
GSK: Universally Accessible Graph SKetching
Suzanne Balik, Sean Mealin, Matthias Stallmann, and Robert Rodman

ABSTRACT
Combinatorial graphs, often conveyed as node-link diagrams,
figure prominently in Computer Science and other Science,
Technology, Engineering, and Mathematics (STEM) disciplines.
Unfortunately, they are most often inaccessible to blind students
and professionals. This paper introduces GSK, a self-contained
Graph SKetching tool, that allows blind and sighted people to
easily create, edit, and share graphs in real-time using interaction
mechanisms (mouse, keyboard, monitor, screen reader) that are
standard for them. GSK was successfully used by a blind
Computer Science student and his sighted instructors to create and
access graphs specific to his automata theory and operating
systems courses. Our hope is that GSK will enable more blind
STEM students and professionals to actively participate in their
disciplines by providing them and their sighted colleagues with a
cross-collaboration tool that allows them to share graphs just as
easily as they share text and word processing documents.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management – deadlocks;
F.1.1 [Computation by Abstract Devices]: Models of
Computation – automata; F.1.3 [Computation by Abstract
Devices]: Complexity Measures and Classes – reducibility and
completeness; G.2.2 [Discrete Mathematics]: Graph Theory;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces; K.3.2 [Computers and Education]: Computer and
Information Science Education; K.4.2 [Computers and Society]:
Social Issues – assistive technologies for persons with disabilities.

General Terms
Human Factors.

Keywords
Universal Design, Accessibility, Computational Equivalence.

1. INTRODUCTION
We developed GSK, a self-contained Graph SKetching tool, to
provide a universally accessible means of creating, editing, and
sharing combinatorial graphs, also known as node-link diagrams.
A combinatorial graph consists of nodes joined by edges. While a

very simple structure, it figures prominently in Computer Science
and other Science, Technology, Engineering, and Mathematics
(STEM) disciplines.1

2. DESIGN CONSIDERATIONS

 Entity relationship diagrams, finite-state
machines, various Universal Modeling Language (UML)
diagrams, resource-allocation graphs, chemical molecules, etc.,
are all represented using (combinatorial) graphs. Unfortunately,
these representations are generally not accessible to blind students
and professionals forming a barrier between them and active
participation in STEM fields. Our goal is to help remove that
barrier by providing blind people with the means to independently
create and use graphs in a variety of disciplines for knowledge
representation and problem solving, and to easily share them with
sighted people.

The principles of universal design and computational equivalence
as well as a desire to level the playing field for blind people
guided our design of GSK.

2.1 Universal Design
Universal design principles espouse the development of products
that are equitable in use without segregating users [3]. A number
of applications have been developed separately and specifically to
provide blind users with access to various types of graphs [1, 2, 4,
6, 7, 9]. However, separate is most often not equal and it is
important that blind users be included in software applications
intended for universal use. Work is now underway to include
blind students in the use of JFLAP, a popular automata theory
platform [5]. Our prior experience with making our graph-based
automata theory application, ProofChecker, accessible to blind
students without affecting the sighted interface [10] inspired us to
do the same for generalized graph editing.
Text editors and word processing programs are useable by both
sighted and blind people via interaction mechanisms that are
standard for them (mouse, keyboard, monitor, screen reader).
When a blind and a sighted person are working together on a text
or word processing document, they have immediate access to
changes made by the other. GSK is designed to provide the same
type of experience for graph editing for both blind and sighted
people in terms of ease of use and document sharing.

2.2 Computational Equivalence
In order to use graphs for problem solving, it is important that
blind people have graph representations that are computationally
equivalent and not simply informationally equivalent to those

1 A recent issue of the Communications of the ACM (June 2011)

contained over 20 graphs representing networks, structural
equation analysis, page ranking, record assembly, and
verification pipelines, among other things, within its 128 pages.

available to sighted people. Larkin and Simon distinguish
between informational and computational equivalence as follows:
Two representations are informationally equivalent if all of the
information in the one is also inferable from the other, and vice
versa. Each could be constructed from the information in the
other. Two representations are computationally equivalent if they
are informationally equivalent and, in addition, any inference
that can be drawn easily and quickly from the information given
explicitly in the one can be drawn easily and quickly from the
information given explicitly in the other, and vice versa. [8]
Oftentimes graphs are provided to blind people in the form of
tables which are informationally equivalent but not generally
computationally equivalent to the node-link diagrams typically
used by sighted people. As one blind student studying finite-state
machines (FSMs) succinctly put it, he was “stuck in table mode”
while his sighted peers had the advantage of easily moving from
state to state of an FSM by following the edges (transitions) of a
node-link diagram representation.
To further illustrate this point, consider the following example
from automata theory. A deterministic finite automaton (DFA) is a
form of directed graph that is used to determine whether or not a
string (sequence of characters) is a member of a regular language.
A DFA is said to “accept” or “reject” a string in terms of
membership in its language. Table 1 and Figure 1 below provide
informationally equivalent representations of the same DFA, i.e.,
each could be created from the information provided in the other.

Table 1. Transition table representation of a DFA

δ a b
q0 q2 q3

 *q1 q0 q1
q2 q0 q1
q3 q2 q3

Figure 1. Node-link diagram representation of a DFA

In this example, the alphabet Σ = {a, b} and the set of states Q =
{q0, q1, q2, q3}. The first state in the transition table, q0, is the start
state and is designated as such by an incoming arrow in the node-
link diagram. The accepting state, q1 is preceded by an asterisk (*)
in the table and denoted by a double circle in the diagram. This

DFA may be used to tell whether or not a string consisting of 0 or
more a’s and b’s has an odd number of a’s and ends with b.
For example, to determine whether the string abbabab is accepted
by the DFA above involves moving from state to state while
reading the current input symbol as illustrated by the following
sequence of configurations:

(q0, abbabab) ⊢ (q2, bbabab) ⊢ (q1, babab) ⊢ (q1, abab) ⊢

(q0, bab) ⊢ (q3, ab) ⊢ (q2, b) ⊢ (q1, ε)
Because q1, the last state reached in the computation, is an
accepting state, the string is indeed in the language of the DFA.
Imagine a sighted person carrying out the above computation by
moving a finger back and forth and up and down the rows of the
transition table which is analogous to the way a blind person
would access an electronic form of the table. Using a table
representation, the time to determine the inclusion of a string w in
the language of a DFA is proportional to the number of states
times the size of its alphabet times the length of the string, or
borrowing from complexity theory, Ө (|Q| |Σ| |w|). On the other
hand a sighted person moving a finger from state to state of a
node-link diagram following the transition corresponding to the
current input symbol could complete the computation in time
proportional to the size of the alphabet times the length of the
string, or Ө (|Σ| |w|). For a DFA with a large number of states,
the time savings would be considerable. Thus, the two
representations are not computationally equivalent.
Our design of GSK aims to relieve blind students and
professionals of the disadvantage of being stuck in table mode and
instead provides them with the computational advantage of being
able to easily traverse the edges of a graph and otherwise
efficiently create, edit, and access graphs.

2.3 Leveling the Playing Field
Besides providing blind people with computationally equivalent
graph representations, we would like to help enable them to
function as independently and efficiently as possible in academic
and professional settings. All of the graphs shown in Figures 2, 7,
8, and 10 were drawn independently by a blind student, who is
also the second author of this paper. Using GSK, he was able to
communicate graphs with his automata theory instructors, create
and include graphs in documents for homework assignments, and
quickly render the graphs necessary to solve problems on an
operating system quiz. Our hope is that GSK will help to level the
playing field for more blind students and professionals allowing
them to fully participate in their disciplines alongside their sighted
peers.

3. OVERVIEW OF GSK
GSK is a Java application built using standard Swing components
that leverages the Java Accessibility API. It was developed and
tested on a Windows platform using the JAWS screen reader,
which requires the installation of the Java Access Bridge. The
bridge provides a communication mechanism between the screen
reader and the Java Virtual Machine (JVM). Being written in
Java, our hope is that GSK would port well to other systems and
use by other screen readers.

Figure 2. Connection View of an NP-Completeness Graph

GSK was developed as a collaboration between the sighted first
author and the aforementioned blind second author, which was
itself an exercise in universal accessibility. We found that the
Eclipse platform using SVN for version control worked well for
both of us. The ability provided by Eclipse to specify the
indentation level of our source code and correct the indentation
when necessary was particularly helpful. We used Microsoft
Word to prepare our initial design documents and a raised print
drawing kit whenever we needed to share a drawing of the
interface, control flow, etc. Eventually, we were able to use GSK
instead of the drawing kit to create and share simple flowcharts
that we used in the design of subsequent functionality.

3.1 Universal Accessibility Features
GSK is intended to appeal to both sighted and blind users. In
addition to providing a point-and-click interface, GSK is fully
keyboard accessible which is crucial for blind users and in fact
required by Sec. 508 accessibility guidelines. This helps make
GSK useable by a wide group of users including those with
mobility or other impairments.
Providing programmatic focus and an effective navigation
scheme is also crucial for blind users. While sighted users can
easily rest their gaze on any item on the screen, blind users must
use the keyboard to navigate from item to item. When using GSK
to examine a graph, the node or edge with focus is designated as
the current or selected node/edge. Whenever focus is changed to a
different node or edge, its name is announced by the screen reader
in use by the blind user. The currently selected node or edge is
also highlighted thus providing a visual focus indicator, especially
important for sighted users navigating via the keyboard.
In order for blind users to create and share graphs with sighted
people, they must be able to position the nodes in such a way that
they are visually viewable. GSK facilitates this by providing blind
users (and other users) with the means to specify the spatial
layout of a graph.

Figure 3. Grid View of Graph in Figure 2

3.2 The GSK Interface
The GSK interface shown in Figures 2 and 3 above provides two
different views of the same graph, Connection View and Grid
View. The user may easily switch between the two views
depending on which is more appropriate for the task at hand. In
addition to the large central panel where the graph is displayed,
the interface contains a menu bar with File, Edit, Graph, View,
and Help menus as well as a tool bar with Open, Save, Remove,
and Add Edge buttons. A status bar at the bottom provides
information about the currently selected node/edge or, in the
absence of a graph, the name of the view. When a screen reader is
in use, the status is announced whenever it changes thus allowing
a blind user to track focus changes. Appropriate mnemonics and
keyboard shortcuts are also provided thus allowing for multiple
means of accessing each function of the interface. Graphs may be
saved in .gsk format and/or exported as PNG images.
The benefits of Connection View and Grid View as well as their
use in creating, editing, and navigating graphs is described below.
Switching between the views is accomplished via the View Menu.

3.2.1 Connection View
Connection View provides the typical point-and-click interface
and node-link diagram representation of a graph to which sighted
users are accustomed. It is also useful for blind users in that it
allows them to navigate a graph via the keyboard. When working
together, changes to a graph that are immediately visible to a
sighted user are announced to a blind user via the screen reader.

3.2.1.1 Creating, Editing, and Removing Nodes
In Connection View, a new node is created by double-clicking on
an empty space on the graph panel. The Node Properties dialog
box shown in Figure 4 is then displayed with default values for
the node name, X and Y Locations in Grid View, shape, height,
width, and color, any of which may be changed, if desired.
Currently available node shapes include general oval and
rectangle shapes as well as shapes pertaining to automata theory –
accepting state, accepting/start state, start state, and state. We
plan to add shapes for other domains such as flow charts, UML

Figure 4. Node Properties Dialog Box

diagrams, etc. and have designed GSK to make this extension
relatively straightforward.
The properties of an existing node may be edited by double-
clicking on the node or by selecting the node and pressing Enter,
both of which bring up the Node Properties dialog box. A node
may be moved by changing its X and/or Y position or by dragging
it to a different position. A node may removed by selecting it and
pressing the Delete key, selecting Remove from the Graph menu,
or pushing the Remove button on the toolbar. Whenever a node is
removed, its edges are removed as well.

3.2.1.2 Adding, Editing, and Removing Edges
An edge may be added to the selected node by pushing the Add
Edge button on the toolbar, selecting Add Edge... from the Graph
menu, or entering CTRL+E. The Edge Properties dialog box
shown in Figure 5 is then displayed with default values for the
edge name, endpoints, color, and direction. The direction choices
are NONE, BIDIRECTIONAL, ENDPOINT1_TO_ENDPOINT2,
and ENDPOINT2_TO_ENDPOINT1.
The properties of an existing edge may be edited by double-
clicking on the edge or by selecting the edge and pressing Enter,
both of which bring up the Edge Properties dialog box. An edge
may be removed by selecting it and pressing the Delete key,
selecting Remove from the Graph menu, or pushing the Remove
button on the toolbar.

3.2.1.3 Graph Navigation
A node may be selected by clicking on it, selecting Jump to
Node... from the Graph menu, or by entering CTRL+J. The latter
two options bring up the Jump to Node dialog shown in Figure 6
which allows the user to choose a node from a list. The left/right
arrow keys are used to move between and select the edge(s) of the

Figure 5. Edge Properties Dialog Box

Figure 6. Jump to Node Dialog Box

node. Pressing up arrow when an edge is selected, moves focus to
(selects) the opposite endpoint. Each time focus changes to a node
or edge, information about the selected node/edge is displayed in
the status bar and announced by the screen reader, if one is in use.

3.2.2 Grid View
Grid View provides the means to spatially lay out a graph. In this
view the graph panel is divided into a grid of squares, each one of
which corresponds to a potential or actual node position in
Connection View. The squares are referenced by their X, Y
Location in the grid with the X values starting at 0 and running
horizontally across the grid and the Y values starting at 0 and
running vertically down the grid. The grid squares are much
smaller than the default size of nodes in Connection View and are
intended to show the location of nodes relative to each other.
Figures 2 and 3 provide a side by side comparison of the same
graph displayed in both views.
A grid square may be selected by clicking on it or navigating to it
with the up/down/left/right arrow keys. If the square contains a
node, it may also be selected using the Jump to Node... action.
The X, Y Location for the selected square is displayed in the
status bar. If the square contains a node, the node shape and name
is displayed as well. For example, in a graph used for automata
theory, information about a start state named q0 with 6, 5 as its X,
Y Location would be displayed as “6, 5 start state: q0.”
Whenever focus changes to a new square, its status bar
information is announced by the screen reader, if one is in use.

3.2.2.1 Creating, Editing, and Removing Nodes
In Grid View, a new node is created by double-clicking on an
empty square or by pressing Enter when focus is on an empty
square. This brings up the Node Properties dialog box as
previously described which allows for changing the default values
of the node, such as name, X and Y Locations, shape, and color.
The properties of an existing node may be edited by double-
clicking on the square containing the node or by pressing Enter
when focus is on the node’s square, both of which bring up the
Node Properties dialog box. A node may be moved by changing

Figure 7. Nondeterministic Finite Automaton (NFA)

its X and/or Y Location via the Node Properties dialog or by
cutting and pasting it in a different square using the standard
CTRL+X, CTRL+V sequence. A node may be removed by
selecting the square containing the node and pressing the Delete
key, selecting Remove from the Graph menu, or pushing the
Remove button on the toolbar. Whenever a node is removed, all
of its edges are removed as well.

3.2.2.2 Adding, Editing, and Removing Edges
When in Grid View, an edge may be added to the selected node in
the same way as previously described in Section 3.2.1.2.
However, editing and removing existing edges requires the use of
Connection View.

4. GSK IN PRACTICE
The second author, who is a blind third year Computer Science
undergraduate student, successfully used GSK for assignments,
tests, and quizzes in his Fall 2011 Automata Theory and
Operating Systems courses. In addition to making it possible for
him to create graphs to include in his course work, GSK provided
him with an important problem-solving tool. It also functioned as
a means for cross communication between him and the teaching
staff in terms of sharing graphs. The student’s use of GSK in both
courses is described below.

4.1 Automata Theory Course
Graphs were used extensively throughout the Automata Theory
course during the Graph Theory review, as part of NP-
completeness proofs, and to represent automata – Deterministic
and Nondeterministic Finite Automata (DFAs / NFAs), Pushdown
Automata (PDAs), and Turing Machines. Examples of the use of
GSK by the teaching staff and the second author for each of these
topics are provided below.

4.1.1 Graph Theory
GSK was used by the teaching staff to render undirected graphs in
the lecture notes, quizzes, and homework assignments and

Figure 8. Deterministic Finite Automaton (DFA)

communicate them to the student. He found Connection View
particularly helpful when examining the graphs to answer quiz
and homework questions about Eulerian and Hamiltonian paths,
cliques, independent sets, etc. He felt that these tasks would have
been much more difficult had he been restricted to examining the
graphs in table form.

4.1.2 NP-Completeness Proofs
As part of an NP-Completeness proof, the student was required to
create a graph representation of the Boolean expression (x1 ˅ x2 ˅
¬x3) ˄ (¬x1 ˅ x2 ˅ ¬x4) ˄ (x2 ˅ x3 ˅ x4). He used GSK to create
this graph as shown in Figure 2, which he then exported as a PNG
image and included in his LaTeX homework document. Using
Grid View as shown in Figure 3 to layout the graph was very
helpful.

4.1.3 Automata
Besides using GSK to render the various types of automata, the
student used it to convert an NFA to an equivalent DFA as shown
in Figures 7 and 8. To determine whether a DFA was equivalent
to a given regular expression, he generated strings using the
regular expression and then used Connection View to check if the
strings were accepted by the DFA. Again, he felt that using GSK
was much more efficient than having to rely on transition table
representations of the automata and that it provided him with
computationally equivalent graph representations to those
available to sighted students.

4.2 Operating Systems Course
The Operating Systems course only made use of one type of graph
– a system resource-allocation graph. GSK cannot currently
exactly represent this type of graph because an assignment edge is
drawn from a dot within a resource node to a process node as
shown in Figure 9. However, the student was still able to use GSK
to create modified resource allocation graphs and use them to
detect deadlock and other resource contention problems and
determine how they might be resolved. For a quiz, he was given a
textual description of the resource-allocation graph in Figure 9.
He was able to render it using GSK as shown in Figure 10

Figure 9. Resource-allocation Graph

and solve the related problems using only 5 minutes more than his
sighted peers, who were provided with the node-link diagram
version of the graph.

5. FUTURE WORK
We are very encouraged based on the successful use of GSK in
the aforementioned courses. The sighted Automata Theory
teaching assistant found creating graphs with GSK to be quite
simple and straightforward and expressed interest in using it to
create homework solution sets. Thus, GSK appears to have
universal appeal.

We plan to have a class of sighted students beta-test GSK and
afterwards carry out controlled user studies with both blind and
sighted participants. The user studies will help determine whether
the interface and paradigm are intuitive as well as how close GSK
comes to providing blind and sighted people with computationally
equivalent access to graphs.

We will continue to improve GSK, incorporating feedback from
the user studies as well as our own ideas, in hopes of providing
blind people with greater access to graphs in a universally
accessible and appealing way.

Figure 10. Resource-allocation Graph

6. ACKNOWLEDGMENTS
We would like to thank Dr. Richard Ladner for the
AccessComputing mini-grant that supported this work via NSF
Award #CNS-0837508.

7. REFERENCES
[1] Blenkhorn, P. and Evans, D. G. 1998. Using speech and

touch to enable blind people to access schematic diagrams. J.
Netw. Comput. Appl. 21, 1 (January 1998), 17-29.
DOI=10.1006/jnca.1998.0060
http://dx.doi.org/10.1006/jnca.1998.0060

[2] Brown, A., Pettifer, S. and Stevens, R. 2003. Evaluation of a
non-visual molecule browser. In Proceedings of the 6th
international ACM SIGACCESS conference on Computers
and accessibility (Assets '04). ACM, New York, NY, USA,
40-47. DOI=10.1145/1028630.1028639
http://doi.acm.org/10.1145/1028630.1028639

[3] Burgstahler, S., and Cory, R. (2008). Universal design in
higher education: From principles to practice. Cambridge,
Mass: Harvard Education Press.

[4] Calder, M., Cohen, R. F., Lanzoni, J. and Xu, Y. 2006.
PLUMB: an interface for users who are blind to display,
create, and modify graphs. In Proceedings of the 8th
international ACM SIGACCESS conference on Computers
and accessibility (Assets '06). ACM, New York, NY, USA,
263-264. DOI=10.1145/1168987.1169046
http://doi.acm.org/10.1145/1168987.1169046

[5] Crescenzi, P., Rossi, L. and Apollaro, G. 2012. Making
Turing machines accessible to blind students. In
Proceedings of the 43rd ACM technical symposium on
Computer Science Education (SIGCSE '12). ACM, New
York, NY, USA, 167-172. DOI=10.1145/2157136.2157190
http://doi.acm.org/10.1145/2157136.2157190

[6] Kennel, A. R. 1996. Audiograf: a diagram-reader for the
blind. In Proceedings of the second annual ACM conference
on Assistive technologies (Assets '96). ACM, New York,
NY, USA, 51-56. DOI=10.1145/228347.228357
http://doi.acm.org/10.1145/228347.228357

[7] King, A., Blenkhorn, P., Crombie, D., Dijkstra, S., Evans,
D.G., and Wood, J. Presenting UML Software Engineering
Diagrams to Blind People. In Proceedings of ICCHP. 2004,
522-529.

[8] Larkin, J. H. and Simon, H. A. 1987. Why a diagram is
(sometimes) worth ten thousand words. Cognitive Science
11, 1 (January - March 1987), 65-100.

[9] Miller, D. 2009. Can we work together? Ph.D. Thesis,
University of North Carolina at Chapel Hill, Chapel Hill,
North Carolina.
http://search.lib.unc.edu/search?R=UNCb5970444

[10] Stallmann, M. F., Balik, S. P., Rodman, R. D., Bahram, S.,
Grace, M. C. and High, S. D. 2007. ProofChecker: an
accessible environment for automata theory correctness
proofs. SIGCSE Bull. 39, 3 (June 2007), 48-52.
DOI=10.1145/1269900.1268801
http://doi.acm.org/10.1145/1269900.1268801.

http://dx.doi.org/10.1006/jnca.1998.0060�
http://doi.acm.org/10.1145/1028630.1028639�
http://doi.acm.org/10.1145/1168987.1169046�
http://doi.acm.org/10.1145/2157136.2157190�
http://doi.acm.org/10.1145/228347.228357�
http://search.lib.unc.edu/search?R=UNCb5970444�
http://doi.acm.org/10.1145/1269900.1268801�

	1. INTRODUCTION
	2. DESIGN CONSIDERATIONS
	2.1 Universal Design
	2.2 Computational Equivalence
	2.3 Leveling the Playing Field

	3. OVERVIEW OF GSK
	3.1 Universal Accessibility Features
	3.2 The GSK Interface
	3.2.1 Connection View
	3.2.1.1 Creating, Editing, and Removing Nodes
	3.2.1.2 Adding, Editing, and Removing Edges
	3.2.1.3 Graph Navigation

	3.2.2 Grid View
	3.2.2.1 Creating, Editing, and Removing Nodes
	3.2.2.2 Adding, Editing, and Removing Edges

	4. GSK IN PRACTICE
	4.1 Automata Theory Course
	4.1.1 Graph Theory
	4.1.2 NP-Completeness Proofs
	4.1.3 Automata

	4.2 Operating Systems Course

	5. FUTURE WORK
	6. ACKNOWLEDGMENTS
	7. REFERENCES

