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ABSTRACT 
Combinatorial graphs, often conveyed as node-link diagrams, 
figure prominently in Computer Science and other Science, 
Technology, Engineering, and Mathematics (STEM) disciplines. 
Unfortunately, they are most often inaccessible to blind students 
and professionals. This paper introduces GSK, a self-contained 
Graph SKetching tool, that allows blind and sighted people to 
easily create, edit, and share graphs in real-time using interaction 
mechanisms (mouse, keyboard, monitor, screen reader) that are 
standard for them. GSK was successfully used by a blind 
Computer Science student and his sighted instructors to create and 
access graphs specific to his automata theory and operating 
systems courses. Our hope is that GSK will enable more blind 
STEM students and professionals to actively participate in their 
disciplines by providing them and their sighted colleagues with a 
cross-collaboration tool that allows them to share graphs just as 
easily as they share text and word processing documents. 

Categories and Subject Descriptors 
D.4.1 [Operating Systems]: Process Management – deadlocks; 
F.1.1 [Computation by Abstract Devices]: Models of 
Computation – automata; F.1.3 [Computation by Abstract 
Devices]: Complexity Measures and Classes – reducibility and 
completeness; G.2.2 [Discrete Mathematics]:   Graph Theory;  
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces; K.3.2 [Computers and Education]: Computer and 
Information Science Education;  K.4.2 [Computers and Society]: 
Social Issues – assistive technologies for persons with disabilities. 

General Terms 
Human Factors. 

Keywords 
Universal Design, Accessibility, Computational Equivalence. 

1. INTRODUCTION 
We developed GSK, a self-contained Graph SKetching tool, to 
provide a universally accessible means of creating, editing, and 
sharing combinatorial graphs, also known as node-link diagrams. 
A combinatorial graph consists of nodes joined by edges. While a 

very simple structure, it figures prominently in Computer Science 
and other Science, Technology, Engineering, and Mathematics 
(STEM) disciplines.1

2. DESIGN CONSIDERATIONS 

 Entity relationship diagrams, finite-state 
machines, various Universal Modeling Language (UML) 
diagrams, resource-allocation graphs, chemical molecules, etc., 
are all represented using (combinatorial) graphs. Unfortunately, 
these representations are generally not accessible to blind students 
and professionals forming a barrier between them and active 
participation in STEM fields. Our goal is to help remove that 
barrier by providing blind people with the means to independently 
create and use graphs in a variety of disciplines for knowledge 
representation and problem solving, and to easily share them with 
sighted people. 

The principles of universal design and computational equivalence 
as well as a desire to level the playing field for blind people 
guided our design of GSK. 

2.1 Universal Design 
Universal design principles espouse the development of products 
that are equitable in use without segregating users [3]. A number 
of applications have been developed separately and specifically to 
provide blind users with access to various types of graphs [1, 2, 4, 
6, 7, 9]. However, separate is most often not equal and it is 
important that blind users be included in software applications 
intended for universal use. Work is now underway to include 
blind students in the use of JFLAP, a popular automata theory 
platform [5]. Our prior experience with making our graph-based 
automata theory application, ProofChecker, accessible to blind 
students without affecting the sighted interface [10] inspired us to 
do the same for generalized graph editing.  
Text editors and word processing programs are useable by both 
sighted and blind people via interaction mechanisms that are 
standard for them (mouse, keyboard, monitor, screen reader). 
When a blind and a sighted person are working together on a text 
or word processing document, they have immediate access to 
changes made by the other. GSK is designed to provide the same 
type of experience for graph editing for both blind and sighted 
people in terms of ease of use and document sharing. 

2.2 Computational Equivalence 
In order to use graphs for problem solving, it is important that 
blind people have graph representations that are computationally 
equivalent and not simply informationally equivalent to those 

                                                                 
1 A recent issue of the Communications of the ACM (June 2011) 

contained over 20 graphs representing networks, structural 
equation analysis, page ranking, record assembly, and 
verification pipelines, among other things,  within its 128 pages. 

 

 



available to sighted people. Larkin and Simon distinguish 
between informational and computational equivalence as follows: 
Two representations are informationally equivalent if all of the 
information in the one is also inferable from the other, and vice 
versa. Each could be constructed from the information in the 
other. Two representations are computationally equivalent if they 
are informationally equivalent and, in addition, any inference 
that can be drawn easily and quickly from the information given 
explicitly in the one can be drawn easily and quickly from the 
information given explicitly in the other, and vice versa. [8] 
Oftentimes graphs are provided to blind people in the form of 
tables which are informationally equivalent but not generally 
computationally equivalent to the node-link diagrams typically 
used by sighted people. As one blind student studying finite-state 
machines (FSMs) succinctly put it, he was “stuck in table mode” 
while his sighted peers had the advantage of easily moving from 
state to state of an FSM  by following the edges (transitions) of a 
node-link diagram representation.  
To further illustrate this point, consider the following example 
from automata theory. A deterministic finite automaton (DFA) is a 
form of directed graph that is used to determine whether or not a 
string (sequence of characters) is a member of a regular language. 
A DFA is said to “accept” or “reject” a string in terms of 
membership in its language. Table 1 and Figure 1 below provide 
informationally equivalent representations of the same DFA, i.e., 
each could be created from the information provided in the other.   
 
Table 1. Transition table representation of a DFA 

δ a b 
q0 q2 q3 

     *q1 q0 q1 
q2 q0 q1 
q3 q2 q3 

 

 
Figure 1.  Node-link diagram representation of a DFA 

 
In this example, the alphabet Σ = {a, b} and the set of states Q = 
{q0, q1, q2, q3}. The first state in the transition table, q0, is the start 
state and is designated as such by an incoming arrow in the node-
link diagram. The accepting state, q1 is preceded by an asterisk (*) 
in the table and denoted by a double circle in the diagram. This 

DFA may be used to tell whether or not a string consisting of 0 or 
more a’s and b’s has an odd number of a’s and ends with b. 
For example, to determine whether the string abbabab is accepted 
by the DFA above involves moving from state to state while 
reading the current input symbol as illustrated by the following  
sequence  of configurations:  

(q0, abbabab) ⊢  (q2, bbabab) ⊢  (q1, babab) ⊢  (q1, abab) ⊢  

(q0, bab) ⊢  (q3, ab)   ⊢  (q2, b)  ⊢   (q1, ε) 
Because q1, the last state reached in the computation, is an 
accepting state, the string is indeed in the language of the DFA. 
Imagine a sighted person carrying out the above computation by 
moving a finger back and forth and up and down the rows of the 
transition table which is analogous to the way a blind person 
would access an electronic form of the table. Using a table 
representation, the time to determine the inclusion of a string w in 
the language of a DFA is proportional to the number of states 
times the size of its alphabet times the length of the string, or 
borrowing from complexity theory, Ө (|Q| |Σ| |w|). On the other 
hand a sighted person moving a finger from state to state of a 
node-link diagram following the transition corresponding to the 
current input symbol could complete the computation in time 
proportional to the size of the alphabet times the length of the 
string, or  Ө ( |Σ| |w|). For a DFA with a large number of states, 
the time savings would be considerable. Thus, the two 
representations are not computationally equivalent.  
Our design of GSK aims to relieve blind students and 
professionals of the disadvantage of being stuck in table mode and 
instead provides them with the computational advantage of being 
able to easily traverse the edges of a graph and otherwise 
efficiently create, edit, and access graphs.  
 

2.3 Leveling the Playing Field 
Besides providing blind people with computationally equivalent 
graph representations, we would like to help enable them to 
function as independently and efficiently as possible in academic 
and professional settings. All of the graphs shown in Figures 2, 7, 
8, and 10 were drawn independently by a blind student, who is 
also the second author of this paper. Using GSK, he was able to 
communicate graphs with his automata theory instructors, create 
and include graphs in documents for homework assignments, and 
quickly render the graphs necessary to solve problems on an 
operating system quiz. Our hope is that GSK will help to level the 
playing field for more blind students and professionals allowing 
them to fully participate in their disciplines alongside their sighted 
peers. 

 

3. OVERVIEW OF GSK 
GSK is a Java application built using standard Swing components 
that leverages the Java Accessibility API.  It was developed and 
tested on a Windows platform using the JAWS screen reader, 
which requires the installation of the Java Access Bridge. The 
bridge provides a communication mechanism between the screen 
reader and the Java Virtual Machine (JVM). Being written in 
Java, our hope is that GSK would port well to other systems and 
use by other screen readers. 



 
Figure 2. Connection View of an NP-Completeness Graph 
 
GSK was developed as a collaboration between the sighted first 
author and the aforementioned blind second author, which was 
itself an exercise in universal accessibility. We found that the 
Eclipse platform using SVN for version control worked well for 
both of us. The ability provided by Eclipse to specify the 
indentation level of our source code and correct the indentation 
when necessary was particularly helpful. We used Microsoft 
Word to prepare our initial design documents and a raised print 
drawing kit whenever we needed to share a drawing of the 
interface, control flow, etc. Eventually, we were able to use GSK 
instead of the drawing kit to create and share simple flowcharts 
that we used in the design of  subsequent functionality. 

3.1 Universal Accessibility Features 
GSK is intended to appeal to both sighted and blind users. In 
addition to providing a point-and-click interface, GSK is fully 
keyboard accessible which is crucial for blind users and in fact 
required by Sec. 508 accessibility guidelines. This helps make 
GSK useable by a wide group of users including those with 
mobility or other impairments.  
Providing programmatic focus and an effective navigation 
scheme is also crucial for blind users. While sighted users can 
easily rest their gaze on any item on the screen, blind users must 
use the keyboard to navigate from item to item. When using GSK 
to examine a graph, the node or edge with focus is designated as 
the current or selected node/edge. Whenever focus is changed to a 
different node or edge, its name is announced by the screen reader 
in use by the blind user. The currently selected node or edge is 
also highlighted thus providing a visual focus indicator, especially 
important for sighted users navigating via the keyboard. 
In order for blind users to create and share graphs with sighted 
people, they must be able to position the nodes in such a way that 
they are visually viewable. GSK facilitates this by providing blind 
users (and other users) with the means to specify the spatial 
layout of a graph. 

 
Figure 3. Grid View of Graph in Figure 2 

3.2 The GSK Interface 
The GSK interface shown in Figures 2 and 3 above provides two 
different views of the same graph, Connection View and Grid 
View. The user may easily switch between the two views 
depending on which is more appropriate for the task at hand.  In 
addition to the large central panel where the graph is displayed, 
the interface contains a menu bar with File, Edit, Graph, View, 
and Help menus as well as a tool bar with Open, Save, Remove, 
and Add Edge buttons. A status bar at the bottom provides 
information about the currently selected node/edge or, in the 
absence of a graph, the name of the view. When a screen reader is 
in use, the status is announced whenever it changes thus allowing 
a blind user to track focus changes. Appropriate mnemonics and 
keyboard shortcuts are also provided thus allowing for multiple 
means of accessing each function of the interface. Graphs may be 
saved in .gsk format and/or exported as PNG images.  
The benefits of Connection View and Grid View as well as their  
use in creating, editing, and navigating graphs is described below. 
Switching between the views is accomplished via the View Menu. 

3.2.1 Connection View 
Connection View provides the typical point-and-click interface 
and node-link diagram representation of a graph to which sighted 
users are accustomed. It is also useful for blind users in that it 
allows them to navigate a graph via the keyboard. When working 
together, changes to a graph that are immediately visible to a 
sighted user are announced to a blind user via the screen reader.  

3.2.1.1 Creating, Editing, and Removing Nodes 
In Connection View, a new node is created by double-clicking on 
an empty space on the graph panel. The Node Properties dialog 
box shown in Figure 4 is then displayed with default values for 
the node name, X and Y Locations in Grid View, shape, height, 
width, and color, any of which may be changed, if desired. 
Currently available node shapes include general oval and 
rectangle shapes as well as shapes pertaining to automata theory – 
accepting state, accepting/start state, start state,  and state. We 
plan to add shapes for other domains such as flow charts, UML 



 
Figure 4. Node Properties Dialog Box 
 
diagrams, etc. and have designed GSK to make this extension 
relatively straightforward. 
The properties of an existing node may be edited by double-
clicking on the node or by selecting the node and pressing Enter, 
both of which bring up the Node Properties dialog box. A node 
may be moved by changing its X and/or Y position or by dragging 
it to a different position. A node may removed by selecting it and 
pressing the Delete key, selecting Remove from the Graph menu, 
or pushing the Remove button on the toolbar. Whenever a node is 
removed, its edges are removed as well. 

3.2.1.2 Adding, Editing, and Removing Edges 
An edge may be added to the selected node by pushing the Add 
Edge button on the toolbar, selecting Add Edge... from the Graph 
menu, or entering CTRL+E. The Edge Properties dialog box 
shown in Figure 5  is then displayed with  default values for the 
edge name, endpoints, color, and direction. The direction choices 
are NONE, BIDIRECTIONAL, ENDPOINT1_TO_ENDPOINT2, 
and ENDPOINT2_TO_ENDPOINT1.  
The properties of an existing edge may be edited by double-
clicking on the edge or by selecting the edge and pressing Enter, 
both of which bring up the Edge Properties dialog box.  An edge 
may be removed by selecting it and pressing the Delete key, 
selecting Remove from the Graph menu, or pushing the Remove 
button on the toolbar. 

3.2.1.3 Graph Navigation 
A node may be selected by clicking on it, selecting Jump to 
Node... from the Graph menu, or by entering CTRL+J. The latter 
two options bring up the Jump to Node dialog shown in Figure 6 
which allows the user to choose a node from a list. The left/right 
arrow keys are used to move between and select the edge(s) of the  

 

Figure 5. Edge Properties Dialog Box 
 
 
 
 
 

Figure 6. Jump to Node Dialog Box 
 
node. Pressing up arrow when an edge is selected, moves focus to 
(selects) the opposite endpoint. Each time focus changes to a node 
or edge, information about the selected node/edge is displayed in 
the status bar and announced by the screen reader, if one is in use. 

3.2.2 Grid View 
Grid View provides the means to spatially lay out a graph. In this 
view the graph panel is divided into a grid of squares, each one of 
which corresponds to a potential or actual node position in 
Connection View. The squares are referenced by their X, Y 
Location in the grid with the X values starting at 0 and running 
horizontally across the grid and the Y values starting at 0 and 
running vertically down the grid. The grid squares are much 
smaller than the default size of nodes in Connection View and are 
intended to show the location of nodes relative to each other. 
Figures 2 and 3 provide a side by side comparison of the same 
graph displayed in both views. 
A grid square may be selected by clicking on it or navigating to it 
with the up/down/left/right arrow keys. If the square contains a 
node, it may also be selected using the Jump to Node... action. 
The X, Y Location for the selected square is displayed in the 
status bar. If the square contains a node, the node shape and name 
is displayed as well. For example, in a graph used for automata 
theory, information about a start state named q0 with 6, 5 as its X, 
Y Location would be displayed as “6, 5 start state: q0.”  
Whenever focus changes to a new square, its status bar 
information is announced by the screen reader, if one is in use.  

3.2.2.1 Creating, Editing, and Removing Nodes 
In Grid View, a new node is created by double-clicking on an 
empty square or by pressing Enter when focus is on an empty 
square.  This brings up the Node Properties dialog box as 
previously described which allows for changing the default values 
of the node, such as name, X and Y Locations, shape, and color.  
The properties of an existing node may be edited by double-
clicking on the square containing the node or by pressing Enter 
when focus is on the node’s square, both of which bring up the 
Node Properties dialog box. A node may be moved by changing 



 
Figure 7. Nondeterministic Finite Automaton (NFA) 
 
its X and/or Y Location via the Node Properties dialog or by 
cutting and pasting it in a different square using the standard 
CTRL+X, CTRL+V sequence. A node may be removed by 
selecting the square containing the node and pressing the Delete 
key, selecting Remove from the Graph menu, or pushing the 
Remove button on the toolbar. Whenever a node is removed, all 
of its edges are removed as well. 

3.2.2.2 Adding, Editing, and Removing Edges 
When in Grid View, an edge may be added to the selected node in 
the same way as previously described in Section 3.2.1.2. 
However, editing and removing existing edges requires the use of 
Connection View. 
 

4. GSK IN PRACTICE 
The second author, who is a blind third year Computer Science 
undergraduate student, successfully used GSK for assignments, 
tests, and quizzes in his Fall 2011 Automata Theory and 
Operating Systems courses. In addition to making it possible for 
him to create graphs to include in his course work, GSK provided 
him with an important problem-solving tool. It also functioned as 
a means for cross communication between him and the teaching 
staff in terms of sharing graphs. The student’s use of GSK in both 
courses is described below. 

4.1 Automata Theory Course 
Graphs were used extensively throughout the Automata Theory 
course during the Graph Theory review, as part of NP-
completeness proofs, and to represent automata – Deterministic 
and Nondeterministic Finite Automata (DFAs / NFAs), Pushdown 
Automata (PDAs), and Turing Machines. Examples of the use of 
GSK by the teaching staff and the second author for each of these 
topics are provided below. 

4.1.1 Graph Theory 
GSK was used by the teaching staff to render undirected graphs in 
the lecture notes, quizzes, and homework assignments and

 
Figure 8. Deterministic Finite Automaton (DFA) 
 
communicate them to the student. He found Connection View 
particularly helpful when examining the graphs to answer quiz 
and homework questions about Eulerian and Hamiltonian paths, 
cliques, independent sets, etc. He felt that these tasks would have 
been much more difficult had he been restricted to examining the 
graphs in table form.  

4.1.2 NP-Completeness Proofs 
As part of an NP-Completeness proof, the student was required to 
create a graph representation of the Boolean expression (x1 ˅ x2 ˅ 
¬x3) ˄ (¬x1 ˅ x2 ˅ ¬x4) ˄ (x2 ˅ x3 ˅ x4). He used GSK to create 
this graph as shown in Figure 2, which he then exported as a PNG 
image and included in his LaTeX homework document. Using 
Grid View as shown in Figure 3 to layout the graph was very 
helpful.  

4.1.3 Automata 
Besides using GSK to render the various types of automata, the 
student used it to convert an NFA to an equivalent DFA as shown 
in Figures 7 and 8. To determine whether a DFA was equivalent 
to a given regular expression, he generated strings using the 
regular expression and then used Connection View to check if the 
strings were accepted by the DFA. Again, he felt that using GSK 
was much more efficient than having to rely on transition table 
representations of the automata and that it provided him with 
computationally equivalent graph representations to those 
available to sighted students. 

4.2 Operating Systems Course 
The Operating Systems course only made use of one type of graph 
– a system resource-allocation graph. GSK cannot currently 
exactly represent this type of graph because an assignment edge is 
drawn from a dot within a resource node to a process node as 
shown in Figure 9. However, the student was still able to use GSK 
to create modified resource allocation graphs and use them to 
detect deadlock and other resource contention problems and 
determine how they might be resolved.  For a quiz, he was given a 
textual description of the resource-allocation graph in Figure 9. 
He was able to render it using GSK as shown in Figure 10 



  
Figure 9. Resource-allocation Graph 
 
and solve the related problems using only 5 minutes more than his 
sighted peers, who were provided with the  node-link diagram 
version of the graph.  

5. FUTURE WORK 
We are very encouraged based on the successful use of GSK in 
the aforementioned courses. The sighted Automata Theory 
teaching assistant found creating graphs with GSK to be quite 
simple and straightforward and expressed interest in using it to 
create homework solution sets. Thus, GSK appears to have 
universal appeal.  

We plan to have a class of sighted students beta-test GSK and 
afterwards carry out controlled user studies with both blind and 
sighted participants. The user studies will help determine whether 
the interface and paradigm are intuitive as well as how close GSK 
comes to providing blind and sighted people with computationally 
equivalent access to graphs. 

We will continue to improve GSK, incorporating feedback from 
the user studies as well as our own ideas, in hopes of providing 
blind people with greater access to graphs in a universally 
accessible and appealing way.  

 

 
Figure 10. Resource-allocation Graph 
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