Developing a Learning Progression that Integrates Communication in an
Undergraduate CS/SE Curriculum

Michael Carter, Robert Fornaro, Sarah Heckman, Margaret Heil
North Carolina State University

May 25, 2012

Abstract

There are global concerns that communication (writing, speaking and teaming) skills of recent computer
science/software engineering (CS/SE) graduates need improvement. One reason for poor communication skills is
that instruction in communication is typically removed from the CS/SE curriculum, farmed out to technical
communication courses focusing on general skills rather than those specific to CS/SE. However, CS/SE faculty are
the experts in the specific kinds of communication CS/SE graduates need to succeed. Preliminary results of an
NSF-funded project to design learning outcomes and teaching practices that will enable CS/SE faculty to integrate
communication throughout their curricula are presented. The approach is one of building a learning progression
in communication across a given curriculum. The proposed learning progression is based on two concepts. One is
genre theory, which highlights patterns of communication founded on certain often-repeated situations and the
typical responses to those situations. CS/SE is characterized by many of these recurring types, or genres, of
communication, such as problem definitions, expression of system requirements and design, test plans/results,
code and comments. Thus, genre theory provides a way of identifying and defining the recurring types of CS/SE-
specific communications that are likely already included in a CS/SE curriculum. The other concept is the growth in
communication skills across a CS/SE curriculum. Such growth can be understood as the increasing sophistication
of communication abilities in response to the increasing complexity of communication situations created for
students as they advance in the curriculum. There are five dimensions of complexity: more complex situations
require responses that (1) are longer, (2) are more complicated, (3) require multiple genres, (4) require a greater
degree of independence of students, and (5) require more students and more elaborate forms of interaction
among them. These two concepts suggest an approach that can be applied to create a framework for
communication across the CS/SE curriculum: (1) identify the communication goals that students are expected to
achieve in the curriculum, typically the goals represented in the senior capstone course; (2) analyze the
expectations in the capstone according to communication genres and levels of complexity; (3) begin with the first
course students are expected to take and, for this and each successive course, map out an increasing complexity
of situations for each genre in the capstone. The discussion begins with an analysis of a typical capstone course
and then moves to analyses of computer science (level 1), computer science (level 2), and software engineering
courses. An example of a learning progression for communication skills, including communication genres and
levels of complexity that are appropriate for each course, is described.

1. INTRODUCTION

The gap between the communication abilities of recent graduates and the expectations of managers in Computer
Science and Software Engineering (CS/SE) and other engineering fields is well documented [1], [6], [8], [13], [14],
[15], [16], [17]. One of the reasons this gap exists is that most instruction in engineering communication occurs
outside engineering departments, typically in technical writing and oral communication courses. And even when
communication is taught in engineering departments, it is typically done so by instructors trained in English or
oral communication, not in engineering [14]. Although these instructors may be experts in the general types of
communication of the engineering workplace, they are usually not familiar with the field-specific types of
engineering workplace communications [14], [18].

One solution to this problem is to integrate communication within the engineering curriculum. One of the most
influential theories of learning to emerge over the last twenty-five years is based on research by Lave and

Wenger into apprenticeships, called Legitimate Peripheral Participation [9]. This research suggests that learning is
most effective when it takes place in situations that are the same or similar to those in which learners will apply
what they have learned, in other words, situations like apprenticeships. The key is that novices learn by doing
what experts in the field do and learn through the guidance of experts, though without the high expectations and
full responsibility of the experts. This theory suggests that people learn by engaging in the legitimate activities of
the field in an environment in which those activities are normally done. The novices may begin on the periphery
of the field as they are learning, but they are still considered apprentice members of the field as they move
toward the full membership of experts.

We suspect that most CS/SE faculty are more comfortable with the apprenticeship model of learning in regard to
technical skills than communication. This may be because they do not consider themselves as experts in
communication. However, because CS/SE faculty are trained in the discipline and often have industry experience,
they have a far greater expertise in the types of communication used by professionals in the field than instructors
in English and oral communication [5], [18]. In terms of the apprenticeship model, technical skills and
communication skills are on an equal footing. If CS/SE students are to become capable as professionals in their
field, they need to receive instruction and experience in communication in the field. Therefore, communication
should be integrated into technical education to the same extent as the two are integrated in professional
environments in CS/SE.

One major hurdle in achieving this goal is how to integrate communication into the undergraduate CS/SE
curriculum. This technical report will provide a process for determining the progression of communication
outcomes into the curriculum. We will offer strategies for identifying the types, or genres, of communication
that are specific to the field and integrating these types of communication in a way that promotes growth in
abilities throughout a curriculum. We will provide an example of the application of these strategies to a CS/SE
curriculum on several common genres from the software development lifecycle, specifically software
requirement specifications, design expressions, code and code comments, and test expressions.

2. GENRE IN COMPUTER SCIENCE AND SOFTWARE ENGINEERING

To be able to provide coherent instruction and communication experiences for students in CS/SE, we need to
identify the specific genres of communication that define the field. In a classic definition by Miller [10], genres
are “typified rhetorical actions based on recurrent situations.” In other words, certain categories of
communication develop in response to situations that recur with some frequency. This concept may sound
familiar to computer scientists because it is similar to design patterns associated with object-oriented software
[7]. Both are reusable forms or templates that can be applied to commonly recurring situations.

CS/SE is characterized by many recurring situations that have led to a set of typical responses, or forms of
communication, to those situations. In one example of such a situation, a client needs to communicate a problem
that can be solved with software to a team of software engineers who may not be familiar with the client or the
client’s problem. A communicator may serve as liaison between the client and the software engineers. The
communicator must respond by providing the information necessary for the software engineer to successfully
solve the client’s problem. The form of communication that has developed to address this situation is software
requirement specifications (SRS), which describes in user terms what a program should. Over time, the SRS has
come to be defined by a set of conventions that the communicator can call upon to achieve the particular
purpose for the specific audience in this recurring situation. For example, the SRS can be provided in terms of
functional or non-functional requirements, use cases, or user stories, etc. As another example, the expression of
a design may be understood as a typical response to the recurring situation in which functions necessary for the
software to perform in order to solve the given problem are explained in a way that provides a blueprint for
implementing code.

Though it is not possible to account for every recurring situation and communication response in the CS/SE field,
there are some that are classic. The recurring situation and communication response, or genre, for these classic
genres are listed in Table 1. As the list of genres in Table 1 suggests, communication that is specific to CS/SE

plays a critical role in the apprenticeship of students in the field. It introduces them not only to the individual
situations and responses that define the field but also to the broader software development life cycle consisting
of these genres. The responses are a part of the legitimate participation of people in CS/SE, integrated with the
technical production they are asked to do. Each type of communication is a response to frequently recurring
situations in the field. All CS/SE genres incorporate purposes and audiences that help students to understand
why they are being asked to engage in the communication. In contrast to Orr [11], we have focused on genres
specific to CS/SE, not including more general professional genres such as progress reports, trip reports, and
research reports. We also make a distinction between genre and medium. Whereas genre is the recurring CS/SE
situations and communication responses to those situations, medium is the means by which we communicate,
such as email, phone calls, PowerPoint presentations, and whiteboards.

Table 1. Common genres in SE as identified by the recurring situation and communication response

Recurring Situation Communication Response
Client has a problem requiring a software solution Definition of a SE problem
Client wants to communicate software needs with a team of software SRS

engineering unfamiliar with the client or client’s problem

Software engineers need to identify functions necessary for the software to Design expression

solve a problem

Software engineers need to implement a design that is readable and Code and comments in the
maintainable code

Software engineers need to help new team members get started with Developer guide
development

Software engineers need to determine if the code is right and if the code does Test plan

the right thing

Software engineers need to allow for automated testing Testing

Testers need to identify incorrect functionality in the product Bug report

Software engineers need to help the client with installing and maintaining their Installation and maintenance
system guide

Software engineers need to help the client use their system User guide

3. GROWTH IN COMMUNICATION THROUGHOUT THE CS/SE CURRICULUM

The concept of Legitimate Peripheral Participation provides a model for growth in student learning that could be
used to shape a curriculum that integrates communication. Students enter our programs as novices in CS/SE, on
the periphery of the field. The goal is to move them toward full membership as professionals in the field. In most
CS/SE curricula, the capstone course is a bridge between the classroom and the workplace [12]. In most of these
courses, students are placed in situations that mimic those they will encounter as professionals. The curriculum,
then, should be designed to develop students as professionals before the capstone, with the technical and
communication skills they need to succeed.

There are two principles that guide this development of students as capable communicators in CS/SE [5]. One is
that students should participate in the legitimate communication practices of the field throughout the
curriculum, from first through senior years. Implicit in this principle is that there is no inherent hierarchy of
genres that would lead to a stepped progression from one to the other. Development in communication is not a
matter of first mastering one genre and then another in stepwise fashion through the list of CS/SE genres.
Rather, development depends on students having ample opportunities to communicate in a broad range of
disciplinary genres throughout their programs.

The second principle is that progressive development as communicators in a field is a function of the increasing
sophistication of student responses to the increasingly complex situations of assignments. The idea here is that
the students’ communication becomes more sophisticated as the situations they are responding to become more

complex. They may be asked to write a simple, perhaps even one-sentence, SRS in an introductory computer
science course and develop progressively in writing more and more sophisticated specifications culminating in
writing a full specification for an external client in the capstone course.

But the question is what does that growth in sophistication look like? How do CS/SE faculty create progressively
complex situations throughout a curriculum? The first principle suggests that we should incorporate all genres at
all levels of the undergraduate curriculum. The second principle suggests that the situations and responses
increase in sophistication as students move through the curriculum. We have integrated these principles into
five dimensions of situational complexity that can guide development of a learning progression that can be used
to promote growth in sophistication of students’ communication. We will illustrate these dimensions with
common genres in CS/SE [5].

The five dimensions of situational complexity are that:

1. More complex situations require longer responses. The goal is not length simply for the sake of length.
Instead, it is to increase the extent of the engagement of students in a project.

2. More complex situations require more complicated responses. By “more complicated,” we refer to the
literal meaning of the word as something having increasingly more folds or plies.

3. More complex situations require responses in multiple genres. An assignment becomes more complex as
students build a stronger sense of how a given genre fits together in the broader CS/SE enterprise.

4. More complex situations require a greater degree of independence on the part of students. Students work
with less dependence on the instructor and more dependence on themselves.

5. More complex situations require more students to contribute to the completion of a project. Increasing the
number of students on teams, different venues for students interaction (from in-class to a combination of
in-class and out-of-class to all out-of-class), the level of formality of the teamwork (from informal groups to
increasingly formal ones with set roles for students and records that must be maintained), and the amount
of time the team is expected to work on the project (from a few minutes in class to a semester- or year-long
project).

4. CREATING A LEARNING PROGRESSION FOR A CS/SE CURRICULUM

As we have suggested, Lave and Wenger’s [9] model of apprenticeship offers a way to conceive the development
of CS/SE students as they move from novice toward expertise in the field. Legitimate Peripheral Participation is
critical to enabling students to achieve that expertise. Students learn by doing what experts in the field do, which
includes communication. We suggest that an effective CS/SE curriculum should be shaped so that it actively
engages students in the development of both technical and communication abilities. In this section, we will
describe a method for shaping a curriculum that integrates communication in a way that advances both the
communication and technical abilities of students. The method consists of two stages, first identifying program
outcomes for technical and communication abilities and second shaping a curriculum for developing students as
effective communicators in the field.

Identifying program learning outcomes is important because planning on the curricular level requires that faculty
understand what students should be able to do by the time they graduate. The idea is that a student who
graduates with a CS/SE degree may be distinguished in his or her preparation from a person who is simply good
at programming. A key marker is that the CS/SE graduate brings particular ways of thinking about CS/SE that the
other person typically does not possess. A faculty group at NC State set out to define those ways of thinking and
related learning outcomes are listed in Table 2 (the learning outcomes related to the science of computing are
not included here so as to focus on software development).

How do students develop these ways of thinking? Communication plays an essential role because the different
genres of CS/SE shape particular ways of thinking, both individual genres and collective genres that define the
software development lifecycle. For example, the SRS defines a particular way of thinking about what a program
is supposed to do, a way of thinking that both writer and audience are trained to expect. But the SRS is also an
element in a broader set of genres that defines a broader way of thinking in CS/SE: defining a problem,

Table 2. Selected program learning outcomes defining the ways of thinking of software development
To demonstrate that graduates can reason effectively about computing and develop software, they should
be able to:

1. Recognize and define a problem related to a specific scenario that can be solved with a software
application. Describe how the end-users or internal actors within a system intend to use the
application to be developed. Gather and analyze information that allows for requirements that will
solve the problem to be created, validated, verified and if necessary, revised.

2. Create and express a design for an underlying abstract model of computation that accommodates
defined system requirements—including considerations of privacy, security, and efficiency—so that a
developer can implement the application. Review the design to ensure it can accomplish the
requirements and, where it does not, redesign until it meets the requirements.

3. Implement software conforming to a specified design so that it is usable, testable and modifiable by
others. Review the implementation to ensure it meets the system requirements and conforms to
design and, where it does not, correct the implementation until it meets the requirements and
design.

4. Plan and execute appropriate tests in order to identify ways in which the software does not meet the
requirements and, where it does not, to redesign, implement and retest until it meets the
requirements.

determining requirements, creating a design, etc. To a large extent, this way of thinking delineates what it means
to be a professional in the field. And development as a professional means mastering the genres that define that
way of thinking.

Thus, the next step after describing the way of thinking in CS/SE is to specify the communication abilities that go
hand in hand with the technical ways of thinking. An example created by the NC State faculty group is listed in
Table 3. Students both learn and demonstrate that they have learned the technical ways of thinking by engaging
in these forms of communication. For example, students are expected to “Recognize and define a problem
related to a specific scenario that can be solved with a software application. Describe how the end-users or
internal actors within a system intend to use the application to be developed.” Students both develop and
demonstrate that ability by “Present[ing] in writing or orally a critical assessment of a problem situation defined
by a need for software to be developed for solving the problem: (a) collect information from sponsors, end-
users, and on-site observations, (b) analyze that information (c) use the analysis to define the problem in terms
of the stakeholders’ needs and goals for addressing those needs.” Students learn the technical way of thinking
associated with defining a problem to be solved by software by formally defining such problems. Thus, the
program outcomes produced in this way present the technical ways of thinking in CS/SE and the ways of
communicating that enable students to master those ways of thinking.

The next stage is the analysis and revision of a curriculum by which students develop the expected ways of
thinking and communicating. This process may be done in five steps.

1. Align the capstone course with the program outcomes. As we have noted, the typical role of the capstone is to
provide a bridge for students between the university and the workplace. It is where students engage in activities
that encourage them to synthesize and apply what they have learned in a context that mimics the workplace.
Thus, ideally, a capstone would reflect the ways of thinking and communicating in the program outcomes. So
addressing the curriculum would begin with a review of the capstone in light of the outcomes and, where it is
found wanting, to revise it.

2. Analyze the capstone for complexity of its communication assignments. If the capstone represents the
ultimate student experience in preparation for the workplace, then it also serves as a target for the preparation
of students earlier in the curriculum. A curriculum should be structured so that it enables students to develop the
technical and communication abilities necessary to take full advantage of the opportunities in the capstone. We
have defined development of communication (and thus technical) abilities as a growth in the sophistication of
the communication, a growth that is guided by the increasing complexity of communication assignments.

Table 3. Selected communication outcomes focusing on software development for students to learn and to

demonstrate that they have learned the ways of thinking in Table 2

To demonstrate that graduates have achieved the general program learning outcomes, they should be able

to:

1. Present in writing or orally a critical assessment of a problem situation defined by a need for software to
be developed for solving the problem: (a) collect information from sponsors, end-users, and on-site
observations, (b) analyze that information (c) use the analysis to define the problem in terms of the
stakeholders’ needs and goals for addressing those needs.

2. Write requirements representing the stakeholders’ needs and goals in such a way that the requirements
can be applied in a design by others.

3. Read requirements for various purposes, such as to inspect and correct them, to validate them as meeting
the user’s needs, to revise them so that they better meet user’s needs, to implement them in a design,
and to identify what students don’t know and what they need to know to create code.

4. Write a design that accommodates the defined system requirements—including considerations of privacy,
security, and efficiency—so that a developer can implement the application.

5. Read a design for various purposes, such as to ensure it can accomplish the requirements and, where it
does not, redesign until it meets the requirements and to translate it into code.

6. Write a program to conform to a specified design so that it is usable, testable, and modifiable by others.

Write a narrative description of code, including a list of file names or directories included.

8. Read code and comments for various purposes, to find and correct errors in syntax and semantics, to
determine what a program is supposed to do, to revise a program so that it accomplishes what it is
supposed to do, to modify a program for different purposes, to ensure that a program conforms to system
requirements and conforms to design, to provide productive feedback to those who created it, to
continue a program begun by someone else, and to apply it to new uses.

9. Write a developer guide that is appropriate to the audience.

10. Write a user guide that is appropriate to the audience.

11. Present in writing or orally a test plan and results of testing that identifies ways in which the software
does not meet the requirements.

12. Work effectively in teams: (a) develop ground rules to guide the team’s approach to work; (b) define roles
so that expectations of team members are clear and followed, (c) create agendas and minutes for team
meetings; (d) interact with other team members in ways that assure the productive contributions of all
team members; (e) create specific action items for each member and then hold him or her accountable; (f)
identify, create, and manage the tools that enable teams to work effectively; (g) resolve conflicts among
team members.

N

Therefore, as a goal for the development of students in the curriculum, the capstone’s assignments need to be
analyzed for their complexity in the five dimensions we have presented.

3. Assess the present curriculum for preparation of students for the capstone. This assessment is necessary for
revising the curriculum. The question to be answered is, where in the curriculum are students engaging and
receiving instruction and guidance in the genres they must use in the capstone? That information could be
derived from a survey of faculty and/or students or an analysis of syllabi. The first principle we discussed above
suggests that students should be given opportunities to participate in the genres of the field at all levels. The goal
of this assessment, then, is to identify gaps in students’ preparation, what genres are missing or are being under
taught. For practical purposes, it may be better to focus only on the required core courses in the curriculum.

4. Revise the curriculum so that it better prepares students for the capstone. Any gaps for genres in the
curriculum exposed by the assessment are opportunities for improvement. Where there are genres missing or
used in only one course, where else should they be used? The goal is not just to determine where genres are to
be included but also the growth in sophistication of students’ work in those genres. It is important that the
appropriate levels of complexity of assignments be considered. For example, students may experience a genre
for the first time in an introductory course by reading it rather than writing it. In that instance, instruction would
be designed to make students aware of the name of the genre, its role in the development of software, and

perhaps its features. In this way, many genres may be introduced to students in their first required course to
initiate their development in the field.

5. Assess the revisions to the curriculum to determine if students are better prepared when they reach the
capstone. Did the addition or modification of how genres are presented in earlier classes increase the ability of
students to perform in the capstone course?

5. CREATING A LEARNING PROGRESSION: AN EXAMPLE

In this section, we will describe our experience at NC State in creating a learning progression for the development
of technical and communication abilities in our curriculum. We follow the steps outlined in Section 4, and
provide details about our understanding at each step.

5.1 Step 1: Align the Capstone

For step 1, we determined the alignment of our capstone course to the program outcomes (as shown in Tables 2
and 3). The capstone course consists of a semester long team project. Student teams, ranging from a size of two
to four, complete a project for an external customer. The teams follow the software development lifecycle by
eliciting requirements from a customer, creating an SRS, designing, implementing, testing, and delivering a
solution that meets the requirements to the customer at the end of the semester. Throughout the capstone
experience, the student teams report on their progress using all of the genres listed in Table 1. The capstone
focuses primarily on software development, and we found that it encompasses all the ways of thinking and
communicating associated with that area. Most students do a standard software development project in the
course.

5.2 Step 2: Complexity Analysis of Capstone

For step 2, we created a table by which we analyzed the five dimensions of situational complexity of the
communication genres of the capstone course (see Table 4). We focused on five key genres: problem definition,
SRS, design expression, code and comments in the code, and testing. Table 4 shows each major genre involved in
the capstone and describes the situational complexity of each of these genres.

In the capstone course, students create full expressions of all genres that are integrated and supportive of other
genres. These expressions are further complicated by complex and changing requirements from the customers.
Therefore, many of the expressions require modification over the course of the semester so that all expressions
represent the current state of development. The instructors review the expressions and provide guidance, but
ultimately it is up to the student team to produce the expressions of all genres. The complexity associated with a
team project requires that all members of the student team agree on the delivered communication.

Table 4. Sample capstone complexity analysis

Increasing
Complexity
Requires

Genre

...longer response

... more complicated
response

...response in multiple
genres

..greater independence
of students

...more students to
contribute

Problem Definition

Students are given
problem statement, but
work with the
sponsor/mentor for ~1
week to understand
intricacies/demo of
problem.

Problem is usually related
to sponsor environment,
oftentimes unfamiliar to
student.

Subsequent components of
software
development/related
documents are dependent
on proper statement of
problem.

After first mentor meeting,
instructor no longer
directly participates with
students on problem
definition.

Student team must agree
upon problem definition
before creating SRS.

SRS

Students spend about 2
weeks creating and
revising the requirements;
often change & developed
iteratively.

The situations are usually
very complicated, with
multiple functions and an
unfamiliar domain that
requires extensive
research.

The system requirements
are included with all the
major genres in the
resulting technical report.

Students work
independently of the
instructor, who acts
primarily as a project
manager.

Teams: 2-4 students. Most
team meetings are outside
of class & thus require
careful scheduling.
Agendas & minutes for all
meetings are required, as
well as for all meetings
with the instructor. They
work in teams for the
whole semester.

Design Expression

Expression of design
accommodates SRS and is
usually created iteratively;
often begins as diagram;
evolves to multiple
diagrams with
accompanying descriptive
narrative.

Changes throughout
course of development to
accommodate need for
effectiveness & efficiency.

Design accommodates
requirements and serves as
roadmap for code
development.

Students are often
required to create designs
independently of
instructor; must defend
design decisions when
presented to instructors.

Design processed & agreed
upon by entire team
provides vision for all &
launching point for
individual implementation.

Code and Comments
in Code

Implementation of an
entire system based on
problem, requirements and
design is expected; coding
& commenting
conventions are defined.

Code will be updated as
requirements and design
are developed iteratively
and as testing reveals
issues.

Implemented system must
accommodate original
system requirements.

Code & comments done
independently, but
reviewed by instructors.

Team participates in code
review.

Testing

Comprehensive testing
required: Unit tests,
acceptance tests & code
reviews of application are
expected.

Comprehensive testing
means that multiple types
of testing and testing
frameworks are utilized.

Tests must verify and
validate correctness of
system implementation
with system requirements.

Test frameworks used and
test code and documents

are chosen and developed
individually, but reviewed
by instructors.

Code is tested by team
members other than
coder; code reviews are
done by team members.

5.3 Step 3: Assess Earlier Coursework

For step 3, we considered two sources of information to help us assess students’ preparation in CS/SE genres in
earlier coursework in the curriculum: 1) an informal survey given to capstone students on the first day of the
course and 2) an evaluation of earlier courses that identify the genres used and the progression of those genres.

The primary purpose of the survey was to gauge the level of students’ preparation in communication in the field
to better meet their needs. The Appendix lists the survey questions and a short version of the response sheet.
We found that the capstone students’ experience with the genres of the field took place almost exclusively in
Software Engineering, a junior level course and the prerequisite course for the capstone.

We narrowed the courses analyzed to three courses in the core of the undergraduate curriculum: the first
programming course (CS1), the second programming course (CS2), and software engineering (SE). The courses,
as taught at NC State, are further described below and the genres evaluated in each course are summarized in
Table 5.

Table 5. Summary of genres in evaluated courses

Course

Genre

Cs1

Ccs2

SE

Capstone

Problem Definition

Provided by instructors.

Provided by instructors.

Provided by instructors.

Provided by external client

SRS

Provided by instructors

Provided by instructors as use
cases.

Provided by instructors as use
cases.

During the last project (instructor
dependent), the students may be
required to write one or more use
cases after interacting with a
“customer”.

Written by students and reviewed
by instructors.

Design Expression

Provided by instructors.

Students create a design document
as part of Iteration 0. Design
imposed on the students for later
iterations (to facilitate automated
grading).

At project conclusion, students
reflect on their design document vs.
the instructor’s design document.

Students design their modifications
to an existing system.

Written by students and reviewed
by instructors

Code and
Comments in Code

Students conform to instructor
design and comment their code in
their own words.

Students conform to instructor’s
design and comment their code in
their own words. Javadoc HTML
files are generated from student’s
in-code commenting

Students implement their design
and comment their code.

Written by students and reviewed
by student teams in code
inspections.

Testing

Students create black box test plans
and implement white box test code

Students create and revise black
box test plan. Students show actual
results of running the tests.

Students write automated unit test
code and achieve 100% method
coverage on all model code.

Students implement automated
tests. Students run manual
acceptance tests.

Students maintain 80% statement
coverage on all of their code.

Written by students and reviewed
by instructors.

10

CS1: CS1 is an introduction to programming course taught in Java. The learning outcomes for the course cover
technical topics related to syntax, flow of control, console 1/0, file I/0O, arrays, and objects. The course introduces
object from the Java APl early (e.g. Scanner) but students write their own objects late. The class meets twice a
week in a one-hour and fifty minute integrated lecture lab. Course enrollment is capped at 33. In addition to the
instructor, there are two (typically) undergraduate TAs in the classroom at all time. Lecture is interspersed with
pair and share activities and programming tasks for the students to complete.

There are six programming projects for CS1. The projects are completed individually. Some class time may be
allocated to work on the projects, but that varies by instructor and semester. The projects require the students
to implement code, following an instructor provided design, to solve a simple problem. Additionally, students
are required to Javadoc their source code. The first five projects are solvable in a single Java class and may
contain two to five methods in addition to the main method. Most functionality is moved out of the main and
the design is intended to implicitly teach students about model-view-controller. Some of the early projects are
broken into two parts, where each part requires the implementation of a separate program. The sixth project is
an OO project, where students write a program consisting of three to five interacting classes. The project
typically has a GUI front end that is provided by the instructors. Students are provided a detailed design and
guidance on which classes they should implement first.

Starting with project 3 or 4, students additionally write and submit black box test plans and automated white box
tests. Students are provided templates or starting examples/code for both types of test (as appropriate for the
project).

CS2: CS2 is a programming concepts course taught in Java. CS2 picks up where CS1 leaves off with a review of
OO0 programming. From there, students learn about advanced OO topic lik inheritance, polymorphism, abstract
classes, and interfaces. We then cover the software engineering lifecycle, linear data structures, recursion, finite
state machines, and time permitting GUIs, searching and sorting. Class size may range from 60-100 depending on
the semester. There are one to two instructors in a given semester with three to four undergraduate TAs.
There are three programming projects for CS2. Each programming project consists of three to four
iterations. Students are provided the requirements as use cases. In class, the students will inspect the
requirements and provide feedback to the instructors. From there the requirements are updated. The first
Iteration, Iteration O, requires that students create a design and black box test plan for the project. With the
start of Iteration 1, students are provided a design to facilitate automated grading using an online testing
program called Web-CAT". Iteration 2 (and following iterations, if any) build on the earlier iteration by requiring
additional functionality or some other modification to the system. For each Iteration greater than zero, students
submit their code and unit tests to Web-CAT. Web-CAT runs the instructors tests against the student’s code and
provides feedback on the syntax of their code and comments using built in static analysis tools. Students also run
(and revise) their black box test plan and report the results of the tests. During the last iteration, students
evaluate their team and reflect on the project. The reflection includes a comparison of the student’s design and
the instructor’s design for the project.

SE: Software Engineering is a junior level course. The course consists of two 50 minutes lectures and a one-hour
and 50 minute closed lab lead by graduate TAs. Each semester of students continues development on a large
project called iTrust’. iTrust is an online medical records application. The iTrust project has been worked on by
10-12 semesters of students. The class consists of four homeworks and one six-week long project. The first
homework is trivial and not associated with iTrust, so it will not be discussed further here.
Of the remaining three homeworks, two are paired and the third is solo. Students complete a number of tasks
that require delivery of many artifacts from the different phases of development. Each homework is divided into
two one-week iterations to help break up the load and mimic the SE lifecycle.
The team project consists of requirements elicitation, requirements development, design, implementation,
testing, and maintaining the current system. Students present their work to the lab and possibly the class.

! Information about Web-CAT is available at: http://www.web-cat.org/.
? Information about iTrust is available at: http://agile.csc.ncsu.edu/iTrust/wiki/doku.php.

11

In Tables 6-9, we describe each of the progressions for a specific genre using complexity analysis across the four
courses under analysis. Table 6 describes the complexity analysis of SRS, Table 7 describes the complexity
analysis of design expressions. Table 8 describes the complexity analysis of code and comments in the code.
Table 9 describes automated testing. These tables will serve as the resources for the analysis covered in Section
5.4.

12

Table 6. SRS progression

Increasing CSs1 CS2 SE Capstone
Complexity
Requires
... longer Requirements provided by the Requirements provided by the Students enhance an existing Students write their own
response instructor, typically in paragraph instructor as use cases. Project system of over 50 use cases. requirements. Student create and
form. contains multiple Requirements provided by revise requirements; often change
iterations. Number of use cases instructor as use cases for early & developed iteratively.
increases between iterations. homeworks.
Students write requirements as part
of the final project. Typically
addition of four to seven use
cases. Students consider cross-
cutting concerns (logging, privacy,
security, etc.).
... more Requirements are straight forward Requirements are straight forward The situations are complicated with | The situations are usually very
complicated and fully defined. and fully defined. Modeled as use multiple functions and an complicated, with multiple
response cases. unfamiliar domain that requires functions and an unfamiliar domain

extensive research. Cross-cutting
concerns must be addressed.

that requires extensive research.

... response in
multiple genres

The requirements are provided to
the students in a document that
also outlines the design,
implementation, and test details.

The requirements separated from
the design and implementation
details required to complete the
project.

The requirements are basis for
other genres, like design expression
and black box test plan.

The requirements are include with
all the major genres in the resulting
technical report.

... greater

The requirements are provided by

The requirements are provided by

The requirements are provided by

Students work independently of the

independence the instructor. the instructor and inspected by the | the instructor for early instructor, who acts as project
of students students before requirements are homeworks. The requirements manager.
finalized. elicited from instructor as customer

for final project; student

requirements incorporated into

final SRS.
... more Students work individually outside Students work individually or in two | Students work in pairs or teams. In Teams: 2-4 students. Meetings
students to of class. to three member teams outside of closed labs or outside of class. outside of class time.
contribute class.

13

Table 7. Design progression

Increasing Cs1 CS2 SE Capstone

Complexity

Requires

... longer Students provided design. Design accommodates SRS. Design accommodates SRS. Design accommodates SRS and is

response Contains low-level diagram and Contains at least one diagrams and created iteratively; begins as
accompanying descriptive accompanying descriptive diagram; evolves to multiple
narrative. narrative. diagrams with accompanying

descriptive narrative.

... more Students provided design. Contains low-level diagram and Design considers cross-cutting Changes throughout development

complicated accompanying descriptive concerns and must accommodate to accommodate need for

response narrative. existing and new use cases. effectiveness & efficiency.

... response in
multiple genres

The design is provided to the
students in a document that also
outlines the requirements,
implementation, and test details.

Design accommodates SRS.

Design accommodates SRS and
serves as roadmap for code
development.

Design accommodates
requirements and serves as
roadmap for code development.

... greater Students provided design. Students submit their own design; Students create design Students required to create designs
independence instructor evaluates design. independent of instructor; independent of instructor; must
of students Students implement the instructor instructor evaluates design. defend design decisions when
design. Students reflect on the two presented to instructor.
designs.
... more Students work individually outside Students work individually or in two | Students work in pairs or teams in Design processed & agreed upon by
students to of class. to three member teams outside of closed labs or outside of class. entire team; provides vision for all
contribute class. & launching point for individual

implementation tasks.

14

Table 8. Code and comments in code progression

Increasing
Complexity
Requires

Cs1

Ccs2

SE

Capstone

... longer response

Implementation of very small
program based on SRS, and design;
coding & commenting conventions
are defined.

Implementation of small program
based on SRS and design; coding &
commenting conventions are
defined.

Modification and extension of
existing medium system based on
problem, SRS, and design; coding &
comment conventions are defined.

Implementation of entire system
based on problem, SRS, and design;
coding & commenting conventions
are defined.

Modification and extension of

... more Code updated as testing reveals Code updated as testing reveals Code updated as SRS and design
complicated issues. issues; second iteration involves existing medium system. Code are developed iteratively and as
response extension of existing system. updated iteratively in final project testing reveals issues.

and as test reveals issues.
... response in Implemented system must Implemented system must Implemented system must Implemented system must

multiple genres

accommodate original SRS.

accommodate original SRS.

accommodate original SRS.

accommodate original SRS.

... greater
independence of
students

Code & comments done
independently, but reviewed by
instructors.

Code & comments done
independently, but reviewed by
instructors.

Code & comments done
independently, but reviewed by
instructors.

Code & comments done
independently, but reviewed by
instructors.

... more students
to contribute

Students work individually outside
of class.

Students work individually or in two
to three member teams outside of
class. Groups participate in code
review.

Students work in pairs or teams in
closed labs or outside of class.
Groups participate in code review.

Team participates in code review.

15

Table 9. Testing progression

Increasing Cs1 CS2 SE Capstone

Complexity

Requires

... longer Black box test plan and Black box test plan, unit tests, & code | Comprehensive testing required: Comprehensive testing required: unit

response automated unit tests. reviews. 100% method coverage of unit tests, acceptance tests & code | tests, acceptance tests & code reviews.
model code. reviews. 80% statement coverage.

... more Black box test plan and Black box test plan, unit tests, & code | Comprehensive testing means that | Comprehensive testing means that

complicated automated unit tests. reviews. Unit tests use 3™ party multiple types of testing and multiple types of testing and testing

response testing framework. testing frameworks are utilized. frameworks are utilized.

... response in
multiple genres

Tests must verify and validate
correctness of system
implementation with SRS.

Tests must verify and validate
correctness of system
implementation with SRS.

Tests must verify and validate
correctness of system
implementation with SRS.

Tests must verify and validate
correctness of system implementation
with SRS.

... greater Templates of black box test Test frameworks selected by Test frameworks selected by Test frameworks used and test code

independence plan and automated unit tests | instructor. Tests developed instructor. Tests developed in and documents are chosen and

of students provided. Students write individually or in pair/team; pair/team; evaluated by developed individually, but reviewed
tests; evaluated by instructors. | evaluated by instructors. instructors. by instructors.

... more Students work individually Students work individually or in two Students work in pairs or teams in Code is tested by team members other

students to outside of class. to three member teams outside of closed labs or outside of class. than coder; code reviews are done by

contribute class. Groups participate in code Groups participate in code review. | team members.

review.

16

5.4 Step 4: Revisions to curriculum

Using the progressions for common genres from the software development lifecycle, we can identify potential
revisions to the curriculum. For example, we may want to add assignments or resources about a given genre to a
course to fill a gap in the progression. We may also want to adjust how we use a genre at a particular level. The
current progressions listed in Tables 5 through 9 already demonstrate a significant revision of our CS1 and CS2
courses to fill in gaps in the curriculum.

In filling the curriculum gaps, we identified that one potential for difficulty is that different terms were used for a
same genre in different courses. The inconsistency of vocabulary may confuse students and lead to incorrect
ideas about important genres. One of the major initiatives was to use a common vocabulary across all of the
stakeholder classes. A meeting of all interested parties discussed the terms that we could use to describe genres
within the software development lifecycle.

When studying the progression of genres across the curriculum, we found that the project write-ups in CS1 were
lacking in simplified versions of many of our genres and the terminology used was not consistent with
terminology used in the capstone. We have adapted our CS1 offering so that most of the genres are presented
to the students in a consistent manner and provide simplified examples of those genres in the field at a level
appropriate for the students. While we still maintain a single assignhment document for each programming
project in the course, the document is now subdivided into sections that are small examples of the problem
statement, SRS, design expression, and testing genres. The design is provided for the students, but the instructor
follow good design practices, in particular separating logic code from user interface code. When instruction
reaches the point of the model-view-controller (MVC) pattern, the instructor can refer to earlier designs that
help students accept the pattern. Additionally, students are provided numerous examples, especially of testing
resources in both a black box test plan and for automated white box tests.

The CS2 course has a learning outcome regarding the software development lifecycle, but many of the genres
were lightly covered in the course and more through example than practice. Identifying these gaps in the CS2
course have allowed for revision of the course structure to allow for a deeper exploration of key genres at a level
appropriate for second semester programming students. In our current CS2 offering, students are expected to
work with writing their own versions of most of the genres. For each of the projects, students are exposed to SRS
in the form of use cases. Students inspect the requirements for clarity and consistency. As part of the
requirements inspection report, students write a one to two sentence problem statement. From the
requirements, students create their own design expression that includes a UML diagram showing the objects and
relationships in a system. The design expression includes a rationale to justify their design. Students create a
black box test plan from the requirements before implementing a line of code. During the development phase of
the project, students implement the instructor’s design. This allows for students to work with a consistent design
that will allow for implementation success and also facilitates automated grading of student work. Students
write their own automated unit tests using a 3™ party library.

All code in CS2 should be documented and students generate their own API documentation from the Javadoc in
their code. Comments are graded on style and on content. Upon completion of the projects, students compile a
survey of several reflective questions about the project. One of the questions asks the students to compare and
contrast their design with the instructor’s design.

However, improvement in CS2 is ongoing. One current gap in the CS2 course is that problem statements are
minimally used. While students are required to summarize the project in one to two sentences as part of the
requirements inspection, the instructor does not provide a full problem statement for the project as an example.
Future work will include incorporation of more example problem statements.

The SE offering did not require much modification. We identified a gap where in some semesters students did
not write their own SRS for the team project. Writing an SRS as part of the team project is now incorporated into
most offerings of SE. To manage complexity, the instructor provides a final version of the SRS, but input is
considered from the best of the student’s contributions.

17

Another gap in SE that will be addressed in future work is the lack of a graded deliverable for maintaining and
updating the system design, especially for the six week team project. The design is completed in one of the early
iterations, and changes to the design that are made during implementation are not required to be documented.
Adding design modification as a graded deliverable to the SE class would provide additional practice on
maintaining design expressions.

5.5 Step 5: Assessment

Assessment to evaluate the effect of changes in the curriculum on the performance of students is essential for
verifying that our modifications are of value. Most of the effort in adapting the curriculum has occurred in the
2010-2011 and 2011-2012 academic years. Students in the capstone course were surveyed in the Fall of 2010
and that survey helped us identify that students are not seeing or using genres in the CS1 and CS2 courses. We
will run the survey in the 2012-2013 academic year’s capstone classes to observe if there is a measurable
difference in students reporting their usage of various genres in CS1 and CS2.

6. CONCLUSION

We have described and presented an example of a process for enhancing CS/SE students learning by integrating
communication in the curriculum. This process is based on the idea that communicating in the genres of a
discipline promotes learning of both technical and communication skills in the discipline [2], [3], [4]. The
apprenticeship model we have applied here suggests that to learn effectively, students should participate as fully
as appropriate in the activities of experts in the field under the guidance of those experts [9]. In the academy, it is
the professors in each discipline who function as the experts, providing students instruction and experiences
designed to develop the technical and communication abilities of the disciplines. In CS/SE, this means creating
learning situations similar to those students will encounter as professionals in the field, situations in which
technical and communication deliverables are integrated.

This integration could elevate the profile of communication in CS/SE. It becomes a field in which excellence in
communication is valued along with excellence in technical skills. Changing the perception of CS/SE to a discipline
that values communication along with technical skills, one that stresses social interaction rather than individual
work, could have the effect of attracting students who are more comfortable with that approach, such as women
and underrepresented minorities.

ACKNOWLEDGMENTS

This work was funded by NSF CPATH-IIl Award CCF-0939122. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation (NSF).

REFERENCES

[1] Bates, F. E. and Connor, D. A. Industry Survey for the University of Alabama at Birmingham (UAB): 2005
Electrical Engineering Curriculum Survey. Proceedings of the 24th Annual Frontiers in Education
Conference. (2-6 November, 1994), pp. 242-255.

[2] Carter, M. Ways of Knowing, Doing, and Writing in the Disciplines. College Composition and
Communication. Vol. 58, No. 3, (February, 2007), pp. 385-418.

[3] Carter, M., Ferzli, M. and Wiebe, E. Teaching Genre to English First-Language Adults: A Study of the
Laboratory Report. Research in the Teaching of English. Vol. 38, No. 4, (May, 2004), pp. 395-419.

[4] Carter, M., Ferzli, M. and Wiebe, E. N. Writing to Learn by Learning to Write in the Disciplines. Journal of
Business and Technical Communication. Vol. 21, No. 3, (July 2007), pp. 278-302.

[5] Carter, M., Gannod, G., Burge, J., Anderson, P., Vouk, M. and Hoffman, M. Communication Genres:
Integrating Communication into the Software Engineering Curriculum. Proceedings of the 24th IEEE-CS
Conference on Software Engineering Education and Training, (22-24 May, 2011), pp. 21-30.

[6] Ford, J. D. and Riley, L. Integrating Communication and Engineering Education: A Look at Curricula,
Courses, and Support Systems. Journal of Engineering Education, Vol. 92, No. 4, (2003), pp. 325-328.

[7] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley. 1994.

18

(8]
(9]

(10]
(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Henderson, K. Educating Electrical and Electronic Engineers. Engineering Science and Education Journal.
Vol. 6, Issue 3, (1997), pp. 95-98.

Lave J. and Wenger, E. Situated Learning: Legitimate Peripheral Participation. Cambridge: Cambridge
University Press. 1991.

Miller, C. R. Genre as Social Action. Quarterly Journal of Speech. Vol. 70, Issue 2, (1984), pp. 151-167.

Orr, T. Genre in the Field of Computer Science and Computer Engineering. IEEE Transactions on
Professional Communication. Vol. 42, No. 1, (1999), pp. 32-37.

Paretti, M. C. Teaching Communication in Capstone Design: The Role of the Instructor in Situated Learning.
Journal of Electrical Engineering. Vol. 97, No. 4, (2008), pp. 491-503.

Pinelli, T. E., Barclay, R. O., Keen, M. L., Kennedy, J. M. and Hecht, L. F. From Student to Entry-Level
Professional: Examining the Role of Language and Written Communications in the Reacculturation of
Aerospace Engineering Students. Technical Communication. Vol. 42, No. 3, (1995), pp. 492-503.

Reave, L. Technical Communication Instruction in Engineering Schools: A Survey of Top-Ranked U.S. and
Canadian Programs. Journal of Business and Technical Communication. Vol. 18, No. 4, (2004), pp. 452-490.
Riley, L. A., Furth, P. M. and Zellmer, J. T. Assessing Our Engineering Alumni: Determinants of Success in
the Workplace. Proceedings of the 2000 ASEE/Gulf-Southwest Sectional Annual Conference. (2000),
Section 73A1.

Sageev, P. and Romanowski, C. J. A Message from Recent Engineering Graduates in the Marketplace:
Results of a Survey on Technical Communication Skills. Journal of Engineering Education. Vol. 90, No. 4,
(2001), pp. 685-697.

Vest, D., Long, M. and Anderson T. Electrical Engineers’ Perceptions of Communication Training and Their
Recommendations for Curricular Change: Results of a National Survey. IEEE Transactions on Professional
Communication. Vol. 39, Issue 1, (March, 1996), pp. 38-42.

Wolfe, J. How Technical Communication Textbooks Fail Engineering Students. Technical Communication
Quarterly. Vol. 18, No. 4, (September, 2009), pp. 351-375.

19

APPENDIX

Below is the survey given to students in the capstone course. For each activity listed in the survey, students
would circle the course number if they did the activity in the course. Students would then indicate the
importance of the activity in the course on a scale of low, medium or high. Students would also rate their
confidence level in performing the activity. The Answer Sheet for the first question is provided.

ANSWER SHEET

If you have done the activity, circle the course or courses you did it in. If other, fill in Circle your confidence
course number. To indicate the level of importance of the activity in the course, circle level in performing

low, medium, or high. this activity
1. Cs1 CS2 Data Struct. SE Other: L M H
L M H L M H L M H L M H L M H

CSC 492 - Fall 2010 - Survey

To help us provide instruction you need to succeed in this course, we would like to know about your experience
with the kinds of activities you may be doing this semester. On this sheet, you will find a list of various activities
associated with computer science and software engineering. For each of these activities, fill in your answer on
the answer sheet.

1. Have you written a problem statement (defining a problem to be solved by software in order to meet the
needs of an end-user)?

2. Have you presented a problem statement orally?
3. Have you written requirements (description of what a program should do)?

4. Have you analyzed requirements to determine what you know and what you need to know in order to
implement the requirements in a program?

5. Have you inspected and corrected requirements (your own or others’)?

6. Have you reviewed requirements to verify whether or not they meet users’ needs?
7. Have you revised requirements so that they better meet users’ needs?

8. Have you written a design that translates requirements for implementation?

9 Have you reviewed a design to determine if it will accomplish the requirements?
10. Have you revised a design so that it will better accomplish the requirements?

11. Have you written a program based on a design?

12. Have you reviewed a program to find errors of syntax and semantics?

13. Have you corrected errors of syntax and semantics in a program?

14. Have you read a program to determine what it is supposed to do?

15. Have you revised a program so that it is better able to do what it is supposed to do?

16. Have you modified a program for a different use?

20

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Have you inspected a program to ensure that it conforms to requirements and design?
Have you continued writing a program that had been begun by someone else?

Have you written a narrative description of code, including a list of file names or directories included?
Have you written a developer guide?

Have you written a user guide?

Have you written a plan for testing a program?

Have you presented orally a plan for testing a program?

Have you written a report of the results of a test of a program?

Have you presented orally the results of a test of a program?

Have you revised a program based on the results of a test of that program?

Have you read a technical article in the field of computer science?

Have you summarized or analyzed a technical article in the field?

Have you used technical articles in the field to enhance your knowledge to help
answer a question or solve a problem?

After using technical articles to answer a question or solve a problem, have you
reported out (either orally or in writing) on that activity?

Have you worked on a team that developed ground rules used to guide your team’s work approach?

Have you worked on a team that defined roles so that expectations of team members were clear &
followed?

Have you worked on a team that created meeting agendas and minutes?

Have you worked on a team that regularly facilitated meetings so that everyone contributed to the
meeting?

Have you been on a team that worked on consensus development?
Have you worked together on a team to develop an audience-sensitive oral report?
Have you worked together on a team to develop an audience-sensitive written report?

Have you worked on a team that created specific action items for each member who was then held
accountable for those items?

Have you worked on a team that freely gave feedback to one another?

Have you worked on a team where all team members had a general understanding of how your project or
assignment worked and how their individual piece specifically contributed to the project or assignment as a

whole?

21

