
Deterministic View Selection For Data-Analysis
Queries: Properties and Algorithms

Rong Huang1, Rada Chirkova2, and Yahya Fathi1

1 Operations Research Program, NC State University, Raleigh, NC 27695,
{rhuang,fathi}@ncsu.edu

2 Computer Science Department, NC State University, Raleigh, NC 27695,
chirkova@csc.ncsu.edu

Abstract. Materialized views are widely used in many data-intensive
systems to accelerate the processing of complex data-analysis queries. In
this paper we study the following deterministic view selection problem
(DV S): Given a collection of queries on a given star-schema data ware-
house, and a storage limit on the total size of the views that we may
materialize, select a collection of views to materialize so as to minimize
the total evaluation cost of the given queries. We characterize the struc-
tural properties of potentially beneficial views in relation to the given
queries in the context of an integer programming (IP) model of this
problem. We propose a procedure to effectively prune the search space
of potentially beneficial views and reduce the size of the corresponding
IP model, which enable us to obtain optimal solutions of realistic-size
instances of problem DV S. We also present two heuristic methods to
further reduce the search space of views to efficiently obtain competitive
inexact solutions for large-size instances of the problem. We evaluate
the effectiveness of our proposed techniques through a comprehensive
computational study. We also present a computational experiment to
compare our methods to those proposed in Asgharzadeh et al. [3,4]. We
show that our approaches compare favorably with those in [3,4]. In addi-
tion, our proposed techniques in this paper are complementary to those
in [3, 4] and can be employed either separately or in conjunction with
these earlier techniques.

1 Introduction

Data-analysis queries are widely used in data-intensive systems, such as com-
mercial or scientific data warehouses, which store vast collections of data, whose
scale tends to grow massively over time. Answering typical data-analysis queries
in such systems may involve heavy use of summarization of large volumes of
stored data [8, 9], and thus tends to be complex and time consuming. Mate-
rialized views, that is precomputed and stored extra relations, are commonly
used to reduce the evaluation costs of data-analysis queries in relational data
intensive systems. Intuitively, a materialized view would improve the efficiency
of evaluating a query when the view relation represents the result of (perhaps
time-consuming) precomputation of some subexpression of the query of interest;

2

please see [20] and references therein. As such, materialized views with group-
ing and aggregation may be especially attractive for evaluating data-analysis
queries, because the relations for such views store in compact form the results
of (typically expensive) preprocessing of large amounts of data.

Consider an illustration. Large retailer companies, such as Sears in the USA,
maintain significant-size databases storing information about ongoing point-of-
sale transactions (Pos). For accounting, reporting, and business-intelligence pur-
poses, Sears database system undergoes periodic runs of data-analysis queries
on the stored information, including the queries for automatically or manually
generated daily, weekly, or monthly summary reports. For instance, the query
workload contains the following SQL queries Q1 and Q2. Q1 asks for the total
sales per item category per customer type in December 2011. Q2 asks for the
maximum sales per item category per store in December after 2005. 3

Q1: SELECT itemCategory, custType, SUM (amount)
FROM Pos WHERE month = ‘December’ AND year = 2011
GROUP BY itemCategory, custType;

Q2: SELECT itemCategory, storeID, MAX (amount)
FROM Pos WHERE month = ‘December’ AND year > 2005
GROUP BY itemCategory, storeID;

The following view V, which stores total sales (V1amt) and maximum sales
(V2amt) per item category per customer type per store per month per year, can
be used to provide the exact answers to both Q1 and Q2.

V: SELECT itemCategory, custType, storeID, SUM (amount) AS V1amt,
MAX (amount) AS V2amt

FROM Pos GROUP BY itemCategory, custType, storeID, month, year;

The cost of evaluation of queries Q1 and Q2 can be reduced significantly by
using view V, as it avoids accessing a large amount of irrelevant data in the base
relation (Pos).

Ideally in the data-analysis setting, in order to maximize the efficiency of
query processing, all the “beneficial views” would be pre-computed and stored
(materialized). However, the amount of storage space and computational con-
straints limit the beneficial views that can be materialized. Naturally, the prob-
lem of selecting an appropriate collection of materialized views has to be ad-
dressed in the context of the objectives and limitations of that setting. This
problem is commonly known as the View Selection Problem. In recent years
a number of researchers have addressed the subject and developed exact and
inexact methods for solving the view-selection problem in a deterministic envi-
ronment where all queries are assumed to be known and given in advance. See,
3 To greatly simplify this example, we assume that the data in the Sears database are

stored in a single relation Pos, with the attributes as named in the query Q1. The
approach that we propose in this paper is applicable to the practical setting where
one or more stored relations form the star schema [9].

3

for instance, [3–5, 12,15]. In this paper we build on the work of Asgharzadeh et
al. [3, 4] who solve the problem under a space limit on the materialized views,
and propose new techniques for solving the problem which are more effective
than the existing methods. The techniques we propose in this paper for reducing
the search space of views are complementary to those proposed in [3,4] and can
be employed either separately or in conjunction with those in [3, 4].

The specific contribution of this paper is as follows:

1. We study the structure and properties of views and queries in the integer-
programming model for the view-selection problem. We develop an algorithm
that effectively reduces the search space of potentially beneficial views in this
IP model, and obtain a smaller IP model whose solution is guaranteed to be
optimal for the original problem.

2. We present a computational experiment on our smaller IP model, and discuss
the scalability of this model. The size of the IP model is significantly reduced,
so that for realistic-size instances of the problem this IP model can be solved
efficiently by a commercial IP solver, such as CPLEX [16].

3. We define the cost-benefit ratio of each view which is a measure of effective-
ness of the view with respect to the given collection of queries. We conduct a
theoretical analysis of the properties of the cost-benefit ratio. Based on these
properties, we develop two heuristic methods to further reduce the size of
the resulting IP models to manageable levels, although we can no longer
guarantee that the resulting solution is optimal for the original problem.

4. We present a computational experiment to evaluate the effectiveness of the
proposed heuristic methods. The size of the models are significantly reduced
to a manageable level even for large-size instances, so that these models
can be solved by CPLEX to provide close optimal solution for the original
problem. We compare the performance of our proposed heuristic methods
with the heuristic algorithms in [3, 4].

The remainder of this paper is organized as follows. We review related work
in Section 1.1. In Section 2, we discuss the formulation and settings for the
deterministic view-selection problem, and introduce the IP model. In Section
3, we discuss the properties of the queries and views. In Section 4 we propose
(exact) approaches to reduce the size of the IP model, while maintaining that
the resulting optimal solution of the IP model is also optimal for the original
problem. Section 5 contains the computational results for the exact approaches.
In Section 6 we propose (heuristic) methods for further reducing the size of
resulting IP model, but we no longer guarantee optimality. In Section 7 we
conduct a computational experiment for the heuristic methods and report our
findings. Finally, Section 8 contains a few concluding remarks.

1.1 Related work

The problem of view selection has been studied in literature with various ob-
jectives and constraints for a number of years (see [23] for a survey and the

4

design goals of the problem). One line of the past research consider the view-
selection under a deterministic environment where all queries are assumed to
be known and given in advance. Numerous algorithms are proposed for this
problem (see [14] for a survey). Significant work has also been done on index
selection in such settings, both on its own and alongside view selection, please
see [1,2,6,7,10]. Notable work including [13,15] considers greedy algorithms for
efficiently selecting views (with or without) indexes in a generalization of the
OLAP setting. Unfortunately, the paper [18] disproves the strong performance
bounds of these algorithms, by showing that the underlying approach of [15]
cannot provide the stated worst-case performance ratios unless P=NP.

Considerable work including [3–5,21,25] has been done in the open literature
that employ integer linear programming (ILP) models to obtain the optimal se-
lection of derived data for query processing. In particular, a line of past work [3–5]
has focused on formal approaches to selection of views (with or without indexes)
to minimize the cost of query processing under storage-space constraint. The
results of that work are scalable to realistically large numbers of queries and
views, and compare beneficially with several other approaches in the literature
including [2, 15, 17], please see [3–5] for the details. In this paper our proposed
techniques and IP models are complementary to those proposed in [3, 4] (see
Section 2.2 for an overview), and can be employed either separately or in con-
junction with these earlier techniques.

2 Background

In this section, we define the scope of the view-selection problem that we con-
sider, that is, the type of the database, queries and views. We also briefly review
the models and algorithms in [3,4], based on which, we build our proposed models
and methods.

2.1 Problem specification

We consider a star-schema data warehouse [8, 9] with a single fact table and
several dimension tables. We assume that all the views to be materialized are
defined, with grouping and aggregation but without selection, on the relation
(which we call the raw-data view) that is the result of the “star-schema join” [19]
of all the relations in the schema. We can show formally that for each query posed
on the original database, the query can be rewritten equivalently into a query
posed on the raw-data view. Using this formal result, in the remainder of the
paper we assume that all the queries in the workloads that we consider are posed
on the relevant raw-data view. In this context, we consider the evaluation costs
of answering unnested select-project-join queries with grouping and aggregation
using unindexed materialized views, such that each query can be evaluated using
just one view and no other data. (This setting is the same as in [4,15,17,22,25].)
A query q can be answered using a view v only if the set of grouping attributes
of v is a superset of the set of attributes in the GROUP BY clause of q and of

5

those attributes in the WHERE clause of q that are compared with constants. We
use v to represent both a view and the collection of grouping attributes for that
view, and we use q to represent both a query and the collection of attributes
in the GROUP BY clause of that query plus those attributes in the WHERE clause
of the query that are compared with constants. It follows that query q can be
answered by view v if and only if q ⊆ v. To evaluate a query using a given
view (if this view can indeed be used to answer the query) we have to scan all
rows of the view. Hence the corresponding evaluation cost is equal to the size of
the view itself; similar cost calculation is used in [4, 15, 17, 22, 25]. One way to
estimate the view sizes in practice, as suggested in the literature, is by getting a
relatively small-size sample of the raw-data view and by then evaluating the view
definitions on that table, with a subsequent scaleup of the sizes of the resulting
relations. We use ai to denote the size of each view vi in the problem input. We
also use the parameter dij to denote the evaluation cost of answering query qj

using view vi. It follows that for each query qj we have dij = ai if qj ⊆ vi, and
we set dij = +∞ otherwise, implying that qj cannot be answered by view vi.

We consider the following problem, which we call the Deterministic View-
Selection (DV S) problem: Given a collection Q of queries on a given star-schema
data warehouse D, and a storage limit b on the total size of the views that we
may materialize, select a collection of views to materialize so as to minimize the
total evaluation cost of the given queries.

The search space of views that we consider for a given problem DV S is
the view lattice introduced by Harinarayan et al. in [15], which includes all the
views defined on the raw-data table, such that each view has aggregation on all
the attributes aggregated in the input queries. In the view lattice, each node
represents a view, and a directed edge from node v1 to node v2 implies that v1

is a parent of v2, that is, v2 can be obtained from v1 by aggregating over one
attribute of v1. We illustrate it by the following example.

Example 1. Given a database with four attributes a, b, c and d, we assume that
the input query set Q consists of seven queries Q = {q1, q2, q3, q4, q5, q6, q7},
where q1 = {b}, q2 = {c}, q3 = {a, b}, q4 = {a, c}, q5 = {b, c}, q6 = {b, d} and
q7 = {c, d}. The view lattice is shown in Figure 1. The space requirement in the
number of bytes for each view in the lattice is given next to its corresponding
node. In this instance, we assume the total space limit b = 30. Our objective is
to minimize the cost of answering Q by materializing a set of views S with the
total size less than or equal to 30.

2.2 An integer programming model

Asgharzadeh et al. [3,4] propose an integer programming (IP) model for solving
the deterministic view-selection problem as we defined in Section 2.1. This IP
model has a key role in our discussions below, hence, for completeness, we present
it here. Let V denote the search space of views defined in Section 2.1 for a given
problem DV S with a query set Q. Let I and J denote the set of subscripts

6

Fig. 1. View lattice for Example 1, with view sizes shown as number of bytes

associated with V and Q, respectively. Define the decision variables xi and zij

for all j ∈ J and for all i ∈ I, as follows:

xi =
{

1 if view vi is materialized
0 otherwise

zij =
{

1 if we use view vi to answer query qj

0 otherwise

The problem DV S can now be formulated as the following integer programming
(IP) model.

(IP1) minimize
∑

j∈J

∑

i∈I

dijzij (1)

subject to
∑

i∈I

zij = 1 ∀j ∈ J (2)

zij ≤ xi ∀j ∈ J,∀i ∈ I (3)
∑

i∈I

aixi ≤ b (4)

All variables are binary (5)

Constraint (2) states that each query is answered by exactly one view; constraint
(3) guarantees that a query can be answered by a view only if the view is mate-
rialized. Constraint (4) limits the storage space for the views to be materialized.

Asgharzadeh et al. [3, 4] propose to reduce the size of the search space of
views (that is, prune the search space of views) from the view lattice V to a
smaller subset based on the following two observations:

Observation 1 A view v is not a candidate to be selected in the optimal collec-
tion of views, and hence it can be removed from the search space of views, if it
contains at least one attribute that is not in any of the queries it can answer

7

Observation 2 A view v is not a candidate to be selected in the optimal collec-
tion of views, and hence it can be removed from the search space of views, if it
is not equal to any query in the given query set Q, and its size is greater than
or equal to the total size of queries it can answer.

As mentioned in Asgharzadeh et al. [3, 4], these observations allow us to
remove a certain number of views at the outset, thus reducing the size of the
corresponding model IP1. We refer to this smaller model as IP1′. Of course, we
can still guarantee that the optimal solution of the model IP1′ is also optimal
for the original problem DV S. This, in turn, allows us to solve larger instances
of the problem and obtain the corresponding optimal solutions.

Through a comprehensive computational study, Asgharzadeh et al. [3,4] show
the effectiveness of this approach in solving relatively large instances of problem
DV S. They also propose several heuristic techniques to further reduce the search
space of views and the size of the corresponding IP model, hence allowing even
larger instances of the problem to be solved in this manner, albeit they can no
longer guarantee that the resulting solution is optimal for the original problem.

In this paper we study the structural relationships between the given query
set Q and each view v in the view lattice V , and use this relationship to propose
effective techniques for further pruning the search space of views and reducing
the size of the corresponding IP model. Our proposed techniques for pruning the
search space of views are complementary to those proposed in Asgharzadeh et
al. [3,4] and can be employed either separately or in conjunction with these earlier
techniques. We evaluate the effectiveness of our proposed techniques through a
comprehensive computational study, and report our findings.

3 Properties of views and queries

In this section we study the structural properties of the views in relation to a
given query set Q in the context of the problem DV S. These properties form
the basis upon which we subsequently devise appropriate strategies to prune the
search space of views.

3.1 Maximum benefit

Given a problem DV S with a query workload Q, for each view v in the view
lattice V , let Q(v) denote the set of queries in Q that v can answer, that is,
Q(v) = {q ∈ Q : q ⊆ v}.

Definition 1. For each subset Q′ of Q(v), we define the benefit of view v over
Q′ as the amount of space that we can save by materializing view v instead of
materializing all queries in Q′. We refer to this benefit as d(v, Q′).

From this definition, it follows that the benefit d(v, Q′) is equal to the difference
between the total size of queries in Q′ and the size of v, that is,

d(v, Q′) =
∑

q∈Q′

S(q)− S(v) (6)

8

where S(·) denotes the size of a view (or query).

Definition 2. Given the input query set Q, for each view v in V , the maximum
benefit of v over Q is defined as the amount of space that we can save by ma-
terializing view v instead of materializing all input queries that v can answer,
that is, d(v, Q(v)).

From this definition, Observation 2 in Section 2.2 can also be expressed as
follows: A view v is not a candidate to be selected in the optimal collection of
views, and hence it can be removed from the search space of views, if it is not
equal to any query in the given query set Q, and the maximum benefit of v over
Q is non-positive.

We now make the following observation based on the relationship between
the maximum benefit of each view in the view lattice.

Observation 3 Given a view v in V , if there exists a view v′ in V such that
v′ ⊂ v and the maximum benefit of v′ over Q is greater than or equal to that of v
over Q, that is, if d(v′, Q(v′)) ≥ d(v, Q(v)), then there exists an optimal solution
for problem DV S in which v is not materialized.

Proof. Assume that there exists a view v′ that satisfies the associated con-
dition. By definition, d(v′, Q(v′)) =

∑
q∈Q(v′) S(q) − S(v′) and d(v, Q(v)) =∑

q∈Q(v) S(q)− S(v). Since d(v′, Q(v′)) ≥ d(v, Q(v)), we have that

∑

q∈Q(v′)

S(q)− S(v′) ≥
∑

q∈Q(v)

S(q)− S(v)

Hence,
S(v) ≥ S(v′) +

∑

q∈Q(v)

S(q)−
∑

q∈Q(v′)

S(q)

Since v′ ⊂ v, we have that {q ∈ Q : q ⊆ v′} ⊆ {q ∈ Q : q ⊆ v}. This indicates
that

∑
q∈Q(v) S(q) −

∑
q∈Q(v′) S(q) =

∑
q∈Q(v)\Q(v′) S(q) ≥ 0. Thus, we have

that
S(v) ≥ S(v′) +

∑

q∈Q(v)\Q(v′)

S(q) (7)

If v is materialized in an optimal solution for problem DV S, we can replace
it by materializing the view v′ and the view set V ′, which is the set of views
corresponding to the queries in the set difference of Q(v) and Q(v′) (that is,
Q(v) \ Q(v′)). According to Equation 7, the size of view v is greater than or
equal to the total size of the new views that we materialize. Thus, the space
limit is not violated. All the queries that are assigned to v can be answered by
v′ or by some view in V ′. The overall cost of the new solution is no higher than
the previous one. Thus, the new solution remains optimal for the problem DV S.
The result follows.

9

Example 1 (Continued). Compare the views v′ = {a, c} and v = {a, c, d} in V .
The view {a, c} answers queries {c} and {a, c} in Q. The view {a, c, d} answers
queries {c}, {a, c}, and {c, d} in Q. We have that d(v′, Q(v′)) = 5 + 12− 12 = 5
and d(v, Q(v)) = 5 + 12 + 9 − 22 = 4. Observe that v′ is a subset of v, and
that d(v′, Q(v′)) > d(v, Q(v)). Thus, instead of materializing view {a, c, d}, we
can materialize views {a, c} and {c, d}, and then use view {a, c} to answer the
queries {c} and {a, c}, and use view {c, d} to answer query {c, d}. The new cost
of answering the queries {c}, {a, c}, and {c, d} does not exceed the original cost.
Thus, view {a, c, d} can be eliminated from the search space of views.

In Section 4, we build on this observation to further reduce the search space
of views for the problem DV S.

3.2 Cost-benefit ratio

In this section we introduce a measure of effectiveness associated with each view
with respect to a set of queries in the context of the problem DV S. Later in
Section 6 we use this measure to devise effective inexact (heuristic) methods for
solving the problem.

First, we define the “extra cost” of view v over a collection of queries Q′, for
each view v and for each subset Q′ of Q(v).

Definition 3. For every view v and for every subset Q′ of Q(v), the extra cost
of view v over the query set Q′ is defined as the difference between the cost of
answering the queries in Q′ using view v and the cost of answering these queries
using their respective equivalent views (that is, using views v = q, for all q ∈ Q′).
We refer to this extra cost as c(v, Q′). Equivalently we have that

c(v, Q′) =
∑

q∈Q′

(
S(v)− S(q)

)
(8)

where S(·) refers to the size of the view (or query).

As introduced in Section 3.1, for each view v and for each subset Q′ of Q(v),
we have already defined d(v, Q′), the benefit of view v over the query set Q′, as
the amount of space saved by materializing the view v instead of all the queries
in Q′. Note that if a view v is not equal to any query in Q and v is selected for
answering a query set Q′ in the optimal solution, then the benefit of v over Q′

must be positive, that is, d(v, Q′) > 0. (Otherwise, it is obviously feasible and
less costly to answer these queries using their respective equivalent views.) For
each view v in V , we refer to any subset Q′ of Q(v) with positive benefit value,
that is, d(v, Q′) > 0, as a Positive Subset of Q(v).

We define a subset Ṽ of V by excluding from V , i) each view that is equal to
some query in Q, and ii) each view that has a non-positive value of maximum
benefit over Q, that is,

Ṽ = {v ∈ V : v)∈ Q and d(v, Q(v)) > 0} (9)

The following definition is only for views in the set Ṽ .

10

Definition 4. For each view v in Ṽ and for any positive subset Q′ of Q(v), we
define the cost-benefit ratio of view v with respect to Q′ (or simply, the cost-
benefit ratio of view v over Q′) as the ratio of the extra cost over the benefit of
view v over Q′ as defined above. We denote this ratio by r(v, Q′). From Defini-
tions 1 and 3, we have that

r(v, Q′) =
c(v, Q′)
d(v, Q′)

=
∑

q∈Q′

(
S(v)− S(q)

)
∑

q∈Q′ S(q)− S(v)
(10)

The cost-benefit ratio of a view v over a query set Q′ measures the extra cost
incurred when we use view v to answer the queries in Q′ per unit space that we
save by materializing v instead of the queries in Q′.

The cost-benefit ratio as defined in Definition 4 is always well defined and
non-negative. This follows from the fact that the numerator of this ratio is non-
negative since for each query q ∈ Q′ we have q ⊆ v and thus S(v) − S(q) ≥ 0,
and that the denominator is strictly positive since this ratio is defined only for
positive subsets Q′ of Q(v).

The cost-benefit ratio of view v with respect to the query set Q′ is an indicator
of the overall value of the view v in answering the queries in Q′, in term of both
its “cost” and its “benefit”. If the cost-benefit ratio r(v, Q′) is relatively small,
e.g. close to 0, it implies that we pay relatively smaller “extra cost” (increased
response time) for utilizing view v to answer the queries in Q′ with a relatively
larger “benefit” (disk space saved) obtained by materializing the view v instead
of the queries in Q′. It follows that the materialization of view v is expected
to be valuable, that is, v is favored to be selected in the collection of optimal
views. If the cost-benefit ratio r(v, Q′) is relatively large, it indicates that the
materialization of view v may not bring as much “benefit” but a large amount
of “penalty” as “extra cost”. Thus, the view v is not favored to be materialized.

Minimum cost-benefit ratio From the above discussion, the view with a
lower cost-benefit ratio is likely to be more valuable for the problem DV S. In
this subsection, we study the properties of the cost-benefit ratio r(v, Q′) as a
function of Q′, and show that this function achieves a non-negative minimum
value. We then discuss an efficient procedure for obtaining this minimum value.

Given the input query set Q and the view set V for the problem DV S, for
each view v ∈ Ṽ (that is, v)∈ Q and d(v, Q(v)) > 0), and for each positive subset
Q′ of the query set Q(v) (that is d(v, Q′) > 0), we can compute r(v, Q′), the
cost-benefit ratio of the view v over Q′. We denote the set of all the positive
subsets of Q(v) as PS(Q(v)).

Definition 5. The minimum cost-benefit ratio of v over Q, denoted by rmin(v, Q),
is the minimum value of the cost-benefit ratios among all the positive subsets of
Q(v). Equivalently,

rmin(v, Q) = min
Q′∈PS(Q(v))

r(v, Q′) = min
Q′∈PS(Q(v))

∑
q∈Q′

(
S(v)− S(q)

)
∑

q∈Q′ S(q)− S(v)
(11)

11

Observation 4 Given the input query set Q and the view set V in the problem
DV S, for every view v ∈ Ṽ (that is, v ∈ V , v)∈ Q, and d(v, Q(v)) > 0), the
minimum cost-benefit ratio rmin(v, Q) exists and rmin(v, Q) ≥ 0.

Proof. The existence of rmin(v, Q) follows directly from the fact that the set
PS(Q(v)) is finite, and that r(v, Q′) is well-defined for every Q′ ∈ PS(Q(v)).
Since all the cost-benefit ratios are non-negative, we have that rmin(v, Q) ≥ 0.

In order to determine the minimum cost-benefit ratio of each view v over the
query set Q, according to its definition in Equation (11), we need to determine
the cost-benefit ratio for every positive subset Q′ of Q(v). The computational
requirement of this work is O(2|Q(v)|). The following discussion allows us to
reduce this computational requirement significantly.

For each view v, let Nv denote the number of queries in Q that v can answer.
Equivalently, Nv = |Q(v)|. We sort the queries in the set Q(v) in a non-increasing
order of their sizes, that is, S(v) ≥ S(q(1)) ≥ S(q(2)) ≥ · · · ≥ S(q(Nv)); of course
Q(v) = {q(1), q(2), . . . , q(Nv)}. Define Q(n)(v) as the collection of n largest queries
in Q(v), that is, Q(n)(v) = {q(1), q(2), . . . , q(n)}, for n = 1, 2, . . . , Nv. We define
nv as the smallest number such that Q(nv)(v) is a positive subset of Q(v). The
following lemma follows directly from the definitions.

Lemma 1. If 1 ≤ n < nv, Q(n))∈ PS(Q(v)); If nv ≤ n ≤ Nv, Q(n) ∈
PS(Q(v)).

Proof. Since nv is the smallest number such that d(v, Q(nv)(v)) > 0, we only
need to show that Q(n) is a positive subset of Q(v), for all nv ≤ n ≤ Nv. If
n ≥ nv, then we have that

d(v, Q(n)) =
n∑

j=1

S(q(j))− S(v) ≥
nv∑

j=1

S(q(j))− S(v) = d(v, Q(nv)) > 0

The inequality follows from the fact that q(1) through q(n) are sequenced in a
non-decreasing order of their size.

We now have the following proposition.

Proposition 5. Given the input query set Q and the view set V in the problem
DV S, for each view v in Ṽ , we have that

rmin(v, Q) = min
nv≤n≤Nv

r(v, Q(n)(v)) = min
nv≤n≤Nv

∑n
j=1

(
S(v)− S(q(j))

)
∑n

j=1 S(q(j))− S(v)
(12)

Proof. By Observation 4, there exists a query set Q′ ∈ PS(Q(v)) such that
rmin(v, Q) = r(v, Q′). Let N be the number of queries in Q′, that is, N = |Q′|.
The total size of the N queries in Q′ is less than or equal to the total size of the
queries in Q(N)(v) (the N largest queries in Q(v)), or equivalently,

∑
q∈Q′ S(q) ≤

∑N
j=1 S(q(j)). It follows that

∑
q∈Q′

(
S(v)−S(q)

)
≥

∑N
j=1

(
S(v)−S(q(j))

)
≥ 0,

12

and 0 <
∑

q∈Q′ S(q) − S(v) ≤
∑N

j=1 S(q(j)) − S(v). In other words, the “extra
cost” of v over Q′ is greater than or equal to that of v over Q(N)(v), and the
“benefit” of v over Q′ is positive and no more than that of v over Q(N)(v). Thus,
we have that

r(v, Q′) =
∑

q∈Q′

(
S(v)− S(q)

)
∑

q∈Q′ S(q)− S(v)
≥

∑N
j=1

(
S(v)− S(q(j))

)

∑N
j=1 S(q(j))− S(v)

= r(v, Q(N)(v)) ≥ 0

In addition, from Lemma 1, we have that nv ≤ N ≤ Nv. It follows that

rmin(v, Q) = r(v, Q′) ≥ r(v, Q(N)(v)) ≥ min
nv≤n≤Nv

r(v, Q(n)(v)) ≥ rmin(v, Q)

Thus, rmin(v, Q) = minnv≤n≤Nv r(v, Q(n)(v)).

By this proposition, the minimum cost-benefit ratio of v over Q can be ob-
tained by evaluating the cost-benefit ratio of v over the query set Q(n)(v), for
nv ≤ n ≤ Nv. Hence, the computational requirement of evaluating the minimum
cost-benefit ratio can be reduced from O(2|Q(v)|) to O

(
|Q(v)|

)
. We can further

improve the efficiency of this evaluation by the following observation.

Proposition 6. For each view v such that Nv − nv ≥ 2, consider the cost-
benefit ratio of view v over Q(n)(v), that is,

{
r(v, Q(n)(v)) : nv ≤ n ≤ Nv

}
.

For all n, nv ≤ n ≤ Nv − 2, if 0 ≤ r(v, Q(n)(v)) < r(v, Q(n+1)(v)), then
r(v, Q(n+1)(v)) < r(v, Q(n+2)(v)).

Proof. Assume nv ≤ n ≤ Nv − 2 and 0 ≤ r(v, Q(n)(v)) < r(v, Q(n+1)(v)). We
have that

r(v, Q(n)(v))− r(v, Q(n+1)(v))

=

n∑
j=1

(
S(v)− S(q(j))

)

n∑
j=1

S(q(j))− S(v)
−

n+1∑
j=1

(
S(v)− S(q(j))

)

n+1∑
j=1

S(q(j))− S(v)

=

(n∑
j=1

(
S(v)− S(q(j))

))(n+1∑
j=1

S(q(j))− S(v)
)
−

(n+1∑
j=1

(
S(v)− S(q(j))

))(n∑
j=1

S(q(j))− S(v)
)

(n∑
j=1

S(q(j))− S(v)
)(n+1∑

j=1
S(q(j))− S(v)

)

=
S(v)

d(v, Q(n)(v))d(v, Q(n+1)(v))

(
S(v)−

n∑

j=1

S(q(j)) + (n− 1)S(q(n+1))
)

Or equivalently,

r(v, Q(n)(v))− r(v, Q(n+1)(v)) =
S(v)

d(v, Q(n)(v))d(v, Q(n+1)(v))
Tn (13)

13

where Tn =
(
S(v)−

∑n
j=1 S(q(j)) + (n− 1)S(q(n+1))

)
.

It follows that by the same argument we have that

r(v, Q(n+1)(v))− r(v, Q(n+2)(v)) =
S(v)

d(v, Q(n+1)(v))d(v, Q(n+2)(v))
Tn+1 (14)

Since r(v, Q(n)(v)) < r(v, Q(n+1)(v)), we have that r(v, Q(n)(v))− r(v, Q(n+1)(v))
< 0. By Equation (13), Tn < 0. It follows that Tn+1 = Tn − n

(
S(q(n+1)) −

S(q(n+2))
)

< 0. Hence, by Equation (14), we have that r(v, Q(n+1)(v))−r(v, Q(n+2)(v)) <
0.

Proposition 6 implies that once the function r(v, Q(n)(v)) increases as we
increase n, it will no longer decrease. Hence, we obtain the following corollary.

Corollary 1. The function r(v, Q(n)(v)) is a unimodal function of n for nv ≤
n ≤ Nv. In other words, the function r(v, Q(n)(v)) must be in one of the following
three patterns:

i) r(v, Q(n)(v)) is a non-increasing function of n, for nv ≤ n ≤ Nv;
ii) r(v, Q(n)(v)) is a non-decreasing function of n, for nv ≤ n ≤ Nv;
iii) there exists n̄ (nv ≤ n̄ ≤ Nv) such that r(v, Q(n)(v)) is a non-increasing

function of n for nv ≤ n ≤ n̄ and it is a non-decreasing function for all
n̄ ≤ n ≤ Nv.

We can now compute the minimum cost-benefit ratio of view v over the query
set Q by computing the cost-benefit ratio r(v, Q(n)(v)) from n = nv until the
minimum n, denoted by n̄, such that 0 ≤ r(v, Q(n̄)(v)) < r(v, Q(n̄+1)(v)). If there
exists such a value n̄, then rmin(v, Q) = r(v, Q(n̄)(v)). Otherwise, rmin(v, Q) =
r(v, Q(v)).

Example 1 (Continued). Consider the views v1 = {a, b, c} and v2 = {b, c, d}
in the view set Ṽ . We can compute rmin({a, b, c}, Q) as follows.

r({a, b, c},
{
{a, c}, {b, c}

}
) =

(14− 12) + (14− 10)
12 + 10− 14

= 0.75

r({a, b, c},
{
{a, c}, {b, c}, {a, b}

}
) =

10
16

= 0.867 > 0.75

Thus, rmin({a, b, c}, Q) = 0.75. We can apply the same approach to obtain that
rmin({b, c, d}, Q) = 1.333. The values of the function r(v, Q(n)(v)) on different
values of n for v = v1 and for v = v2 are shown in Figure 2. We observe that
r(v1, Q(n)(v1)) is an increasing function of n for 2 ≤ n ≤ 5, and r(v2, Q(n)(v2))
decreases for 2 ≤ n ≤ 3, and increases for 3 ≤ n ≤ 5.

The properties of a view discussed above can help us in reducing the search
space of views in two significant ways. Firstly, Observation 3 in Section 3.1,
along with Observations 1 and 2 stated in Section 2.2, allow us to reduce the
search space of views for a given problem DV S while we can still guarantee that

14

Fig. 2. The minimum cost-benefit ratios in Example 1

the reduced search space contains at least one optimal solution. We discuss this
subject in Section 4 below. Secondly, Observation 4 and Propositions 5 and 6
allow us to further reduce the search space of views by keeping only those views
that are likely to be effective in answering the given collection of queries. This,
in turns, allows us to solve larger instances of the problem, although we can no
longer guarantee that the resulting solution is optimal for the original problem.
We discuss this subject in Section 6.

4 Solving the problem

As mentioned earlier, Asgharzadeh et al. [3,4] employ the results stated in Obser-
vations 1 and 2 in the context of a given problem DV S to remove certain views
from the search space, thus reducing the size of the corresponding IP model IP1.
In this section we propose to further reduce the size of the IP model by employ-
ing the results stated in Observation 3 and combining these results with those
of Observations 1 and 2. Through a computational study in the next section we
show empirical evidence of the effectiveness of this approach in solving relatively
large instances of the problem DV S.

4.1 The reduction procedure

We reduce the search space of views, and thus the size of the corresponding IP
model, by removing every view that satisfies the stated condition in at least one
of the observations 1, 2, or 3. We refer to every such view as a dominated view.
Note that the conditions stated in these observations are independent of each
other, hence the results of these reductions do not depend on the order of their

15

application. Thus, as we go through the collection of views in the set V in order to
identify the dominated views, for each view we test for the conditions stated in all
three observations before moving to the next view. A detailed description of the
reduction procedure that we have devised to implement theses reductions is given
below. The computational complexity of this procedure is O(|V |2) = O(4K),
where K is the number of attributes in the database.

We use the binary representation of the subscript number for each view to
indicate the set of attributes for the view. For instance, in a database with 4
attributes a, b, c and d, the binary number “1001” represents the set of attributes
{a, d}. Hence, the subscript number of view {a, d} is 9 (= 23 + 20). We can now
conduct the reductions on views by iterating over all the subscript numbers of
the corresponding views in V . The pseudocode for this procedure is given in the
next page.

Algorithm 1 The reduction procedure
Input: the given query set Q and the search space of views V
Output: the reduced search space of views V
1: Sort the elements of V in an increasing order of the subscript numbers
2: V ← ∅
3: for i ← 1 to |V | do
4: v ← ith element of V
5: f ← 1
6: a ← | ∪q∈Q(v) q|
7: d(v, Q(v)) ←

∑
q∈Q(v) S(q)− S(v)

8: if |v| %= a or (v %∈ Q and d(v, Q(v)) ≤ 0) then
9: f ← 0

10: else
11: for j ← 1 to |V | do
12: ṽ ← jth element of V
13: if ṽ ⊂ v then
14: if d(ṽ, Q(ṽ)) ≥ d(v, Q(v)) then
15: f ← 0
16: break
17: end if
18: end if
19: end for
20: end if
21: if f = 1 then
22: V ← V ∪ {v}
23: end if
24: end for

In this procedure, we iterate through all the views in the view set V in the
increasing order of their subscript numbers, one view in each iteration (lines 1-
4). Note that if a view v answers a query (view) v′, the subscript number of v is
larger than the subscript number of v′. Thus, this ordering guarantees that when

16

conducting the reductions regarding a view v, all the views that are subsets of
v have already been considered in this procedure. The last view we consider in
this procedure is the raw-data view. In each iteration, we use a binary variable
f to indicate if view v can be eliminate. At the beginning of each iteration, we
set f = 1 (line 5). In each iteration, we first conduct the reduction based on
Observations 1 and 2 (lines 6-9). More specifically, for each view v, we compare
the number of attributes in v with that in the union set of the queries in Q
that v can answer. We also compare the size of view v with the total size of the
queries in Q that v can answer. Note that the statements “|v|)= a” and “v)∈ Q
and d(v, Q) ≤ 0” in line 8 indicate that v can be eliminated by the results of
Observation 1 and by the results of Observation 2, respectively. Then we conduct
the reduction based on Observation 3 by iterating through each view ṽ that has
been selected as a candidate view and can be answered by v (lines 11-19). For
each view ṽ, we compare the maximum benefit of v over Q (d(v, Q(v))) with
that of ṽ over Q (d(ṽ, Q(ṽ))). The statement “d(ṽ, Q(ṽ)) ≥ d(v, Q(v))” indicates
the view v can be eliminated. At the end of each iteration, if the view is not
eliminated by any of the results of Observations 1-3, we add it into the view set
V (lines 21-23). At the beginning of the procedure, the view set V is an empty
set. As a result, at the end of this procedure, V is the new search space of views.

4.2 Smaller IP model

The structure of this model is similar to model IP1 that we introduced in Section
2.2, except that we use the reduced search space of views V instead of V . More
specifically, for each query qj ∈ Q we define Vj = {vi ∈ V : vi ⊇ qj}. We also
define the associated sets of subscripts for V and Vj as I and Ij , respectively.
Using this notation we now define the smaller IP model that we refer to as model
IP2 as follows.

(IP2) minimize
∑

j∈J

∑

i∈I

dijzij (15)

subject to
∑

i∈Ij

zij = 1 ∀j ∈ J (16)

zij ≤ xi ∀j ∈ J,∀i ∈ Ij (17)
∑

i∈I

aixi ≤ b (18)

All variables are binary (19)

Based on the above observations, an optimal solution for model IP2 is guar-
anteed to be optimal for IP1. Hence, it provides an optimal solution for the
original problem.

Obviously the size of model IP2 in terms of the number of variables and
constraints, is potentially smaller than that of model IP1. The magnitude of

17

the difference in size, however, depends on the specifies of each instance. In
Section 5 we compare the sizes of these two models on an empirical basis and
show that the difference in the sizes of the two models can be significant.

5 Experimental results with model IP2

In this section, we present the results of a computational experiment with the
approach introduced in Section 4 for solving the problem DV S. Our objectives
are (i) examining the effectiveness of our approach in reducing the search space of
views proposed in Section 4, and (ii) evaluating the scalability of the model IP2
introduced in Section 4 and its effectiveness in solving relatively large instances
of the problem DV S. We construct a collection of instances of the problem
DV S with varying sizes using a number of datasets generated via the TPC-
H benchmark [24]. All of our algorithms are implemented in C++ and all the
experiments are carried out on a 2.66GHz Intel 2 Quad processor with 3.25 GB
RAM running Windows XP Professional. We use CPLEX 11 [16] to solve the
integer programming models. We observe that the search spaces of views are
significantly reduced in IP2 compared with models IP1 and IP1′ introduced in
Sections 2.2, which, in turn, allows us to use IP2 to solve larger instances of the
problem DV S. More specifically, our experimental results show that:

– The search space of the views in model IP2 is significantly smaller than that
of models IP1 and IP1′. The magnitude of this difference depends on the
data set in each specific instance.

– Size of the model IP2, as measured by the number of variables and con-
straints, is sufficiently small to allow its use in solving relatively larger
(realistic-size) instances of the problem within reasonable execution time.
Of course, the resulting solution is guaranteed to be optimal for the original
problem DV S.

– In some larger (realistic-size) instances of problem DV S, however, the size
of the corresponding model IP2 is too large for current “state of art” IP
solver. In the next section we propose alternative (scalable) approaches for
solving such (larger) instances of the problem.

5.1 Constructing the instances

The input parameters for an instance of the problem DV S are a database D, a
query set Q, and the space limit b. In this section, we use two different datasets
based on the TPC-H benchmark [24] – a 13-attribute dataset, and a 17-attribute
dataset – to construct the collection of instances in our experiments. The same
datasets are used in [3–5].

For each instance we generate the queries in the query set randomly. More
specifically, given a database fact table (that is, stored relation) D with K at-
tributes, and given two integers t0 and t1 ∈ [1,K − 1], we construct each query
q with t attributes from the database D, where t ∈ [t0, t1]. In order to randomly

18

construct such a query q, we first determine the number of attributes in q by
randomly generating an integer t between t0 and t1. Then, we randomly choose
t distinct integers a1, . . . , at from {1, 2, . . . , K} as the attributes of q. Then,
{a1, . . . , at} uniquely defines query q over the database D.

Our preliminary experiments showed that the computational requirements
of solving model IP2 in each instance depend on the relative magnitude of the
storage space limits as compared with the size of the queries. In this section for
all instances based on the TPC-H datasets we choose the storage space limit
b equal to one fifth of the sum of the sizes of the queries in Q, that is b =
0.2 ∗

∑
q∈Q S(q). Our empirical observations show that typically at this value of

b the computational requirements of solving the model IP2 are relatively high
as compared with these requirements at other values of b.

5.2 Reduction in the size of search space

We compare the size of the models IP1, IP1′ and IP2 for several randomly
generated instances of the problem DV S. More specifically, we constructed 20
instances for the 13-attribute TPC-H dataset in such a way that for each instance
the number of attribute of each query is a random number between 1 and 12.
(These queries are randomly chosen from the entire view lattice.) The number of
queries for each instance ranges from 20 to 100. We also construct 20 instances
for the 17-attribute TPC-H dataset. For the instances 1 to 5 in this group,
the number of attributes of each query is a random number between 1 and 16,
(that is, each query is chosen from the entire view lattice). For the each of the
remaining instances, all of the queries are from certain levels of the view lattice.
For the instances 6 to 10, the number of attributes in each query is a random
number between 1 and 8, (that is, each query is chosen from the bottom levels
of the view lattice). For the instances 11 to 15, the number of attributes of each
query is a random number between 5 and 12, (that is, each query is chosen
from the middle levels of the view lattice). Finally for the instances 16 to 20,
the number of attributes of each query is a random number between 9 and 16,
(that is, each query is chosen from the top levels of the view lattice). We refer
to the query types of those instances as “bottom-level”, “middle-level”, and
“top-level”, respectively. Within the collection of instances for each query type,
the number of queries ranges from 20 to 100. For each instance, we report the
number of views in models IP1, IP1′ and IP2. For the 20 instances on the 17-
attribute dataset, these values are in Table 1. For each instance, we also report
the number of variables and constraints in each model. (We do not construct
model IP1 since [4] has already shown that IP1′ is much more effective than
IP1.) In Table 2 we report the corresponding execution times. More specifically
we report the time that it takes to build each model, the time that it takes to
solve each model by the CPLEX IP solver, and the total execution time of each
model for the instances over the 17-attribute dataset. The pattern of results
for the 20 instances over the 13-attribute dataset are similar to those of the
17-attribute dataset. For brevity we do not include them here. We make the
following observations.

19

Table 1. Comparison of the number of views and the sizes in the models IP1, IP1′

and IP2, for instances over the 17-attribute TPC-H dataset

inst-

ance

query
type

number
of
queries

number of
views

number of
variables

number of
constraints

IP1 IP1′ IP2 IP1′ IP2 IP1′ IP2
1

random

20 115,200 125 100 962 784 858 705
2 40 118,420 1,920 915 15,567 8,228 13,688 7,354
3 60 127,760 3,724 1,796 41,949 22,646 38,286 20,911
4 80 127,544 7,070 4,589 86,895 60,702 79,906 56,194
5 100 128,960 16,159 7,710 216,950 118,653 200,892 111,044

6

bottom-
level

20 98,744 1,071 1,004 7,793 7,426 6,743 6,443
7 40 125,576 7,409 3,192 81,768 39,027 74,400 35,876
8 60 130,076 21,678 8,048 330,371 138,305 308,754 130,318
9 80 130,916 35,927 14,248 570,725 271,489 534,879 257,322
10 100 130,984 44,229 17,937 817,183 396,196 773,055 378,360

11

middle-
level

20 15,415 301 301 1,642 1,642 1,362 1,362
12 40 27,665 1,507 1,504 9,036 9,024 7,570 7,561
13 60 38,220 3,787 3,614 26,085 25,289 22,359 21,736
14 80 34,045 4,351 4,305 29,795 29,596 25,525 25,372
15 100 42,507 7,304 7,278 55,638 55,530 48,435 48,353

16

top-
level

20 1,027 89 89 378 378 310 310
17 40 1,500 234 234 1,077 1,077 884 884
18 60 1,733 316 316 1,543 1,543 1,288 1,288
19 80 3,758 669 669 3,584 3,584 2,996 2,996
20 100 3,145 687 687 3,731 3,731 3,145 3,145

20

Table 2. Comparison of the computing times of the models IP1′ and IP2, for instances
over the 17-attribute TPC-H dataset

inst-

ance

query
type

number
of
queries

time to build
model (sec.)

time to solve
model (sec.)

total time
(sec.)

IP1′ IP2 IP1′ IP2 IP1′ IP2
1

random

20 0.30 0.30 0.14 0.11 0.44 0.41
2 40 0.41 0.39 2.86 1.56 3.27 1.95
3 60 0.66 0.64 7.47 3.47 8.13 4.11
4 80 0.81 1.13 31.77 17.17 32.58 18.30
5 100 1.33 2.05 116.05 44.15 117.38 46.20

6

bottom-
level

20 0.41 0.50 1.58 1.72 1.99 2.22
7 40 0.70 0.80 104.28 32.53 104.98 33.33
8 60 1.56 2.28 >30min 385.14 >30min 387.42
9 80 3.19 6.19 out of memory >30min out of memory >30min
10 100 3.11 9.42 out of memory >30min out of memory >30min

11

middle-
level

20 0.25 0.25 0.42 0.42 0.67 0.67
12 40 0.31 0.34 4.44 3.89 4.75 4.23
13 60 0.45 0.67 22.42 21.05 22.87 21.72
14 80 0.52 0.80 103.19 93.26 103.71 94.06
15 100 0.61 1.39 >30min >30min >30min >30min

16

top-
level

20 0.25 0.22 0.11 0.05 0.36 0.27
17 40 0.30 0.27 2.56 2.28 2.86 2.55
18 60 0.31 0.33 1.08 1.06 1.39 1.39
19 80 0.34 0.38 1.63 1.62 1.97 2.00
20 100 0.41 0.44 3.01 3.14 3.42 3.58

21

1. In every instance the number of views in the search space for models IP1′
and IP2 are significantly smaller than the corresponding number in model
IP1. This reduction is relatively more significant for the instances with a
small ratio of the number of queries over the total number of views in the
dataset. More specifically, when we have a larger number of queries, the ratio
of the number of queries over the total number of views increases (since the
total number of views for a 17-attribute dataset is constant and equal to
131072), and the magnitude of associated reductions in the number of views
in the search space decreases. We make a similar observation on the instances
over the 13-attribute dataset.

2. Comparing the number of views in IP1′ and IP2, we note that for the
instances where the queries are from the entire view lattice (instances 1 to
5) or from the bottom levels of the view lattice (instances 6 to 10), the size
of IP2 is significantly smaller than that of IP1′. It is also observed that
for these instances the size of IP2, when expressed by the total number of
variables and constraints, is much smaller than that of IP1′. In addition,
the time to solve IP2 is also significantly smaller than that for IP1′. On
the other hand, for the instances where the queries are from the middle
levels of the view lattice (instances 11 to 15) the reduction in the number
of views in the search space from model IP1′ to IP2 is not as significant,
resulting in no significant difference in the size and the solving time between
the corresponding models IP1′ and IP2. Moreover, for the instances from
the top levels of the view lattice (instances 16 to 20), we observe no reduction
in the number of views in the search space from model IP1′ to IP2. These
observations are consistent with our expectations as evident from the nature
of Observation 3.

3. It is observed that for all instances the time to build the model IP2 is
relatively larger than that for IP1′. This increase in time is much more
significant for instances with large number of queries. Comparing the time
to build and the time to solve the models IP1′ and IP2, however, we observe
that the decrease in the time to solve the model IP2 compared with model
IP1′ is much more significant than the increase in the time to build the
model IP2 compared with model IP1′. In general it is also observed that
the total time for IP2 is relatively smaller than that for IP1′. This reduction
in time is more significant for instances where the queries are from the entire
view lattice (instances 1 to 5) or from the bottom levels of the view lattice
(instances 6 to 10).

5.3 Scalability of the model IP2

In order to evaluate the scalability of our approach we attempt to solve larger
instances of the problem DV S by model IP2.

In Table 2 we observe that for instances 6 to 10, where the queries are from
the bottom levels of the view lattice, the total execution time to solve IP2 ranges
from 2.22 seconds to 387.42 seconds where the number of queries in each instance

22

is no more than 60. However, we could not solve instances 9 and 10 within the
assumed time limit 30 minutes.

As reported in Table 2 for instances 11 to 15 where queries are from the
middle levels of the view lattice over the 17-attribute dataset, we observe that
we could solve all the instances whose number of queries is no more than 80.
The total execution time for IP2 ranges from 0.67 seconds to 94.06 seconds.
However, when we increase the size of the query set further to 100, the solver
fails to provide an optimal solution for model IP2 within our time limit of 30
minutes.

For instances where the queries are from the entire view lattice over the
17-attribute dataset (instances 1 to 5) that we report in Table 2, we note that
the total execution time for the model IP2 ranges from 0.41 seconds to 46.20
seconds. We also note that this time increases as we increase the number of
queries in the query set.

In addition, as observed in Table 2 we could solve within 5 seconds all the
instances where the queries are from the top levels of the view lattice over the
17-attribute dataset (instances 16 to 20).

In order to further observe the execution time for solving larger instances
of the problem where queries are from the entire view lattice, and for instances
where queries are from top levels of the lattice, we constructed several instances
with even larger number of queries over the 17-attribute dataset as reported
in Table 3. Note that for these instances we do not construct the correspond-
ing model IP1′, since we have already observed that model IP2 is much more
effective than model IP1′ for these types of instances.

Table 3. Scalability of IP2 for instances over the 17-attribute TPC-H dataset

ins-
tance

query
type

number of
queries

number of
views

time to build
IP2 (sec.)

time to solve
IP2 (sec.)

total time
(sec.)

21
random

220 23256 13.00 304.00 317.00
22 240 23921 14.25 374.22 388.47
23 260 25922 15.31 out of memory out of memory

24
top-
level

320 2673 0.91 559.58 560.49
25 340 2703 1.08 814.27 815.35
26 360 2930 1.20 >30min >30min

In Table 3, we observe that for the instances where queries are randomly
chosen from the entire view lattice we could solve the instance where the number
of queries is no more than 240. When we increase the number of queries to 260,
CPLEX fails to obtain an optimal solution as the computer ran out of memory.
For the instances where queries are from the top levels of the view lattice, we
could not solve the problem within 30 minutes when we increase the number of
queries to 360. In Section 6 we develop algorithms to further reduce the size of
the model to solve larger instances of the problem DV S.

23

6 Heuristic methods

As stated earlier, Observation 4 and Propositions 5-6 allow us to further reduce
the size of the search space of views by keeping only those views that are likely
to be effective in answering the given collection of queries in the context of
the problem DV S. In this section we propose several strategies for carrying
out this task, leading to two distinct procedures that we refer to as heuristic
methods I and II, respectively. We start the section by discussing the relationship
between the cost-benefit ratio and the model IP2. Subsequently, we build on the
discussion to derive two distinct heuristic methods for reducing the search space
of views and the size of the corresponding IP model.

6.1 Cost-benefit ratio and the model IP2

In this subsection, we discuss the relationship between the cost-benefit ratio and
the integer programming model IP2, and provide an intuitive justification as to
why a view with relatively low cost-benefit ratio is more favorable to be selected
in the context of the problem DV S.

We denote by J(v) the set of subscripts for the queries in Q(v). As introduced
in Section 2.1, if view vi can answer query qj , then the cost of answering qj using
vi is the size of vi. Equivalently, we have that dij = ai = S(vi). We now show
that the objective function of the model IP2 can be interpreted as the sum of
the extra costs of answering the queries using the materialized views instead of
the queries themselves, as defined in Equation 8, plus a constant. To this end,
we rewrite the objective function (15) of IP2 as follows.

∑

j∈J

∑

i∈Ij

dijzij =
∑

j∈J

∑

i∈Ij

S(vi)zij (20)

=
∑

j∈J

∑

i∈Ij

S(vi)zij −
∑

j∈J

S(qj) +
∑

j∈J

S(qj) (21)

=
∑

j∈J

∑

i∈Ij

S(vi)zij −
∑

j∈J

S(qj)
∑

i∈Ij

zij +
∑

j∈J

S(qj) (22)

=
∑

j∈J

∑

i∈Ij

zij

(
S(vi)− S(qj)

)
+

∑

j∈J

S(qj) (23)

=
∑

i∈I

xi

(∑

j∈J(vi)

zij

(
S(vi)− S(qj)

))
+

∑

j∈J

S(qj) (24)

For each view vi, we define the extra cost of using view vi to answer query
qj ∈ Q(vi) as

(
S(vi) − S(qj)

)
. Using the binary variables zij as defined in

the IP model, it follows that
∑

j∈J(vi)
zij

(
S(vi) − S(qj)

)
is the extra cost

of using view vi to answer all queries that are assigned to it, and the term

24

∑
i∈I xi

(∑
j∈J(vi)

zij

(
S(vi)−S(qj)

))
is the “total extra cost” of answering the

queries using the materialized views, instead of using the queries themselves.
Similarly, we define the benefit of using view vi to answer a collection of

queries Q′ ⊆ Q(vi) as the amount of disk space saved by materializing this view
instead of all queries in Q′. It follows that in the context of the IP model, the
benefit associated with view vi is

(∑
j∈J(vi)

zijS(qj) − S(vi)
)
, and the total

benefit associated with a given solution is
∑

i∈I xi

(∑
j∈J(vi)

zijS(qj)− S(vi)
)
.

By expanding and rewriting the terms in constraint (18) we note that

b−
∑

i∈I

aixi =
∑

j∈J

S(qj)−
∑

i∈I

aixi + b−
∑

j∈J

S(qj) (25)

=
∑

j∈J

S(qj)
∑

i∈Ij

xizij −
∑

i∈I

aixi −
(∑

j∈J

S(qj)− b
)

(26)

=
∑

i∈I

xi

(∑

j∈J(vi)

zijS(qj)− S(vi)
)
−

(∑

j∈J

S(qj)− b
)

(27)

It follows that constraint (18) can be rewritten as
∑

i∈I

xi

(∑

j∈J(vi)

zijS(qj)− S(vi)
)
≥

∑

j∈J

S(qj)− b (28)

In other words, the storage-limit constraint (18) could be interpreted as the
“benefit constraint”, that is, the “total benefit” obtained by materializing the
views instead of all the queries, that is,

∑
i∈I xi

(∑
j∈J(vi)

zijS(qj) − S(vi)
)
,

should be greater than or equal to a given constant
∑

j∈J S(qj)− b.
We can now rewrite the model IP2 as follows.

(IP2′) min
∑

i∈I

xi

(∑

j∈J(vi)

zij

(
S(vi)− S(qj)

))
+

∑

j∈J

S(qj) (29)

s.t.
∑

i∈I

xi

(∑

j∈J(vi)

zijS(qj)− S(vi)
)
≥

∑

j∈J

S(qj)− b (30)

∑

i∈Ij

zij = 1 ∀j ∈ J (31)

zij ≤ xi ∀j ∈ J,∀i ∈ Ij (32)
All variables are binary (33)

Note that the structure of model IP2′ is similar to the well-known 0-1 min-
knapsack problem, where

(∑
j∈J(vi)

zij

(
S(vi) − S(qj)

))
corresponds to the

“value” of ith item, and
(∑

j∈J(vi)
zijS(qj)−S(vi)

)
corresponds to the “weight”

of the ith item. Of course, in this case the presence of zij variables and their

25

relationship with the variables xi (that is, Constraint (32)) are distinct charac-
teristics that distinguish this model from the conventional knapsack problem.

Dantzig in [11] proposed a greedy approximation algorithm to solve the knap-
sack problem. It first sorts the items in non-decreasing order of their “value” per
unit of “weight”. It then proceeds to select the items in that order until the knap-
sack constraint is satisfied. In our problem DV S, the “cost” per unit of “weight”

for each view is
(∑

j∈J(vi)
zij

(
S(vi) − S(qj)

))
/
(∑

j∈J(vi)
zijS(qj) − S(vi)

)
,

which is a function of zij rather than a constant. For each solution of the prob-
lem DV S, the “cost” per unit of “weight” for each view v is equivalent to the
cost-benefit ratio of v over the query set it answers in the solution. We can po-
tentially use this property to devise a greedy algorithm for the problem DV S
by first sorting the views in non-decreasing order of their minimum cost-benefit
ratios, and then proceed to select the views in the order as needed.

Alternatively, we can employ this property to limit the search space of views
in the context of the model IP2 that we introduced in Section 4.2, hence reducing
the size of this IP model and improving its scalability. To this end we can select
only those views with relatively low cost-benefit ratio with respect to the query
set Q, and discard all other views. Albeit by doing so we can no longer guarantee
that the optimal solution of the resulting IP model would be optimal for the
original view selection problem, but we can potentially solve much larger instance
of the problem DV S. We discuss several strategies for carrying out this task in
the next few subsections. In Section 7 we present the results of a computational
experiment to evaluate the effectiveness of these strategies.

6.2 Heuristic method I: single threshold strategy

In this heuristic approach we start with the search space V in model IP2 in-
troduced in Section 4.2, and remove from this set every view whose minimum
cost-benefit ratio is above a certain threshold γ. For practical reasons we ex-
empt from this process every view that is equal to one of the queries in the given
query set Q (we keep these views in the search space at all times). The minimum
cost-benefit ratio of each view in the set {v : v ∈ V , v)∈ Q} can be obtained
as discussed in Section 3.2. In order to guarantee feasibility, we also keep in the
search space the view with the least number of attributes that can answer all the
input queries. It is easy to show that this view, denoted by vmax, is the union
of all the input queries, that is vmax = ∪q∈Q q. This results in a reduced search
space that we refer to as V

I(γ). We have

V
I(γ) = {vmax} ∪{ v : v ∈ Q} ∪{ v : v ∈ V , v)∈ Q, rmin(v, Q) ≤ γ}. (34)

Correspondingly, for each query qj ∈ Q, we define its associated reduced set of
views as V

I
j (γ) = {v ∈ V

I(γ) : v ⊇ qj}.
We now construct an integer programming model associated with the param-

eter γ which is similar to model IP2 in Section 4.2 except that we use V
I(γ)

26

instead of V as the search space of views, and the associated reduced view set
V

I
j (γ) instead of V j for each query qj ∈ Q (with corresponding subscript sets

I
I(γ) and I

I
j (γ) instead of I and Ij in model IP2, respectively). We refer to this

model as the IP model with reduced search space of views associated with γ, or
IPRv(γ) for short. We make the following observation.

Observation 7 Given γ1 > γ2 > 0, we have that V
I(γ1) ⊇ V

I(γ2), and
V

I
j (γ1) ⊇ V

I
j (γ2), for each query qj ∈ Q.

Proof. Since γ1 > γ2 > 0, it follows that for each view v ∈ {v : v ∈ V , v)∈
Q, rmin(v, Q) ≤ γ2}, we have v ∈ {v : v ∈ V , v)∈ Q, rmin(v, Q) ≤ γ1}. Thus,
V

I(γ1) ⊇ V
I(γ2). For each query qj ∈ Q, if v ∈ V

I
j (γ2), then v ⊇ q and

V
I(γ2) ⊆ V

I(γ1). Thus, v ∈ V
I
j (γ1). It follows that V

I
j (γ1) ⊇ V

I
j (γ2).

Let Objv(·) denote the optimal value of the model (·). We obtain the following
corollary.

Corollary 2. Given γ1 ≥ γ2 > 0, Objv
(
IPRv(γ1)

)
≤ Objv

(
IPRv(γ2)

)
.

The proof of Corollary 2 is obtained directly from Observation 7.
For any finite threshold γ, we can no longer guarantee that the optimal so-

lution of the associated model IPRv(γ) is optimal for the original problem. But
this model is potentially smaller, and thus it is easier to solve. Obviously, the
effectiveness of this strategy depends on the value of the parameter γ. Larger
values of γ result in potentially larger sets V

I(γ). Thus the corresponding IP
model IPRv(γ) would also be larger. Solving such a larger IP model is likely
to result in larger execution time and memory requirements, but its optimal
solution is potentially better (smaller). Indeed at γ = +∞, we have V

I(γ) = V
and the resulting model IPRv(γ) would be identical with model IP2 (hence
its optimal solution is guaranteed to be optimal for the original problem). But
smaller values of γ are more likely to result in smaller IP models, thus the cor-
responding execution time and memory requirements may be more manageable
for larger instances of the problem DV S. Of course it is also true that smaller
value of γ could result in removing potentially beneficial views from the search
space, thus the optimal solution of the corresponding IP model might not be as
effective. We carry out a computational experiment to study the impact of the
parameter γ on both the solvability of the corresponding model IPRv(γ) and
the quality of its optimal solution, on an empirical basis. We report our obser-
vations in Section 7. Based on these observations, we also propose a strategy for
selecting an appropriate value for γ in each instance.

6.3 Heuristic method II: two-threshold strategy

In principle, this heuristic method is similar to method I discussed in Section
6.2, where we limit the search space of views to a promising subset of V . But we

27

now further reduce the size of the IP model by limiting the choice of view-query
relationships as well.

To do so, given the reduced search space of views V
I(γ) obtained by method

I, for each view v in V
I(γ), we remove every view-query relationship in which the

corresponding cost-benefit ratio is above a given threshold θ. More specifically,
given a second threshold θ, for each view v ∈ V

I(γ), let Nv,θ be the largest integer
such that the cost-benefit ratio of view v over the set of Nv,θ largest input queries
is less than or equal to θ, (that is, r(v, Q(Nv,θ)) ≤ θ). Since the cost-benefit ratio
r(v, Q(n)(v)) is a unimodal function with respect to n, it follows that such a value
of Nv,θ is well-defined, and for all n > Nv,θ we have r(v, Q(n)(v)) > θ. For each
view v, we now keep only the view-query relationships between view v and the
Nv,θ largest input queries that v can answer. All other view-query relationships
for view v are discarded. We always choose the values of θ ≥ γ > 0, so as to
guarantee that for each view v in V

I(γ), the collection of queries that result
in the minimum ratio for that view remain in the view-query relationships that
we keep. In addition, similar to method I, in order to guarantee feasibility, we
always keep all choices of the view-query relationship associated with the view
vmax. We build on this idea to develop the heuristic method II, and formulate
an integer programming model that we denote by IPRvq(γ, θ) for the problem
DV S.

Hence, given the reduced search space of views V
I(γ) and the second thresh-

old θ, for each query q, we only keep in the search space of views associated with
q (that is, the candidate views for answering q) the view vmax and each view
v ∈ V

I(γ) if query q is one of the largest Nv,θ queries that v can answer. For
each view v ∈ V

I(γ) we define Qθ(v) as the set of the Nv,θ largest input queries
that view v can answer, or equivalently,

Qθ(v) = {q ∈ Q(v) : q is the nth largest query in Q(v), for 1 ≤ n ≤ Nv,θ}

We can now define the reduced search space of views associated with query qj ,
denoted by V

II
j (γ, θ), as follows.

V
II
j (γ, θ) = {v ∈ V

I
j (γ) : qj ∈ Qθ(v)} ∪{ vmax}.

We illustrate this method by the following example.

Example 1 (Continued). Given γ = 1.2, we obtain that the views v1 = {a, b, c}
and v2 = {b, c, d} are included in the reduced view set V

I(γ). If we set the
threshold θ = 1.3, then we obtain that Nv1,θ = 4 and Nv2,θ = 3. In other words,
for view v1 we only keep the relationship between v1 and the largest 4 queries in
Q(v1). For view v2 we only keep the relationship between v2 and the largest 3
queries in Q(v2). The choices of the relationships are shown in Figure 3. We also
make reduction on the choices of view-query relationship associated with all the
other views in V

I(γ), and we obtain the corresponding reduced view set for each
query as listed below. Recall that q1 = {b}, q2 = {c}, q3 = {a, b}, q4 = {a, c},
q5 = {b, c}, q6 = {b, d} and q7 = {c, d}.

28

V
II
1 (γ, θ) =

{
{b}, {a, b}, {b, c}, {b, d}, {a, b, c, d}

}

V
II
2 (γ, θ) =

{
{c}, {b, c}, {c, d}, {a, b, c}, {a, b, c, d}

}

V
II
3 (γ, θ) =

{
{a, b}, {a, b, c}, {a, b, c, d}

}

V
II
4 (γ, θ) =

{
{a, c}, {a, b, c}, {a, b, c, d}

}

V
II
5 (γ, θ) =

{
{b, c}, {a, b, c}, {b, c, d}, {a, b, c, d}

}

V
II
6 (γ, θ) =

{
{b, d}, {b, c, d}, {a, b, c, d}

}

V
II
7 (γ, θ) =

{
{c, d}, {b, c, d}, {a, b, c, d}

}
.

Fig. 3. The choices of view-query relationships in Example 1

Given the thresholds γ and θ, we can now define the corresponding integer
programming model that we refer to as IPRvq(γ, θ) by using the set V

II
j (γ, θ)

for each qj ∈ Q, in place of V
I
j (γ) in model IPRv(γ). The following observation

and corollary show that the size of the model IPRvq(γ, θ) is smaller than the
model IPRv(γ). As we increase the value of θ with fixed γ, the objective value of
the corresponding model IPRvq(γ, θ) will either decrease or remain the same. As
we increase the value of γ with fixed θ, the objective value of the corresponding
model IPRvq(γ, θ) will either decrease or remain the same.

Lemma 2. If θ1 > θ2 > 0, then for each view v we have Nv,θ1 ≥ Nv,θ2 and
Qθ1(v) ⊇ Qθ2(v).

29

Proof. For Nv,θ1 < n ≤ |Q(v)|, we have r(v, Q(n)(v)) > θ1 > θ2. Thus, Nv,θ2 ≤
Nv,θ1 . It follows that Qθ1(v) ⊇ Qθ2(v).

Observation 8

i) Given θ ≥ γ > 0, for each query qj ∈ Q, V
I
j (γ) ⊇ V

II
j (γ, θ). If θ = +∞,

V
I
j (γ) = V

II
j (γ, θ).

ii) Given θ1 > θ2 ≥ γ > 0, for each query qj ∈ Q we have V
II
j (γ, θ1) ⊇

V
II
j (γ, θ2).

iii) Given θ ≥ γ1 > γ2 > 0, for each query qj ∈ Q we have V
II
j (γ1, θ) ⊇

V
II
j (γ2, θ).

Proof. i) This result can be obtained directly from the definition of V
II
j (γ, θ).

ii) If v ∈ V
II
j (γ, θ2) and v)= vmax, then by definition we obtain that v ∈

V
I(γ) and q ∈ Qθ2(v). By Lemma 2, we have q ∈ Qθ1(v). Thus, v ∈ V

II
j (γ, θ1).

It follows that V
II
j (γ, θ1) ⊇ V

II
j (γ, θ2).

iii) If v ∈ V
II
j (γ2, θ) and v)= vmax, then by definition we obtain that v ∈

V
I(γ2) and q ∈ Qθ(v). Since γ1 > γ2 > 0, by Observation 7, v ∈ V

I(γ2) ⊆
V

I(γ1). Thus, v ∈ V
II
j (γ1, θ). It follows that V

II
j (γ1, θ) ⊇ V

II
j (γ2, θ).

Corollary 3.

i) Given θ ≥ γ > 0, Objv
(
IPRv(γ)

)
≤ Objv

(
IPRvq(γ, θ)

)
. If θ = +∞, the

models IPRv(γ) and IPRvq(γ, θ) are equivalent.
ii) Given θ1 > θ2 ≥ γ > 0, Objv

(
IPRvq(γ, θ1)

)
≤ Objv

(
IPRvq(γ, θ2)

)
.

iii) Given θ ≥ γ1 > γ2 > 0, Objv
(
IPRvq(γ1, θ)

)
≤ Objv

(
IPRvq(γ2, θ)

)
.

Proof. i)-iii) follows directly from Observation 8.

7 Experimental results

In this section, we present the results of a computational experiment with the
heuristic methods that we proposed above. We evaluate the performance of these
methods by discussing the quality of solution and the efficiency of the reduction
in the size of the corresponding IP models. The results also show that our heuris-
tic methods outperform other heuristic methods in terms of both the execution
time and the quality of solutions obtained. More specifically, our experimental
results show that:

– The size of the resulting models obtained by the heuristic methods I and
II is significantly smaller than that of IP2, allowing us to obtain optimal
or near optimal solution for relatively large instances of the problem within
reasonable time and memory limits.

30

– The magnitude of the size reduction and the quality of resulting solution
depends on the values of the parameters (γ, θ), as well as on the specific
characteristics of each instance.

– On average, the heuristic methods I and II require less execution time than
the heuristic methods proposed in [3, 4], and the resulting solutions are sig-
nificantly better (i.e., have lower costs).

7.1 Experiments with heuristic method I

In this subsection we evaluate the effectiveness of the single-threshold strategy
in terms of its computational requirements as well as the quality of solutions
it obtained. We also study the impact of the threshold γ on the quality of the
solution obtained by model IPRv(γ).

To examine the effect of the parameter γ on the performance of model
IPRv(γ), for several instances of the problem DV S we solve the model IPRv(γ)
with different values of γ. Here we report our observations for one instance of
the problem. The pattern of observations for other instances is similar to this in-
stance. The instance that we report in Table 4 and Figure 4 contains 125 queries
constructed over the 17-attribute TPC-H dataset. The number of attributes of
each query is a random number between 5 and 12, (that is, the query is ran-
domly generated from the middle levels of the view lattice). We continue to set
the storage limit equal to one-fifth of the sum of the sizes of the queries. In Table
4, for each value of γ we present the number of views in the search space of model
IPRv(γ), as well as the number of variables and the number of constraints in
each model. Note that when γ = +∞, the resulting model IPRv(∞) is identical
with the model IP2. We evaluate the quality of the solutions with respect to
difference values of γ by calculating the gap as the ratio of difference between the
optimal values of the models IPRv(γ) and IP2 over the optimal value of IP2
(expressed as a percentage). In Table 4 and Figure 4 we present these results,
as well as the total execution time of each model IPRv(γ).

From Table 4 we observe that the number of views in model IPRv(γ) in-
creases as we increase the value of γ from 0.2 to 1. The size of the corresponding
model, expressed by the numbers of variables and constraints, is thus monotoni-
cally increasing as expected. But even for γ = 1, where the gap reduces to 0.0%,
the size of the resulting model IPRv(γ) is still significantly smaller than the
model IP2, or equivalently, the model IPRv(∞).

From Figure 4 we observe that the value of the cost of answering the queries
in this instance obtained via model IPRv(γ) (as measured by the value of gap)
is a non-increasing function of γ as expected. It is also observed that the total
execution time generally increases as we increase the threshold γ. The total
execution time of solving this instance via model IP2 is around 1.5 hours, which
is far beyond the assumed time limit 30 min. However, for all γ ≤ 1 the size of
the model IPRv(γ) is dramatically reduced, resulting in a significant reduction
of the total execution time of the model. Notably at the largest value of γ in this
experiment (γ = 1) the execution time remains below 20 minutes. In addition,
when the threshold γ = 1.0, the gap is equal to 0, indicating that the optimal

31

Table 4. The number of views and the size of the model IPRv(γ) with different values
of γ

Threshold
(γ)

number of
views in
IPRv(γ)

number of
variables in
IPRv(γ)

number of
constraints
in IPRv(γ)

total
execution
time (sec.)

gap (%)

0.2 127 496 495 0.3 5.75%
0.3 146 690 670 0.4 5.08%
0.4 241 2,534 2,419 16.2 1.64%
0.5 450 6,908 6,584 392.6 1.30%
0.6 742 11,550 10,934 629.8 0.84%
0.7 1,139 16,944 15,931 760.8 0.46%
0.8 1,507 21,129 19,748 883.3 0.29%
0.9 2,108 26,709 24,727 1184.4 0.00%
1.0 2,475 30,301 27,952 979.1 0.00%

∞ 9,524 76,328 66,930 5427.4 0.00%

Fig. 4. The results of solving an instance using model IPRv(γ) with different values
of γ

32

solution obtained by the respective model IPRv(γ) is also an optimal solution for
the original problem. Hence, the heuristic method I can be a relatively effective
technique in solving the problem DV S regarding both the quality of solution
and efficiency of reduction.

To further evaluate the efficiency of the model, we solve 12 instances with
4 different query types (presented in Section 5) over the 17-attribute TPC-H
dataset using the model IPRv(γ) for γ = 1. For each query type, we solve the
3 largest instances presented in Section 5. For each instance we increase the
value of the parameter γ in the model IPRv(γ) from 0.1 to 0.2 to 0.3, . . . ,
until the cost obtained by model IPRv(γ) is within 0.2% difference of the cost
obtained by model IP2. We refer to γ0.2 as the smallest value of γ which has
such property. (For instances which could not be solved by model IP2 within
time and memory limits, we refer to γ0.2 as the smallest value of γ such that the
cost obtained from model IPRv(γ) is within 0.2% of lower bound of model IP2
obtained by CPLEX.) In Table 5, for each instance we compare the number of
views in the search space, and the total execution time for the corresponding
models IP2 and IPRv(γ0.2).

Table 5. Comparison of the number of views in the search space, the total execution
time, and the optimal value in models IP2 and IPRv(γ0.2)

ins-
tance

query
type

number of
queries

γ0.2
number of views total time (sec.)
IP2 IPRv(γ0.2) IP2 IPRv(γ0.2)

1
random

220 0.9 23,256 1,774 317.0 80.0
2 240 0.8 18,783 1,450 388.5 65.1
3 260 1.0 25,922 3,947 out of memory 669.9

4
bottom-
level

60 1.3 8,048 384 387.4 7.1
5 80 1.2 14,248 619 >30min 107.0
6 100 1.2 17,937 2,092 >30min 1538.3

7
middle-
level

60 1.1 3,614 940 21.7 9.5
8 80 0.7 4,305 592 93.8 8.7
9 100 0.9 7,278 1,706 >30min 171.9

10
top-
level

320 0.4 2,673 1,123 736.5 334.4
11 340 0.4 2,703 1,237 815.4 367.3
12 360 0.4 2,930 1,204 >30min 1662.5

From the results of Table 5 we observe that the value of γ0.2 is relatively
small, and ranges from 0.4 to 1.3. This confirms our statement that the view
with a relatively small value of cost-benefit ratio is more likely to be selected for
answering the queries. For every instance the number of views in the search space
of model IPRv(γ0.2) is significantly smaller than model IP2. This results in a
significant reduction of the total execution time of model IPRv(γ0.2) compared
with the model IP2. In addition, for the instances which cannot be solved by
model IP2 due to memory shortage or time limitation (the instances 3, 5, 6, 9,
and 12), we can solve them using model IPRv(γ) with acceptable qualities (i.e.,

33

within 0.2% of the corresponding lower bound) within the time and memory
limits. These results show that the model IPRv(γ) allows us to solve larger
instances of the problem DV S, and obtain an optimal or near optimal solution
more efficiently.

We now study the effect of the space limit and the values of the parameter
γ on the performance of model IPRv(γ). To this end, we solve the instance
in Table 4 under different space limit constraints using model IPRv(γ) with
different values of γ. More specifically, we assume the space limit is a fraction β
of the sum of the sizes of the input queries. We solve the instance for β = 0.1,
0.2, . . ., 0.6. In Table 6, for each space limit we present the smallest value of γ
such that the cost obtained by the resulting model IPRv(γ) is optimal for the
corresponding original problem.

Table 6. The impact of space limit parameter β on the choosing of γ

β 0.1 0.2 0.3 0.4 0.5 0.6
min. γ with optimal cost 1.5 1.3 0.7 0.6 0.4 0.3

As observed in Table 6, when we increase the space limit (or β), the minimum
value of γ with optimal cost decreases. Generally speaking, when the space limit
is relatively large, the optimal solution is more likely to comprise of only the
views with small value of minimum cost-benefit ratio.

In general, for solving the problem DV S using model IPRv(γ), it seems
reasonable to increase the value of γ as much as possible while the corresponding
execution time is acceptable.

7.2 Experiments with the heuristic method II

In this subsection, we evaluate the efficiency of heuristic method II in solving the
problem DV S that we described in Section 6.3. We also examine the impact of
the two parameters (γ, θ) in the model IPRvq(γ, θ) on the quality of solutions.

To evaluate the efficiency of the heuristic method II, we solve the 12 instances
of Table 5 using the model IPRvq(γ, θ). More specifically, for each instance we
set γ = θ = γ0.2, where the value of γ0.2 is presented in Table 5. Subsequently, we
increase the value of the parameter θ from γ0.2 to (γ0.2 +0.1) to (γ0.2 +0.2), . . . ,
until the cost obtained by model IPRv(γ0.2, θ) is within 0.2% difference of the
cost obtained by model IP2. We refer to θ0.2 as the smallest value of θ that has
such property. We compare the number of variables, the number of constraints,
and the total execution time of the models IPRv(γ0.2) and IPRvq(γ0.2, θ0.2).
The results are shown in Table 7.

From the results of Table 7 we observe that the value of θ0.2 is relatively close
to the value of γ0.2. For every instance in Table 7 the number of variables and
the number of constraints in model IPRvq(γ0.2, θ0.2) are smaller than those in
model IPRv(γ0.2). This reduction is much more significant for the instances of

34

Table 7. Comparison of the number of variables, the number of constraints, and the
total execution time in models IPv(γ0.2) and IPRvq(γ0.2, θ0.2)

ins-
tance

query
type

number
of
queries

parameters
(γ0.2, θ0.2)

number of
variables

number of
constraints

total time
(sec.)

IPRv IPRvq IPRv IPRvq IPRv IPRvq
1

random
220 (0.9,0.9) 61649 17322 60096 15769 80.0 53.0

2 240 (0.8,0.8) 50999 15119 49790 13910 65.1 46.4
3 260 (1.0,1.0) 143467 46237 139781 42551 669.9 316.2

4
bottom-
level

60 (1.3,1.7) 7021 3566 6698 3243 7.1 5.6
5 80 (1.2,1.6) 10891 5448 10353 4910 107.0 61.4
6 100 (1.2,1.5) 62458 24282 60467 22291 1538.3 741.7

7
middle-
level

60 (1.1,1.1) 9007 7719 8128 6840 9.5 9.3
8 80 (0.7,0.7) 6662 4646 6151 4135 8.7 7.5
9 100 (0.9,0.9) 19067 15647 17462 14042 171.9 146.3

10
top-
level

320 (0.4,0.4) 12386 11237 11584 10435 334.4 298.9
11 340 (0.4,0.4) 13489 12505 12593 11609 367.3 362.8
12 360 (0.4,0.4) 13895 12721 13052 11878 1662.5 1657.4

“random” and “bottom-level” queries (instances 1-6). It follows that for these
instances the total execution time to solve model IPRvq(γ0.2, θ0.2) is significantly
shorter than the time to solve model IPRv(γ0.2).

To further examine the impact of the two parameters (γ, θ) on the effective-
ness of the heuristic method II, we solve the model IPRvq(γ, θ) with different
values of γ and θ for a number of instances. The instance that we report in
Figure 5 is constructed over the 17-attribute TPC-H dataset. It contains 200
queries which are randomly chosen from the middle levels of the view lattice.
The number of attributes in each query ranges from 5 to 12. We continue to set
the storage limit as one-fifth of the sum of the sizes of the queries. We solve this
instance using model IPRvq(γ, θ) for γ = 0.3, 0.4, . . . , 0.6, and θ = γ, γ + 0.1,
. . . , 0.6. To compare the quality of solutions, we also solve the instance using the
model IPRv(γ), or equivalently, the model IPRvq(γ,∞). The optimal value of
each model is presented in Figure 5. Each line represents the results with respect
to the same value of γ. All the missing point in this Figure indicates that we
cannot solve the corresponding model within the time and memory limits.

In Figure 5 we observe that for each fixed value of γ the optimal cost obtained
by model IPRvq(γ, θ) monotonically decreases as we increase the value of θ.
Similarly this optimal cost is also a non-increasing function of γ with fixed value
of θ. Both of these observations are of course consistent with our expectations
for obvious reasons. The lowest cost among the models for different values of
the parameters in Figure 5 is achieved when γ = θ = 0.6. When we attempted
to solve this instance via heuristic method I, we were able to solve the model
IPRv(γ) only for γ = 0.3. For larger values of γ (i.e., γ ≥ 0.4) we were not
able to solve the corresponding IP model via CPLEX due to memory and time
limitations. The cost obtained by model IPRvq(0.6, 0.6) is significantly smaller
than the cost obtained by the model IPRv(0.3).

35

Fig. 5. The results of solving an instance using model IPRvq(γ, θ) with different values
of γ and θ

When we compare the impact of the parameters γ and θ on the quality of the
solution, the impact of parameter γ appears to be relatively more significant than
the impact of parameter θ in obtaining a relatively low cost of query processing.
This suggests that perhaps a good strategy for determining the value of γ and
θ would be to increase the value of γ as much as possible while the resulting
model is still solvable with regard to the memory and time requirements. Note
that given the parameter γ = γ0, the model IPRvq(γ, θ) of the smallest size over
all the possible values of θ is the one with θ = γ = γ0. As a result, we first increase
the value of γ as much as possible while the resulting model IPRv(γ) is solvable.
Subsequently, we continue to increase the value of γ as long as IPRvq(γ, γ) is
solvable. Then we fix the value of γ and increase θ until the resulting model
IPRvq(γ, θ) is solvable within the memory and time limits. This strategy allows
us to find an appropriate set of values for the parameters γ and θ that results in
a lowest objective function value within the available computational resources.

7.3 Comparison with the inexact model IPV (s)

To further evaluate our heuristic methods, in this section we carry out a com-
putational experiment to compare the effectiveness in terms of execution time
and quality of solution of our heuristic methods with the inexact method pro-
posed in [3,4] for solving the problem DV S. We first compare the execution time
while requiring the same quality of solution over each method for a collection
of instances for which we have the optimal value. Subsequently, we compare the
quality of solution obtained, in the manner that obtain the lowest cost, by each
method within time and memory limits over a second collection of instances for
which the optimal value cannot be obtained via the corresponding model IP2.

The results of [3,4] show that their methods outperform other heuristic meth-
ods including [2,15,17]. The basic idea of the inexact method proposed in [3,4] is

36

to limit the search space of views only to those views that are “relatively close”
ancestors of the given queries. More specifically, Asgharzadeh et al. [3] define
the set Vs as the reduced search space of views where each view in Vs is the
union of exactly 1, or 2, . . ., or s queries in the given query set Q. We apply this
view reduction algorithm on the search space of views in the model IP2 that
we introduced in Section 4.2. Given the parameter s, we refer to the resulting
inexact model as model IPV (s).

We first compare the effectiveness of our models IPRv(γ) and IPRvq(γ, θ)
with model IPV (s) in terms of execution time over a collection of instances.
This consists of all the instances in Tables 5 and 7 for which we have the optimal
value via the corresponding model IP2 (i.e., instances 1, 2, 4, 7, 8, 10, and 11 in
Tables 5 and 7). We solve this collection of instances using model IPV (s). More
specifically, for each instance we increase the value of s in the corresponding
model IPV (s) from 1 to 2 to 3, . . ., until the cost obtained by the corresponding
model IPV (s) is within 0.2% larger than the optimal cost obtained by model
IP2. (Here we use the same requirement of the quality of the solution (0.2%) as
for our heuristic methods in Sections 7.1 and 7.2.) We denote this value of s by
s0.2. We compare the execution time of models IPRvq(γ0.2, θ0.2) and IPV (s0.2)
in Table 8.

Table 8. Comparison of the total execution time in models IPRvq(γ0.2, θ0.2) and
IPV (s0.2)

ins-
tance

query
type

number of
queries

parameters total time (sec.) time(IPRv)
time(IPV) (%)

(γ0.2, θ0.2) s0.2 IPRv(γ0.2, θ0.2) IPV (s0.2)
1 random 220 (0.9,0.9) 2 53.0 238.5 22.22%
2 random 240 (0.8,0.8) 2 46.4 103.2 44.96%
4 bottom-level 60 (1.3,1.7) 3 5.6 127.6 4.39%
7 middle-level 60 (1.1,1.1) 2 9.3 16.9 55.03%
8 middle-level 80 (0.7,0.7) 2 7.5 58.2 12.89%
10 top-level 320 (0.4,0.4) 2 298.9 584.8 51.11%
11 top-level 340 (0.4,0.4) 2 362.8 784.1 56.27%

As observed in Table 8, for all the instances the total execution time of
model IPRvq(γ0.2, θ0.2) is significantly smaller than that of model IPV (s0.2).
On average the time to solve each instance using model IPRvq(γ0.2, θ0.2) is
35.27% of the time to solve that instance using model IPV (s0.2). Our heuristic
model IPRvq(γ0.2, θ0.2) is more efficient in obtaining an optimal or near optimal
solution for these instances.

To further compare the quality of solutions obtained by heuristic methods
proposed in this paper and in [3], we constructed 4 instances over the 17-attribute
TPC-H dataset in a similar way as for constructing “bottom-level” queries. The
number of attributes in each query ranges from 3 to 6. The number of queries
in each instance ranges from 250 to 400. For each instance we set the storage
limit equal to one-tenth of the sum of the sizes of the queries. The size of the

37

corresponding model IP2 for each instance is relatively large, and thus the IP
solver fails to obtain the optimal value via the corresponding model IP2 for all
these instances. For each instance we compare the quality of the solutions of
our methods with that in [3, 4] by comparing the lowest cost obtained by these
methods. More specifically, for models IPRv(γ) and IPRvq(γ, θ), we follow the
strategy of choosing parameters (γ, θ) which we introduced at the end of Section
7.2. For each instance we denote by (γ∗, θ∗) the parameter values obtained in
the manner that obtain the lowest cost within the time and memory limits. For
model IPV (s) we increase the value of s in the model IPV (s) from 1 to 2 to 3,
. . ., until s is the largest value such that the corresponding model IPV (s) can
provide a solution within the time and memory limits. We denote this value of
s by s∗. We compare the objective value of models IPRvq(γ∗, θ∗) and IPV (s∗),
and we report the ratio of the cost obtained by model IPRvq(γ∗, θ∗) over the
cost obtained by model IPV (s∗) in Table 9.

Table 9. Comparison of the value of cost obtained from models IPRvq(γ∗, θ∗) and
IPV (s∗)

ins-
tance

number of
queries

parameters Optimal value Objv(IPV (s∗))
Objv(IPRvq(γ∗,θ∗))(γ∗, θ∗) s∗ IPV (s∗) IPRvq(γ∗, θ∗)

1 250 (0.7,∞) 11 990,745,690 581,082,522 1.705
2 300 (0.5,∞) 1 1,161,110,365 754,989,400 1.538
3 350 (0.4,∞) 1 1,281,740,747 878,162,010 1.460
4 400 (0.4,∞) 1 1,420,222,618 950,496,295 1.494
1 We fail to solve model IPV (s) when s ≥ 2 due to memory and time

limits.

From Table 9 we observe that for this collection of instances the cost of query
processing obtained by using model IPV (s) is significantly higher than the cost
obtained by our model IPRvq(γ, θ). This indicates that our heuristic method
outperform the inexact model IPV (s) for the collection of instances in Table 9
with respect to the quality of solution obtained.

We compare the scalability of the two models. For the instances in Table 9,
we fail to obtain a solution by using the model IPV (s) for s ≥ 2 due to memory
shortage. In general, since the number of views in the search space of model
IPV (s) is of the order of O(

∑s
i=1

(|Q|
i

)
) (see [3, 4]), the number of queries in

the instance has a relatively large impact on the size of the model. The size of
model IPV (s) grows significantly fast as we increase s for the instances with
large numbers of queries. For large-size instances the model IPV (s) is solvable
only when s = 1, whose search space of views consists of only the queries and
vmax (the view with the least number of attributes that can answer all the
queries). This limits the quality of solutions obtained by model IPV (s) for those
instances. On the other hand, the applicable values of the parameters (γ, θ) in our
heuristic methods are independent of the size of the instances, which ensures high
scalability of our heuristic methods. This allows us to choose appropriate values

38

of parameter of model IPRvq(γ, θ) to obtain acceptable qualities of solution for
relatively large instances of the problem DV S.

8 Conclusion

In this paper we undertook a systematic study of the deterministic view selection
problem. We studied properties of views and queries in terms of the problem,
as well as the structure of the IP model for solving the problem. We proposed
a procedure to efficiently reduce the search space of views, hence reducing the
size of the resulting IP models, while maintaining the optimality of the solution
for the original problem. Our experiments showed that this reduction in the IP
model is significant for small to large realistic-size instances. We also present
two heuristic methods to further reduce the size of the resulting IP models. We
showed experimentally that this reduction is even more significant, which allow
us to solve larger instances of the problem while obtaining high quality solutions.
Through a computational experiment we also showed that our proposed heuristic
methods compare favorable with the previous heuristic approaches in [3, 4] in
terms of execution time, quality of solution obtained, and scalability. Presently,
we are further generalizing and incorporating our approaches in a two-stage
environment for efficiently solving the two-stage view-selection problem. We plan
to extend our approaches for solving the view-selection problem under the view-
maintenance-cost constraint, as well as under more general constraints, such as
those of [6]. We are also working on combined view and index selection.

References

1. S. Agrawal, N. Bruno, S. Chaudhuri, and V. R. Narasayya. AutoAdmin: Self-tuning
database systems technology. IEEE Data Eng. Bull., 29(3):7–15, 2006.

2. S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of materi-
alized views and indexes in SQL databases. In VLDB, pages 496–505, 2000.

3. Z. T. Asgharzadeh. Exact and inexact methods for solving the view and index
selection problem for OLAP performance improvement. Ph.d dissertation, NCSU,
2010.

4. Z. T. Asgharzadeh, R. Chirkova, and Y. Fathi. Exact and inexact methods for
solving the problem of view selection for aggregate queries. International Journal
of Business Intelligence and Data Mining, 4(3/4):391–415, 2009.

5. Z. T. Asgharzadeh, R. Chirkova, Y. Fathi, and M. Stallmann. Exact and inexact
methods for selecting views and indexes for OLAP performance improvement. In
EDBT, pages 311–322, 2008.

6. N. Bruno and S. Chaudhuri. Interactive physical design tuning. In ICDE, pages
1161–1164, 2010.

7. N. Bruno, S. Chaudhuri, and G. Weikum. Database tuning using online algorithms.
In Encyclopedia of Database Systems, pages 741–744. Springer US, 2009.

8. S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technol-
ogy. SIGMOD Record, 26(1):65–74, 1997.

9. S. Chaudhuri, U. Dayal, and V. R. Narasayya. An overview of business intelligence
technology. Commun. ACM, 54(8):88–98, 2011.

39

10. S. Chaudhuri, V. R. Narasayya, and G. Weikum. Database tuning using combina-
torial search. In Encyclopedia of Database Systems, pages 738–741. Springer US,
2009.

11. G. B. Dantzig. Discrete-variable extremum problems. Operations Research,
5(2):266–288, 1957.

12. H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for
OLAP. In ICDE, pages 208–219, 1997.

13. H. Gupta and I. S. Mumick. Selection of views to materialize in a data warehouse.
IEEE Trans. Knowl. Data Eng., 17(1):24–43, 2005.

14. A. Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294,
2001.

15. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes effi-
ciently. In SIGMOD Conference, pages 205–216, 1996.

16. ILOG. CPLEX 11.0 software package, 2007. http://www.ilog.com/products/
cplex/.

17. P. Kalnis, N. Mamoulis, and D. Papadias. View selection using randomized search.
Data Knowl. Eng., 42(1):89–111, 2002.

18. H. J. Karloff and M. Mihail. On the complexity of the view-selection problem. In
PODS, pages 167–173, 1999.

19. R. Kimball and M. Ross. The Data Warehouse Toolkit: (second edition). Wiley
Computer Publishing, 2002.

20. S. Lightstone. Physical database design for relational databases. In Encyclopedia
of Database Systems, pages 2108–2114. Springer US, 2009.

21. S. Papadomanolakis and A. Ailamaki. An integer linear programming approach
to database design. In ICDE Workshops, pages 442–449, 2007.

22. A. Shukla, P. Deshpande, and J. F. Naughton. Materialized view selection for
multidimensional datasets. In VLDB, pages 488–499, 1998.

23. D. Theodoratos and T. K. Sellis. Incremental design of a data warehouse. J. Intell.
Inf. Syst., 15(1):7–27, 2000.

24. TPC-H Revision 2.1.0. TPC Benchmark H (Decision Support). http://www.tpc.
org/tpch/spec/tpch2.1.0.pdf.

25. J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design in
data warehousing environment. In VLDB, pages 136–145, 1997.

