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Abstract. The popularity of cloud-based interactive computing services (e.g.,
virtual desktops) brings new management challenges: each VM leaves abundant
but fluctuating residual resources while being intolerant to latency, potentially
caused by aggressive VM consolidation. In this paper, we design and implement
RHIC, an autonomous management framework to harness such dynamic residual
resources aggressively without slowing the harvested interactive services. RHIC
builds a batch cluster using a hybrid of residual and dedicated resources and
intelligently discovers and maintains the ideal cluster size and composition, given
goals such as cost/energy minimization or deadlines. RHIC employs black-box
techniques and requires only system-level metrics to modelworkload perfor-
mance. We demonstrate the effectiveness and adaptivity of our RHIC prototype
with two parallel data analytics frameworks, Hadoop and HBase. Our results
show that RHIC finds near-ideal cluster sizes/compositionsacross workloads and
goals. Further, it significantly outperforms alternative approaches and tolerates
high instability in the harvested interactive cloud.

1 Introduction

Interactive cloud offerings are expanding, providing people with virtual computing
laboratories, remote desktop environments, and online collaboration tools. For example,
North Carolina State University’s Virtual Computing Laboratory (VCL) [1] is a produc-
tion cloud system providing virtual desktops with a varietyof applications to more than
13,000 students and faculty at NCSU and other nearby schools. These new platforms
bring great convenience in accessing popular applicationsand tools, with little soft-
ware/hardware/licensing cost. Meanwhile, such systems also yield significant amount
of residual, or unused, resources, due to overprovisioning and the bursty, unpredictable
nature of interactive workloads. Traditional techniques such as virtual machine (VM)
packing are unlikely to be performed aggressively with interactive cloud workloads, as
a result of users’ bursty resource consumption patterns, combined with response time
requirements (detailed discussion on this is given in§3). Due to such requirements
for conservative workload consolidation, there will likely existsignificantamounts of
residual resources left from interactive workloads. By aggressively harnessing such
resources, cloud service users and providers will benefit from higher cloud utilization,
as well as considerable energy savings, as theincrementalenergy cost of running addi-
tional applications using residual CPU is low [2].
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Fig. 1: Hybrid cloud computing design. Interactive users are “padded” with volun-
teers, which harvest residual CPU cycles unobtrusively.

Harvesting residual resources in such a context requires a well-designed infrastruc-
ture that considers performance, cost-effectiveness, andsystem reliability. In particular,
using interactive nodes alone will suffer from performanceand stability issues. Prior
studies [3–5] have proposed a hybrid batch cluster design wherevolunteernodes sup-
plement a core set of stablededicatednodes. Similar to previous efforts [4, 5] using
EC2 SPOT instances [6], and motivated by preliminary experiments (§3), we choose to
adopt such an asymmetric architecture. Different from prior works, a subset of transient
interactive nodes are “padded” with volunteer VMs, which consume residual resources
while automatically deferring to the interactive user via hypervisor prioritization. Fig-
ure 1 shows this hybrid cluster design. In this cluster design, the dedicated nodes have
node-local storage capacity, while the volunteer nodes only use their local storage for
temporary data, due to the lack of robust shared storage (i.e. Amazon’s S3) in VCL and
similar-sized clouds. This choice allows volunteers to be lightweight and agile, avoids
expensive data replication and consistency operations as volunteers join and leave, and
provides a performance baseline to mitigate stragglers. More details on the applicability
and tradeoffs of this approach can be found in§3.

In this setting, the cloud administrator is faced with the following question:Given
an arbitrary batch job, and limited knowledge about the interactive workloads, what
hybrid cluster size and composition will give the best performance for the cost?This
problem can be formulated as a dynamic, virtualized cluster-sizing problem with new
challenges. Unlike traditional cluster-sizing scenarios, the highly-dynamic nature of this
environment introduces substantial complications when modeling performance, deter-
mining an ideal cluster size and selecting cluster composition. For example, Table 1
shows the diverse range of monetary costs and energy consumption among different
batch workloads. These results are dependent on the specificbatch inputs, foreground
workloads and pricing structure chosen, as well as our cluster hardware, network and
energy characteristics. Differences in these factors yield different ideal cluster sizes.

Existing work has addressed several related problems, including MapReduce cluster
sizing [7–10], volunteerism/hybrid clusters for MapReduce [3–5], and workload con-
solidation [11, 12]. However, these prior studies were not designed to address the unique
challenges faced in harvesting residual resources from interactive users, particularly (1)
the high degree of temporal and spacial transience in residual resources, and (2) the
dedicated node I/O saturation constraint with our proposedasymmetric architecture.
More detailed related work discussion is given in§2.

To address such unique challenges in accurately discovering and maintaining the
ideal hybrid cluster size for arbitrary batch workloads, either white-box or black-box
performance modeling can be used, but each has downsides. Black-box performance
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modeling using system-level metrics enables generalization and unobtrusiveness, but
such metrics can be very noisy. White-box modeling allows higher sensitivity to the lim-
itations of a particular framework, and potentially greater accuracy, but limits general-
ization. Real-world parallel batch workloads are commonlycomposed of short jobs [13]
and novel jobs [7, 14]. As a result, profiling must be completed quickly with noa priori
knowledge to yield reliable estimates early.

Table 1:Cost and energy ranges for
different batch workloads, with 6
dedicated nodes and 0-36 volunteers
on NCSU’s ARC cluster [15].

Cost ($) Watt Hrs
Workload Min Max Min Max
Wordcount 4.42 6.38 12731957
Grep 2.40 5.83 710 894
Pi 9.2516.6329635461
Word Co-oc.7.7211.4122303987

To tackle these challenges, we present the
Resource Harvester for Interactive Clouds
(RHIC), a generic management framework
which autonomically optimizes a hybrid clus-
ter running within residual resources. RHIC
can provide intelligent cluster sizing for a wide
range of throughput-oriented parallel batch
workloads. To accomplish this, RHIC com-
bines profiling with black-box performance
modeling to make resizing decisions in an
iterative, online fashion. We profile the CPU,

memory and I/O consumption of each workload and build self-tuning models to
translate these system-level metrics into job performanceestimates. Finally, we tailor
this approach to the hybrid cluster design, by predicting residual resource availability
at the volunteers and directly managing I/O saturation at the dedicated nodes. Our
multi-faceted approach handles dynamic and unpredictablebehavior from a wide
range of independent sources, aggregating unstable resources into a reliable batch
platform. Through extensive evaluation, we show that RHIC robustly delivers accurate
performance estimates and quickly discovers the best cluster size for novel workloads.

We consider the major contributions of this work as follows:

– To the best of our knowledge, we are the first to propose batch cluster sizing as a
tool for residual resource harvesting in interactive clouds.

– We present an adaptive cluster sizing solution that uses a combination of online pro-
filing and performance modeling to quickly discover and maintain efficient hybrid
cluster sizes.

– We develop black-box batch job performance models which mapaggregate residual
resources to goal performance. Our self-tuning models relyon system metrics and a
progress score, which allows generalization to a wide rangeof throughput-oriented
parallel batch workloads.

– We carried out real-system evaluation with up to 42 nodes, using real traces col-
lected from production interactive cloud systems and representative batch distributed
analytics workloads. Our results show that RHIC achieves high accuracy in enforc-
ing minimum cost/energy and deadlines for a range of workloads, as compared
to an exhaustive survey and an alternative control-theory algorithm. In addition,
RHIC is able to automatically adapt to different optimization goals, system resource
configurations, and different interactive/batch workloadcombinations.

In the rest of the paper, we give an overview of related work inSection 2, outline
background information in Section 3, and discuss the designof RHIC in Section 4. In
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Section 5 we present the results and analysis of our evaluation. Finally, we conclude in
Section 6.

2 Related Work
Our work is most-relevant to prior efforts towards MapReduce cluster sizing, but also
relates to to contributions from several other areas.

Cluster sizing for parallel batch workloads. Several works have been recently
published which perform cluster sizing for parallel batch workloads [7–10]. Of these,
our efforts are most-closely related to those which combinemodeling with online ad-
justment and feedback [7–9]. Jockey [7] is a system for meeting deadlines in MapRe-
duce clusters using offline profiling/simulation, coupled with an online control loop
which can adapt to cluster availability. Conductor [8] alsocombines modeling and
online adjustment to meet deadlines and minimize cost for MapReduce, taking into
account data upload and migration overheads. RAS [9] is a MapReduce scheduler that
profiles the resource requirements of Map/Reduce tasks and then attempts to allocate
sufficient slots for each running job to meet soft deadlines.Starfish [10] is a system
for optimizing cluster size for arbitrary MapReduce workloads and hardware, using a
combination of workload profiling and and configuration parameter modeling.

Compared to the aforementioned efforts, RHIC addresses a unique permutation of
traditional cluster sizing for parallel batch workloads. As a result, we consider several
sub-problems which are specific to our harvesting theme, including foreground de-
mand prediction, heuristic node selection, I/O saturationawareness, I/O curve discovery
and heterogeneity-tolerant performance modeling. In summary, the differences between
RHIC and the aforementioned MapReduce cluster-sizing efforts are as follows: (1) the
uniquely unstable environment in which we operate, (2) our support for novel, short-
lived jobs, and (3) the general applicability of our modeling approach to a broad class
of parallel batch workloads.

Because we rely on the foreground user for dynamic residual CPU and static resid-
ual memory availability, each volunteer node offers a varying contribution to the job’s
completion time. As a result, node or task-level performance modeling [7–10] will not
adequately capture the performance of a given cluster. Our insight regarding aggre-
gate residual CPU availability and its direct effect on cluster performance (§4.3) led
to RHIC’s CPU-centric modeling approach. Further, hybrid clusters have significant
I/O restrictions since dedicated nodes provide all persistent storage. We take a unique
approach to discovering and modeling I/O bottlenecks (§4.2) as a result. Wieder et
al. [8] do consider data staging and migration costs in theirperformance model, but
do not account for the effects of disk contention and I/O loadimbalance on whole-
cluster performance. This may be a side-effect of their evaluation using only a k-means
workload, which computes 5.33GB/hr of input data for the whole cluster. In contrast,
our test workloads of Grep and Wordcount compute roughly 210GB/hr and 140GB/hr
respectively, using 6 dedicated nodes (comparable to their5-node local cluster). Further,
although their models can adapt to changes in SPOT price, they do not address the
substantially-increased replication overhead in the caseof SPOT arrivals/departures,
which was a significant motivation for our choice of a hybrid cluster design.

RHIC can optimize novel and short-lived jobs (which are common [13, 7, 14]) with
no a priori knowledge, using a combination of online profiling and adaptive, guided
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scaling (§4.2). All prior efforts require either previous executionsof the target job [7,
10, 9] or key performance characteristics [8]. While those with online adjustment [7–
9] could adapt to some deviation from the profile performance(as Wieder et al. [8]
demonstrate), the pervasive and dynamic nature of volunteer heterogeneity may neces-
sitate RHIC’s online learning and reactive approaches to CPU (§4.2) and I/O (§4.3).

Finally, RHIC offers a highly-generic performance modeling interface, which only
requires a job progress score and average task length (§4.3). The models employed by
prior works have various levels of dependency on the target workload, from MapReduce
as a concept [8, 9] to specific MapReduce implementations [10, 7]. Because we envision
RHIC as a harvesting platform which manages a throughput-oriented parallel batch job,
we built it with to be workload-independent and evaluate this capability (§5.5). Further,
because volunteers are lightweight and transient, we believe RHIC could be applied to
multi-stage jobs [7] by managing each stage independently.

Parallel Filesystem Resizing.Lim et al. [16] use a control-theory approach to
elastically resize an HDFS cluster, considering oscillation prevention and the trade-
off between improved performance and rebalancing overhead. While these factors are
potentially-relevant to our problem, this work does not consider any heterogeneity
among participating nodes, and is designed for workloads which are SLO-oriented
instead of throughput-oriented. Further, Lim’s tradeoff function between rebalancing
bandwidth and response time penalty is achieved via manual tuning, and is specific to
their workload and cluster hardware.

Hybrid MapReduce, Volunteerism and Cluster Sharing.Prior works use Ama-
zon EC2 Spot Instances to perform MapReduce jobs [4, 5, 17], whose transience is
similar to interactive cloud nodes. Two approaches are taken to handle SPOT instance
instability: (1) using SPOT instances to supplement a core set of dedicated, non-SPOT
nodes [4, 5], and (2) using Amazon’s cloud storage service topreserve intermediate
results [17]. Our approach is most-similar to the former, inthat robust aggregated
storage is unavailable in our environment and a hybrid cluster design is necessary to
provide stability. Both of these works [4, 5] elect to host data only on core nodes, but
do not consider the performance impact of I/O in such an offloading scenario. Although
Lee et al. [4] highlight a similar problem space to our work, they have not proposed
any concrete solution for automatically modeling workloadperformance or determining
ideal cluster size.

MOON [3] is a modification of Hadoop designed to operate underpassive volun-
teerism, where a foreground workload and MapReduce are interleaved temporally but
not spatially. MOON makes a number of platform-level modifications to improve I/O
performance and reduce stragglers in this scenario. Mesos [13] is a framework for batch
framework co-location above a shared distributed filesystem, which leverages an offer-
based scheduler to enforce fairness. Mesos uses lightweight virtualization to guarantee
each slot a static resource allocation. Both works do not consider active volunteerism,
where two workloads are asymmetrically sharing the same resources at the same time,
or use cluster sizing meet user-defined goals such as deadlines or cost.

Workload Consolidation. Co-locating workloads on the same physical host is a
well-established technique [11, 12] which offers benefits for the cluster host including
improved utilization, better energy efficiency and higher profits. We believe that our
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harvesting approach is complementary to workload consolidation, due to the level of
overprovisioning required by interactive users. RHIC can transparently harvest what-
ever residual resources are available after consolidation, with the expectation that the
bursty interactive user will leave some free during periodsof “think time”.

3 Background

As mentioned above, we leverage ahybrid cluster design to harvest residual resources.
This platform was proposed by prior works, which examined MapReduce running
on passivevolunteers [3] and EC2 SPOT instances [4, 5]. In Section 3.1,we justify
our choice by showing that this cluster design is appropriate for our environment.
Further, in Section 3.2 we discuss techniques to make the hybrid cluster effective in
our environment, using a combination of hypervisor mechanisms and I/O offloading.
Finally, in Section 3.3 we present a preliminary evaluationof the energy and cost
benefits of a hybrid cluster relative to a traditional dedicated cluster.

3.1 Hybrid Cluster Rationale

Table 2:CPU consumption, burst and reservation characteristics collected from
NCSU’s VCL. CPU data are collected from real user session traces (to be described
in more details in Section 5.1). Reservation data cover all sessions during the years
2004-2010.

Metric Matlab PhotoshopOpenOffice C Dev

CPU Consumed (avg) 19.8% 7.0% 2.8% 22.5%
CPU Consumed (stdev)23.2% 16.2% 12.4% 24.27%

CPU burst height (avg) 39.9% 25.8% 31.0% 27.7%
CPU burst length (avg)6.9 sec 2.0 sec 1.3 sec47.4 sec

Reservation (avg) 93 min 74 min 70 min 120 min
Reservation (stdev) 90 min 79 min 91 min 99 min

Our hybrid approach is based on the characteristics of interactive cloud workloads
observed on VCL, the aforementioned production cloud system. Table 2 summarizes
statistics information collected from VCL remote desktop sessions. It shows that while
reservations (user sessions) are fairly long, their durations have a very high standard
deviation, meaning the length of any given reservation is highly unpredictable. Mean-
while, CPU bursts are quite short-lived, even for the more computation-intensive work-
loads such as Matlab.

Such highly dynamic behavior renders traditional approaches such as workload
consolidation [18, 12] less appealing. Conservative consolidation approaches will be
able to maintain interactive users’ QoS requirement, but will inevitably waste resources.
Aggressive approaches, on the other hand, may face severe performance penalties in
case of requirement conflicts. In particular, small-to-medium clouds such as the VCL
often do not offer shared storage to enable live VM migration. Offline migration typ-
ically requires minutes to complete the image transfers. Even with shared storage, the
short CPU bursts and highly variable session durations seenin interactive workloads
will require frequent live migration and may lead to heavy thrashing.
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In the hybrid cluster design, the dedicated nodes have node-local storage capacity,
while the volunteer nodes only use their local storage for temporary data. This design
addresses the dynamic and unreliable nature of residual resources, unused by interactive
tasks, in several ways. First, it keeps volunteer nodes lightweight and agile. This makes
it much easier to use/discard a node due to foreground interactive load shifts, as well
as to grow/shrink the virtual cluster based on the background job’s needs. Second,
expensive tasks performed by the underlying distributed file system, such as replication
and data rebalancing, will not be unnecessarily performed on volatile volunteers. Third,
through mechanisms such as task replication and reliable dedicated nodes, this hybrid
design can aggressively harvest dynamic residual resources while preventing stragglers
from severely delaying job completion.

When MapReduce is used as the background computation framework, only the
Map tasks are outsourced to the interactive nodes, due to thehigh cost of lost Reduce
tasks [19, 5]. Each volunteer node buffers intermediate results and periodically spills to
Reduce tasks running on the dedicated nodes.

3.2 Applying the Hybrid Cluster Design

For this hybrid cluster design to work in our target scenario, we need to verify two
assumptions, as discussed below.

(1) Existing hypervisors provide effective prioritization that keeps foreground inter-
active loads isolated from volunteers.To verify this, we examined the effectiveness of
relying on the work-conserving schedulers in Xen and KVM, two widely used open-
source hypervisors, when co-locating foreground and volunteer VMs on the same phys-
ical host. Our results are shown in Figure 2 and indicate thatthe Xen credit scheduler in
particular appears quite effective at preserving interactive performance, with an average
of foreground slowdown of 1%. Although KVM lags behind in this area, slowdown is
less than 7% in all cases, even when volunteer disk I/O load was high due to large
volumes of temporary data. Our conclusions in this area are backed by previous studies
of hypervisor isolation [20].
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Fig. 2: Slowdown of interactive workloads padded with MapReduce volunteers
running Word Cooccurrence (high CPU and large intermediatedata). Interactive
workloads taken from the Linuxbltk and AT&T’s R benchmark.

(2) When running our target background workloads, the dedicated nodes have suf-
ficient residual disk and network bandwidth to act as storageservers, supporting com-
putation offloading to a substantial set of volunteers.To verify this, we compared the
availability of disk and network bandwidth when running a background MapReduce job
on 2 dedicated nodes alone and when supplementing these nodes with 8 volunteer nodes
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(with no foreground workloads, to create maximum remote I/Opressure). Figure 3 plots
the disk and network utilization level (collected with theiostat anddstat tools re-
spectively) for the two most I/O-intensive workloads in ourMapReduce background test
set, Wordcount and Grep. It illustrates that (1) substantial disk and network bandwidth
is available on each Hadoop node executing MapReduce jobs, (2) using volunteers
significantly speeds up the job execution while increasing I/O bandwidth utilization,
and (3) disk bandwidth consumption is significantly higher than that of network, and
may become a performance limiting factor when more volunteers are used.

Our later evaluation (Figures 9-10) further corroborates this conclusion. Wordcount,
which is a moderately I/O-intensive workload, reaches its cost/energy minimums at a
3:1 ratio of volunteers:dedicated nodes on our test cluster, which contains nodes with
16 cores and one SATA II disk. Therefore, at the ideal clustersize, each SATA II disk
supports 64 Wordcount Map tasks (one per core). Grep, which is much more I/O-
intensive, reaches its minimums around a 1:1 ratio, and therefore supports 32 Map
tasks per disk.

0 1000 2000 3000 4000
0

50

100

0 600 1200 1800
0

50

100

0 1000 2000 3000 4000
0

5

10

15

0 600 1200 1800
0

10

20

30

0 1000 2000 3000 4000
0

2

4

6

0 600 1200 1800
0.00

0.05

0.10

0.15
Grep: network receive

Grep: network send

Grep: disk I/O

Wordcount: network receive

Wordcount: network send

Wordcount: disk I/O

 

 

U
til

iz
at

io
n 

(%
)

U
til

iz
at

io
n 

(%
)

Time (s)
 Dedicated alone  With 8 volunteers

Time (s)

Fig. 3: Bandwidth utilization traces on 2 dedicated nodes, with and without 8
volunteers, for the duration of a MapReduce job.

3.3 Proof of Concept: Hybrid Cluster Energy and Cost

To verify the the energy and cost profit enabled by our proposed hybrid cluster ap-
proach, we experimented with 2 dedicated nodes and a varyingnumber of volunteers
(2 to 8). Figure 4 shows the monetary and energy cost savings when running our
background workloads on the hybrid cluster, as compared to using a regular Hadoop
cluster with the same number of nodes (dedicated plus volunteers). For example, we
directly compare 2 dedicated plus 2 volunteers to 4 regular nodes. Each bar shows the
average results over tests with different volunteer counts(each with multiple trials),
with the error bar depicting therangeof results. The foreground workload on volunteer
nodes is Photoshop. This set of experiments used nodes from NCSU’s HGCC cluster
that have a relatively low idle power level of 34%, which is less favorable to hybrid
cloud computing. As can be seen here, our hybrid cluster design is indeed able to
deliver significant cost savings: 20-29% energy and 20-40% monetary cost reductions
on average across all four background workloads.
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Fig. 4:Average energy and cost savings by using a hybrid cluster design. Error bars
in this chart represent the range of savings instead of standard deviation.

Interestingly, Wordcount and Grep have higher energy savings, while the other two
applications see more monetary cost savings. This is primarily due to the fact that
Wordcount and Grep are I/O-bound and do not scale as well as the two compute-
bound workloads. For compute-bound workloads, volunteersare much cheaper, slightly
weaker replacements for dedicated nodes, but operate at a higher incremental energy
consumption. For I/O-bound workloads, cost savings are in general lower, as the cheap
volunteers cannot help with performance as substantially by offering much-needed I/O
bandwidth. In an extreme case, where Grep uses 2 dedicated and 8 volunteer nodes,
severe I/O bottlenecks reduces the monetary cost gain to 2%.Energy wise, however,
our hybrid cluster design is more tolerant to I/O-bound workloads, as CPUs blocked by
I/O consume little incremental power.

In addition, as illustrated by the error bars, even with volunteers running homoge-
neous foreground workload types, there is a considerable room to optimize for cost via
cluster sizing.

4 Resource Harvesting Framework Design

4.1 Overview

��������	

���������	�
����

�����

�����	
��

���������

���
��� ����������

�����
��

���

�����
��

�������
����

������������

������
�


���
����

�������
���������
�
���
��������
 ���������

�������
���������
�
���
����! ������

��������
 ���������

��"�

�����	��


���������������

��
	���������

RHIC

Fig. 5:RHIC components and data flow



10

RHIC combines online profiling with periodic job progress and system resource
monitoring, to adaptively scale the volunteer node set throughout abackground(batch)
job’s execution. Figure 5 shows RHIC’s major components, which collaborate to peri-
odically re-evaluate the batch job’s performance and make cluster sizing decisions.

RHIC starts a batch job execution with a profiling phase, where the dedicated nodes
run alone. This allows us to seed our I/O model by viewing the background job running
without I/O pressure generated by the diskless volunteers.This profiling data enables
two techniques which we discuss in detail in§4.2: (1) dedicated disk I/O bandwidth
utilization lets us determine core parameters for our initial scaling algorithm and (2)
dedicated CPU consumption allows us to avoid extrapolationfor small cluster sizes,
which are critical for I/O-heavy workloads. In addition, throughout the entire job exe-
cution, RHIC continues to monitor system status information, such as interactive node
resources, dedicated node I/O saturation, and job progress. With the initial profiling
and the continuous monitoring, respectively, RHIC automatically observes and adapts
to both the background job’s behavior and changes in the foreground workload.
After this initial profiling phase, RHIC iterates between the following steps:

1. Profile interactive and batch VMs for the length of theevaluation interval
2. Update models with profiled data:

(a) I/O models (§4.2)
(b) Job progress model (§4.3)
(c) Interactive resource models (§4.4)

3. Use updated models to find the best cluster size, by repeatedly:
(a) Choose a cluster size to evaluate
(b) Choose the “best” volunteers to meet the desired clustersize (§4.4)
(c) Model I/O pressure under the potential cluster composition (§4.2)
(d) Estimate completion time and performance (§4.3)

4. Select the best-performing cluster size and actuate it (§4.4)

In our prototype implementation, we set the initial dedicated-only profiling phase
to be one minute, the continuous resource and job progress monitoring frequency to
be once a second, and the cluster resizing evaluation frequency (evaluation interval
length) to be once a minute. With our moderate testbed (6 dedicated and 36 interactive
nodes), RHIC can exhaustively evaluate all possible volunteer counts (0-36) in250ms.
However, for scalability, we have also implemented an alternative search module using
simulated annealing.

To handle the dynamic set of interactive nodes, each contributing varying amount
of resources, and to achieve online performance modeling independent of the actual
workload and even batch execution framework, RHIC relies onthree key insights de-
rived from our experiments. These insights, as listed below, help us to simplify our
performance model, identify chief performance constraints, and focus on the behavior
of aggregate resources from volunteers:

– Insight 1: In our proposed hybrid execution mode, the disk I/O bandwidth afforded
by the dedicated nodes is a major factor limiting theeffectiveCPU resource contri-
bution of a volunteer node.
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– Insight 2: The overall progress of a batch job is determined by theaggregate
CPU contribution from all selected volunteers, independent of the contribution
distribution among these nodes.

– Insight 3: Although each foreground interactive workload has unpredictable re-
source usage bursts, itsaverageusage amortized over a longer period of time tend
to be much more stable and hence predictable.

In the rest of this section, we discuss in detail the above insights and several major
RHIC components as well as their interactions. Note that forsimplicity, discussion is
based on homogeneous hardware across the node pool. Given that most cloud systems
have a limited number of hardware types, our profiling and modeling can be easily
adapted to enumerate performance/cost behavior of different hardware.

4.2 Modeling Workload I/O Behavior
Our proposed harvesting method is based on the observation that, for typical distributed
batch execution model such as MapReduce, there is residual I/O/network bandwidth
for dedicated nodes to support additional volatile, diskless volunteer nodes. We have
verified this with experiments§3. However, as the number of volunteers grows, even-
tually the I/O bandwidth on the dedicated nodes is likely to become the chief perfor-
mance/scalability limiting factor (Insight 1). This constraint has not been considered in
related prior work [4, 5]. RHIC, in contrast, builds an I/O model at runtime for the target
batch job to identify the existence of I/O bottlenecks.
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Fig. 6: Impact of I/O bottlenecks on effective volunteer CPU contribution, using 2
dedicated and 1-8 volunteers, with a maximum of 8 cores (800%CPU) on each.

Figure 6 illustrates the interaction between the volunteerCPU contributions and the
I/O contention at the dedicated nodes for two sample MapReduce workloads. It shows
the aggregateeffective CPU contributionsfrom the volunteers at each aggregate residual
CPU availability level, averaged over the Map phase (excluding stragglers). The effec-
tive contribution is measured from the background VM usage,while the availability cal-
culated from the foreground VM usage. We verified that the leveling off point in these
curves corresponds to the dedicated node I/O saturation point. This figure also demon-
strates that the onset of the I/O saturation is highly workload dependent. With a more
I/O-intensive workload (SFASTA in this case), the saturation comes earlier and results
in a lower effective CPU contribution rate. Figure 6b plots the effective CPU contribu-
tion to availability ratio over different volunteer counts. It illustrates that the MapRe-
duce job consumes a constantly declining portion of the aggregate CPU resources
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available. As a result, we base our I/O modeling on{CPUconsumed, CPUavailable}
pairs for the given workload and hardware, derived at runtime.

Saturation Point Estimation For each background job, RHIC builds an I/O curve that
tracks available CPU on the X-axis and consumed CPU on the Y-axis, to predict the
effective CPU contribution for a given volunteer set. RHIC uses data from the initial
profiling, as well as continuous sampling, and applies regression to build this I/O curve.

To avoid the inaccuracy caused by extrapolation or samplingwell beyond the I/O
saturation point, it is important to estimate an approximate location of the dedicated
node I/O saturation onset, in terms of the aggregate volunteer CPU contribution. The
saturation point also indicates the upper bound of volunteers needed, regardless of op-
timization goal, as beyond this point more volunteers will not return additional perfor-
mance. RHIC bases its I/O saturation point estimate on I/O bandwidth consumption data
collected in the dedicated-only initial profiling phase. Assuming a linear relationship
between CPU contribution and I/O demands, it calculates thenumber of volunteers
each dedicated node can support:

V olunteer CPUsupportable = (
100%

BWUtilAvg

− 1)× CPUmax (1)

HereBWUtilavg is the average disk bandwidth utilization measured on the dedicated
nodes during the profiling phase, andCPUmax is the maximum CPU available on any
node (such as 400% for 4 cores).V olunteer CPUsupportable is the volunteer CPU
contributioneachdedicated node could support, in addition to its own demand.

Next, we calculate the range of potential I/O saturation onset points, using best and
worst-case estimates. The best-case estimate represents completely-balanced I/O load
(each dedicated node serving equal volunteer demand) and the worst-case completely-
imbalanced (one dedicated node serving all volunteer demand). Below we derive the
pair of estimates based onV olunteer CPUsupportable, whereCountdedicated is the
number of dedicated nodes:

Saturationbest = V olunteer CPUsupportable × Countdedicated (2)

Saturationworst = V olunteer CPUsupportable × 1 (3)

Using the best and worst case estimates above, RHIC intelligently increases the
size of the volunteer pool using Algorithm 1. It samples the worst case estimate and
halfway between the best and worst case, then uses linear regression to guess the actual
saturation onset point. RHIC then verifies the occurrence ofI/O saturation using the
disk sensors on the dedicated nodes, based on the disk bandwidth utilization metric
from the iostat utility. In practice, we have found that this approach quickly finds
the I/O saturation point with satisfactory accuracy. In addition, this allows us to sample
system metrics under a range of cluster sizes, improving thebreadth of our models. This
approach is unnecessary for deadlines, because the deadlines must be achievable on the
“near” side of the I/O saturation point.

I/O Curve Building with Clustering and Curve-fitting Next, we complete the I/O
curve that maps aggregate volunteer CPU availability to aggregate effective volunteer
CPU contribution. RHIC uses Mean-Shift clustering [21] to pre-process raw
{CPUconsumed, CPUavailable} data points. This allows us to avoid a critical flaw in
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Algorithm 1 Initial pool scaling algorithm used for cost and energy minimization.
The cluster is pushed to the saturation point using a combination of Eq. 2-3 and first-
degree regression (line 18). This approach also accounts for the effects of diminishing
marginal returns (DMR) when I/O saturation is not the primary limit on scalability,
which is often the case when the price of volunteer is relatively high.

1: // Perform one profiling period with dedicated nodes alone
2: profileData← RunPeriod(∅) , P eriod← 1
3: // Calculate saturation range using Eq. 2-3
4: (Saturationworst, Saturationbest)← ComputeSaturationPoints(profileData)
5: // Predict the ideal, ignoring I/O saturation scalability limitations, as a ceiling
6: Max V olunteersDMR ← PredictIdealIgnoringIO(profileData)
7: // Push to the I/O saturation point, accounting for diminishing marginal returns
8: while (IOSaturation() 6= True) AND (V olunteers < Max V olunteersDMR) do
9: if Period == 1 then

10: nextSize← min(Saturationworst,Max V olunteersDMR)
11: else ifPeriod == 2 then
12: nextSize← min(Saturationbest+Saturationworst

2
,Max V olunteersDMR)

13: else ifPeriod == 3 then
14: if Max V olunteersDMR < Saturationbest then
15: nextSize←Max V olunteersDMR

16: else
17: // Linear extrapolation using theBWUtil observed in periods 0-2
18: V olunteers← ExtrapolateSaturation()
19: end if
20: else
21: nextSize← size(V olunteers) +Saturationworst

22: end if
23: // Find volunteers to satisfy the next size, and run the period
24: V olunteers← FindVolunteers(nextSize)
25: RunPeriod(V olunteers) , P eriod += 1
26: end while

using curve-fitting for decision making, where incorrect decisions reinforce themselves
by repeated sampling in the same area of the curve, skewing R-squared summations.
Also, clustering allows us to tolerate changes in the I/O landscape, such as increased
Reducer disk I/O load in MapReduce, byagingdata points.

Finally, RHIC performs first-degree spline fitting on the cluster centers to build the
I/O curve. This approach allows us to deliver interpolated values tightly constrained
to the observed curve. This is important, especially near the saturation point, because
minimization decisions hinge on marginal cost/gains. Prediction of the effective ag-
gregate CPU contribution from a given set of volunteers can then be performed with
interpolation, based on the projected aggregate CPU availability from these volunteers.

This approach assumes that the network bandwidth (as well asthird-party network
contention) is either static or is not a limiting factor. We believe such an assumption is
practical based on network bandwidth consumption measurements (§3) and experience
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with VCL and several other 100+ node clusters. We plan to relax this assumption in the
future, using bandwidth monitoring and topology awareness.

4.3 Background Job Performance Modeling

Background job performance modeling is the core of RHIC’s sizing intelligence. It
relies on two mechanisms: (1) the I/O modeling presented in§ 4.2, and (2) CPU avail-
ability predictions for candidate interactive nodes (to bediscussed in§ 4.4).

As mentioned earlier, RHIC’s performance modeling is basedon the observation
that the aggregate CPU contribution from the selected volunteers, regardless of the
distribution of CPU resource availability on individual volunteer nodes, is the chief
factor determining a job’s completion time on a hybrid cluster (Insight 2). Figure 7
shows experimental results demonstrating this performance behavior. In these tests,
we collected the execution time of four MapReduce workloadsunder four different
CPU allocation distributions among the volunteers. According to each given distribu-
tion, a volunteer is allocated 4 cores with a CPU cap between 50%-350% (with one
core’s entire CPU resource counted as 100%), while the totalCPU allocations from
all 8 volunteers are fixed at 1600%. Figure 7a illustrates theshape of the distributions
used. Figure 7b shows that the duration of the Map phase is nearly constant across all
distribution types, for all MapReduce workloads tested. Inother words, frameworks like
Hadoop are quite tolerant to heterogeneity in node processing capabilities, possibly due
to the adoption of mechanisms such as the well-proven LATE algorithm [22].
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Fig. 7: Impact of residual CPU resource distribution on MapReduce job comple-
tion time. Shown for 2 dedicated and 8 volunteer nodes.

The above observation allows us to build our performance (and consequently cost)
modeling on thecollective behavior of the dynamic interactive nodes. Rather than
micro-managing volunteer nodes according to their foreground resource usage bursts,
RHIC bases its decision on the aggregate, sustained CPU availability from candidate
volunteer node sets.

Completion Time Estimation and Transition Damping More specifically, RHIC
predicts that “a background job will complete at timey if it receives a sustained total
volunteer CPU contribution ofx”. For this, we developed a simple model based on the
processing rateRproc, shown in Equation 4. HereJcompleted is the current fraction of
processing completed,Telapsed is the time elapsed, andCPUconsumed is the effective
aggregate CPU consumption (including both dedicated and volunteer contributions)
overTelapsed. Rproc is re-evaluated periodically during the background job execution.
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Rproc =
Jcompleted

Telapsed × CPUconsumed

(4)

By calculating the fraction of remaining workJremaining = Jtotal−Jcompleted, we
can then invert Equation 4 and produce a Map completion time estimateTremaining,
given a predicted aggregate CPU contributionCPUpredicted, as shown in Equation
5. CPUpredicted is calculated by applying the I/O model (§4.2) to the predicted ag-
gregate available CPU (§4.4), which estimates the aggregate volunteer CPU which is
sustainableby the dedicated I/O infrastructure. Finally, to tolerate stragglers, we add
a small padding value to our completion time estimate, basedon the average length of
background tasks experienced thus far.

Tremaining =
Jremaining

CPUpredicted ×Rproc

(5)

To avoid oscillation or thrashing, we estimate the transition time required by a
volunteer pool size change. Volunteer additions require a fixed setup overhead, which
we profile. Volunteer removals are trickier - as we allow deselected volunteers todrain
running tasks when we remove them. We predict the draining duration based on the
observed average volunteer task length. In both cases, the transition time is accounted
for in making completion time predictions.

Goal Estimation Based on the completion time estimate, RHIC generates performance
scores (to be minimized) for candidate volunteer sets, given one of the three goals it
currently supports:

(1) Deadlines:To satisfy a deadline requirement, RHIC computes the performance
score as the difference between the estimated job completion time and the deadline.

(2) Monetary cost:With pay-as-you-go cloud computing, volatile volunteer nodes
with no CPU resource guarantee are likely to be charged at a lower rate. Given a certain
pricing policy defining such discounts, RHIC calculates theperformance score as the
predicted overall cost based on the completion time estimate.

(3)Energy:Energy estimation is more complex and requires the offline construction
of an energy model for the specific hardware used. In this paper, we focus exclusively
on CPU power consumption, considering prior findings that CPU typically dominates
energy consumption in modern systems [23]. Our energy modeling takes the well-
established approach of running a micro-benchmark that thoroughly enumerates the re-
lationship between CPU utilization, frequency and power consumption [23, 24]. Based
on the data collected, we use multiple regression methods toderive a power model that
estimates power consumption at an arbitrary utilization and frequency level. This model
model is subsequently used by RHIC to compute the performance score as the predicted
power consumption with the given volunteer set, over the length of the job.

Recall that our hybrid cluster design is partially motivated by the energy savings
allowed by piggybacking background workloads on interactive foreground tasks. While
all power consumption on dedicated nodes is billed to the background user, he/she is
only responsible for theincrementalenergy consumption incurred by the background
job on the volunteer nodes, because these nodes would not be powered on otherwise.
Therefore, in modeling the background job power consumption, we exclude the baseline
(idle) power consumption as well as the predicted foreground power on volunteers.
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4.4 Volunteer Node Selection and Management

Finally, given a desired aggregate volunteer set size, RHICmust select which specific
interactive nodes to use in an efficient and scalable manner.This selection is based on
continuous interactive node residual resource monitoringand prediction, as discussed
below.

As shown earlier, common interactive cloud workloads have highly bursty behavior,
making load consolidation backed by VM migration difficult.However, for running
background jobs that yield to the interactive foreground tasks, it is the sustained CPU
resource availability that matters. Fortunately, we foundthat although individual CPU
usage spikes appear random and unpredictable, the average CPU utilization over a
period of time can be effectively estimated using near-termhistory data (Insight 3).

Recognizing this, RHIC employs an online foreground workload CPU demand
model using the CPU consumption readings from the interactive nodes sampled once
a second. We considered four common prediction methods: moving average, auto-
regression, auto-correlation, plus a hybrid of signature-based Fast Fourier Transform
(FFT) and Markov chains used in our previous work [25]. We evaluated all four under a
range of conditions which simulate our intended environment: 10, 20, 30 and 60 minutes
of history, and 5 and 10 minutes of lookahead (prediction window). These conditions
were chosen because we desire more than just a short lookahead, but simultaneously do
not expect a long history to be available due to interactive node transience.

Figure 8 shows the accuracy of these four prediction methods, and moving average
yields the most-accurate predictions, most likely due to the short training window.
Moving average and auto-correlation show identical performance, but this occurs be-
cause auto-correlation falls back to a moving average when it is unable to achieve a
match. As a result, we have selected moving average as our prediction algorithm, and
we maintain a prediction model for each interactive node regardless of whether it is
currently selected as a volunteer.
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Fig. 8: Accuracy of four different prediction algorithms for the foreground traces
which we use. Absolute error is shown, with a value range of 0-100.

For memory, we assume that the foreground VMs have pre-specified memory caps
based on their workload, as in the case of Amazon EC2 and VCL instances. Background
memory usage, on the other hand, is estimated during the initial profiling phase.
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In selecting specific volunteers from the interactive node pool, we adopt a greedy al-
gorithm for better scalability. First, we perform screening and predicted CPU contribu-
tion adjustment based on memory constraints, according to control interfaces exported
by the background execution platform. For MapReduce-like platforms, we adjust the
number of simultaneous worker processes (such as Map slots)on each volunteer to fit
within its residual memory capacity. If this kind of performance knob is unavailable,
we instead discard any nodes which do not have the minimum memory required. Next,
candidate nodes are sorted according to their adjusted residual CPU availability level.
Finally, RHIC makes volunteer selections by evaluating different prefix sets of the
candidate list toward a given optimization goal using the I/O-aware performance model
introduced earlier. If the current volunteer set is no longer optimal, adjustment is made
by including nodes with the highest or discarding nodes withthe lowest predicted
CPU contribution. Intuitively, this approach reduces the number of volunteers used,
contributing to lower overall monetary and energy cost. Also by performing this greedy
selection, the search is limited to a linear rather than exponential space, in regard to the
candidate interactive node pool size.

In addition, we use a periodic threshold-based “replacement” process to identify and
replace volunteers that experience a significant decrease in residual CPU availability.
This is necessary because our node selection algorithm onlydiscards nodes when RHIC
chooses to lower the volunteer count. To do this, we periodically perform iterative
checking by comparing the most-available unused node with the least-available used
one. If the difference in their CPU availability is above a threshold, we replace the used
node with the unused node. This process is repeated till the CPU availability difference
falls under the threshold.

Interactive node churn presents an issue for our search-driven cluster sizing scheme,
because interactive nodes can arrive/leave unexpectedly and change the ideal batch
cluster size. In such a situation, a naı̈ve response would beto perform another round of
searching to find the best cluster size, in light of the altered interactive pool. However,
because interactive nodes can leaveen masse, i.e. at the end of a class lab, there exists
the possibility of significant thrashing by the search process as it tries to react to a
series of successive arrival/departure events. To preventthe search process (§4.1) from
causing significant overhead under high interactive node churn, we take adeferment
strategy. When a node arrives or leaves, we attempt to enforce the decision made at
the end of the last evaluation interval, deferring new decisions to the end of the current
evaluation interval.

5 Experimental Evaluation
In this section, we evaluate RHIC in five key areas after giving an overview of our test
platform in Section 5.1. First, in Section 5.2, we establishthat RHIC can accurately
discover and achieve near-ideal cluster sizing decisions under a given optimization
goal, in comparison to an exhaustive search of possible cluster sizes. in Section 5.3,
we then compare the performance, stability, and adaptability of RHIC to an alternative
algorithm, based on fuzzy control theory. Next, we validateRHIC’s performance under
increased cloud instability in Section 5.4. While all the above experiments uses Apache
Hadoop [26] as the background cluster platform, in Section 5.5 we show that in addition
RHIC is general enough to harvest excess resources using a lightweight compute layer
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on top of HBase [27]. Finally, we briefly discuss RHIC’s overhead in Section 5.6.
Unless otherwise noted, we run each test three times, reportthe average, and show
error bars denoting the standard deviation when it is above 2% of the mean.

5.1 Test Workloads, Platform, and Settings

Background Workloads For evaluating RHIC, we use Hadoop and and a thin compute
layer running over HBase as the background job execution frameworks. Hadoop and
HBase are widely used open-source implementations of the Google MapReduce and
Big Table systems, respectively.

We used four representative MapReduce workloads: Wordcount (counting word
appearances), Grep (regular expression search), Word Co-occurrence (counting word
pair appearances), and Pi (calculatingπ using a quasi-Monte Carlo algorithm). Grep
and Wordcount process 70GB of data, Word Co-occurrence processes 11GB, and Pi
requires no input data. Job execution times are typically between 20 and 40 minutes.
We study the execution of the Map phase, which for the all of background workloads
dominates the total MapReduce execution time. This is backed by findings from pro-
duction clusters that Map-only jobs are common, the Map phase dominates MapReduce
jobs, and input data is the majority of stored bytes [28].

We used two representative workloads on top of HBase: Compress (offline LZO
compression of text cells), which is I/O-intensive, and Raytrace (image generator),
which is CPU-intensive. Both are likely to run during off-peak hours against semi-
structured data stored in a production HBase cluster, and hence are suitable for throughput-
oriented volunteer harvesting. Compress could conceivably be used on user messages,
profile data, wall posts etc., motivated by high compressioncosts which cannot be
borne by frontend servers during peak hours. Raytrace is representative of image/tile
generation workloads for multiplayer games creating randomly-generated worlds, such
as Minecraft [29].

Foreground Workloads We used four popular VCL workloads: Matlab, Photoshop,
OpenOffice, and C Development. We reproduced the foregroundVM execution based
on real session traces collected from VCL [30]. The length and churn rate of the
foreground VM sessions are generated using a normal distribution with the parameters
derived from 2004-2010 VCL log data. Finally, we set static memory allocations for
foreground VMs using per-workload-type normal distributions extracted from VCL
reservation logs. Because our foreground load generation is based on traces, we can
repeatedly generate identical loads using the same traces and random number seeds.

Test Platform Our main test platform is NCSU’s ARC cluster [15], which, unlike
current public clouds, allows us to perform power measurements. It has 108 nodes in-
terconnected via InfiniBand, each with 16 2GHz cores on two processors, 32GB RAM,
a SATA disk drive and the KVM hypervisor. We use Infiniband forour experiments,
but due to KVM’s virtualization overhead, we can only achieve approximately 500
MBit/sec speeds (VM to VM). We restrict dedicated VMs to 16GBof RAM, while
foreground and volunteer VMs share 8GB RAM total.

To calculate background power consumption, we replay the same foreground work-
load by itself and calculate the difference. For monetary cost evaluation, unless oth-
erwise noted, we adopt a sample pricing policy following therelative costs of EC2
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m2.xlarge On-Demand and Spot Instances at the time of writing. This sets the per-
node rate to $1.00/hour for dedicated nodes and $0.42/hour for volunteer nodes.

5.2 Exhaustive Evaluation
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Fig. 9: Monetary cost minimization results with different pricing policies. Dedi-
cated nodes are fixed atCd = $1.00/hr, with four different volunteer rates:Cv =
{$0.20/hr, $0.42/hr, $0.60/hr, $0.80/hr}, represented in the key as Exh.(Cv) and
RHIC(Cv).
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Fig. 10: Energy minimization results. Energy data collected from power meters
attached to the ARC cluster.



20

First, we performed an exhaustive evaluation over the validvolunteer cluster size
range, for each of our four MapReduce test workloads (Wordcount, Grep, Pi and Word
Co-occurrence). We then ran RHIC under identical conditions to verify its ability to
quickly find the ideal cluster size. Our hybrid cluster is composed of 6 dedicated nodes
and 0-36 volunteers. We collected exhaustive datapoints every 2 volunteers, fromv =
{0, 2, 4, . . . , 36}, and repeated each test twice.

For a fair comparison, we ensured that every run (exhaustiveor RHIC) had an
identical foreground workload “mix”, composed of the same traces starting the same
points in time. This mix is composed of a randomized selection of traces and start
points taken in equal proportion from each of the 4 foreground workloads described in
Section 5.1: 25% each from Matlab, Photoshop, OpenOffice andC Development. This
seeded mix allowed us to collect foreground-only energy consumption and subtract it
from the total, for generation of the background energy curves shown in Figure 10.

To generate the exhaustive performance survey, we developed a “targeted” version
of our framework which maintains a specific number of volunteers using the same
volunteer node selection and management mechanism (§4.4) as RHIC. Further, the
random number generator which drives interactive node churn is seeded identically.
This ensures that if RHIC and the targeted framework chooseX interactive nodes at
the same point in the background job, they will receive the same volunteer set.

Figures 9 and 10 show the performance of RHIC relative to the exhaustive search for
cost and energy minimization, respectively. It can be clearly seen that (1) supplementing
dedicated nodes with volunteers does bring monetary cost and energy benefits, (2)
different volunteer cluster sizes result in a large range inexecution cost, generating
an up to72% saving in monetary cost and47% in energy comparing the most and
least optimal settings, (3) the behavior of the cost/energycurves are highly workload-
dependent, and (4) RHIC is able to identify the optimal or near-optimal cluster siz-
ing solution automatically. The only notable anomaly is that RHIC undershoots the
energy minimum for Co-occurrence by approximately 4 volunteers. This is because
Co-occurrence is ultimately CPU-bound but has non-trivialI/O demand, which RHIC
cautiously explores. Unlike Pi’s energy minimization, forwhich RHIC immediately
pushes to 36 volunteers, RHIC takes 3 steps up to 36 volunteers with Co-occurrence
to ensure that I/O bottleneck does not occur. This is exacerbated by the long straggler
phase in Co-occurrence, due to long task lengths, during which most volunteers sit idle.

Figure 11 shows soft deadline enforcement results. Three deadlines were chosen
for each background wrokload across the spectrum of achievable completion times,
each tested twice for 6 total datapoints per background workload. In Figure 11a, the
horizontal black bar marks the normalized deadline (@1.0). The exhaustive bar repre-
sents the closest setting which would achieve the deadline identified by the exhaustive
tests. In Figure 11b, the range of possible completion timesis shown for each workload
to demonstrate the wide array of choices RHIC faces. Again, RHIC achieves near-
ideal volunteer cluster sizes all workloads and deadline settings in most cases. More
specifically, it misses 5 out of 24 deadlines, but by less than3% on average.

5.3 Optimization Technique Evaluation

Conceptually, RHIC is based on the combination of online profiling and model-guided
optimization. Given the highly-volatile nature of our harvesting environment and the



21

Wordcount Grep Pi Word
Cooccurrence

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Av
g 

N
or

m
al

iz
ed

 R
un

tim
e

Workload

 RHIC  Exhaustive

(a) Deadline enforcement performance.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

20

40

60

80

100

120

140

160

180

R
un

tim
e 

(M
in

ut
es

)

Volunteers

 Pi
 Word Cooccurrence
 Wordcount
 Grep

(b) Workload completion time ranges.

Fig. 11:Deadline enforcement performance.

need for continual adjustment, a control theory approach could be a valid alternative. In
this section, we compare RHIC’s performance with that of an alternative scheme based
on fuzzy control for minimization, as well as a naı̈ve threshold algorithm.

Traditional control systems are well-suited for problems where the goal is clearly
defined (i.e. deadlines) but the situation becomes complex when it is not (i.e. min-
imization). To address both cases, we turn to fuzzy control systems. Fuzzy control
has been previously applied to minimization problems in server clusters [31], which
is used as the basis for our fuzzy controller (FUZZY) design.Its 2-period historical
comparison is similar to hill-climbing. For minimization goals, we use the cost or
energy per unit of progress. For deadline goals, we minimizethe difference between
the current completion rate and the “ideal” completion rate, which will undershoot the
deadline by a small padding value (default at 5%).

For Liu et al.’s Rules #1 & #3, we increment/decrement by a parameterp > 1
which is varied in our experiments. For Liu et al.’s Rules #2 &#4, we only incre-
ment/decrement by a single volunteer, since the intuition is that FUZZY is near the
minimum. These rules are shown in Figure 12. To adapt the minimizing fuzzy controller
design to our scenario, we use the interactive node selection and cluster management
(§4.4) modules from RHIC for similar reasons as our “targeted”mode, discussed above.
The fuzzy controller’s logic is as follows:

1. Evaluate the efficiency of the previous evaluation interval
2. Compare the previous evaluation interval to the evaluation interval before it
3. Avoid action if the change in efficiency is below a threshold
4. Otherwise choose an action based on the fuzzy rules

FUZZY requires 2 initial “start points” because it is based on a historical compari-
son of two time-steps - the performance and control decisions of the previous two steps
are used as the basis of next step. We use the same profiling phase as RHIC for the first
step, to allow FUZZY to determine memory demands of the background workload at
runtime. However, the second step must be manually determined, so we set it to a range
of fixed values, as explained below.

In addition, we included a naı̈ve “threshold” algorithm, blind to goals, which instead
chooses interactive nodes with residual resource availability above a threshold, specified
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Fig. 12: Fuzzy rules. Original figure credit to Liu et al. [31]. Dotted lines represent
the change which was observed, and solid lines represent thesubsequent action which
should be taken.

as a percentage of maximum CPU resources. For example, with athreshold of0.50 and
maximum CPU level of400% (4 cores with100% each), the threshold algorithm would
select all interactive nodes with greater than200% residual CPU availability.
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We evaluated the two alternative methods plus RHIC with all three goal criteria
across our four background workloads, again using a hybrid cluster of 6 dedicated
and 0-36 volunteers. The results are shown in Figure 13 (minimization) and Figure 14
(deadline enforcement).

For FUZZY, we variedp, the parameter that determines the magnitude of cluster
size changes when the controller believes it is moving in the“correct” direction, among
three values: 2, 4, and 8. For each background workload, goalandp value, we evaluated
FUZZY with 3 different start points:S = 25%, 50%, 75% of the total volunteer pool
(36 volunteers). This was motivated by the observation thatFUZZY’s performance is
heavily influenced byS, which can be seen in Figure 14b.

From Figure 13, we see that RHIC delivers better minimization results, and more
significantly, much more stable performance. FUZZY, on the other hand, yields consid-
erably higher variance even within an individualp setting, influenced heavily byS. Pi,
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Fig. 14: Deadline enforcement performance.One deadline was chosen for each
background workload, in the middle of its achievable completion time range.

among all workloads, sees the highest variance, as it offersthe largest possible range of
cost and energy values (as shown in Figure 9). The simple Threshold approach is more
stable than FUZZY, but often yields inferior minimization results compared to the other
two methods.

From Figure 14a, we see that RHIC delivers job completion time highly consistent
and close to the deadline (within 4% difference), while FUZZY and Threshold behave
too conservative or too aggressive (violating the deadlineby almost doubling the desired
completion time) in most cases, again with much higher variance. This is backed up by
the example cluster sizing choices for Pi in Figure 14b: FUZZY produces much more
dramatic cluster size scaling, while RHIC stays quite stable after the initial ramping up
stage.

FUZZY’s poor decision-making stems from two root causes. First, Hadoop’s global
progress indicator is not smoothly linear, due to task reporting and I/O delays. RHIC
uses repeated sampling and averaging to address this issue.Second, FUZZY does not
account for changes in the foreground CPU demand. One possible solution to this would
be to use volunteer CPU consumption instead of volunteer count in FUZZY’s fuzzy
rules. However, our experience is that CPU consumption reporting itself is very noisy
due to task turnover and I/O buffering, which RHIC addressesusing problem-tailored
curve fitting. Therefore, we opted against adding this capability to FUZZY, under the
reasoning that it would simply shift the unreliability issue to another metric.

5.4 Impact of Environment Stability

In all preceding experiments, we used the VCL’s natural churn rate, as discussed in
Section 5.1. In this section, we attempt to quantify the impact of increased churnon
RHIC’s ability to conduct cluster sizing optimization.

In Figure 15 we show RHIC’s cost minimization and deadline enforcement per-
formance under 1×(baseline), 2× and 8× the normal churn rate, for monetary cost
minimization and deadline enforcement. Here 2× indicates that nodes join and leave
twice as frequently, with half the mean and half the standarddeviation of the baseline.
For comparison, we also include the performance of FUZZY with p = 4, which was



24

the most-accurate parameter found in§ 5.3. Due to length limits, we show only two
background workloads, the most I/O-intensive (Grep) and the most CPU-intensive (Pi).
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Fig. 15: Impact of increased churn on RHIC and Fuzzy(4) performance,at
different interactive node churn rates.

Overall RHIC clearly outperforms FUZZY in both minimization performance and
consistency, largely due to the decision-deferment technique discussed in Section 4.4.
More specifically, RHIC is resilient to the high interactivenode turn-over rates and
achieves near-identical cost minimization performance inall cases but Pi with 8×
churn. This exception is because the volunteer pool is smaller on average at such high
churn rate: we begin all experiments with 100% of nodes available, with many nodes
absent by the end of the job. For the CPU-intensive Pi, it is impossible to reach the
desired cluster size producing the minimum cost.

5.5 Generalization to Other Background Frameworks
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Fig. 16:Cost minimization performance for HBasePCF.

To demonstrate that RHIC is generalizable to non-MapReducebatch processing
systems, we wrote a parallel compute framework (HBasePCF) in 800 lines of Python



25

to perform batch jobs on top of HBase. In accordance with RHIC’s requirements,
HBasePCF only exports a progress score and average task length, and HBase is built
on top of the HDFS distributed file system hosted on the dedicated nodes. We used
HBasePCF to perform one I/O-intensive and one compute-intensive job, Compress and
Raytrace respectively, as introduced in§5.1.

Our hybrid cluster is composed of 3 dedicated nodes and 0-18 volunteers. For
monetary cost, dedicated nodes are priced at$1.00/hr and volunteers at$0.42/hr.
For exhaustive search, we sampled within the valid volunteer cluster size range again
with a step size of 2 (v = {0, 2, 4, . . . , 18}), and repeated each test twice.

Figure 16 shows the cost and energy minimization performance of RHIC along-
side the exhaustive search. Like in the case of Hadoop, RHIC achieves near-minimum
performance in all cases, correctly adapting to the characteristics of each workload for
each optimization goal.

5.6 Overhead

RHIC’s overhead can be measured in two dimensions: the amount of resources RHIC
itself takes to run, and its latency in making a cluster-sizing decision. By instrumenting
RHIC’s control VM, which resides on the Hadoop master, we found that it consumes
less than30% CPU (on one core) on average and takes less than250ms to make an
exhaustive cluster sizing decision for 36 volunteers. Thisoverhead would be lower for
a more efficient search algorithm (§4.1). Since cluster sizing decisions are made once
per evaluation interval (set to one minute in our experiments), all the periodic resource
and job progress monitoring supporting RHIC’s decision making brings less than0.5%
overhead on volunteer or candidate interactive nodes.

6 Conclusion and Future Work

In conclusion, we have outlined the design of RHIC, an autonomic management frame-
work for harvesting resources with throughput-oriented parallel batch workloads. By
combining black-box modeling and online profiling, RHIC is able to quickly discover
and maintain optimal cluster sizes for a range of goals, including deadline satistifaction
as well as cost and energy minimization. Through RHIC, we have found that it is
possible to tolerate the high degree of instability in cloudnodes hosting interactive
services to run background jobs with noa priori knowledge on either the foreground or
background workloads. Finally, RHIC requires only system-level metrics and a progress
score, which yields broad applicability to an entire class of embarassingly-parallel
analytics workloads.

Our work is only a first step towards a full-featured harvesting batch platform. We
are interested in identifying an ideal hybrid cluster composition for a given workload
and performance goal, scaling both the dedicated and volunteer sides, potentially with
topology awareness. Further, we plan to extend our system toflexibly harvest more
resource types, including memory, local disk and residual network bandwidth.
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