in general without empirical evaluation
b) Design pattern quality assessment in isolation, without

empirical evaluation involving human participants
c) Questionnaire-based assessment of design patterns
d) Design pattern mining
e) Design pattern recovery / discovery
c) Reverse engineering using patterns

3) Books and non-peer reviewed publications on design patterns
4) Design pattern catalogs

3.3 Data Collection
We only include papers that report the following data items to
describe their empirical methodology; we did not use these data
items to evaluate study quality.

• Complete reference of the source publication
• Empirical method (case study, controlled experiment)
• Pattern presentation technique to the participants (tool, library,

tutorial, introduction, instantiated patterns)
• Problem presentation technique (type of problem, size of

problem, number of tasks, duration to complete, deliverable)
• Problem domain and specific development environment, if any
• Participants (number, expertise level, grouping)
• Type of evaluators (academic experts, industry experts)
• Evaluation criteria (see Table 5, below).
• Effect of using patterns (positive / negative) on participants
• Results discussion provided by publication authors

3.4 Search Process
We began an exploratory search phase to identify relevant terms
to our literature survey. We searched three databases (Google
Scholar, ACM, IEEE) and collected papers that had the search
terms anywhere in the paper. We use the following search terms:

• software pattern [evaluation OR experiment]
• empirical study software patterns ["design patterns" OR

"software architecture"]
• design pattern experiment

After eliminating duplicates, these search queries produced an
initial set of 295 papers. We down-selected by having two
researchers separately vote on the paper titles for their relevance
to the empirical assessment of software patterns, erring on the side

of inclusion at this step. The combined union of these two sets
yielded 95 papers. We further eliminated 64 papers by evaluating
the paper abstracts based on the inclusion and exclusion criteria in
Section 3.2. One researcher voted on all the abstracts while the
other voted on a subset of 44 abstracts identified using the first
two search terms. Any paper voted in favor by either of the
researchers was included as before yielding a set of 31 papers.

One of these 31 papers was a mapping study conducted by Zhang
and Budgen [31]. This paper discusses and summarizes 11 papers
on experimental evaluation of the usefulness and usability of the
'Gang of Four' (or 'GoF' patterns) [13] design patterns. We applied
our detailed inclusion criteria (in terms of data collection) on the
set of 31 papers which yielded 14 papers. In addition, we included
11 papers from the mapping study: 8 of these papers were
independently identified by our method. We added the three
remaining papers from the mapping study to yield a total of 17
papers. All 11 papers discussed in the mapping study [31] are
included in our survey as they satisfy our detailed inclusion
criteria.

In our survey, we are interested in papers that provide empirical
evaluation of software patterns including, but not limited to, the
GoF design patterns. Mapping study by Zhang and Budgen [31]
studied literature up to the end of 2009. We have surveyed
literature published until January 2012 and include relevant papers
published since the mapping study.

3.5 Included Papers
The list of included papers follows with a unique reference
number (in brackets) used throughout the remainder of this paper:
[S01] Cognitive learning efficiency through the use of design

patterns in teaching [18]
[S02] An empirical study on students’ ability to comprehend

design patterns [5]
[S03] Two Controlled Experiments Assessing the Usefulness of

Design Pattern Documentation in Program Maintenance
[25]

[S04] A Controlled Experiment in Maintenance Comparing
Design Patterns to Simpler Solutions [24]

[S05] The Difficulties of Using Design Patterns among Novices:
An Exploratory Study [16]

[S06] Development and Evaluation of Emerging Design Patterns
for Ubiquitous Computing [7]

[S07] The Factory Pattern in API Design: A Usability
Evaluation [9]

[S08] Impact of the Visitor Pattern on Program Comprehension
and Maintenance [17]

[S09] Toward Effective Deployment of Design Patterns for
Software Extension: A Case Study [19]

[S10] Do Maintainers Utilize Deployed Design Patterns
Effectively? [20]

[S11] Documenting pattern use in Java programs [28]
[S12] A controlled experiment comparing the maintainability of

programs designed with and without Design Patterns: a
replication in a real programming environment [30]

[S13] Do Design Patterns Improve Communication? An
Experiment with Pair Design [29]

[S14] Work Experience versus Refactoring to Design Patterns: A
Controlled Experiment [21]

[S15] The Use of Architectural Patterns in the Agile Software
Development of Mobile Applications [15]

[S16] Patterns in Learning to Program - An Experiment? [22]

[S17] The Value of a Usability-Supporting Architectural Pattern
in Software Architecture Design: A Controlled
Experiment [14]

The 11 papers includes in the mapping study appear as S03-S13
[31]. Two replication studies are included: S11 replicates S03; and
S12 replicates S04. Four additional replications of S04 were
recently reported in a 'Joint Replication Project' [23].
Paper S01 presented the results of three different patterns-related
experiments. In this paper, we refer to these experiments as S01-
A, S01-B, and S01-C. In total, we discuss 19 distinct empirical
studies of software patterns represented by the 17 papers. Five
studies are case studies (S01-A, S02, S05, S09 and S15) and the
remaining 14 studies are controlled experiments. This set
contributes insight into experimental and case study design and
presents an opportunity to synthesize seemingly conflicting results
to address questions related to design pattern applicability and
usability. However, this number is too few to support a meta-
analysis across this domain.

4. RESULTS
We now summarize the results of our survey. In Section 5, we
discuss and interpret these results.

4.1 Participants Demographics
Research question RQ-1 asks, what participant demographics vary
in the sample population across these studies? Table 1
summarizes the demographic categories that we collected across
each study.

Identifying suitable participants is an important component of an
empirical study design. Eighteen of the empirical studies in our
survey involved undergraduate and graduate students enrolled in a
computer science degree program. The study S12 (a replication of
study S04) was conducted in a real programming environment
with professional programmers. Study S12 was the only study to
offer monetary incentives to participants. These incentives varied
with the participant’s experience level as rated by their employers.
Study S01-B involved a mix of undergraduate students and
professionals. The remaining studies either employed volunteers
(S16) or coursework credit, such as an assignment grade or extra
credit. Participants could leave the study at any time without a
penalty. Coursework credits were only furnished at completion.

In some studies, participants were asked to assess their expertise
levels, including familiarity with design patterns (discussed in
Section 4.3). The self-assessments were measured by time period
(academic or work experience), lines of code (LOC) written, and
self-perceived personal rating in comparison to other students or
programmers. These assessments were based on responses to
questionnaires provided to the participants. In study S16,
investigators used the students' performance in a prior
programming course to establish a performance baseline. In study
S12, experience level of participants was rated by their employers.

Table 1. Details Related to Participants

Participant
Sample Size

• < 20 (S01-A, S01-B, S05, S07, S13, S15, S16, S17)
• 20 - 50 (S01-C, S02, S04, S06, S08, S11, S12)
• 51 - 100 (S03, S09,)
• >100 (S10, S14)

Participant
Role

• Undergraduate (S01-A, S03, S05, S10, S11, S14,
S16)
Graduate (S02, S03, S06, S08, S09, S13, S14, S15,
S17)

• Professional (S01-B, S04, S06, S12)

Experience
Level

• Expert
• Medium
• Novice

Incentives
• Volunteer (S16, S01-A)
• Coursework Credits
• Monetary (S12)

Grouping
• Based on experience category
• Based on task assigned
• Based on the preparatory material given

In Table 1, most studies consisted of 50 participants or less and
were conducted using coursework credit. Experience level of
participants was considered relative to the other participants in the
study.

4.2 Pattern Presentation to Participants
Research question RQ-2 asks, how are the patterns documented
and presented to the participants? In our survey, investigators
provide participants with preparatory material to orient the
participants to the task. Table 2 sumarizes the preparatory
materials used in the included studies. We further distinguished
the following methods to deliver material to participants:
• Shared Introduction. All participants receive the same

prepatory material at the start of the study. Materials were
delivered as oral or written introduction, short course, or
applied pattern examples. This approach is used to measure
performance differences due to different experience levels
(experts vs. novice).

• Shared Stimulus. All participants receive the same material
during the study execution, but after performing one or more
tasks. Materials were delivered as a short or long course. This
approach is used to measure the impact of training on
participant performance.

• Varied Stimulus. Two groups of participants, wherein one
group receives more detailed prepatory material than the other
group. This approach is used to measure differences in pattern
adoption and applicability based on the material provided.

• Full Factorial. Two groups of participants, wherein one group
receives pattern-based material (treatment) and the other group
receives non-pattern-specific material (control), such as code
refactoring goal. The information content of the non-pattern-
specific material may be the same as the pattern-specific
material but presented in general terms. In addition, participants
are sub-divided using all combinations of material and
participant expertise level (i.e., a full factorial experimental
design).

Table 2. Type of Preparatory Material

Presentation Technique Study Reference Number

Tool S01-A, S01-B

Pattern Library S01-A, S06

Video Tutorial S01-A

Oral Introduction S01-C, S09, S10, S13
Written Material (during
the conduct of study) S05, S06, S13, S15, S16, S17

Short Course S03, S04, S05, S09, S10, S11,
S12, S14, S15, S16

Long Course S02, S13

Instantiated Patterns S01-B, S03, S04, S08, S09, S10,
S11, S12, S13

Documented Patterns
S03 (code), S10 (design),
S11(code), S14 (code, prior to
refactoring)

Multiple Examples (in
varying context) S07, S15

Real World Example S07, S15, S17

Expert Guidance S15
In some studies, participants were provided a tool to help with
pattern selection and application. While most studies employ a
short course to orient participants with the patterns, two studies
employ a long course in which participants solved a set of
problems before and after the course (a share stimulus study).
Studies of software maintenance provided instantiated patterns,
which consist of one or more design patterns applied to the given
design or code. In study S08, the participants were not informed
about the purpose of the study (to evaluate design pattern
application). Two studies (one replication of the other) utilized the
concept of pattern-specific documentation, such as code
comments or taglets, to highlight the role of different classes and
interfaces in the instantiated pattern. One experiment documented
the patterns in the UML design.

4.3 Problem Presentation to Participants
Research question RQ-3 asks, how were the problem descriptions
presented to the participants? For each study, we identified task
types for the problem provided to participants as either: a
selection task, in which participants must select a relevant pattern
to solve the problem and apply the pattern; an application task, in
which participants are provided the pattern and evaluated for their
ability to apply the pattern; or a maintenance task, in which
participants are asked to modify existing code with instantiated
patterns. Pattern comprehension is an important part of
performing a maintenance task involving patterns. Understanding
how patterns are instantiated in an existing system can help in
identifying how to modify the system. Moreover, some studies
emphasize design-related software lifecycle tasks while others
emphasize implementation. Table 3 summarizes our analysis for
task type and lifecycle emphasis.

Table 3. Task Categorization

Category Implementation Design

Selection
Task

S01-C, S02, S15,
S16

S01-A, S01-B, S02,
S05, S06

Application
Task

S01-C, S02, S07,
S09, S15, S16

S01-A, S01-B, S02,
S05, S06, S17

Maintenance
Task

S03, S04, S10, S11,
S12, S13, S14 S08

In addition to task category and lifecycle emphasis, problem
descriptions had other differentiating factors that we present in
Table 4.

Table 4. Problem Presentation Details

Number of
Tasks

• 1 (S01-B, S01-C, S09, S17)
• 2 (S02, S03, S06, S08, S11, S13, S15)
• 3 (S01-A, S05, S10, S14)
• 5 (S07)
• 6 (S16)
• 9 (S04, S12)

Task Size • KLOC

Task • Same to all (S01-A, S01-B, S03, S05, S06,

Differences S08, S09, S11, S13, S16, S17)
• Selected by participants (S01-C, S02,
• Pattern vs. non-pattern version (S04, S07,

S08, S12, S14)
• Different problem sets (S10, S14, S15)

Information
Differences

• Same to all (S05, S09, S10)
• Pre- vs. post training (S02, S04, S12, S13)
• Pattern vs. non-pattern information (S01-

B, S03, S06, S07, S11, S16, S17)
• Less vs. more information (S15, S17)

Problem
Domain

• Object-oriented (S02, S03, S04, S05, S07,
S08, S09, S10, S11, S12, S14, S16)

• Software architecture (S15, S17)
• Version control (S13)
• Ubiquitous computing (S06)
• Collaborative learning (S01-A, S01-C)
• Simulation environment (S01-B)

Technical
Constraints

• Use of special tool or framework (S01-A,
S01-B, S01-C)

• Use of specific language

Ending
Criteria

• Time-based (S01, S02, S03, S06, S09, S14,
S15, S16)

• Completion-based (S04, S05, S07, S08,
S17)

Twelve studies were specific to object-oriented design patterns.
Two studies were related to software architecture. Other problem
domains are also listed in the above table. Most of the studies
provided a time-limit for the participants to complete the task.
However five studies provided no time-limit and allowed
participants time to complete the task.

4.4 Evaluation Criteria after Pattern
Application
Research question RQ-4 and RQ-5 ask, what are the evaluation
criteria used in the experiments and what measures are used to
assess these criteria in the observable outcome? Table 5 presents
the complete overview of the 10 different evaluation criteria and
the 23 different measures. These can be thought of as the
dependent variables in an empirical study design. Example usage
illustrates ways in which these criteria have been used in the
empirical studies.

Some of the evaluation criteria may be mapped to quality
attributes such as reusability, flexibility, understandability,
functionality, extendibility and effectiveness as discussed [3] in
the context of object-oriented design quality.

4.5 Reported Observations
In addition to answering the research questions in Sections 4.1
through 4.4, we summarize key observations reported in the
studies below. In Section 5, we synthesize these findings to
identify several implications that affect study design.

4.5.1 Studies in Pattern Selection and Application
S01-A: Novices outperformed more experienced students in terms
of quality by the time they were completing the final of the three
tasks. However, the experienced students took less time with each
problem. Novices did not get any faster.
S01-B: The control group (with both novices and experts) couldn't
finish the task in time. Novices struggled with understanding the
tool while experts got lost in details. The treatment group (both
novices and experts) were able to complete the design task.
Novices provided efficient solutions and learned through

overcoming mistakes. Experts had to overcome the additional
cognitive load introduced by the conflict between their existing
mental patterns and the presented design patterns.
S01-C: Use of framework introduced a steep learning curve
addition to cognitive load. Groups using framework were
eventually able to finish the assigned task with assistance in
selecting applicable patterns. Groups using patterns without a
framework were able to select applicable patterns on their own
and solve the problems with relative ease, outperforming the
treatment group.
S02: Code without patterns found more difficult to maintain and
involved complex conditional logic and higher coupling. Even
successful in applying a pattern, participants found it difficult to
provide a rationale for using a particular pattern. Program size
increased with the use of patterns. Polymorphism, a theme present
in most of the patterns, leads to lose coupling and reduces
complexity as observed by the participants.
S05: Two main types of errors were identified indicating the
difficulties faced by novices in terms of pattern selection and
application.
Pattern-Selection Errors: Inability to identify the most suitable
pattern for a given problem. One example of pattern application
might not be enough to assist novices in correctly reapplying
patterns in a different problem. Applicability of some patterns
found to be easier to identify (e.g., Strategy) than others (e.g.,
Factory). This might be in part due to the wording used in the
problem statement.
Pattern-Application Errors: a) Mapping from pattern to actual
design found to be the major challenge for novices; b)
Misrepresentation errors such as use of concrete class instead of
abstract class or interface, difficulty in identifying suitable
operations or translating from generic operations in pattern to
specific operations in the problem; c) Incomplete design in terms
of missing key classes or operations.
S06: Experts applied patterns more effectively than novices.
Patterns found to help novice designers in coming up with design
idea and in explaining their ideas to others. For experienced
designers unfamiliar with the domain, patterns helped in
understanding the domain and communicating ideas. Patterns also
helped in avoiding some design problems. Designer, without the
knowledge of patterns may need to revisit and modify the design
more frequently. They might also overlook important tradeoffs
documented in a pattern description. None of the group employed
the privacy patterns effectively and treated privacy as a secondary
issue.
S07: Using factories for object construction (Factory pattern)
found more time consuming than use of constructors. Presenting
factories as part of the framework not found helpful in improving
efficiency of task completion.
S09: Adhering to the theme of a pattern resulted in higher design
quality measured in terms of following the Open-Closed Principal
(OCP). Benefits in design quality not observed in solution without
patterns or violating the theme of the pattern. Identified a need to
explore factors that might play a role in effective deployment of
design patterns.
S15: The case given more specific examples adopted the patterns
in contrast to the other case given less detailed material. Case
without the use of architectural patterns had significantly higher
complexity in the resultant application (measured in terms of
Cyclomatic complexity). The multiple case study highlights that

Table 5. Evaluation Criteria and Observable Measures
Evaluation

Criteria Observable Measures Example Usage

Quality
Subject matter expert evaluation On a scale of finite discrete values, how do experts evaluate the overall quality of

the deliverable
S01-A, S01-B, S01-C,
S02, S05, S06

Adherence to design principles How the State pattern helps in complying with OCP (Open-Closed Principal) S09

Efficiency (in
problem solving)

Time to complete
To assess efficiency of experts vs. novices or pattern vs. non-pattern approaches.
Often useful when comparing the times of correct solutions. Otherwise, need to
account for time needed to fix errors

S01-A, S01-B, S01-C,
S03, S06, S07, S12, S13,
S16, S04, S11, S14, S17

Learning efficiency (ease of
understanding and performing the task)

In an experiment with tasks of progressing levels of difficulty, what is the spread of
achievement among participants in a given time frame, using the knowledge design
patterns as a control variable

S01-A, S01-B, S01-C,
S03, S06, S07, S12, S13,
S16, S08

Correctness

Useful / Working Solution
In a maintenance task involving two functionally equivalent implementations with
and without pattern, how useful is one approach in comparison to the other in
assisting correct maintenance

S01-B, S01-C, S04, S05,
S06, S09, S10, S11, S12

Number of errors

When performing a maintenance task, assess if the use of patterns lead to less
number of errors as compared to a maintenance task without employing design
patterns; Assess the difference in number of errors made by novice using patterns
vs. experienced participants not using pattern

S03, S04, S06, S10, S11,
S12

Number of failing tests In maintenance, identify functional problems in deliverable; In refactoring, ensure
functional equivalence S14

Complexity

Cognitive load (qualitatively assessed) Based on the cognitive load theory, identify the type of load (intrinsic, extraneous,
germane) and see if it is conducive to learning and developing knowledge schemas S01-A, S01-B, S01-C, S02

Eye focus (quantitative assessment of
focus of attention during the task)

Using eye tracker to determine whether participants focused on the pattern-specific
code while performing maintenance task or spent more time understanding non-
pattern code

S08

Cyclomatic complexity (number of
linearly-independent paths)

Comparing Cyclomatic complexity of deliverables to identify cases with complex
components. Higher number correlates with higher risk of defects S15

Completeness Requirements fulfillment When performing maintenance tasks, how many of the required tasks were
accomplished when using patterns vs. non-pattern approaches

S01-B, S03, S06, S07,
S09, S10, S11, S17

Usability
Pattern selection Assess the use of tools with support for pattern selection in helping participants S02, S05, S09, S10, S16,

S17 Pattern application Assess the use of multiple pattern usage examples to improve patterns applicability

Communication
Oral communication How pairs communicate with and without design patterns knowledge S06, S13, S15
Documentation How patterns knowledge aids in capturing design rationales S15

Creativity Subject matter expert evaluation a) HCI experts assessing the creative aspects of a deliverable S06

Modularity
Coupling

Computed based on the deliverables in a programming task S02 Cohesion
WMC (Weighted Methods per Class)

Size

LOC (Lines of Code) Comparing pattern vs. non-pattern to see which solution has a larger size. Pattern-
based solutions are mostly found to be larger in size as they introduce class
hierarchies and abstract classes or interfaces.

S02 NOC (Number of Classes)
NOO (Number of Operations)
NOA (Number of Attributes)

providing pattern-specific material should be augmented with
concrete examples of the use of patterns in similar problems and
specific platform. Patterns enabled the teams early on to capture
the core architectural components and use them for refactoring the
architecture. Use of patterns also found to be helpful in
communicating the architecture description and documenting the
rational and design.
S16: Two groups (control without pattern knowledge; treatment
with pattern knowledge) were given tasks of progressive level of
difficulty. Both groups reached the expected level of task
completion. Number of participants is considered less to draw a
statistically significant interpretation. Researchers also stressed
the need to increase the level of participation and motivating
participants towards task completion.
S17: Participants who were given the full Usability-Supporting
Architecture Patterns (USAP) provided complete solutions in
terms of responsibilities considered in redesigning the
architecture. Group given only the task description considered
one-third of the responsibilities as compared to the group with
detailed information and examples. Patterns found helpful in
remembering and considering all the relevant responsibilities.

4.5.2 Studies in Maintenance
S03: Participants required more time on task with the presence of
additional pattern-specific comments but produced more correct
solutions. Quality of the solutions found to be independent of time
required to solve them. Less correct solutions with Non-pattern-
specific comments in less time. Time needed to correct these
solutions in a real setting will offset the gain in time. Comparing
only correct solutions, patterns group required less time for
maintenance task and avoided mistakes as compared to other
group. Benefits may be more pronounced in larger and more
complex maintenance tasks.
S04: Grouping of participants in PAT (using Pattern-based
solution) and ALT(using alternate, simpler solutions). All groups
given same set of problems in different orders, half before pattern
course (PRE), and half after pattern course (POST). All
combinations of PAT/ALT and PRE/POST involved in grouping
to study the effect of each factor. Using a pattern where a simpler
solution would suffice found harmful in terms of program
understandability and maintenance in some cases (Observer
pattern). Whereas no significant differences observed in other
cases (Visitor and Composite pattern). Use of Decorator pattern
found to assist in program modification, however calling the
modified functionality was more error prone due to delocalization
of functionality. Only minor changes in the complexity of the
maintenance task observed with the use of Composite pattern as it
introduced less modifications in the program structure.
S08: Familiarity with patterns and UML found helpful in
comprehension and maintenance tasks.
S10: While performing maintenance tasks on programs containing
design patterns, developers are likely to utilize the relevant design
pattern to accomplish the task. The nature of the maintenance task
also affects the utilization of a design pattern. Utilizing existing
design patterns during maintenance may lead to less faulty code.
S11: In this replication study, participants were less experienced
than the reference study. However, it was found that pattern
documentation in code is still useful in increasing the efficiency
during maintenance activities. As compared to the reference
study, there was an improvement in time which may be attributed
to the fact that this was a web-based exercise, as opposed to
paper-based.

S12: Results of the replication study were significantly different
from the original study. Harmful effects of Observer pattern
reported in the original study were not found in the replication. A
strong negative impact of Visitor pattern found in the replication
where no such indication was made in the original study. Fewer
harmful effects found in using Decorator pattern. Results related
to Composite and Factory pattern were consistent with the
original experiment. More intuitive patterns (e.g., Observer,
Decorator) generally do little harm, in terms of maintenance, even
if used unnecessarily. Awareness of good design principles is
significant in addition to the knowledge of design patterns.
S13: Significant differences in terms of communication observed
when tested before and after provision of training material (pretest
and posttest). In pretest, the explanation phase was small or even
non-existent whereas rest of the communication was dominated
by one individual (expert or novice). After 3-months design
patterns course, there was a clear explanation phase at the start
while remainder of the working time involved balanced
communication. In terms of pair programming, a common
understanding of problems and solutions can lead to better
collaborative behavior among the pairs.
S14: Patterns introduced in example application after refactoring
include Composite, Decorator, Factory Method, and Observer (top
four most frequently occurring patterns according to literature).
Refactoring to incorporate design patterns can improve the
efficiency of maintenance tasks in terms of time spent and number
of errors and can account for the additional time required to
refactor This observation holds irrespective of the level of
expertise of participants.

5. DISCUSSION
In this section we discuss some observations that may assist in
study design and interpretation of results.

5.1 Study Execution Challenges
Some of the problems during the conduct of a study, as discussed
in the literature, are given below:

5.1.1 Participant Attrition
Participant attrition means the reduction or decrease in the number
of participants during the course of a study execution. Fifteen of
the 19 studies involve less than 50 participants. In study S16,
initially 84 students signed up for the experiment. The number
decreased to 27 by the time the trial for study began. Number of
participants was decreased to 18 at the start of introductory
section. The results for only 10 of the participants were reported
indicating that only 10 students eventually completed the study.
Assessing the applicability of patterns is more meaningful in
medium to large size tasks. These tasks demand more
commitment from participants in terms of time and effort.
Participants may lose interest during the process or have to leave
the study due to time constraints. There is a need to further
explore the role of providing appropriate incentives for generating
and maintaining participants' interest through the course of the
study.

5.1.2 Use of Preparatory Material
Information content and presentation of the preparatory material
can have a significant effect on pattern adoption and task
completeness. Studies found significant differences in the level of
completeness of task when one group was provided more
comprehensive material (with information presented in the form
of patterns) as compared to the other groups (S01-B, S03, S11,

S17). In study S17, the group with the least detailed material
provided a third of the functionality compared to the group with
most detailed material containing concrete task-specific examples
in the material text and design.
In general, participants were divided into pattern vs. non-pattern
groups. Non-pattern group received only non-pattern-specific
preparatory material. Pattern group received same pattern-specific
preparatory material. In study S15, both groups were given
pattern-specific material. However, one group of participants
received more details about applicable patterns, augmented with
multiple concrete examples in the given problem domain and
platform context. The other group only received basic information
about patterns without specific examples. The use of patterns was
optional in the study. The first group adopted the patterns in their
solution in contrast to the second group. Pattern adoption may be
non-existent or even erroneous when insufficient preparatory
material is provided to the participants. However, the degree of
separation from the examples and the problem to be solved can
affect the outcome. If the examples match the problem, then
participants need only apply the patterns to match their solution to
the example. More work is needed to quantify an appropriate
degree of separation to distinguish success attributed to the
pattern, versus success due to a well-matched example.
In study S16, both groups received the same information content
and use of patterns was also not mandatory. One group was
presented the information in a pattern-specific manner i.e.,
participants in this group were introduced to a set of patterns
along with the contextual relationships between various patterns.
T

5.1.3 Understanding Task Rationale

he other group was presented the same information in a pattern-
neutral manner. The study does not elaborate on how the
equivalence of information content (for pattern-specific and
pattern-neutral representations) was established. In both groups,
participants did not sufficiently utilize the preparatory material
provided. In general, participants in the group with pattern-
specific information did not utilize the patterns in their solutions.
There is a need to further investigate how to steer the participants
towards using material provided during the study without
influencing the study outcomes.

Task rationale or task goal affects pattern selection and adoption.
Participants who did not understand or did not accept the task
rationale or goal had difficulty in adopting the pattern. In study
S02, participants who were provided the patterns were successful
in applying the patterns, however, they had difficulty providing
the rationale for using the patterns. In pattern selection tasks,
however, problem solvers must have some knowledge of the goal
to select an appropriate pattern (or schema) [27]. Thus, pattern
application tasks side-step this issue, as evidenced in study S02. In
addition, participants in studies S04 and S07 did not accept or
realize the goal (improve maintainability) and instead found the
patterns counterintuitive, because the extra work required to apply
the pattern exceeded their motivation to achieve the goal.
It is important to design tasks that can realistically measure the
applicability of patterns in situations that align with the objectives
of the pattern.

5.1.4 Time on Task
Time to complete a task is a confounded measure of efficiency.
Several studies used time to completion as an evaluation criterion
(see Table 5), yet two studies suggest this criterion yields mixed
results. In study S01-A, experts perform faster, however, novices
outperformed experts despite taking longer to learn and apply the

patterns. In study S03, participants who received more pattern-
specific guidance required more time to perform the task but
yielded more correct solutions.
Time can serve as a suitable measure of efficiency if: a) only
correct solutions are compared; b) time needed to fix the errors in
incorrect solutions is accounted for while comparing them with
correct solutions. Assessing the construct validity, as considered
in study S08, can help in identifying suitable observable measures
for a given evaluation criteria.

5.1.5 Technical Considerations
In some of the experiments involving specific frameworks,
participants faced technical issues e.g., unfamiliar error messages,
lack of documentation to understand the errors, lack of training to
resolve the errors quickly. In study S01-B, for example, time
spent in resolving such problems due to unfamiliarity with the
framework, hindered completion of the task. While one might try
to improve the training to address this problem, reducing the need
to use complex tools or frameworks to complete the study
removes interference and any confounds attributable to these
technical distractions.

5.2 Improving Pattern Use
The aim of these experiments is to improve pattern use: whether it
be by identifying demographic traits of individuals likely to
correspond to improved performance, or to design effective
training materials. We now discuss this aim in three separate
regards: pattern selection; pattern instantiation; pattern
comprehension and maintenance.

5.2.1 Pattern Selection
Pattern selection means identifying suitable patterns that are
applicable to a given problem description. This task was
especially difficult for participants. In particular, a single example
application may not be sufficient to enable the novices to identify
the pattern in a different problem setting (S02, S05). Certain
patterns are easier to identify when applicable (e.g., Strategy) than
other patterns (e.g., Factory). Whereas the strategy pattern evokes
the notion of replaceable code during runtime, similar to common
plugin-based architecture, the factory pattern is more nuanced as
means to instantiate classes during runtime through method
invocation. The difference in participant abilitiy may relate to the
presence or absence an existing mental model. Wording in a
problem statement at times provides clues regarding applicable
patterns (S05). This wording may unavoidably bias participants to
select the appropriate pattern. Finally, we found that providing
multiple, domain specific examples of pattern instantiation helps
in pattern selection (S07, S15).

In some of the experiments, participants were given a light-weight
tool with built-in support for pattern selection (S01-A). In those
settings, novices were able to perform better with patterns and
even outperformed experienced users in some cases in terms of
design quality. This suggests that tool support for pattern selection
can help novices in selecting the most appropriate pattern for the
problem at hand.

5.2.2 Pattern Application
Pattern application is the process of mapping the pattern
description or template to a concrete pattern instance in design or
code. This step often requires customization of the pattern in
accordance with the context of the problem. Participants might
need to instantiate patterns once they have selected an appropriate
pattern. They may also be given a pre-selected pattern and
required to apply it to a given problem.

In many cases, this was found to be a major challenge for novices
as they struggled while mapping from pattern to actual design. In
the context of object-oriented patterns, one experiment (S05)
identified that the mapping process led to misrepresentation errors
such as incorrect use of abstract classes, concrete classes and
interfaces in design. Participants found it difficult to identify
appropriate operations or to translate from generic operations
given in the pattern to specific operations applicable to the
problem. Familiarity of participants with design languages, such
as UML, was found useful when comprehending patterns (S08).
This may suggest a basic understanding of object-orientation can
impact results.

Another problem related to pattern instantiation was incomplete
designs where key classes and operations were missing. This
problem further suggests that basic design knowledge and
understanding of classes and relationships is important for
successful instantiation of patterns, specifically object-oriented
patterns.

5.2.3 Pattern Comprehension and Maintenance
Pattern comprehension and maintenance is the process of
understanding and modifying existing designs with already
instantiated patterns. Comprehension and maintenance activities
may be viewed as two separate tasks, however, comprehension of
the existing pattern in a design or code is necessary to
successfully conduct a maintenance activity.

Documentation of existing patterns in design or code was found to
be helpful in performing a maintenance task in terms of efficiency
and correctness. Two studies evaluated the use of documenting
pattern-specific comments (S03, S11), in addition, to other
comments. Participants who were provided code with pattern-
specific comments found it helpful to understand the task and
successfully perform the maintenance activities. One study (S03)
involving experienced participants performed a comparison of
correct solutions. Groups with pattern-specific comments required
less time for the maintenance task and were able to avoid mistakes
when compared to the other groups. A replication of this study
(S11) using pattern taglets (an extension of javadoc to enable
pattern-specific comments) found similar results. Even though the
participants were less experienced than the reference study,
pattern documentation in code was still found to be useful in
increasing efficiency during maintenance activities in terms of
time and correctness.

Another study documented patterns in design using UML (S10).
Although there were no pattern specific comments used, this
presentation assisted the participants during the maintenance
activity. Participants were more likely to utilize relevant design
patterns to accomplish the maintenance activity. Utilization of
design patterns during maintenance also produced less faulty
code. The nature of a maintenance task may also affect whether
the participants will utilize existing design patterns or not.

Patterns are found useful for maintenance activities. When
participants are aware of the existence of patterns in a system,
they are more likely to utilize these patterns during maintenance.
Pattern documentation (in the form of design or comments in
code) makes it easier to locate relevant classes and their
collaborations in an instantiated pattern.

5.3 Understanding Differences between
Experts and Novices
Some of the studies that were included in our literature survey
highlighted the differences between novices and experts while
working with design patterns. It might be expected, as observed in
some studies, that people with more knowledge of design patterns
will be able to utilized the patterns with facility as compared to
those with less knowledge of patterns. However, in some studies,
experienced designers not familiar with a set of software patterns
found it harder than novices to successfully utilize these patterns
(S01-A, S01-B). Following subsections discuss these observations
in the context of the study design and the observations recorded.

5.3.1 Internalization of Knowledge
Increased cognitive load can lead to decrease in performance.
Sweller describes the importance of keeping problem solving
tasks as simple as possible to avoid over burdening cognitive load
[27]. We observed in a few study designs situations where the
participants cognitive load (the number of items they had to
remember) had negative effects on performance. In study S01-B,
experts who approach problem solving with their own mental
model had to overcome their preconceptions when using design
patterns to solve the problem in a new way. In addition, this study
employed use of a framework that decreased performance:
novices dealt with a learning curve, whereas experts were
distracted by the many unrelated details made available in the
framework. In study S01-C, the participants were required to use a
framework that had a steep learning curve, which distracted from
the pattern task.

Novices may be able to internalize the knowledge captured in a
design pattern more effectively if the cognitive load is minimized
while presenting and documenting patterns.

5.3.2 Unlearning and Re-learning
Discuss, in the context of empirical evaluation, why experts not
familiar with patterns find it harder at times to work with patterns.
They have their own mental schemas of knowledge and the new
pattern may present a different schema than their own. Experts
would then need to unlearn or adapt their own schemas to
understand and apply the patterns which introduces additional
cognitive load. Whereas novices may not have such existing
schemas and would experience cognitive load to build new
schemas instead of to unlearn or adapt their existing schemas.

In study S01-A, aimed at assessing the cognitive learning
efficiency through use of design patterns, novices outperformed
the more experienced students in terms of quality as they
completed a set of three design problems. The experienced
students took less time with each problem whereas such as
reduction in time to solve a problem was note observed for
novices. However, in study S01-B, with control (consisting of
novices and experienced designers without patterns) and treatment
(consisting of novices and experienced designers with patterns)
groups, both novices and experiences designers using patterns
performed better than the control group.
Experts had to overcome the additional cognitive load introduced
by the conflict between their existing mental patterns and the
presented design patterns. Similar findings were reported in
relation to creativity of participants in the domain of decision
support systems [6].

6. CONCLUSION
We have conducted a survey of literature on empirical evaluation
of software design patterns. The survey involves 19 distinct
studies reported in 17 papers. From these studies, we have
extracted information that can be helpful when designing an
empirical study for assessing efficiency and effectiveness of
software patterns. We have identified 17 independent variables in
three different categories (5 related to participants demographics;
3 related to pattern presentation; 9 related to problem
presentation). We also extracted 10 different evaluation criteria
with 23 associated observable measures. We synthesized the
reported observations to identify challenges in study execution as
well as discussion on improving pattern use. Our literature survey
can be used by software design patterns researchers and
developers as an experimental design roadmap when evaluating
patterns for efficiency and effectiveness.

7. ACKNOWLEDGMENTS
We thank the NCSU Realsearch Group for their help with this
paper. A special thanks to Ben Smith for his help with voting on
the papers.

8. REFERENCES
[1] B. Adelson and E. Soloway, "The role of domain

experience in software design," IEEE Transactions on
Software Engineering, vol. 11, no. 11, pp. 1351 - 1360,
Nov. 1985

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel, A Pattern Language.
New York: Oxford University Press, 1977.

[3] J. Bansiya and C. G. Davis, "A hierarchical model for
object-oriented design quality assessment.," IEEE
Transactions on Software Engineering, vol. 28, no. 1,
2002.

[4] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham,
"Using mapping studies in software engineering," in
20th Annual Psychology of Programming Interest
Group Conference (PPIG 2008), Lancaster University,
UK, 2008.

[5] A. Chatzigeorgiou, N. Tsantalis, and I. Deligiannis, "An
empirical study on students’ ability to comprehend
design patterns," Computers and Education, vol. 51, no.
3, pp. 1007-1016, 2008.

[6] P. K. Cheung, P. Y. K. Chau, and A. K. K. Au, "Does
knowledge reuse make a creative person more creative?
," Decision Support Systems, no. pp. 219-227, 2008.

[7] E. Chung, J. Hong, M. Prabaker, J. Landay, and A. Liu,
"Development and evaluation of emerging design
patterns for ubiquitous computing," in Conference on
Designing Interactive Systems (DIS'04), 2004, pp. 233-
242.

[8] P. Clements and L. Northrup, Software Product Lines:
Practices and Patterns. Reading, PA: Addison-Wesley
Professional, 2001.

[9] B. Ellis, J. Stylos, and B. Myers, "The factory pattern in
API design: A usability evaluation," in 29th
International Conference on Software Engineering
(ICSE'07), Minneapolis, MN 2007, pp. 302-311.

[10] M. Fowler, Analysis Patterns: Reusable Object Models.
Menlo Park, CA: Addison Wesley Longman, Inc, 1997.

[11] M. Fowler, Analysis Patterns: Reusable object models.
Reading, MA: Addison-Wesley Professional, 1997.

[12] M. Fowler, Patterns of Enterprise Application
Architecture. Reading, MA: Addison-Wesley
Professional, 2002.

[13] E. H. Gamma, Richard; Johnson, Ralph; and Vlissides,
John, Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, Massachusetts: Addison-
Wesley Publishing Company, 1995.

[14] E. Golden, B. E. John, and L. Bass, "The Value of a
Usability-Supporting Architectural Pattern in Software
Architecture Design: A Controlled Experiment," in 27th
international conference on Software engineering
(ICSE'05), St. Louis, MI, 2005.

[15] T. Ihme and P. Abrahamsson, "The Use of Architectural
Patterns in the Agile Software Development of Mobile
Applications," in International Conference on Agility
(ICAM'05), Helsinki, Finland, 2005.

[16] M. A. Jalil and S. A. M. Noah, "The Difficulties of
Using Design Patterns among Novices: An Exploratory
Study," in 5th International Conference on
Computational Science & Applications (ICCSA'07),
Kuala Lampur, Malaysia, 2007, pp. 97-103.

[17] S. Jeanmart, Y. G. H. Sahraoui, and N. Habra, "Impact
of the visitor pattern on program comprehension and
maintenance," in Third International Symposium on
Empirical Software Engineering & Measurement
(ESEM'09), Lake Buena Vista, FL, 2009, pp. 69-78.

[18] G. Kolfschoten, S. Lukosch, A. Verbraeck, and Edwin
Valentin, "Cognitive learning efficiency through the use
of design patterns in teaching," Computers and
Education, vol. 54, no. 3, pp. 652-660, April 2010.

[19] T. H. Ng, S. C. Cheung, W. K. Chan, and Y. T. Yu,
"Toward effective deployment of design patterns for
software extension: a case study," in International
Workshop on Software Quality (WoSQ’06), 2006, pp.
51-56.

[20] T. H. Ng, S. C. Cheung, W. K. Chan, and Y. T. Yu, "Do
maintainers utilize deployed design patterns
effectively?," in 29th International Conference on
Software Engineering (ICSE'07), Minneapolis, MN,
USA, 2007.

[21] T. H. Ng, Cheung, S.C., Chan, W.K., and Yu, Y.T.
2006. . In Proceedings of the "Work Experience versus
Refactoring to Design Patterns: A Controlled
Experiment," in 14th ACM SIGSOFT international
symposium on Foundations of software engineering.
(SIGSOFT'06/FSE-14) Portland, OR, 2006, pp. 12-22.

[22] R. Porter and P. Calder, "Patterns in Learning to
Program - An Experiment?," in Sixth Australasian
Conference on Computing Education (ACE'04), 2004.

[23] L. Prechelt and M. Liesenberg, "Design Patterns in
Software Maintenance: An Experiment Replication," in
Second International Workshop on Replication in
Empirical Software Engineering Research (RESER'11)
Freie Universität Berlin, 2011.

[24] L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, and L.
G. Votta, "A Controlled Experiment in Maintenance
Comparing Design Patterns to Simpler Solutions," IEEE
Transactions on Software Engineering, vol. 27, no. 12,
pp. 1134-1144, 2001.

[25] L. Prechelt, Unger-Lamprecht, P. B., M., and W. F.
Tichy, "Two controlled experiments assessing the
usefulness of design pattern documentation in program
maintenance," IEEE Transactions on Software
Engineering, vol. 28, no. 6, 2002.

[26] D. C. Schmidt, M. Fayad, and R. E. Johnson, "Software
patterns," Communications of the ACM, vol. 39, no. 10,
Oct. 1996.

[27] J. Sweller, "Cognitive load during problem solving:
Effects on learning," Cognitive Science, vol. 12, no. pp.
257-285, 1988.

[28] M. I. P. o. Torchiano, "Documenting pattern use in java
programs," in International Conference on Software
Maintenance (ICSM’02), Montreal, Canada, 2002, pp.
230-233.

[29] B. Unger and W. Tichy, "Do design patterns improve
communication? an experiment with pair design," in I
nternational Workshop on Empirical Studies of
Software Maintenance, 2000, pp. 1-5.

[30] M. Vocak, W. F. Tichy, D. I. K. Sjøberg, E. Arisolm,
and M. Aldrin, "A controlled experiment comparing the
maintainability of programs designed with and without
design patterns—a replication in a real programming
environment.," Empirical Software Engineering, vol. 9,
no. 3, pp. 149-195, Sept 2004.

[31] C. Zhang and B. Budgen, "What do we know about the
effectiveness of Software Design Patterns?," IEEE
Transactions on Software Engineering, no. July 2011.

	FSE20-On-Experiment-Design-Evaluating-Software-Patterns-LandscapeTables_v6.0
	FSE20-On-Experiment-Design-Evaluating-Software-Patterns-Version-6.0
	1. INTRODUCTION
	2. BACKGROUND
	3. METHODOLOGY
	3.1 Research Questions
	3.2 Inclusion and exclusion criteria
	3.3 Data Collection
	3.4 Search Process
	3.5 Included Papers

	4. RESULTS
	4.1 Participants Demographics
	4.2 Pattern Presentation to Participants
	4.3 Problem Presentation to Participants
	4.4 Evaluation Criteria after Pattern Application
	4.5 Reported Observations
	4.5.1 Studies in Pattern Selection and Application
	4.5.2 Studies in Maintenance

	5. DISCUSSION
	5.1 Study Execution Challenges
	5.1.1 Participant Attrition
	5.1.2 Use of Preparatory Material
	5.1.3 Understanding Task Rationale
	5.1.4 Time on Task
	5.1.5 Technical Considerations

	5.2 Improving Pattern Use
	5.2.1 Pattern Selection
	5.2.2 Pattern Application
	5.2.3 Pattern Comprehension and Maintenance

	5.3 Understanding Differences between Experts and Novices
	5.3.1 Internalization of Knowledge
	5.3.2 Unlearning and Re-learning

	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

