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ABSTRACT
As smart phones and tablets become more and more pop-
ular, TCP performance over cellular networks is of grow-
ing importance for today’s Internet. However, our extensive
measurements over 3G/4G networks of four major U.S. car-
riers and the largest carrier in Korea reveal that TCP may
suffer from extremely long delay and sub-optimal through-
put. From the measurements, an important problem of TCP
in cellular networks is observed: the current cellular net-
works are over-buffered and the huge buffers nullify loss-
based TCP congestion control, resulting in excessive growth
of congestion window. To mitigate the problem, smart phone
vendors rely on an ad-hoc solution that sets the maximum
receive buffer size to a relatively small constant value than
its actual size. Although this simple scheme alleviates the
problem, it is sub-optimal in a number of scenarios due to
its static nature. In this paper, we proposedynamic receive
window adjustment (DRWA) and implement it in Android
phones. DRWA only requires modifications on smart phones
and is immediately deployable. Our extensive real-world
tests confirm that DRWA reduces the average delay of TCP
by 24.09∼ 48.97% in general scenarios and achieves up to
51.06% throughput improvement in specific scenarios.
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1. INTRODUCTION
TCP is the dominant transport layer protocol of the cur-

rent Internet, carrying around 90% of the total traffic [13,18].
Hence, the performance of TCP is of utmost importance to
the well-being of the Internet and has direct impacts on user
experience. Although TCP is well-studied in traditional net-
works, its performance over cellular networks has not been
given adequate attention.

Conventional Networks
e.g., WiFi, Wired Networks

Server

Smart Device
Cellular Networks

e.g., 3G, 4G

Laptop

Figure 1: Over-buffering has been widely observed in
the current Internet [9] but is especially severe in cellular
networks, resulting in up to several seconds of end-to-end
delay.

According to our measurements, TCP has a number of
performance issues in this relatively new environment, in-
cluding extremely long delay and sub-optimal throughput
in certain scenarios. The reasons behind such performance
degradations are two-fold. First, most of the widely de-
ployed TCP implementations use loss-based congestion con-
trol where the sender will not slow down its sending rate
until it sees packet loss. Second, most cellular networks
are over-buffered to accommodate bursty traffic and chan-
nel variability [9, 15] as depicted in Figure 1. The huge
buffer along with link layer retransmission conceals packet
losses in cellular networks from TCP senders. The combina-
tion of these two facts leads to the following phenomenon:
the TCP sender keeps increasing its sending rate to probe
the available bandwidth along the path. Even if it has al-
ready reached the bottleneck link capacity, the congestion
window will continue to grow since all the overshot pack-
ets are absorbed by the buffers and all the packets corrupted
over the wireless links are recovered by link layer retrans-
mission. This results in a long queue in the cellular network
system and up to several seconds of end-to-end delay.

To solve this problem, smart phone vendors come up with
a small trick: they set a relatively small value for TCP max-
imum receive buffer size although the physical buffer size
of a smart phone is much larger. Since the advertised re-
ceive window cannot exceed the receive buffer size and the
sender cannot send more than what is allowed by the ad-
vertised receive window, this limit effectively prevents TCP
congestion window from excessive growth and controls the
RTT (round trip time) experienced by the flow in a reason-
able range. However, since the limit is statically configured,
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it is sub-optimal in many scenarios, especially considering
the dynamic nature of the wireless mobile environments. In
high speed long distance networks (e.g., downloading from
an oversea server over 4G LTE (Long Term Evolution) net-
work), the static value is too small to saturate the link and re-
sults in severe throughput degradation. In small bandwidth-
delay product (BDP) networks, the static value is too large
and the flows in a smart phone experience excessively long
RTT.

In this paper, we propose a practical, receiver-based rem-
edy to this issue called dynamic receive window adjustment
(DRWA) . DRWA runs only on the receiver side (i.e., smart
phone) and continuously adjusts the receiver window to be
proper instead of reporting a static value. DRWA aims to
keep the buffer at the bottleneck link (i.e., cellular link)non-
empty while avoiding unnecessarily long queue. We achieve
this goal by letting DRWA enforce RTT to stay aroundλ ∗
RTTmin whereλ is our control parameter. Our extensive
experiments over various cellular networks of different car-
riers reveal thatλ = 3 keeps RTT 24.09∼ 48.97% lower
than the current TCP implementations in smart phones while
throughput is guaranteed to be the same in general cases and
upto 51.06% higher in a large BDP network.

Our proposal is similar in spirit to delay-based conges-
tion control algorithms but does not require modifications
on large-scale servers (i.e., TCP senders). It is fully compat-
ible with existing TCP protocol and can be easily deployed.
Carriers or device manufacturers can simply issue an OTA
(over the air) update to the smart phones’ protocol stack so
that these devices could immediately enjoy enhanced perfor-
mance when interacting with existing servers.

In summary, the key contributions of this paper include:

• We report extensive observations of TCP’s behavior in
a range of different cellular networks and point out its
negative impacts on user experience.

• We anatomize the TCP implementation in state-of-the-
art smart phones and locate the root cause of its perfor-
mance issue in cellular networks.

• We propose a simple and backward-compatible rem-
edy that is experimentally proven to be safe and effec-
tive. It provides substantial fixes to TCP performance
issues and is immediately deployable.

The rest of the paper is organized as follows. In Section 2,
we provide detailed observations of TCP’s abnormal behav-
ior over various cellular networks. In Section 3, we anato-
mize the root cause of such behavior and identify potential
limitations of current TCP implementation in smart phones.
Then, we suggest a simple remedy DRWA in Section 4 and
extensively show its experimental performance in compari-
son with the current implementation in Section 5. We con-
clude our work in Section 6.

2. OBSERVATIONS
In the past few decades, TCP has been well-studied in

traditional networks, especially wired networks. With the
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(a) Abnormality exists across different cellular networks
(tested with Android phones)
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(b) Abnormality exists across different platforms (testedover
AT&T HSPA+ network)

Figure 2: Abnormal TCP behavior in cellular networks:
in this test, clients of different platforms download a
large file from a university server over various cellular
networks. The TCP congestion window (cwnd) is moni-
tored on the server side using Web100 project [16].

exponential growth of hand-held devices like smart phones
and tablet computers, TCP performance in cellular networks
is becoming more and more important. Unfortunately, TCP
performance of smart mobile devices over cellular networks
is still lack of deep investigation though there exist a num-
ber of measurement work for different types of cellular net-
works [4, 12, 14, 15]. During our extensive real-world TCP
performance measurements over various cellular networks,
we found that the current TCP implementation shows ab-
normal behaviors in cellular networks and has a number of
performance issues including extremely long delay and sub-
optimal throughput.

Figure 2 depicts the TCP congestion window measured
from a Linux server when clients of different platforms (An-
droid phone, iPhone, Windows PC, Macbook) download a
large file from it over various cellular networks. The server
uses CUBIC [10] as the TCP congestion control algorithm.
The cellular networks we have tested include the four ma-
jor U.S. carriers’ 3G networks, Verizon’s 4G LTE network
and Korean SKTelecom’s HSPA+ network. As a reference,
we also plot TCP’s behavior in WiFi networks under similar
conditions.

2.1 TCP Congestion Control Collapse in Cel-
lular Networks
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Samsung Galaxy S2 (AT&T) HTC EVO Shift (Sprint) Samsung Droid Charge (Verizon) LG G2x (T-Mobile)
Wi-Fi 110208 110208 393216 393216
UMTS 110208 393216 196608 110208
EDGE 35040 393216 35040 35040
GPRS 11680 393216 11680 11680
HSPA+ 262144 N/A N/A 262144
WiMAX N/A 524288 N/A N/A

LTE N/A N/A 484848 N/A
Default 110208 110208 484848 110208

Table 1: Maximum TCP receive buffer size (tcp rmem max) in bytes on different Android phones for different carrier s.
Note that these values may vary on customized ROMs and can be looked up by looking for ”setprop net.tcp.buffersize.*”
in the init.rc file of Android phones. Also note that different values are set for different carriers even if the network types
are the same. We guess that these values are experimentally determined based on each carrier’s network conditions
and configurations.

As shown in Figure 2, TCP congestion window over cel-
lular networks does not show its conventional sawtooth be-
havior while WiFi networks show that behavior clearly. The
TCP congestion window over cellular networks grows to a
static value and stays there until the session ends. Through
our extensive testing, this strange behavior, which we call
“TCP congestion control collapse”, turns out to beuniversal
in cellular networks. It exists in the 3G networks of all four
major cellular network carriers in the US. It also exists in
4G LTE networks. We further confirmed that the same ab-
normal TCP behavior is observed in the largest cellular net-
work carrier in Korea. Moreover, this problem is observed
across Android phones, iPhones as well as computers run-
ning Windows 7 or Mac OS X Lion. This abnormal phe-
nomenon caught our attention and revealed anuntold story
of TCP over cellular networks. We became interested in the
reasons behind this behavior and its impact on user experi-
ence.

2.2 Understanding the Problem
To understand the behavior of TCP over cellular networks,

we focused on why the congestion window stays at a static
value. The static congestion window first indicates that no
packet loss is observed by the TCP sender (otherwise the
congestion window should have decreased multiplicatively
at any loss event).In a large scale real world measurement
[12], it is shown that cellular networks typically experience
packet loss rates close to zero.This no-packet-loss phe-
nomenon can be explained by the large buffers existent in
cellular base stations or middleboxes as well as the link layer
retransmission mechanisms prevalent in cellular networks:
most of the current 3G networks as well as the forthcoming
4G networks are over-buffered (or buffer-bloated as termed
by [9]). These excessive buffers were originally introduced
into cellular networks due to a number of reasons. First,
the channel status of cellular links fluctuates quickly and the
corresponding channel rate varies from dozens of Kbps to
tens of Mbps. Second, the data traffic over such links is
highly bursty. To absorb such bursty traffic over such a vari-
able channel, the simple yet effective approach adopted by
current cellular networks is to provide large buffers. These
buffers smooth the bursty traffic and reduce the packet loss
rate in cellular networks. Further, due to the relatively high

bit error rate over the wireless channel, link layer retransmis-
sion is typically performed in cellular networks, which also
requires large buffers in the routers or base stations to store
the unacknowledged packets.

Providing large buffers seems to be a viable solution at
Layer 2, but it has an undesirable interaction with the TCP
congestion control at Layer 4. TCP mostly relies on packet
loss to detect network congestion. Although other variants
such as delay-based congestion control exist, most of the
widely deployed TCP implementations (e.g., Newreno [7],
BIC [21], CUBIC [10]) still use loss-based congestion con-
trol [22]. Excessive buffers in cellular networks prevent packet
losses from happening even if TCP’s sending rate far ex-
ceeds the bottleneck link capacity. This “hides” the network
congestion from the TCP sender and makes its congestion
control algorithm malfunction.

If packet losses are perfectly concealed, the congestion
window may not drop but it should persistently grow up.
However, it strangely stops at a certain value and this static
value is different for each cellular network or client platform.
Our deep inspection to the TCP implementation in Android
phones (since it is open-source) reveals that the value is de-
termined by a parametertcp rmem max that specifies the
maximum receive window advertised by an Android phone.
This gives an intuitive answer why the congestion window
shows the flat behavior: the receive window (rwnd) adver-
tised by the receiver crops the congestion windows (cwnd)
in the sender. By inspecting various Android phone models,
we found thattcp rmem max has diverse values for different
types of networks as shown in Table 1. Generally speaking,
larger values are assigned to faster communication standards
(e.g., LTE).

To understand the impact oftcp rmem max, we show the
TCP performance under varioustcp rmem max settings for
Verizon’s LTE and AT&T’s HSPA+ networks in Figure 3.
Obviously, a largertcp rmem max value allows the conges-
tion window of the TCP sender to grow to a larger size and
hence leads to higher throughput. But this throughput im-
provement will flatten out once the link capacity is saturated.
Further increase oftcp rmem max brings nothing but longer
queuing delay.

As the figure shows, the currenttcp rmem max values for
LTE and HSPA+ networks are carefully chosen to balance
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Figure 3: Throughput and RTT performance measured for a whole day when downloading from a local server over
LTE and HSPA+ networks with various tcp rmem max values. For this test environment, 110208 may work better than
the default 262144 in AT&T HSPA+ network. Similarly, 262144may work better than the default 484848 in Verizon
LTE network. However, the optimal value depends on the environment and is hard to set statically in advance.

between throughput and RTT in typical scenarios. However,
despite the careful choice of the parameter values, the static
nature of such parameter setting is doomed to be sub-optimal
in certain cases. For instance, in the testing of Figure 3, the
default value set by Verizon for its LTE network and AT&T
for its HSPA+ network do not provide the best throughput
and end-to-end latency. The downlink traffic is from a lo-
cal university server in U.S. In this case, the end-to-end la-
tency is relatively small and the resulted pipe size (i.e., BDP)
is small. This default values for both LTE and HSPA+ are
large enough to achieve full bandwidth utilization as shown
in Figure 3(a). However, the default value triggers excessive
packets in network and thus resulting in unnecessarily larger
RTT as shown in Figure 3(b). This demonstrates the fun-
damental limitations of the static parameter setting: it man-
dates one specific trade-off point in the system which may
be sub-optimal for other applications. Two realistic scenar-
ios where the current implementation may hurt user experi-
ences are discussed below.

2.3 Impact on User Experience
Web Browsing with Background Downloads: Top lines
of smart phones scheduled to be launched during 2012 are
mostly with a quad core CPU of about 1.5GHz per core,
more than 1GB RAM, and a high resolution screen (e.g.,
1280×720 pixels). Due to their drastically improved ca-
pability, the phones are expected to perform multi-tasking
more often. For instances, people will enjoy web brows-
ing or online gaming while downloading files such as books,
musics, movies or applications from on-line markets in the
background. In such cases, we found that the current TCP
implementation incurs long delays for the interactive flow
(Web browsing or online gaming) since the buffer is filled
with packets belonging to the background download flow.

Figure 4 shows that the Web object fetching time are severely
degraded when background downloads are under way. Since
Web objects are typically small in size (for instance, we use
8KB, 16KB, 32KB and 64KB in this test), their fetching
time mainly depends on RTT rather than throughput. When
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Figure 4: Web object fetching performance with and
without background traffic. The time taken to fetch the
same web objects becomes 2.6 times longer if a file down-
load coexists. If TCP maintains a smaller queue in the
network, the drastic performance degradation can be
mitigated.

a background flow causes long queues to be built up at the
base station, the Web objects will be severely delayed. As
the figure shows, average Web object fetching time is 2.6
times longer with background download1.
Throughput from Servers with Long Latency: The con-
tents that smart phone users visit are diverse. Some contents
are well maintained and CDNs (content delivery networks)
are assisting them to get “closer” to their customers via repli-
cation. In such cases, the throughput performance can be
well-supported by the static setting oftcp rmem max. How-
ever, there are still many websites or files showing long la-
tencies due to their remote locations, such as the most com-
mon usage of smart phones: web browsing, market appli-
cation download and streaming. In such cases, the static
setting of tcp rmem max (which is tuned for moderate la-
tency case) fails to provide the maximum possible through-
put since it cannot fill the long fat pipe. Figure 5 shows that
when downloading some contents from a server abroad, the
client suffers from sub-optimal throughput performance un-
der the default setting. A largertcp rmem max can achieve

1Note that the fetching times of multiple small objects in parallel
do not affect each other since the bandwidth is not saturated.
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Figure 5: Throughput and RTT performance measured for a whole day when downloading from a remote server
in Korea via LTE and HSPA+ networks with various tcp rmem max values. The static setting results in sub-optimal
throughput performance since it fails to probe maximum available bandwidth of the long fat pipe. 655360 for AT&T
and 917504 for Verizon provided much higher throughput thantheir default values.

higher throughput, but if it is too large, packet loss will even-
tually happen in which case throughput degradation will oc-
cur as well.

3. ANATOMY OF TCP BEHAVIOR IN CEL-
LULAR NETWORKS

In this section, we elaborate the details of the current TCP
implementation in Android phones, especially the receive
window adjustment algorithm and investigate the potential
limitations of the current implementation. Inspired by the
limitations, we suggest several possible solutions and dis-
cuss their advantages and disadvantages.

3.1 Details of Current Implementation
We use Android phones to look into the implementation

detail of the receive window adjustment algorithm due to
the closed nature of other platforms (e.g., iPhone). We are
unable to pinpoint the exact implementations of such closed
platforms, but testing results shown earlier suggest that they
exhibit similar behaviors. This observation imply that the
underlying implementation may be very similar even in the
closed platforms.

TCP receive window was originally designed to prevent
a fast sender from overwhelming a slow receiver with lim-
ited buffer space. It reflects the available buffer size on the
receiver side so that the sender will not send more packets
than the receiver can accommodate. The combination of this
flow control and TCP congestion control ensures that neither
the receiver nor any intermediate router along the path will
be overloaded.

With the advancement in storage technology, memories
are becoming cheaper and cheaper. Nowadays, it is not un-
common to find a computer equipped with several gigabytes
of memory and even smart phones are now equipped with
1GB of RAM (e.g. Motorola Droid Razr, Samsung Galaxy
S2). Hence, buffer space on the receiver side is hardly the
bottleneck in the current Internet. To improve TCP through-
put, a receive buffer auto-tuning technique called Dynamic

Algorithm 1 DRS
Initialization:
rwnd← 0;

RTT Estimation:
RTTest ← the time between when a byte is first acknowl-
edged and the receipt of data that is at least one window
beyond the sequence number that was acknowledged;

Dynamic Right-Sizing:
if data is copied to user spacethen

if elapsed time < RTTest then
return;

end if

cwndest ← data rcvd;
rwnd← max{2 ∗ cwndest, rwnd};
Advertiserwnd as the receive window size;

end if

Algorithm 2 DRS with tcp rmem max clamping
Same as Algorithm 1 except adding:
rwnd← min{tcp rmem max, rwnd};

Right-Sizing (DRS [6]) was proposed and many operating
systems (including Linux and hence Android) have adopted
the same or similar scheme in their kernels. In DRS, instead
of determining the receive window based on the available
buffer size, the receive buffer is dynamically adjusted so as
to suit the connection’s demand. The fundamental goal of
DRS is to allocate enough buffer (as long as we can afford it)
so that the throughput of the TCP connection is never limited
by the receive window size but only constrained by network
congestion. Meanwhile, DRS tries to avoid allocating more
buffers than necessary.

Algorithm 1 gives the details of DRS. The first step in
DRS is to measure the RTT of the TCP connection at the
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receiver. By definition, RTT is the time between when data
is sent and the corresponding acknowledgement is received.
However, since the receiver typically has no data to send, it
is hard to measure RTT on the receiver side. DRS emulates
RTT by monitoring the time between when a packet is first
acknowledged and the receipt of data that is at least one win-
dow beyond the sequence number that was acknowledged.
Although there is some deviation, this RTT measurement is
proved to be good enough for the purpose as demonstrated
by its wide deployment in the Internet.

Once the RTT is known, the current congestion window
of the sender can be trivially estimated on the receiver side
by counting the amount of data received within one RTT.
Since TCP congestion window can at most double within an
RTT (e.g., during slow start), DRS set the advertised receive
window to be twice of the estimated congestion window so
that the TCP sender is always congestion-window-limited
rather than receive-window-limited. Further, since the TCP
sender may be application-limited and have not fully used
the congestion window, the data received in an RTT may be
smaller than the actual window size. DRS therefore uses
the largest received window advertised during any RTT by
the max operation in Algorithm 1. Note that this makes
adjustment of the receive window in DRSnon-decreasing.
It is acceptable because the sole goal of DRS is to set the
congestion window “free” from the constraints of the receive
window. It does not matter if the advertised receive window
is a bit too large. Finally, the receive window is of course
bound by the maximum receive buffer size.

Linux adopted a receive buffer auto-tuning scheme simi-
lar to DRS since kernel 2.4.27. Since Android is based on
Linux, it inherits the same receive window adjustment algo-
rithm. Other major operating systems also implemented cer-
tain kind of TCP buffer auto-tuning (Windows since Vista,
Mac OS X since 10.5, FreeBSD since 7.0). This implies
a significant role change of TCP receive window. Although
the functionality of flow control is still preserved, most ofthe
time the receive window is set to a value that lets TCP con-
gestion control fully explore the available bandwidth while
preventing the receiver from allocating unnecessarily large
buffers to a connection.

Although DRS works fairly well in traditional networks
and improves TCP throughput to a great extent, it actually
incurs avicious cycle in cellular networks. When the con-
gestion window of the TCP sender increases, more packets
are clocked out within an RTT and the receiver’s estima-
tion of the congestion window also increases. Since DRS
requires the receive window to keep in pace with the growth
of the congestion window, the advertised window will be in-
creased, leaving more space for the congestion window to
grow. This ever increasing trend will lead to long queues
being built up at the routers or base stations and result in
extremely long RTT. The current solution adopted by many
Android smart phone vendors to break this vicious cycle is
to set a relatively small maximum receive buffer size via
tcp rmem max in Algorithm 2. This static size is strategi-
cally configured for each carrier’s different cellular networks

(GPRS, HSPA+, EVDO, LTE, etc.) so that the performance
is tolerable in ordinary scenarios. As we know, the cellular
networks are highly dynamic due to the nature of wireless
channel as well as user mobility and diversity. The static
setting will lead to sub-optimal performance in numerous
scenarios which we will detail in the following section.

3.2 Limitations of Current Implementation
Long End-to-End Latency: On the other hand, in many
cases where the static value oftcp rmem max may over-
estimate the pipe size, the RTT will be unnecessarily long
though the bandwidth can be fully utilized. The excessive
packets make the network more congested and can severely
degrade the performance of short-lived flows such as web
browsing or online gaming because their performance are
more dependent on RTT than throughput.
Throughput Degradation: RTT in cellular networks is rel-
atively long (up to several seconds) because of long dis-
tance transmission (remote server), link layer latency (re-
transmission and contention at L2) and congestion within
the network (queuing delay along paths). Since the maxi-
mum throughput of a TCP flow using Algorithm 2 becomes
roughlytcp rmem max divided by RTT, the static setting of
tcp rmem max may result in bandwidth under-utilization if
RTT become larger than certain limit.
Expensive Recovery from Packet Loss:Although packet
loss is uncommon in cellular networks, once it happens the
recovery may be very expensive. In particular, we found
that in AT&T’s HSPA+ network the sender almost always
resort to the expensive retransmission time-out (RTO) rather
thanfast retransmit to recover from packet losses. Accord-
ing to [19], the reason may be the middleboxes hold all out-
of-order packets until everything is in order so that it can
conduct some deep packet inspection and then forward them
to the downstream.

3.3 Candidate Solutions and Our Approach
To address TCP’s problem in buffer-bloated cellular net-

works, there are a few possible solutions. One obvious so-
lution is to reduce the buffer size in cellular networks so
that TCP can function the same way as it does in wired net-
works. However, as explained earlier these extra buffers are
essential to ensure the performance of cellular links under
dynamic conditions and cannot be easily removed.

An alternative to this solution is to employ certain Active
Queue Management (AQM) schemes like RED [8] or REM
[2]. By randomly dropping or marking certain packets be-
fore the buffer is full, we can notify TCP sender in advance
and avoid the excessively long delay. However, despite be-
ing studied extensively in the literature, few AQM schemes
are actually deployed in the Internet due to the complexity of
their parameter tuning, the extra packet losses introducedby
them and the limited performance gains provided by them.

Another possible solution to this problem is the modifica-
tion of the TCP congestion control algorithm at the sender.
Instead of a loss-based approach, delay-based congestion
control such as TCP Vegas [3] or FAST TCP [20] can be
used. Since delay-based congestion control backs off when
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Figure 6: Throughput and RTT performance of TCP Vegas in cellular networks: although delay-based congestion
control reduces the RTT, it suffers from throughput degradation.
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Figure 7: TCP behaviors of a Linux PC and a Windows phone in cellular networks: They set tcp rmem max to a very
large value. Their TCP exhibits the usual saw-tooth behavior, but this results in excessively long RTT in bufferbloated
cellular networks.

RTT starts to increase rather than waiting until packet loss
happens, they may serve the over-buffered cellular networks
better than loss-based congestion control. However, as Fig-
ure 6 shows, although delay-based TCP congestion control
decreases RTT to a great extent, they suffer from throughput
degradation. This agrees with the observation over a cellular
network in [15]. Further, adopting delay-based congestion
control requires modifications on the sender side (typically
large-scale servers) which may incur considerable deploy-
ment cost and affect both wired and wireless users.

In light of the problems with the above-mentioned solu-
tions, we suggest to handle the problem on the receiver side
by changing the static setting oftcp rmem max. That is be-
cause receiver (mobile device) side modification has mini-
mum deployment cost. Vendors may simply issue an OTA
update to the protocol stack of the mobile devices so that
they can enjoy a better TCP performance without affecting
other wired users. It is a light-weight, effective and immedi-
ately deployable solution to the problem.

To change the static limit imposed on the sender’s con-
gestion window, one may simply remove thetcp rmem max
parameter or set it to a very large value so that congestion
window is free to grow (and drop). This will bring back
the sawtooth behavior of TCP but will incur extremely long
RTT due to the bufferbloat in cellular networks. As shown in
Figure 7, Windows Phone (Samsung Focus) and Linux PC
work in this way. Unfortunately, this type of solution leads

to even longer RTT and potential throughput degradation.
Therefore, we need a dynamic receive window adjustment
(DRWA) algorithm to ensure full utilization of the available
bandwidth while maintaining RTT small.

4. DYNAMIC RECEIVE WINDOW ADJUST-
MENT (DRWA)

4.1 Algorithm
The aim of DRWA is to adaptively set the receive win-

dow to a proper size in different environment. Sometimes,
it should be larger than the current static limit to get more
throughput and sometimes it should become smaller than
the current value to avoid unnecessary queues in the link.
The challenges in this work lie in three parts. First, DRWA
should remove the static setting of a relatively small max-
imum receive buffer size. Second, DRWA should bear the
capability to estimate the proper pipe size of a link via a
new window adjustment algorithm. Finally, DRWA should
be compatible with the current TCP protocol and easy to de-
ploy.

DRWA is built on top of DRS. Instead of an unidirectional
adjustment where the advertised window is non-decreasing,
we need a bidirectional adjustment algorithm to rein TCP
in the buffer-bloated cellular networks but at the same time
ensure full utilization of the link. To accomplish that, DRWA

7



Algorithm 3 DRWA
Initialization:
RTTmin ←∞;
cwndest ← data rcvd in the firstRTTest;
rwnd← 0;

RTT and Minimum RTT Estimation:
RTTest ← the time between when a byte is first acknowl-
edged and the receipt of data that is at least one window
beyond the sequence number that was acknowledged;

if TCP timestamp option is availablethen
RTTest ← averaging the RTT samples obtained from
the timestamps within the last RTT;

end if

if RTTest < RTTmin then
RTTmin ← RTTest;

end if

DRWA:
if data is copied to user spacethen

if elapsed time < RTTest then
return;

end if

cwndest ← α ∗ cwndest + (1− α) ∗ data rcvd;
rwnd← λ ∗ RTTmin

RTTest

∗ cwndest;
Advertiserwnd as the receive window size;

end if

needs to keep the queue size proper as necessary but non-
empty always. Algorithm 3 gives the details.

DRWA uses the same technique as DRS to measure RTT
on the receiver side if TCP timestamp option is unavailable.
However if TCP timestamp option is available, DRWA uses
it to obtain a more accurate estimation of the RTT (Times-
tamps can provide multiple RTT samples within an RTT
whereas the traditional DRS way provides only one sam-
ple per RTT). We surveyed the support for TCP timestamp
option in Windows Server and Linux (Table 2) and found
that when DRWA runs on Android phones, it could turn on
timestamp no matter it talks to a Linux server or a Win-
dows server. With assistance of timestamps, DRWA is able
to achieve robust RTT measurement on receiver side and
thus conquering the well-known battle of accurately mea-
suring RTT in dynamic networks, as shown in Figure 8.
In addition to RTT measurement, DRWA also records the
minimum RTT ever seen in this connection and use it later
to determine the receive window size. Since the minimum
RTT approximates the round-trip propagation delay between
the two hosts when no queue is built up in the intermediate
routers especially in the cellular base station, we use it asan
indication on what the network and channel conditions are.

After knowing the RTT, DRWA counts the amount of data
received within one RTT in the same way as DRS. However,
DRWA further smooths the estimated congestion window by

Server Client Timestamp Option
Linux Linux (Android) Enabled

Windows Linux (Android) Enabled
Linux Windows Disabled

Windows Windows Disabled

Table 2: Support for TCP timestamp option on Linux
and Windows: both Linux and Windows support TCP
timestamp and Linux clients turn it on by default when
initiating a connection while Windows clients do not.
Therefore, Android phones can use timestamp no mat-
ter they talk to Linux or Windows servers.
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(a) RTT Measurement
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Figure 8: With timestamp option, DRWA is able to
achieve robust RTT measurement on the client side. The
testing was conducted over AT&T HSPA+ network by
using Samsung Galaxy S2 phone. We print the RTT val-
ues to kernel message on the client side and use Web100
to monitor RTT value on server side. The two RTT mea-
surements are consistent though there exists minor devi-
ation.

using a moving average with a low-pass filter (α is set to
7/8 in our current implementation). This smoothed value is
used to determine the receive window we advertise. In con-
trast to DRS who always setsrwnd to 2 ∗ cwndest, DRWA
sets it toλ ∗ RTTmin

RTTest

∗ cwndest. WhenRTTest is close to
RTTmin, implying the network is not congested,rwnd will
increase quickly to give the sender enough space to probe
the available bandwidth. AsRTTest increase, we gradually
slow down the increment rate ofrwnd to stop TCP from
overshooting. The operation of taking the maximum of the
newly calculatedrwnd and the previousrwnd in DRS is
also removed so that DRWA makes bidirectional adjustment
of the advertised window and controls theRTTest to stay
aroundλ ∗RTTmin. More detailed explanation ofλ will be
given in the following section.

This algorithm is simple yet effective. Its ideas stem from
delay-based congestion control algorithms but work better
than them for two reasons. First, since DRWA onlyguides
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0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time (second)

R
T

T
 (

m
s)

 

 

Untouched Android
With DRWA

(b) RTT Performance

Figure 9: TCP behavior comparison between untouched Android phones and phones with DRWA: in this test the
phones are moved from an area with good signal to an area with weak signal and then moved back again. In contrast to
the static setting of the receive window in untouched Android phones, DRWA nicely tracks the variation of the channel
conditions and dynamically adjusts the receive window. Dueto the dynamic adjustment, DRWA is able to keep the RTT
constantly low while the untouched Android phone experiences drastic increase in RTT under weak signal.
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(a) Throughput Performance
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(b) RTT Performance

Figure 10: Impact of λ on the throughput and RTT performance of TCP with DRWA in diff erent cellular networks.
λ = 3 gives a good balance between throughput and RTT in four majorU.S carriers as well as the largest Korean
carrier.

TCP congestion window by advertising an adaptiverwnd,
the bandwidth probing responsibility still lies with the TCP
congestion control algorithm at the sender. Therefore, typ-
ical throughput loss seen from using delay-based TCP will
not appear. Also, due to some unique characteristics of cellu-
lar networks, RTT based control can work more effectively.
In wired networks, a router may handle hundreds of TCP
flows at the same time and they may share the same output
buffer. That makes RTT measurement more noisy and delay-
based congestion control less reliable. However, in cellular
networks, a base station typically has separate buffer space
for each user and a mobile user is unlikely to have many
simultaneous TCP connections. This makes RTT measure-
ment a more reliable signal for network congestion.

4.2 Adaptive Nature of DRWA
DRWA allows a TCP receiver to report a proper receive

window size to its sender in every RTT rather than adver-
tising a static limit. Due to its adaptive nature, DRWA is
able to track the variability of channel conditions. Figure9

shows the evolution of the receive window size and the cor-
responding RTT performance. During this test, we moved
the Android phone from a good signal area to a weak signal
area (from 0 second to 40 second) and then returned back
to the good signal area (from 40 second to 80 second). As
shown in Figure 9(a), the receive window size dynamically
adjusted by DRWA well demonstrates the signal change in-
curred by the movement. This leads to a steadily low RTT
while the static setting of untouched Android results in an
ever increasing RTT as the signal strength decreases and the
RTT blows up in the area of the weakest signal strength.

4.3 Impact of λ on TCP Performance
λ is a key parameter in DRWA. It tunes the operation

region of the algorithm and reflects the trade-off between
throughput and delay. Note that whenRTTest/RTTmin

equals toλ, the advertised receive window will be equal
to its previous value, leading to a steady state. Therefore,
λ reflects the target RTT of DRWA. If we setλ to 1, that
means we want RTT to be aroundRTTmin so that almost
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(a) Web page fetching time
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(b) RTT experienced by the Web browsing TCP flow

Figure 11: Web browsing with background download over AT&T HSPA+: DRWA reduces the RTT experienced by the
TCP flows and hence improves Web browsing performance.
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Figure 12: Throughput improvement brought by DRWA
when clients in U.S. download from a server in Korea:
Each test lasts for 24 hours. The improvement ratios are
23.21% in AT&T HSPA+ network and 30.36% in Veri-
zon LTE network.

no queue is built up. This ideal case only guarantees high
throughput if 1) the traffic has constant bit rate, 2) the avail-
able bandwidth is also constant and 3) the constant bit rate
equals to the constant bandwidth. In practice, Internet traffic
is bursty and the channel condition varies over time. Both
necessitate the existence of some buffers to absorb the tem-
porarily excessive traffic and drain the queue later on when
the load becomes lighter or the channel condition becomes
better. Otherwise, we cannot fully utilize the link.λ deter-
mines how aggressive we want to be to keep the link busy
and how much delay penalty we can tolerate. The largerλ
is, the more aggressive the algorithm is. It will guarantee
the throughput of TCP to be saturated all the time but at the
same time introduce extra delay. Figure 10 gives the com-
parison of performance among different values ofλ. This
test combines multiple scenarios ranging from local to re-
mote access, good to weak signal. Each has been repeated
for over 400 times over the span of 24 hours so as to find
the optimal parameter setting. In our current implementa-
tion, we setλ to 3 which works very well for most cellular
networks. However, a better approach may exist, which may
make this parameter adaptive. We leave this as our future
work.

4.4 Improvement in User Experiences

(a) Experiment Architecture

Samsung 

Galaxy S2

LG G2x

HTC 

EVO Shift

Samsung

Droid Charge

iPhone

(b) Experiment Phones

Figure 13: Our test environment: We have TCP servers
in U.S. and Korea and pairs of smart phones for major
cellular carriers.

Section 2.3 lists two scenarios where existing TCP imple-
mentation may have a negative impact on user experience. In
this section, we demonstrate that, by applying DRWA we can
drastically improve user experience in such scenarios. More
comprehensive experiment results are provided in Section 5.

Figure 11 shows Web object fetching performance with
background download traffic. Since DRWA reduces the length
of the queue built up in the cellular networks, it brings on
average 41.72% reduction in the RTT experienced by all the
TCP flows coming down to the receiver. This translates into
39.46% speed-up in Web object fetching since the download
completion time of (typically small) Web pages and the em-
bedded objects (e.g., images, flash clips) are mainly deter-
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(a) Comparison in AT&T HSPA+
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(b) Comparison in Verizon EVDO
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(c) Comparison in Sprint EVDO
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(d) Comparison in Verizon LTE

Figure 14: Throughput improvement provided by DRWA for vari ous cellular networks under different network laten-
cies: we see significant throughput improvement when the end-to-end latency is long.

265 ms 347 ms 451 ms 570 ms 677 ms
AT&T HSPA+ -1.09% 0.12% 5.65% 25.78% 40.77%

326 ms 433 ms 550 ms 653 ms 798 ms
Verizon EVDO -2.85% -0.31% 3.58% 28.65% 50.51%

312 ms 448 ms 536 ms 625 ms 754 ms
Sprint EVDO 3.54% 5.19% 37.39% 44.62% 51.06%

131 ms 219 ms 351 ms 439 ms 533 ms
Verizon LTE -1.27% 38.67% 37.08% 25.64% 30.62%

Table 3: Throughput improvement shown in Figure 14
for difference latency values over various cellular net-
work: as the end-to-end latency increases, the through-
put improvement ratio becomes higher.

mined by the RTT.
Figure 12 shows the scenario where a mobile user in U.S.

downloads from a remote server in Korea. Since the RTT
is very long in this scenario, the BDP of the underlying net-
work is fairly large. The static setting oftcp rmem max is
too small to fill the long, fat pipe and results in through-
put degradation. With DRWA, we are able to fully utilize
the available bandwidth and achieve 23-30% improvement
in throughput.

5. EXTENSIVE EXPERIMENTS

5.1 Test Environment
We implemented DRWA in Android phones by patching

their kernels. It turned out to be fairly simple to implement
DRWA in the Linux/Android kernel. It takes merely around
100 lines of code. We downloaded the original kernel source

codes of different Android models from their manufacturers’
website, patched the kernels with DRWA and recompiled
them. Finally, the phones were flashed with our customized
kernel images. We provided a procfs entry for users to easily
turn on or off DRWA.

We did head-to-head comparisons between untouched An-
droid phones and Android phones with DRWA. Figure 13
gives an overview of our test environment. We have both
clients and servers in two places: a university in U.S. and a
university in Korea. We evaluate different scenarios where
clients download files from nearby servers or remote servers
over various cellular networks operated by different carriers.
All our servers run Ubuntu 10.04 (with 2.6.35.13 kernel) and
use the default TCP congestion control algorithm, CUBIC
[10]. The settings of the smart phones used as clients vary
depending on the carriers and their networks (see Table 1).
The signal strength during out tests is between -75dBm and
-87dBm (typically considered as good signal condition in
daily life) unless otherwise noted. We developed a sim-
ple Android application that downloads files from the des-
ignated servers with different traffic patterns. Traces were
collected on the server side using tcpdump [1] and analyzed
using tcptrace [17]. Internal states of TCP (e.g.,cwnd) are
probed with the help of Web100 project.

5.2 Throughput Improvement
Figure 14 shows the throughput improvement of Android

phones with DRWA over untouched Android phones. De-
tailed percentage of improvement can be found in Table 3.
The test involved file downloading (file size is 100MB) via
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(a) Throughput: Verizon LTE and AT&T HSPA+
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(b) RTT: Verizon LTE and AT&T HSPA+
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(c) Throughput: Verizon EVDO and Sprint EVDO
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(d) RTT: Verizon EVDO and Sprint EVDO

Figure 15: RTT improvement in networks with small BDP: DRWA p rovides huge RTT reduction without throughput
loss across different cellular networks. The RTT reductionratios are 48.97%, 35.41%, 48.56% and 24.09% for AT&T
HSPA+, Verizon LTE, Verizon EVDO and Sprint EVDO networks re spectively.
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(b) RTT: Verizon LTE and AT&T HSPA+

Figure 16: We repeat the same tests shown in Figures 15(a) and15(b) under weak signal strength ranging between
-95dBm and -105dBm. In such a condition, throughput and RTT performance are significantly degraded but the
performance gain from DRWA is still clearly visible.

different cellular networks operated by various carriers.For
each network we ran the test for 24 hours. During the test,
we appliednetem, the built-in network emulator in Linux
[11] on the server side to emulate the scenarios of differ-
ent end-to-end latencies. From Table 3, we see that An-
droid phones with DRWA significantly improve the through-
put in all cellular networks as the end-to-end latency in-
creases. The scenario over the Sprint EVDO network with
the end-to-end latency of 754 ms shows the largest improve-
ment (as high as 51.06%). In LTE networks, the phones with
DRWA show throughput improvement up to 38.67% under
the latency of 219 ms.

The reason behind the improvement is obvious. When the
latency increases, the static values set by the vendors fail
to saturate the pipe, resulting in throughput degradation.In
contrast, networks with small latencies do not show such
degradation. According to our experiences, RTTs between
400 ms and 700 ms are easily observable in cellular net-

works, especially when using services from foreign servers.
In the LTE networks, TCP throughput is even more sen-

sitive to tcp rmem max setting. The BDP can be dramat-
ically increased by a slight RTT increase. Therefore, the
static configuration easily becomes far from optimal. How-
ever, DRWA is able to keep pace with the increasing BDP
without any problem.

5.3 End-to-End Latency Reduction
In networks with small BDP, the statictcp rmem max set-

ting is sufficient to fully utilize the bandwidth of the net-
work. However, it has a side effect of long RTT. In such net-
works, the static receive window reported by current imple-
mentations misleads a TCP sender to put excessive packets
in the network, resulting in unnecessarily long RTT. How-
ever, DRWA manages the RTT to beλ times of theRTTmin,
which is substantially smaller than that of current implemen-
tations in networks with small BDP. Figure 15 shows the
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(a) cwnd in AT&T HSPA+
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Verizon EVDO

(b) cwnd in Verizon EVDO

Figure 17: For 0.5% packet losses applied bynetem,
AT&T’s HSPA+ network shows frequent RTO events
while other cellular networks (e.g., Verizon’s EVDO net-
work) do not. A drop of cwnd in the left figure indicates
RTO but that in the right figure indicates fast retransmis-
sion although they look similar. Intermediate data points
during the drop explains the difference.

improvement in RTT brought by DRWA while throughput is
preserved.

In Figure 15, we downloaded a file from a local server
installed at a university campus in U.S. to Android phones
in U.S. to explore the throughput and end-to-end delay per-
formance in small BDP networks. We measured the per-
formance for a whole day per each carrier and compared
the performance between Android phones with and without
DRWA. During the whole day run, each round of the file
downloading took three minutes, resulting in over 400 runs
within a day. From Figure 15, we can verify that remark-
able reduction of RTT up to 48.97% is achieved while the
throughput is guaranteed in a similar level (4% difference at
maximum). The same tests were repeated under weak signal
conditions and the results are shown in Figure 16. In this
scenario, the average throughput of the TCP flows is much
lower than that in Figure 15(a) while the RTT is much longer.
But DRWA can still reduce the RTT with no throughput loss.

Another important observation from the experiments is
that the current implementation with a static receive win-
dow experiences much larger RTT variation than DRWA. As
Figures 15(a) and 15(c) show, the RTT values of untouched
Android phones are distributed over a much wider range
than that of phones with DRWA. The reason is clear be-
cause DRWA intentionally enforces the RTT to stay around
the target value ofλ ∗ RTTmin. This property of DRWA
will potentially benefit jitter sensitive applications such as
live video communications and voice chats.
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Figure 18: DRWA alleviates TCP throughput degrada-
tion in AT&T HSPA+ network: throughput is increased
by 6.75%, 50.09% and 54.30% under loss ratio of 0.05%,
0.5% and 2% respectively.

5.4 Loss Recovery
Although buffer-bloated cellular networks rarely have packet

losses, other part of the end-to-end TCP connection may still
experience them. For instance, according to the large-scale
measurement study in [5], the Internet experiences a non-
negligible packet loss rate between 1% and 6%. If such
packet losses result in RTO, TCP running over an exces-
sively long queue will need to pay expensive recovery cost.
For an RTO, the TCP sender has to retransmit all of the pack-
ets in flight over the network. When there are more queued
packets, the amount of discarded packets due to the retrans-
missions becomes higher. In general, RTO rarely happens
in cellular networks because SACK (selective acknowledge-
ment) is enabled in Android phones by default and it typi-
cally recovers packet losses before time out happens. How-
ever, in some cellular networks, special configurations make
RTO happens with high probability even with a single packet
loss. The HSPA+ network operated by AT&T is one ex-
ample of such networks. As shown in Figure 17(a),cwnd
of TCP over AT&T’s HSPA+ network shows very frequent
RTO operations when we emulate packet losses in the Inter-
net usingnetem, while other cellular networks do not show
suchcwnd behaviors. Figure 17(b) exemplifies that RTO
does not happen in Verizon’s EVDO network. Instead, fast
retransmit recovers the lost packets. Sincenetem imposes
bursty packet losses, the RTO and fast retransmit look simi-
lar, butcwnd in Verizon’s EVDO network shows intermedi-
ate data points while falling down, which tells that the drops
are not from RTO.

It is hard to understand and explain why a specific net-
work suffers this problem while others do not. Recent ob-
servations and corresponding analysis claimed in [19] give
a hint to the problem. According to the work, some cellu-
lar network carriers manage middleboxes in their networks
for deep packet inspection or other security purposes and the
middelboxes buffer out-of-order packets and deliver them to
the receiver when the packets become in-order. Therefore,
in such configuration of a network, a single lost packet will
block the middlebox from delivering the packets to the re-
ceiver, resulting in huge delays for a bunch of ACK pack-
ets from the receiver. If this happens, RTO may happen for
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packet loss.
To further explore this issue, we set up a test scenario over

the AT&T’s HSPA+ network and Verizon’s EVDO network.
We apply random bursty packet losses whose ratios range
from 0.05% to 2% usingnetem on a router connected to our
local server in U.S.. This range of packet loss rate is observ-
able in the wild Internet [5]. Figure 18 shows the through-
put results for different loss ratios with and without DRWA.
Since DRWA keeps the queue size smaller, when RTO hap-
pens, the amount of packets to be recovered is less. There-
fore, Android phones with DRWA experience less through-
put degradation comparing to the untouched Android phones
for the same loss ratio. Up to 54% of throughput improve-
ment is observable when the loss ratio goes beyond 0.5%.

6. CONCLUSION
In this paper, we thoroughly investigated TCP’s behavior

and performance over cellular networks. We reveal that the
excessive buffers available in existing cellular networksvoid
the loss-based congestion control algorithm used by most
TCP implementations and the naive solution adopted of set-
ting a statictcp rmem max is sub-optimal. Built on top of
our observations, a dynamic receive window adjustment al-
gorithm is proposed. This solution requires modifications
only on the receiver side and is backward-compatible as well
as incrementally deployable. We ran extensive experiments
over various cellular networks (EVDO, HSPA+, LTE, etc.)
to evaluate the performance of our proposal and compare it
with the current implementation. Experiment results show
that our scheme makes RTT 24.09∼ 48.97% lower than the
current implementation of TCP while throughput is guaran-
teed to be the same in general cases or up to 51.06% higher
in a high speed network with long latency. The bufferbloat
problem is becoming more and more prevalent in the Inter-
net. It is not specific to cellular networks although it might
be the most prominent in this environment. A more fun-
damental solution to this problem may be needed. Our work
provides a good starting point and is an immediately deploy-
able solution for smart phone users.

7. REFERENCES
[1] tcpdump. http://www.tcpdump.org/.
[2] S. Athuraliya, S. Low, V. Li, and Q. Yin. REM: Active

Queue Management.IEEE Network, 15:48–53, May
2001.

[3] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson.
TCP Vegas: New Techniques for Congestion
Detection and Avoidance. InProceedings of ACM
SIGCOMM, 1994.

[4] M. C. Chan and R. Ramjee. TCP/IP Performance over
3G Wireless Links with Rate and Delay Variation. In
Proceedings of ACM MobiCom, 2002.

[5] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert,
A. Agarwal, A. Jain, and N. Sutin. An Argument for
Increasing TCP’s Initial Congestion Window.
SIGCOMM Comput. Commun. Rev., 40:26–33, June
2010.

[6] W.-c. Feng, M. Fisk, M. K. Gardner, and E. Weigle.
Dynamic Right-Sizing: An Automated, Lightweight,
and Scalable Technique for Enhancing Grid
Performance. InProceedings of the 7th IFIP/IEEE
International Workshop on Protocols for High Speed
Networks (PIHSN), pages 69–83, 2002.

[7] S. Floyd and T. Henderson. The NewReno
Modification to TCP’s Fast Recovery Algorithm. IETF
RFC 2582, April 1999.

[8] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance.IEEE/ACM
Transactions on Networking, 1:397–413, August
1993.

[9] J. Gettys. Bufferbloat: Dark Buffers in the Internet.
IEEE Internet Computing, 15(3):96, May-June 2011.

[10] S. Ha, I. Rhee, and L. Xu. CUBIC: a New
TCP-friendly High-speed TCP Variant.ACM SIGOPS
Operating Systems Review, 42:64–74, July 2008.

[11] S. Hemminger. Netem - emulating real networks in the
lab. InProceedings of the Linux Conference, 2005.

[12] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang,
and P. Bahl. Anatomizing Application Performance
Differences on Smartphones. InProceedings of ACM
MobiSys, 2010.

[13] K.-c. Lan and J. Heidemann. A Measurement Study of
Correlations of Internet Flow Characteristics.
Computer Networks, 50:46–62, January 2006.

[14] Y. Lee. Measured TCP Performance in CDMA 1x
EV-DO Networks. InProceedings of the Passive and
Active Measurement Conference (PAM), 2006.

[15] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and
H. Zang. Experiences in a 3G Network: Interplay
between the Wireless Channel and Applications. In
Proceedings of ACM MobiCom, pages 211–222, 2008.

[16] M. Mathis, J. Heffner, and R. Reddy. Web100:
Extended TCP Instrumentation for Research,
Education and Diagnosis.AMC SIGCOMM Computer
Communications Review, 33:69–79, July 2003.

[17] S. Ostermann. tcptrace. http://www.tcptrace.org/.
[18] F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck,

and W. Willinger. TCP Revisited: a Fresh Look at
TCP in the Wild. InProceedings of the 9th ACM
SIGCOMM IMC, pages 76–89, 2009.

[19] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An
untold story of middleboxes in cellular networks. In
Proceedings of the ACM SIGCOMM, 2011.

[20] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. FAST
TCP: Motivation, Architecture, Algorithms,
Performance.IEEE/ACM Transactions on
Networking, 14:1246–1259, December 2006.

[21] L. Xu, K. Harfoush, and I. Rhee. Binary Increase
Congestion Control (BIC) for Fast Long-distance
Networks. InProceedings of IEEE INFOCOM, 2004.

[22] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu. TCP
Congestion Avoidance Algorithm Identification. In
Proceedings of ICDCS, 2011.

14


