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Abstract. The popularity of cloud-based interactive computing smsi(e.g.,
virtual desktops) brings new management challenges: edtlesves abundant
but fluctuating residual resources while being intolerantatency, potentially
caused by aggressive VM consolidation. In this paper, wigdesnd implement
RHIC, an autonomous management framework to harness saemily residual
resources aggressively without slowing the harvesteddatise services. RHIC
builds a batch cluster using a hybrid of residual and dedéitaesources and
intelligently discovers and maintains the ideal clustee sind composition, given
goals such as cost/energy minimization or deadlines. RHt@l@ys black-box
techniques and requires only system-level metrics to maaekload perfor-
mance. We demonstrate the effectiveness and adaptivityraRBlIC prototype
with two parallel data analytics frameworks, Hadoop and stBaDur results
show that RHIC finds near-ideal cluster sizes/compositaamess workloads and
goals. Further, it significantly outperforms alternatiygpeaches and tolerates
high instability in the harvested interactive cloud.

1 Introduction

Interactive cloud offerings are expanding, providing deopwith virtual computing
laboratories, remote desktop environments, and onlinaelomiation tools. For example,
North Carolina State University’s Virtual Computing Labtwry (VCL) [1] is a produc-
tion cloud system providing virtual desktops with a varietypplications to more than
13,000 students and faculty at NCSU and other nearby schiboése new platforms
bring great convenience in accessing popular applicatmmstools, with little soft-
ware/hardware/licensing cost. Meanwhile, such systests yakld significant amount
of residual or unused, resources, due to overprovisioning and théyburgpredictable
nature of interactive workloads. Traditional techniqueshsas virtual machine (VM)
packing are unlikely to be performed aggressively withriatéive cloud workloads, as
a result of users’ bursty resource consumption pattermapgtwed with response time
requirements (detailed discussion on this is giver§3h Due to such requirements
for conservative workload consolidation, there will likedxist significantamounts of
residual resources left from interactive workloads. By raggively harnessing such
resources, cloud service users and providers will benefit tnigher cloud utilization,
as well as considerable energy savings, asrtbementaknergy cost of running addi-
tional applications using residual CPU is low [2].
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Fig. 1: Hybrid cloud computing design. Interactive users are “padded” with volun-
teers, which harvest residual CPU cycles unobtrusively.
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Harvesting residual resources in such a context requiresledesigned infrastruc-
ture that considers performance, cost-effectivenesssystdm reliability. In particular,
using interactive nodes alone will suffer from performaacel stability issues. Prior
studies [3-5] have proposed a hybrid batch cluster desigrevtolunteernodes sup-
plement a core set of stabtkedicatednodes. Similar to previous efforts [4, 5] using
EC2 SPOT instances [6], and motivated by preliminary expenis §3), we choose to
adopt such an asymmetric architecture. Different frommwiorks, a subset of transient
interactive nodes are “padded” with volunteer VMs, whichsome residual resources
while automatically deferring to the interactive user vigarvisor prioritization. Fig-
ure 1 shows this hybrid cluster design. In this cluster dedige dedicated nodes have
node-local storage capacity, while the volunteer nodeg os¢ their local storage for
temporary data, due to the lack of robust shared storagé\(hazon’s S3) in VCL and
similar-sized clouds. This choice allows volunteers toighktiveight and agile, avoids
expensive data replication and consistency operationslasteers join and leave, and
provides a performance baseline to mitigate stragglerseMetails on the applicability
and tradeoffs of this approach can be foung3n

In this setting, the cloud administrator is faced with thiéoiwing question:Given
an arbitrary batch job, and limited knowledge about the iatgive workloads, what
hybrid cluster size and composition will give the best penfance for the cost7This
problem can be formulated as a dynamic, virtualized clesitgng problem with new
challenges. Unlike traditional cluster-sizing scenattios highly-dynamic nature of this
environment introduces substantial complications whedeting performance, deter-
mining an ideal cluster size and selecting cluster comjpwosiFor example, Table 1
shows the diverse range of monetary costs and energy cotisungmong different
batch workloads. These results are dependent on the spaifie inputs, foreground
workloads and pricing structure chosen, as well as oureldsirdware, network and
energy characteristics. Differences in these factorslyddferent ideal cluster sizes.

Existing work has addressed several related problemsidited MapReduce cluster
sizing [7-10], volunteerism/hybrid clusters for MapRee(i8-5], and workload con-
solidation [11, 12]. However, these prior studies were msighed to address the unique
challenges faced in harvesting residual resources froenantive users, particularly (1)
the high degree of temporal and spacial transience in raki@sources, and (2) the
dedicated node 1/O saturation constraint with our prop@sstnmetric architecture.
More detailed related work discussion is givergyi

To address such unigue challenges in accurately discayarid maintaining the
ideal hybrid cluster size for arbitrary batch workloadshei white-box or black-box
performance modeling can be used, but each has downsidek-Bbx performance



modeling using system-level metrics enables generadizatnd unobtrusiveness, but
such metrics can be very noisy. White-box modeling allowg$br sensitivity to the lim-
itations of a particular framework, and potentially greatecuracy, but limits general-
ization. Real-world parallel batch workloads are commaalsnposed of short jobs [13]
and novel jobs [7, 14]. As a result, profiling must be complefeickly with noa priori
knowledge to yield reliable estimates early.

Table 1:Cost and energy ranges for To tackle these challenges, we present the
different batch workloads, with 6 Resource Harvester for Interactive Clouds
dedicated nodes and 0-36 volunteef®HIC), a generic management framework
on NCSU’s ARC cluster [15]. which autonomically optimizes a hybrid clus-
Cost ($) [ Watt Hrs ter running within residual resources. RHIC
Workload _IMin TMax [Min TMax| can provide intelligent cluster sizing for a wide
Wordcount 14.42 6.38[12731957 ‘'ange of throughput-oriented parallel batch
Grep 520 5.83 710| 894 w_orkloads._ _To ac_complish this, RHIC com-
P lazsineqesan [cS POTINg Wi ookt peromance
Word Co-0¢;7.7211.41223(3987 iterative, online fashion. We profile the CPU,
memory and 1/0 consumption of each workload and build seifrig models to
translate these system-level metrics into job performastienates. Finally, we tailor
this approach to the hybrid cluster design, by predictirgidual resource availability
at the volunteers and directly managing 1/0O saturation atdbdicated nodes. Our
multi-faceted approach handles dynamic and unpredictableavior from a wide
range of independent sources, aggregating unstable cesointo a reliable batch
platform. Through extensive evaluation, we show that RHiBustly delivers accurate
performance estimates and quickly discovers the bestkclaite for novel workloads.

We consider the major contributions of this work as follows:

— To the best of our knowledge, we are the first to propose batrher sizing as a
tool for residual resource harvesting in interactive ckaud

— We present an adaptive cluster sizing solution that usesaio@ation of online pro-
filing and performance modeling to quickly discover and rteimefficient hybrid
cluster sizes.

— We develop black-box batch job performance models whichaggpegate residual
resources to goal performance. Our self-tuning modelsorekystem metrics and a
progress score, which allows generalization to a wide rafigfeoughput-oriented
parallel batch workloads.

— We carried out real-system evaluation with up to 42 noddasgu=®al traces col-
lected from production interactive cloud systems and regrtative batch distributed
analytics workloads. Our results show that RHIC achievgh htcuracy in enforc-
ing minimum cost/energy and deadlines for a range of woddpas compared
to an exhaustive survey and an alternative control-thelygrgthm. In addition,
RHIC is able to automatically adapt to different optiminatgoals, system resource
configurations, and different interactive/batch worklgadhbinations.

In the rest of the paper, we give an overview of related worlSéttion 2, outline
background information in Section 3, and discuss the desligRkHIC in Section 4. In



Section 5 we present the results and analysis of our evatudinally, we conclude in
Section 6.

2 Related Work

Our work is most-relevant to prior efforts towards MapReglatuster sizing, but also
relates to to contributions from several other areas.

Cluster sizing for parallel batch workloads. Several works have been recently
published which perform cluster sizing for parallel batcbrikioads [7—10]. Of these,
our efforts are most-closely related to those which combineeling with online ad-
justment and feedback [7—9]. Jockey [7] is a system for mgeadeadlines in MapRe-
duce clusters using offline profiling/simulation, coupledhnan online control loop
which can adapt to cluster availability. Conductor [8] atsambines modeling and
online adjustment to meet deadlines and minimize cost fopRéluce, taking into
account data upload and migration overheads. RAS [9] is aRddpce scheduler that
profiles the resource requirements of Map/Reduce taskshamdattempts to allocate
sufficient slots for each running job to meet soft deadlirgtarfish [10] is a system
for optimizing cluster size for arbitrary MapReduce woidis and hardware, using a
combination of workload profiling and and configuration paeter modeling.

Compared to the aforementioned efforts, RHIC addressefaeipermutation of
traditional cluster sizing for parallel batch workloads A result, we consider several
sub-problems which are specific to our harvesting themeudireg foreground de-
mand prediction, heuristic node selection, I/O saturadiwareness, I/O curve discovery
and heterogeneity-tolerant performance modeling. In samgithe differences between
RHIC and the aforementioned MapReduce cluster-sizingtsfeoe as follows: (1) the
uniquely unstable environment in which we operate, (2) ayppsrt for novel, short-
lived jobs, and (3) the general applicability of our modglapproach to a broad class
of parallel batch workloads.

Because we rely on the foreground user for dynamic residBal &nd static resid-
ual memory availability, each volunteer node offers a vagyiontribution to the job’s
completion time. As a result, node or task-level perfornreamodeling [7—10] will not
adequately capture the performance of a given cluster. @uight regarding aggre-
gate residual CPU availability and its direct effect on tdugperformance§é.3) led
to RHIC’'s CPU-centric modeling approach. Further, hybiigsters have significant
I/O restrictions since dedicated nodes provide all peststtorage. We take a unique
approach to discovering and modeling I/O bottlenediks2) as a result. Wieder et
al. [8] do consider data staging and migration costs in theiformance model, but
do not account for the effects of disk contention and I/O |lgabalance on whole-
cluster performance. This may be a side-effect of theinetain using only a k-means
workload, which computes 5.33GB/hr of input data for the lghduster. In contrast,
our test workloads of Grep and Wordcount compute roughlyGB/@r and 140GB/hr
respectively, using 6 dedicated nodes (comparable toGheade local cluster). Further,
although their models can adapt to changes in SPOT pricg,dbenot address the
substantially-increased replication overhead in the cdsePOT arrivals/departures,
which was a significant motivation for our choice of a hybridster design.

RHIC can optimize novel and short-lived jobs (which are camifl3, 7, 14]) with
no a priori knowledge, using a combination of online profiling and ad&ptguided



scaling §4.2). All prior efforts require either previous executiafghe target job [7,
10, 9] or key performance characteristics [8]. While thosén wnline adjustment [7—
9] could adapt to some deviation from the profile performafaseWieder et al. [8]
demonstrate), the pervasive and dynamic nature of voluhtterogeneity may neces-
sitate RHIC’s online learning and reactive approaches td GR.2) and 1/0O §4.3).

Finally, RHIC offers a highly-generic performance modglinterface, which only
requires a job progress score and average task leftB)( The models employed by
prior works have various levels of dependency on the targethvad, from MapReduce
as a concept [8, 9] to specific MapReduce implementationg[1Because we envision
RHIC as a harvesting platform which manages a throughgatitad parallel batch job,
we built it with to be workload-independent and evaluats ta@pability {5.5). Further,
because volunteers are lightweight and transient, weugeRelIC could be applied to
multi-stage jobs [7] by managing each stage independently.

Parallel Filesystem ResizingLim et al. [16] use a control-theory approach to
elastically resize an HDFS cluster, considering oscdlatprevention and the trade-
off between improved performance and rebalancing overn®&ie these factors are
potentially-relevant to our problem, this work does not sider any heterogeneity
among participating nodes, and is designed for workloadigtwhre SLO-oriented
instead of throughput-oriented. Further, Lim’s tradeafii¢tion between rebalancing
bandwidth and response time penalty is achieved via maonoadg, and is specific to
their workload and cluster hardware.

Hybrid MapReduce, Volunteerism and Cluster Sharing.Prior works use Ama-
zon EC2 Spot Instances to perform MapReduce jobs [4,5, 1Apse transience is
similar to interactive cloud nodes. Two approaches arentédnandle SPOT instance
instability: (1) using SPOT instances to supplement a cetefdedicated, non-SPOT
nodes [4,5], and (2) using Amazon’s cloud storage serviceréserve intermediate
results [17]. Our approach is most-similar to the formerthat robust aggregated
storage is unavailable in our environment and a hybrid etudésign is necessary to
provide stability. Both of these works [4, 5] elect to hostadanly on core nodes, but
do not consider the performance impact of I/O in such an afffeascenario. Although
Lee et al. [4] highlight a similar problem space to our wotigyt have not proposed
any concrete solution for automatically modeling worklpadformance or determining
ideal cluster size.

MOON [3] is a modification of Hadoop designed to operate urpiesive volun-
teerism, where a foreground workload and MapReduce ardeated temporally but
not spatially. MOON makes a number of platform-level modificns to improve 1/0
performance and reduce stragglers in this scenario. Mé&8bss[a framework for batch
framework co-location above a shared distributed filesgstehich leverages an offer-
based scheduler to enforce fairness. Mesos uses lighttwergalization to guarantee
each slot a static resource allocation. Both works do nosiden active volunteerism,
where two workloads are asymmetrically sharing the sanauress at the same time,
or use cluster sizing meet user-defined goals such as deadlircost.

Workload Consolidation. Co-locating workloads on the same physical host is a
well-established technique [11, 12] which offers benefitstifie cluster host including
improved utilization, better energy efficiency and higheofits. We believe that our



harvesting approach is complementary to workload conatid, due to the level of
overprovisioning required by interactive users. RHIC aamsparently harvest what-
ever residual resources are available after consolidatith the expectation that the
bursty interactive user will leave some free during periofdghink time”.

3 Background

As mentioned above, we leveragéybrid cluster design to harvest residual resources.
This platform was proposed by prior works, which examinedpReduce running
on passivevolunteers [3] and EC2 SPOT instances [4,5]. In Section B¢l justify
our choice by showing that this cluster design is approgrfat our environment.
Further, in Section 3.2 we discuss techniques to make thachghuster effective in
our environment, using a combination of hypervisor mectrasiand /O offloading.
Finally, in Section 3.3 we present a preliminary evaluatadrthe energy and cost
benefits of a hybrid cluster relative to a traditional detédecluster.

3.1 Hybrid Cluster Rationale

Table 2:CPU consumption, burst and reservation characteristics citected from
NCSU’s VCL. CPU data are collected from real user session traces (to dmziled
in more details in Section 5.1). Reservation data coveressi®ons during the years
2004-2010.

[Metric |Matlab |PhotoshoOpenOfficgl C DeV|

CPU Consumed (avg) 19.8% 7.0% 2.894 22.5%
CPU Consumed (stde 23.2% 16.2% 12.4% 24.279
CPU burst height (avg) 39.9% 25.8% 31.0% 27.7%
CPU burst length (avg)6.9 se¢ 2.0 se¢ 1.3 set¢47.4 se¢
Reservation (avg) 93 min 74 min 70 min 120 min
Reservation (stdev) | 90 min 79 min 91 min 99 min

Our hybrid approach is based on the characteristics ofaotie cloud workloads
observed on VCL, the aforementioned production cloud sysi@ble 2 summarizes
statistics information collected from VCL remote desktepsions. It shows that while
reservations (user sessions) are fairly long, their domathave a very high standard
deviation, meaning the length of any given reservationghlyi unpredictable. Mean-
while, CPU bursts are quite short-lived, even for the moragetation-intensive work-
loads such as Matlab.

Such highly dynamic behavior renders traditional appreacsuch as workload
consolidation [18,12] less appealing. Conservative clichestion approaches will be
able to maintain interactive users’ QoS requirement, bliirm@vitably waste resources.
Aggressive approaches, on the other hand, may face sevdoenpance penalties in
case of requirement conflicts. In particular, small-to-raedclouds such as the VCL
often do not offer shared storage to enable live VM migrati©filine migration typ-
ically requires minutes to complete the image transferenBwith shared storage, the
short CPU bursts and highly variable session durations segmeractive workloads
will require frequent live migration and may lead to heawsahing.



In the hybrid cluster design, the dedicated nodes have lumdé storage capacity,
while the volunteer nodes only use their local storage fomerary data. This design
addresses the dynamic and unreliable nature of residualmass, unused by interactive
tasks, in several ways. First, it keeps volunteer nodesdigight and agile. This makes
it much easier to use/discard a node due to foreground oiteedoad shifts, as well
as to grow/shrink the virtual cluster based on the backgitgob’s needs. Second,
expensive tasks performed by the underlying distributedsfistem, such as replication
and data rebalancing, will not be unnecessarily perfornmecbtatile volunteers. Third,
through mechanisms such as task replication and reliablieated nodes, this hybrid
design can aggressively harvest dynamic residual resewuiigite preventing stragglers
from severely delaying job completion.

When MapReduce is used as the background computation frarkeanly the
Map tasks are outsourced to the interactive nodes, due toighecost of lost Reduce
tasks [19, 5]. Each volunteer node buffers intermediatelt®and periodically spills to
Reduce tasks running on the dedicated nodes.

3.2 Applying the Hybrid Cluster Design

For this hybrid cluster design to work in our target scenane need to verify two
assumptions, as discussed below.

(1) Existing hypervisors provide effective prioritizatiorattkeeps foreground inter-
active loads isolated from volunteei® verify this, we examined the effectiveness of
relying on the work-conserving schedulers in Xen and KVMo twidely used open-
source hypervisors, when co-locating foreground and \tekmvVMs on the same phys-
ical host. Our results are shown in Figure 2 and indicatettieXen credit scheduler in
particular appears quite effective at preserving intéragerformance, with an average
of foreground slowdown of 1%. Although KVM lags behind ingtdrea, slowdown is
less than 7% in all cases, even when volunteer disk 1/0O loasl high due to large
volumes of temporary data. Our conclusions in this areaackdd by previous studies
of hypervisor isolation [20].
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Fig. 2: Slowdown of interactive workloads padded with MapReduce viunteers
running Word Cooccurrence (high CPU and large intermedistt). Interactive
workloads taken from the Linultk and AT&T'’s R benchmark.
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(2) When running our target background workloads, the dedtatedes have suf-
ficient residual disk and network bandwidth to act as storsgeers, supporting com-
putation offloading to a substantial set of volunteéis.verify this, we compared the
availability of disk and network bandwidth when running @kground MapReduce job
on 2 dedicated nodes alone and when supplementing thesgwitd® volunteer nodes



(with no foreground workloads, to create maximum remoteglf€ssure). Figure 3 plots
the disk and network utilization level (collected with tlestat  anddstat tools re-
spectively) for the two most I/O-intensive workloads in MapReduce background test
set, Wordcount and Grep. It illustrates that (1) substadisk and network bandwidth
is available on each Hadoop node executing MapReduce ja@bsis(ng volunteers
significantly speeds up the job execution while increasi@ybdandwidth utilization,
and (3) disk bandwidth consumption is significantly higheart that of network, and
may become a performance limiting factor when more volustaee used.

Our later evaluation (Figures 9-10) further corroboratésdonclusion. Wordcount,
which is a moderately 1/0O-intensive workload, reaches dst/energy minimums at a
3:1 ratio of volunteers:dedicated nodes on our test cluateich contains nodes with
16 cores and one SATA Il disk. Therefore, at the ideal clusite, each SATA Il disk
supports 64 Wordcount Map tasks (one per core). Grep, wisichuch more 1/O-
intensive, reaches its minimums around a 1:1 ratio, ancetbes supports 32 Map
tasks per disk.
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Fig. 3: Bandwidth utilization traces on 2 dedicated nodes, with and without 8
volunteers, for the duration of a MapReduce job.

3.3 Proof of Concept: Hybrid Cluster Energy and Cost

To verify the the energy and cost profit enabled by our propdsérid cluster ap-
proach, we experimented with 2 dedicated nodes and a vanygintper of volunteers
(2 to 8). Figure 4 shows the monetary and energy cost savidgswunning our
background workloads on the hybrid cluster, as compareditegua regular Hadoop
cluster with the same number of nodes (dedicated plus vedus). For example, we
directly compare 2 dedicated plus 2 volunteers to 4 regudden. Each bar shows the
average results over tests with different volunteer cogeash with multiple trials),
with the error bar depicting thengeof results. The foreground workload on volunteer
nodes is Photoshop. This set of experiments used nodes f@8Ud HGCC cluster
that have a relatively low idle power level of 34%, which isd€favorable to hybrid
cloud computing. As can be seen here, our hybrid clustergdeisi indeed able to
deliver significant cost savings: 20-29% energy and 20-4Q%%etary cost reductions
on average across all four background workloads.
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Interestingly, Wordcount and Grep have higher energy sgviwhile the other two
applications see more monetary cost savings. This is pityndwe to the fact that
Wordcount and Grep are 1/0O-bound and do not scale as well @agwb compute-
bound workloads. For compute-bound workloads, voluntaersnuch cheaper, slightly
weaker replacements for dedicated nodes, but operate ghartincremental energy
consumption. For 1/0O-bound workloads, cost savings areiregal lower, as the cheap
volunteers cannot help with performance as substantigllyffering much-needed 1/0
bandwidth. In an extreme case, where Grep uses 2 dedicatied aolunteer nodes,
severe I/O bottlenecks reduces the monetary cost gain tcER¥rgy wise, however,
our hybrid cluster design is more tolerant to I/O-bound vi@akls, as CPUs blocked by
I/O consume little incremental power.

In addition, as illustrated by the error bars, even with woders running homoge-
neous foreground workload types, there is a considerabla to optimize for cost via
cluster sizing.

4 Resource Harvesting Framework Design

4.1 Overview Optimization Goal

:'"""""""'\/ELEEJ """"""" — )
| set for Node | Desired# |performance| |
| next Selection | of volunteers | Modeling :
I

I interval A A A I
| Interactive Nodes Resource monitoring 1/0 Model
1 [
| Results+ 1Task 1/0 :
| U AU PO . Initial profiling+ job progress monitoring

HENN N et | |
|

| Dedicated Nodes : Initial profiling + /O benchmarking A :

Fig. 5: RHIC components and data flow
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RHIC combines online profiling with periodic job progressdasystem resource
monitoring, to adaptively scale the volunteer node setuphout abackgroundbatch)
job’s execution. Figure 5 shows RHIC’s major componentd¢tvicollaborate to peri-
odically re-evaluate the batch job’s performance and malster sizing decisions.

RHIC starts a batch job execution with a profiling phase, whiee dedicated nodes
run alone. This allows us to seed our I/O model by viewing thekiground job running
without I/O pressure generated by the diskless voluntddris. profiling data enables
two techniques which we discuss in detailt.2: (1) dedicated disk 1/0 bandwidth
utilization lets us determine core parameters for ourahgicaling algorithm and (2)
dedicated CPU consumption allows us to avoid extrapoldtorsmall cluster sizes,
which are critical for I/0O-heavy workloads. In additionrdlighout the entire job exe-
cution, RHIC continues to monitor system status informatguch as interactive node
resources, dedicated node 1/O saturation, and job pragvdtis the initial profiling
and the continuous monitoring, respectively, RHIC autacadlyy observes and adapts
to both the background job’s behavior and changes in thgfotad workload.

After this initial profiling phase, RHIC iterates betweese fiollowing steps:

1. Profile interactive and batch VMs for the length of ghaluation interval
2. Update models with profiled data:
(a) /0 models§4.2)
(b) Job progress modei4.3)
(c) Interactive resource modek(4)
3. Use updated models to find the best cluster size, by ragigate
(a) Choose a cluster size to evaluate
(b) Choose the “best” volunteers to meet the desired clgster§4.4)
(c) Model I/O pressure under the potential cluster commos(§4.2)
(d) Estimate completion time and performang4.8)
4. Select the best-performing cluster size and actua$d )

In our prototype implementation, we set the initial dedéchonly profiling phase
to be one minute, the continuous resource and job progresgariag frequency to
be once a second, and the cluster resizing evaluation fnegugvaluation interval
length) to be once a minute. With our moderate testbed (Gdézti and 36 interactive
nodes), RHIC can exhaustively evaluate all possible velemntounts (0-36) iB50ms.
However, for scalability, we have also implemented an a#téve search module using
simulated annealing.

To handle the dynamic set of interactive nodes, each canitnidp varying amount
of resources, and to achieve online performance modelidgpendent of the actual
workload and even batch execution framework, RHIC relieshoee key insights de-
rived from our experiments. These insights, as listed bel®ip us to simplify our
performance model, identify chief performance constgiahd focus on the behavior
of aggregate resources from volunteers:

— Insight 1: In our proposed hybrid execution mode, the disk I/O bandwédiorded
by the dedicated nodes is a major factor limiting éfifectiveCPU resource contri-
bution of a volunteer node.
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— Insight 2: The overall progress of a batch job is determined by ahgregate
CPU contribution from all selected volunteers, independsgrthe contribution
distribution among these nodes.

— Insight 3: Although each foreground interactive workload has unmtedie re-
source usage bursts, #serageusage amortized over a longer period of time tend
to be much more stable and hence predictable.

In the rest of this section, we discuss in detail the aboviglns and several major
RHIC components as well as their interactions. Note thasiimplicity, discussion is
based on homogeneous hardware across the node pool. Gatandkt cloud systems
have a limited number of hardware types, our profiling and @lind can be easily
adapted to enumerate performance/cost behavior of diffé@dware.

4.2 Modeling Workload 1/0 Behavior

Our proposed harvesting method is based on the observhtgridr typical distributed
batch execution model such as MapReduce, there is resilaleltwork bandwidth
for dedicated nodes to support additional volatile, dis&leolunteer nodes. We have
verified this with experiment$3. However, as the number of volunteers grows, even-
tually the 1/0O bandwidth on the dedicated nodes is likely éadme the chief perfor-
mance/scalability limiting factor (Insight 1). This coraint has not been considered in
related prior work [4, 5]. RHIC, in contrast, builds an I/O debat runtime for the target
batch job to identify the existence of 1/0O bottlenecks.
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Fig. 6: Impact of 1/0 bottlenecks on effective volunteer CPU contrbution, using 2
dedicated and 1-8 volunteers, with a maximum of 8 cores (8G8%) on each.

Figure 6 illustrates the interaction between the volun@U contributions and the
I/0 contention at the dedicated nodes for two sample Map&edwrkloads. It shows
the aggregateffective CPU contributionfsom the volunteers at each aggregate residual
CPU availability level, averaged over the Map phase (exolydtragglers). The effec-
tive contribution is measured from the background VM usaggle the availability cal-
culated from the foreground VM usage. We verified that thelleg off point in these
curves corresponds to the dedicated node 1/O saturation. @diis figure also demon-
strates that the onset of the 1/O saturation is highly wa#ldependent. With a more
I/O-intensive workload (SFASTA in this case), the satunattomes earlier and results
in a lower effective CPU contribution rate. Figure 6b pldts effective CPU contribu-
tion to availability ratio over different volunteer countsillustrates that the MapRe-
duce job consumes a constantly declining portion of the egage CPU resources
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available. As a result, we base our I/0 modeling{@NPU.onsumed; CPUavailable }
pairs for the given workload and hardware, derived at ruatim

Saturation Point Estimation For each background job, RHIC builds an 1/O curve that
tracks available CPU on the X-axis and consumed CPU on thesy- predict the
effective CPU contribution for a given volunteer set. RHISes data from the initial
profiling, as well as continuous sampling, and applies &zioa to build this 1/O curve.

To avoid the inaccuracy caused by extrapolation or samplieig beyond the I1/O
saturation point, it is important to estimate an approxariatation of the dedicated
node I/O saturation onset, in terms of the aggregate vadur@®U contribution. The
saturation point also indicates the upper bound of volusteeeded, regardless of op-
timization goal, as beyond this point more volunteers woll return additional perfor-
mance. RHIC basesiits I/O saturation point estimate on lf@wath consumption data
collected in the dedicated-only initial profiling phase.sAming a linear relationship
between CPU contribution and 1/0 demands, it calculatestireber of volunteers
each dedicated node can support:

100%

BWUtil pyg

Here BW Util,.q is the average disk bandwidth utilization measured on tlukcdéeed
nodes during the profiling phase, ab®U ,,,,.. is the maximum CPU available on any
node (such as 400% for 4 core$)olunteer CPU sypportabic 1S the volunteer CPU
contributioneachdedicated node could support, in addition to its own demand.

Next, we calculate the range of potential I/0 saturatiorebpsints, using best and
worst-case estimates. The best-case estimate represemptetely-balanced 1/0 load
(each dedicated node serving equal volunteer demand) angdist-case completely-
imbalanced (one dedicated node serving all volunteer ddin&elow we derive the
pair of estimates based dnolunteer CPU sypportabic: WhereCount gedicated 1S the
number of dedicated nodes:

Saturationyess = Volunteer CPU sypportabie X Count gedicated (2)

Volunteer CPU sypportabie = ( — 1) x CPU pqa Q)

Saturationyerst = Volunteer CPU sypportable X 1 3)

Using the best and worst case estimates above, RHIC irgptligincreases the
size of the volunteer pool using Algorithm 1. It samples tharst case estimate and
halfway between the best and worst case, then uses lingassign to guess the actual
saturation onset point. RHIC then verifies the occurrenckfsaturation using the
disk sensors on the dedicated nodes, based on the disk lhdwilization metric
from theiostat  utility. In practice, we have found that this approach quyidinds
the 1/0O saturation point with satisfactory accuracy. Iniidd, this allows us to sample
system metrics under a range of cluster sizes, improvingriedth of our models. This
approach is unnecessary for deadlines, because the desagtlirst be achievable on the
“near” side of the 1/0 saturation point.

I/O Curve Building with Clustering and Curve-fitting Next, we complete the I/O
curve that maps aggregate volunteer CPU availability toegage effective volunteer
CPU contribution. RHIC uses Mean-Shift clustering [21] teqprocess raw
{CPU.onsumeds CPUavailabic } data points. This allows us to avoid a critical flaw in
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Algorithm 1 Initial pool scaling algorithm used for cost and energy minimization.
The cluster is pushed to the saturation point using a cortibmaf Eq. 2-3 and first-
degree regression (line 18). This approach also accountideeffects of diminishing
marginal returns (DMR) when 1/O saturation is not the priynlimit on scalability,
which is often the case when the price of volunteer is regfitihigh.

1: // Perform one profiling period with dedicated nodes alone

2: profileData < RunPeriod() , Period + 1

3: // Calculate saturation range using Eg. 2-3

4: (Saturationerst, Saturationpes: ) < ComputeSaturationPoings( file Data)
5: /I Predict the ideal, ignoring 1/O saturation scalabilityitations, as a ceiling
6:
7
8:
9

Mazx Volunteerspn r < PredictldeallgnoringlQrofile Data)

/I Push to the I/O saturation point, accounting for dimiimighmarginal returns

while (I0Saturation(=/T'rue) AND (Volunteers < Max Volunteerspyr) do
if Period ==1then

10: nextSize < min(Saturationorst, Max Volunteerspyr)

11:  else if Period ==2 then

12: nextSize min(S"’“”m“(mb“‘+25"'“”’““°"“’°”t , Maz Volunteerspyr)
13:  else if Period == 3 then

14: if Max Volunteerspyr < Saturationye.s: then

15: nextSize < Max Volunteerspur

16: else

17: /I Linear extrapolation using thBW Util observed in periods 0-2
18: Volunteers + ExtrapolateSaturation()

19: end if

20: else

21: nextSize < size(Volunteers) +Saturationorst

22:  endif

23: // Find volunteers to satisfy the next size, and run the perio
24:  Volunteers < FindVolunteers(nextSize)

25:  RunPeriod{olunteers) , Period +=1

26: end while

using curve-fitting for decision making, where incorreatid®ns reinforce themselves
by repeated sampling in the same area of the curve, skewisguRred summations.
Also, clustering allows us to tolerate changes in the I/Qismape, such as increased
Reducer disk I/O load in MapReduce, agingdata points.

Finally, RHIC performs first-degree spline fitting on thestkr centers to build the
I/0 curve. This approach allows us to deliver interpolatatligs tightly constrained
to the observed curve. This is important, especially neauistturation point, because
minimization decisions hinge on marginal cost/gains. Rtexh of the effective ag-
gregate CPU contribution from a given set of volunteers tam tbe performed with
interpolation, based on the projected aggregate CPU &il#idrom these volunteers.

This approach assumes that the network bandwidth (as wtdirdsparty network
contention) is either static or is not a limiting factor. Welibve such an assumption is
practical based on network bandwidth consumption measmeng3) and experience
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with VCL and several other 100+ node clusters. We plan torilis assumption in the
future, using bandwidth monitoring and topology awareness

4.3 Background Job Performance Modeling

Background job performance modeling is the core of RHICAnNg intelligence. It
relies on two mechanisms: (1) the 1/0O modeling presentéddir, and (2) CPU avail-
ability predictions for candidate interactive nodes (taizzussed ir§ 4.4).

As mentioned earlier, RHIC’s performance modeling is basedhe observation
that the aggregate CPU contribution from the selected ve&rs, regardless of the
distribution of CPU resource availability on individualluateer nodes, is the chief
factor determining a job’s completion time on a hybrid obustinsight 2). Figure 7
shows experimental results demonstrating this perforemdmahavior. In these tests,
we collected the execution time of four MapReduce workloadder four different
CPU allocation distributions among the volunteers. Acoaydo each given distribu-
tion, a volunteer is allocated 4 cores with a CPU cap betw&@30-350% (with one
core’s entire CPU resource counted as 100%), while the @4 allocations from
all 8 volunteers are fixed at 1600%. Figure 7a illustratesstiggpe of the distributions
used. Figure 7b shows that the duration of the Map phase iyr@mstant across all
distribution types, for all MapReduce workloads testedahthrer words, frameworks like
Hadoop are quite tolerant to heterogeneity in node proegssipabilities, possibly due
to the adoption of mechanisms such as the well-proven LAgBrahm [22].
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Fig. 7: Impact of residual CPU resource distribution on MapReduce pb comple-
tion time. Shown for 2 dedicated and 8 volunteer nodes.

The above observation allows us to build our performance ¢@msequently cost)
modeling on thecollective behavior of the dynamic interactive nodes. Rather than
micro-managing volunteer nodes according to their foregdoresource usage bursts,
RHIC bases its decision on the aggregate, sustained CPlailigi from candidate
volunteer node sets.

Completion Time Estimation and Transition Damping More specifically, RHIC
predicts that “a background job will complete at timéf it receives a sustained total
volunteer CPU contribution of”. For this, we developed a simple model based on the
processing raté?,, .., shown in Equation 4. Heré.,,,,picteq iS the current fraction of
processing completedy;qpseq iS the time elapsed, ardPU opnsumed 1S the effective
aggregate CPU consumption (including both dedicated atghteer contributions)
overl,gpsed. Rproc IS re-evaluated periodically during the background jolcekien.



15

Jcompleted
RPTOC B Tela,psed X CPU(:onsumed (4)

By calculating the fraction of remaining Wotk.c,aining = Jiotal — Jeompleted, We
can then invert Equation 4 and produce a Map completion tistienateZ’c,,qining.
given a predicted aggregate CPU contribut@#®U,,cqictea, @S Shown in Equation
5. CPUpredicteq 1S calculated by applying the I/O modéj4(2) to the predicted ag-
gregate available CPU;4.4), which estimates the aggregate volunteer CPU which
sustainableby the dedicated I/O infrastructure. Finally, to toleratieagglers, we add
a small padding value to our completion time estimate, basetthe average length of
background tasks experienced thus far.

S

T o o Jremaining (5)
remaining —
CPUpred'Lcted X Rproc

To avoid oscillation or thrashing, we estimate the traasitiime required by a
volunteer pool size change. Volunteer additions requirgedfsetup overhead, which
we profile. Volunteer removals are trickier - as we allow diested volunteers tdrain
running tasks when we remove them. We predict the drainimgtaun based on the
observed average volunteer task length. In both cases;ahgtion time is accounted
for in making completion time predictions.

Goal Estimation Based on the completion time estimate, RHIC generatespeaftce
scores (to be minimized) for candidate volunteer sets,ngowee of the three goals it
currently supports:

(1) Deadlines:To satisfy a deadline requirement, RHIC computes the perdoce
score as the difference between the estimated job compleétie and the deadline.

(2) Monetary costWith pay-as-you-go cloud computing, volatile volunteedas
with no CPU resource guarantee are likely to be charged atex late. Given a certain
pricing policy defining such discounts, RHIC calculates pleeformance score as the
predicted overall cost based on the completion time eséimat

(3) Energy:Energy estimation is more complex and requires the offlimstaction
of an energy model for the specific hardware used. In thispamefocus exclusively
on CPU power consumption, considering prior findings that/ @pically dominates
energy consumption in modern systems [23]. Our energy nrgléhkes the well-
established approach of running a micro-benchmark thabtlghly enumerates the re-
lationship between CPU utilization, frequency and powearstonption [23, 24]. Based
on the data collected, we use multiple regression methoderiee a power model that
estimates power consumption at an arbitrary utilizaticshfa@quency level. This model
model is subsequently used by RHIC to compute the perforenseare as the predicted
power consumption with the given volunteer set, over thgtleof the job.

Recall that our hybrid cluster design is partially motivhtey the energy savings
allowed by piggybacking background workloads on intexectbreground tasks. While
all power consumption on dedicated nodes is billed to thédpaaind user, he/she is
only responsible for thencrementalenergy consumption incurred by the background
job on the volunteer nodes, because these nodes would nawergd on otherwise.
Therefore, in modeling the background job power consumpti@ exclude the baseline
(idle) power consumption as well as the predicted foregdquower on volunteers.
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4.4 Volunteer Node Selection and Management

Finally, given a desired aggregate volunteer set size, RHUSt select which specific
interactive nodes to use in an efficient and scalable maihés.selection is based on
continuous interactive node residual resource monitoaimd) prediction, as discussed
below.

As shown earlier, common interactive cloud workloads haghkli bursty behavior,
making load consolidation backed by VM migration difficittowever, for running
background jobs that yield to the interactive foregroursksait is the sustained CPU
resource availability that matters. Fortunately, we fothrat although individual CPU
usage spikes appear random and unpredictable, the aveRldeutllization over a
period of time can be effectively estimated using near-teistory data (Insight 3).

Recognizing this, RHIC employs an online foreground woakld®CPU demand
model using the CPU consumption readings from the interactodes sampled once
a second. We considered four common prediction methodsingawverage, auto-
regression, auto-correlation, plus a hybrid of signataeed Fast Fourier Transform
(FFT) and Markov chains used in our previous work [25]. Wdweaied all four under a
range of conditions which simulate our intended environtrig 20, 30 and 60 minutes
of history, and 5 and 10 minutes of lookahead (predictiondeim). These conditions
were chosen because we desire more than just a short loakdduegimultaneously do
not expect a long history to be available due to interacta@atransience.

Figure 8 shows the accuracy of these four prediction metreabsmoving average
yields the most-accurate predictions, most likely due ® short training window.
Moving average and auto-correlation show identical pengorce, but this occurs be-
cause auto-correlation falls back to a moving average whenunable to achieve a
match. As a result, we have selected moving average as adicfioa algorithm, and
we maintain a prediction model for each interactive nodargigss of whether it is
currently selected as a volunteer.
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Fig. 8: Accuracy of four different prediction algorithms for the foreground traces
which we use. Absolute error is shown, with a value range d00-

For memory, we assume that the foreground VMs have prefggetoiemory caps
based on their workload, as in the case of Amazon EC2 and V&anices. Background
memory usage, on the other hand, is estimated during thal ipiofiling phase.
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In selecting specific volunteers from the interactive noal@ pve adopt a greedy al-
gorithm for better scalability. First, we perform screenand predicted CPU contribu-
tion adjustment based on memory constraints, accordingrit@ interfaces exported
by the background execution platform. For MapReduce-liggfgrms, we adjust the
number of simultaneous worker processes (such as Map slo&sych volunteer to fit
within its residual memory capacity. If this kind of perfoamce knob is unavailable,
we instead discard any nodes which do not have the minimumaneraquired. Next,
candidate nodes are sorted according to their adjustedlusdSCPU availability level.
Finally, RHIC makes volunteer selections by evaluatindedént prefix sets of the
candidate list toward a given optimization goal using ti#wvare performance model
introduced earlier. If the current volunteer set is no lormg@imal, adjustment is made
by including nodes with the highest or discarding nodes \lid lowest predicted
CPU contribution. Intuitively, this approach reduces thember of volunteers used,
contributing to lower overall monetary and energy costoAlg performing this greedy
selection, the search is limited to a linear rather than egptal space, in regard to the
candidate interactive node pool size.

In addition, we use a periodic threshold-based “replacéhpeacess to identify and
replace volunteers that experience a significant decreasssidual CPU availability.
This is necessary because our node selection algorithnmdesdgrds nodes when RHIC
chooses to lower the volunteer count. To do this, we peraljiqperform iterative
checking by comparing the most-available unused node \Wwihdast-available used
one. If the difference in their CPU availability is above ee$hold, we replace the used
node with the unused node. This process is repeated till B¢ &ailability difference
falls under the threshold.

Interactive node churn presents an issue for our searghrdeluster sizing scheme,
because interactive nodes can arrive/leave unexpectedlyclange the ideal batch
cluster size. In such a situation, a naive response would perform another round of
searching to find the best cluster size, in light of the attenéeractive pool. However,
because interactive nodes can leamanassegi.e. at the end of a class lab, there exists
the possibility of significant thrashing by the search psscas it tries to react to a
series of successive arrival/departure events. To prélergearch procesg4.1) from
causing significant overhead under high interactive noderghwe take adeferment
strategy. When a node arrives or leaves, we attempt to entbecdecision made at
the end of the last evaluation interval, deferring new densto the end of the current
evaluation interval.

5 Experimental Evaluation

In this section, we evaluate RHIC in five key areas after gj\an overview of our test
platform in Section 5.1. First, in Section 5.2, we estabtishit RHIC can accurately
discover and achieve near-ideal cluster sizing decision®euua given optimization
goal, in comparison to an exhaustive search of possibldéerig&zes. in Section 5.3,
we then compare the performance, stability, and adaptabflRHIC to an alternative
algorithm, based on fuzzy control theory. Next, we validRi#C's performance under
increased cloud instability in Section 5.4. While all th@adexperiments uses Apache
Hadoop [26] as the background cluster platform, in Sectidm& show that in addition
RHIC is general enough to harvest excess resources usigigterdight compute layer
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on top of HBase [27]. Finally, we briefly discuss RHIC’s oveald in Section 5.6.
Unless otherwise noted, we run each test three times, réporaverage, and show
error bars denoting the standard deviation when it is abétvefthe mean.

5.1 Test Workloads, Platform, and Settings

Background Workloads For evaluating RHIC, we use Hadoop and and a thin compute
layer running over HBase as the background job executiondveorks. Hadoop and
HBase are widely used open-source implementations of theglédMapReduce and
Big Table systems, respectively.

We used four representative MapReduce workloads: Wordo@aunting word
appearances), Grep (regular expression search), Worcc€garence (counting word
pair appearances), and Pi (calculatingising a quasi-Monte Carlo algorithm). Grep
and Wordcount process 70GB of data, Word Co-occurrenceepses 11GB, and Pi
requires no input data. Job execution times are typicaltwéen 20 and 40 minutes.
We study the execution of the Map phase, which for the all ekbeound workloads
dominates the total MapReduce execution time. This is lmhbkefindings from pro-
duction clusters that Map-only jobs are common, the Map@dasiinates MapReduce
jobs, and input data is the majority of stored bytes [28].

We used two representative workloads on top of HBase: Cossfi@fline LZO
compression of text cells), which is 1/0O-intensive, and ®Rage (image generator),
which is CPU-intensive. Both are likely to run during offgkehours against semi-
structured data stored in a production HBase cluster, amckhere suitable for throughput-
oriented volunteer harvesting. Compress could concgiMablused on user messages,
profile data, wall posts etc., motivated by high compressiosts which cannot be
borne by frontend servers during peak hours. Raytrace reseptative of image/tile
generation workloads for multiplayer games creating ramglegenerated worlds, such
as Minecraft [29].

Foreground Workloads We used four popular VCL workloads: Matlab, Photoshop,
OpenOffice, and C Development. We reproduced the foregryivh@xecution based
on real session traces collected from VCL [30]. The lengtd amurn rate of the
foreground VM sessions are generated using a normal difitibwith the parameters
derived from 2004-2010 VCL log data. Finally, we set statiennory allocations for
foreground VMs using per-workload-type normal distribat extracted from VCL
reservation logs. Because our foreground load generaidased on traces, we can
repeatedly generate identical loads using the same tradasadom number seeds.

Test Platform Our main test platform is NCSU’s ARC cluster [15], which, ilel
current public clouds, allows us to perform power measuremét has 108 nodes in-
terconnected via InfiniBand, each with 16 2GHz cores on twee@ssors, 32GB RAM,
a SATA disk drive and the KVM hypervisor. We use Infiniband éur experiments,
but due to KVM’s virtualization overhead, we can only acleieapproximately 500
MBit/sec speeds (VM to VM). We restrict dedicated VMs to 16GBRAM, while
foreground and volunteer VMs share 8GB RAM total.

To calculate background power consumption, we replay tihreedareground work-
load by itself and calculate the difference. For monetarst @valuation, unless oth-
erwise noted, we adopt a sample pricing policy following tekative costs of EC2
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m2.xlarge  On-Demand and Spot Instances at the time of writing. This thet per-
node rate to $1.00/hour for dedicated nodes and $0.42/bovofunteer nodes.

5.2 Exhaustive Evaluation
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First, we performed an exhaustive evaluation over the wadldnteer cluster size
range, for each of our four MapReduce test workloads (Wardtdsrep, Pi and Word
Co-occurrence). We then ran RHIC under identical condititmverify its ability to
quickly find the ideal cluster size. Our hybrid cluster is gmsed of 6 dedicated nodes
and 0-36 volunteers. We collected exhaustive datapoimiye/volunteers, fromr =
{0,2,4,...,36}, and repeated each test twice.

For a fair comparison, we ensured that every run (exhaustiv@HIC) had an
identical foreground workload “mix”, composed of the samaeés starting the same
points in time. This mix is composed of a randomized selectib traces and start
points taken in equal proportion from each of the 4 foregobworkloads described in
Section 5.1: 25% each from Matlab, Photoshop, OpenOfficeCabévelopment. This
seeded mix allowed us to collect foreground-only energysaamption and subtract it
from the total, for generation of the background energy esishown in Figure 10.

To generate the exhaustive performance survey, we dewklftargeted” version
of our framework which maintains a specific number of volenseusing the same
volunteer node selection and management mecharfjdm)(as RHIC. Further, the
random number generator which drives interactive nodercisiseeded identically.
This ensures that if RHIC and the targeted framework chdoseteractive nodes at
the same pointin the background job, they will receive theesgolunteer set.

Figures 9 and 10 show the performance of RHIC relative toxheestive search for
costand energy minimization, respectively. It can be ¢yessen that (1) supplementing
dedicated nodes with volunteers does bring monetary casteaergy benefits, (2)
different volunteer cluster sizes result in a large rangexacution cost, generating
an up to72% saving in monetary cost antf% in energy comparing the most and
least optimal settings, (3) the behavior of the cost/enetgyes are highly workload-
dependent, and (4) RHIC is able to identify the optimal orrraggtimal cluster siz-
ing solution automatically. The only notable anomaly isttR&IC undershoots the
energy minimum for Co-occurrence by approximately 4 vadens. This is because
Co-occurrence is ultimately CPU-bound but has non-triv@ldemand, which RHIC
cautiously explores. Unlike Pi's energy minimization, fehich RHIC immediately
pushes to 36 volunteers, RHIC takes 3 steps up to 36 voluntégdr Co-occurrence
to ensure that I/0O bottleneck does not occur. This is exateddby the long straggler
phase in Co-occurrence, due to long task lengths, duringhwhbpst volunteers sit idle.

Figure 11 shows soft deadline enforcement results. Thredlides were chosen
for each background wrokload across the spectrum of adbliev@mpletion times,
each tested twice for 6 total datapoints per background wadk In Figure 11a, the
horizontal black bar marks the normalized deadliog.Q). The exhaustive bar repre-
sents the closest setting which would achieve the deadleified by the exhaustive
tests. In Figure 11b, the range of possible completion tismesown for each workload
to demonstrate the wide array of choices RHIC faces. AgakilCRachieves near-
ideal volunteer cluster sizes all workloads and deadlitiéngs in most cases. More
specifically, it misses 5 out of 24 deadlines, but by less 8%ron average.

5.3 Optimization Technique Evaluation

Conceptually, RHIC is based on the combination of onlindifing and model-guided
optimization. Given the highly-volatile nature of our hasting environment and the
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Fig. 11:Deadline enforcement performance.

need for continual adjustment, a control theory approaciddoe a valid alternative. In
this section, we compare RHIC’s performance with that oflger@ative scheme based
on fuzzy control for minimization, as well as a naive thi@dhalgorithm.

Traditional control systems are well-suited for problentseve the goal is clearly
defined (i.e. deadlines) but the situation becomes complenwit is not (i.e. min-
imization). To address both cases, we turn to fuzzy contystesns. Fuzzy control
has been previously applied to minimization problems irveseclusters [31], which
is used as the basis for our fuzzy controller (FUZZY) desitm 2-period historical
comparison is similar to hill-climbing. For minimizatiorogls, we use the cost or
energy per unit of progress. For deadline goals, we minirtiizedifference between
the current completion rate and the “ideal” completion rateich will undershoot the
deadline by a small padding value (default at 5%).

For Liu et al’s Rules #1 & #3, we increment/decrement by apeterp > 1
which is varied in our experiments. For Liu et al’s Rules #2#&, we only incre-
ment/decrement by a single volunteer, since the intuitiothat FUZZY is near the
minimum. These rules are shown in Figure 12. To adapt themigivig fuzzy controller
design to our scenario, we use the interactive node seteatid cluster management
(84.4) modules from RHIC for similar reasons as our “targetadtle, discussed above.
The fuzzy controller’s logic is as follows:

1. Evaluate the efficiency of the previous evaluation iraérv

2. Compare the previous evaluation interval to the evaiuatiterval before it
3. Avoid action if the change in efficiency is below a threshol

4. Otherwise choose an action based on the fuzzy rules

FUZZY requires 2 initial “start points” because it is basedeaohistorical compari-
son of two time-steps - the performance and control decisidthe previous two steps
are used as the basis of next step. We use the same profilisg pe&HIC for the first
step, to allow FUZZY to determine memory demands of the baemkgd workload at
runtime. However, the second step must be manually detedngo we set it to a range
of fixed values, as explained below.

In addition, we included a naive “threshold” algorithnipllto goals, which instead
chooses interactive nodes with residual resource avhijedbove a threshold, specified
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A Goal
Rule #3 Rule #1
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Fig. 12: Fuzzy rules. Original figure credit to Liu et al. [31]. Dotted lines repests
the change which was observed, and solid lines represestii®equent action which
should be taken.

as a percentage of maximum CPU resources. For example, titeshold 00.50 and
maximum CPU level 0400% (4 cores with100% each), the threshold algorithm would
select all interactive nodes with greater tt2@0% residual CPU availability.
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We evaluated the two alternative methods plus RHIC withtakeé goal criteria
across our four background workloads, again using a hybuster of 6 dedicated
and 0-36 volunteers. The results are shown in Figure 13 (nimaition) and Figure 14
(deadline enforcement).

For FUZZY, we variedp, the parameter that determines the magnitude of cluster
size changes when the controller believes it is moving irf¢berect” direction, among
three values: 2, 4, and 8. For each background workload gkl value, we evaluated
FUZZzY with 3 different start pointsS = 25%, 50%, 75% of the total volunteer pool
(36 volunteers). This was motivated by the observation B ZY’s performance is
heavily influenced bys, which can be seen in Figure 14b.

From Figure 13, we see that RHIC delivers better minimizatiesults, and more
significantly, much more stable performance. FUZZY, on tteephand, yields consid-
erably higher variance even within an individgesetting, influenced heavily by. Pi,
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Fig. 14: Deadline enforcement performance.One deadline was chosen for each
background workload, in the middle of its achievable cortiptetime range.

among all workloads, sees the highest variance, as it dfierargest possible range of
cost and energy values (as shown in Figure 9). The simpleshble approach is more
stable than FUZZY, but often yields inferior minimizaticgsults compared to the other
two methods.

From Figure 14a, we see that RHIC delivers job completior timghly consistent
and close to the deadline (within 4% difference), while FYZahd Threshold behave
too conservative or too aggressive (violating the deadiin@most doubling the desired
completion time) in most cases, again with much higher wagaThis is backed up by
the example cluster sizing choices for Pi in Figure 14b: F¥4®oduces much more
dramatic cluster size scaling, while RHIC stays quite gtalfler the initial ramping up
stage.

FUZZY'’s poor decision-making stems from two root causestFHadoop’s global
progress indicator is not smoothly linear, due to task répgrand 1/0 delays. RHIC
uses repeated sampling and averaging to address this &stend, FUZZY does not
accountfor changes in the foreground CPU demand. One pessiltion to this would
be to use volunteer CPU consumption instead of volunteentcdouFUZZY’s fuzzy
rules. However, our experience is that CPU consumptionrtiegpitself is very noisy
due to task turnover and I/O buffering, which RHIC addresss#isg problem-tailored
curve fitting. Therefore, we opted against adding this céipato FUZZY, under the
reasoning that it would simply shift the unreliability igsto another metric.

5.4 Impact of Environment Stability

In all preceding experiments, we used the VCLs natural clmate, as discussed in
Section 5.1. In this section, we attempt to quantify the iotjgd increased churron
RHIC's ability to conduct cluster sizing optimization.

In Figure 15 we show RHIC’s cost minimization and deadlinéoescement per-
formance under % (baseline), Z and 8< the normal churn rate, for monetary cost
minimization and deadline enforcement. Here ihdicates that nodes join and leave
twice as frequently, with half the mean and half the standardation of the baseline.
For comparison, we also include the performance of FUZZ\Yhwit= 4, which was
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the most-accurate parameter foundgis.3. Due to length limits, we show only two
background workloads, the most I/O-intensive (Grep) aedtbst CPU-intensive (Pi).
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(a) Cost Minimization

different interactive node churn rates.

Overall RHIC clearly outperforms FUZZY in both minimizatiperformance and
consistency, largely due to the decision-deferment teglendiscussed in Section 4.4.
More specifically, RHIC is resilient to the high interactimede turn-over rates and

[ IRHIC 1x 222 Fuzzy(4) 1x
[_IRHIC 2x Fuzzy(4) 2x
I RHIC 8x Fuzzy(4) 8x

Avg Normalized Runtime

(b) Deadline compliance, with horizontal black

Grep
Workload

bar shows the normalized.
Fig.15: Impact of increased churn on RHIC and Fuzzy(4) performance,at

achieves near-identical cost minimization performancealincases but Pi with 8

churn. This exception is because the volunteer pool is smaii average at such high
churn rate: we begin all experiments with 100% of nodes abiégl with many nodes
absent by the end of the job. For the CPU-intensive Pi, it isassible to reach the

desired cluster size producing the minimum cost.

5.5 Generalization to Other Background Frameworks
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Fig. 16:Cost minimization performance for HBasePCF.

To demonstrate that RHIC is generalizable to non-MapRethateh processing
systems, we wrote a parallel compute framewaditBésePCF in 800 lines of Python
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to perform batch jobs on top of HBase. In accordance with R&I€quirements,

HBasePCF only exports a progress score and average task,lang HBase is built

on top of the HDFS distributed file system hosted on the déslicaodes. We used
HBasePCF to perform one I/O-intensive and one comput&site job, Compress and
Raytrace respectively, as introducedl.

Our hybrid cluster is composed of 3 dedicated nodes and Oslhteers. For
monetary cost, dedicated nodes are price@lat0/hr and volunteers a$0.42/hr.
For exhaustive search, we sampled within the valid volunteester size range again
with a step size of 2u(= {0, 2,4, ...,18}), and repeated each test twice.

Figure 16 shows the cost and energy minimization performaidRHIC along-
side the exhaustive search. Like in the case of Hadoop, REh&ges near-minimum
performance in all cases, correctly adapting to the charigtics of each workload for
each optimization goal.

5.6 Overhead

RHIC’s overhead can be measured in two dimensions: the anadwesources RHIC
itself takes to run, and its latency in making a clusterrgjziecision. By instrumenting
RHIC’s control VM, which resides on the Hadoop master, wenfibthat it consumes
less thar80% CPU (on one core) on average and takes less #hams to make an
exhaustive cluster sizing decision for 36 volunteers. Diisrhead would be lower for

a more efficient search algorithr§4(1). Since cluster sizing decisions are made once
per evaluation interval (set to one minute in our experirmgl the periodic resource
and job progress monitoring supporting RHIC'’s decision mgkrings less thaf.5%
overhead on volunteer or candidate interactive nodes.

6 Conclusion and Future Work

In conclusion, we have outlined the design of RHIC, an autdnenanagement frame-
work for harvesting resources with throughput-orientechpel batch workloads. By
combining black-box modeling and online profiling, RHIC ld&to quickly discover
and maintain optimal cluster sizes for a range of goalsuifiolg deadline satistifaction
as well as cost and energy minimization. Through RHIC, weehfaund that it is
possible to tolerate the high degree of instability in clowatles hosting interactive
services to run background jobs with agriori knowledge on either the foreground or
background workloads. Finally, RHIC requires only systiewel metrics and a progress
score, which yields broad applicability to an entire clagsmbarassingly-parallel
analytics workloads.

Our work is only a first step towards a full-featured harvegtatch platform. We
are interested in identifying an ideal hybrid cluster cosipon for a given workload
and performance goal, scaling both the dedicated and \eBustdes, potentially with
topology awareness. Further, we plan to extend our systefiexibly harvest more
resource types, including memory, local disk and residadhark bandwidth.
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