
Combined-Semantics Equivalence Is Decidable
For a Practical Class of Conjunctive Queries

Rada Chirkova
Department of Computer Science

NC State University, Raleigh, NC 27695, USA
chirkova@csc.ncsu.edu

ABSTRACT
The problems of query containment and equivalence are
fundamental problems in the context of query processing
and optimization. In their classic work [2] published in
1977, Chandra and Merlin solved the two problems for the
language of conjunctive queries (CQ queries) on relational
data, under the “set-semantics” assumption for query evalu-
ation. Alternative semantics, called bag and bag-set seman-
tics, have been studied since 1993; Chaudhuri and Vardi in
[5] outlined necessary and sufficient conditions for equiva-
lence of CQ queries under these semantics. (The problems of
containment of CQ bag and bag-set queries remain open to
this day.) More recently, Cohen [8, 9] introduced a formal-
ism for treating (generalizations of) CQ queries evaluated
under each of set, bag, and bag-set semantics uniformly as
special cases of the more general combined semantics. This
formalism provides tools for studying broader classes of prac-
tical SQL queries, specifically important types of queries
that arise in on-line analytical processing (OLAP). Cohen
in [9] provides a sufficient condition for equivalence of (gen-
eralizations of) combined-semantics CQ queries, as well as
sufficient and necessary equivalence conditions for several
proper sublanguages of the query language of [9].

Our goal in this paper is to continue the study of equiva-
lence of CQ queries. We focus on the problem of determin-
ing whether two CQ queries are combined-semantics equiv-
alent. We continue the tradition of [2, 5, 9] of studying
this problem using the tool of containment between queries.
This paper introduces a syntactic necessary and sufficient
condition for equivalence of queries belonging to a large
natural language of “explicit-wave” combined-semantics CQ
queries; this language encompasses (but is not limited to)
all set, bag, and bag-set queries, and appears to cover all
combined-semantics CQ queries that are expressible in SQL.
Our result solves in the positive the decidability problem
of determining combined-semantics equivalence for pairs of
explicit-wave CQ queries. That is, for an arbitrary pair of
combined-semantics CQ queries, it is decidable (i) to de-
termine whether each of the queries is explicit wave, and
(ii) to determine, in case both queries are explicit wave,
whether or not they are combined-semantics equivalent, by
using our syntactic criterion. (The problem of determining
equivalence for general combined-semantics CQ queries re-
mains open. Even so, our syntactic sufficient containment
condition could still be used to determine that two general

CQ queries are combined-semantics equivalent.) Our equiv-
alence test, as well as our general sufficient condition for
containment of combined-semantics CQ queries, reduce cor-
rectly to the special cases reported in [2, 5] for set, bag, and
bag-set semantics. Our containment and equivalence con-
ditions also properly generalize the results of [9], provided
that the latter are restricted to the language of (combined-
semantics) CQ queries.

1. INTRODUCTION
Query containment and equivalence are recognized as fun-

damental problems in evaluation and optimization of databa-
se queries. The reason is, for conjunctive queries (CQ queries)
— a broad class of frequently used queries, whose expressive
power is sufficient to express select-project-join queries in re-
lational algebra — query equivalence can be used as a tool
in query optimization. Specifically, to find a more efficient
and answer-preserving formulation of a given CQ query, it is
enough to “try all ways” of arriving at a “shorter” query for-
mulation, by removing query subgoals, in a process called
query minimization [2]. A subgoal-removal step succeeds
only if equivalence (via containment) of the “original” and
“shorter” query formulations can be ensured. The equiv-
alence test of [2] for CQ queries is NP complete, whereas
equivalence of general relational queries is undecidable.

The query-minimization algorithm of [2] works under the
assumption of set semantics for query evaluation, where
both the database (stored) relations and query answers are
treated as sets. Query answering and reformulation in the
set-semantics setting have been studied extensively in the
database-theory literature. As a basis, these studies have
all used the necessary and sufficient containment condition
of [2] for CQ queries. At the same time, the set semantics is
not the default query-evaluation semantics in database sys-
tems in practice. For instance, in the standard relational
query language SQL, duplicates are removed from the an-
swer to a SQL query only if the query uses the DISTINCT

keyword in its SELECT clause. This and other discrepancies
between the set semantics for query evaluation and the stan-
dard of SQL have prompted researchers [5, 12] to consider
“bag semantics” and “bag-set semantics” for query evalua-
tion. Under bag semantics, both query answers and stored
relations are treated as bags (that is, multisets). Under bag-
set semantics, query answers are treated as bags, whereas
the database relations are assumed to be sets.

In an extended abstract [5] published in PODS in 1993,
Chaudhuri and Vardi focused on the hard problem of bag
containment for CQ queries. The paper [5] formulates con-
tainment and equivalence results, including equivalence tests,

1

for bag and bag-set queries. However, the full version of the
paper [5] has never appeared, and the problems of bag and
bag-set containment for CQ queries remain open to this day.

The seminal work by Cohen [8, 9] has provided a Datalog-
based formalism for treating queries evaluated under each
of set, bag, and bag-set semantics uniformly as special cases
of the more general combined semantics. The focus of the
papers [8, 9] was on formulating conditions for combined-
semantics equivalence of queries expressed using that syntax.
Intuitively, two queries are combined-semantics equivalent,
denoted ≡C , if on each database, the two queries return the
same answers, with the same multiplicity of each answer tu-
ple. To show the practical value of the combined-semantics
formalism, Cohen exhibited in [9] a number of real-life SQL
queries that can be expressed as combined-semantics CQ
queries, but cannot be expressed using set, bag, or bag-set
semantics. In the following example, we show three realistic
combined-semantics queries, which we then use to illustrate
the contributions of this paper.

EXAMPLE 1.1. The application domain that we use here
is based on a data-warehousing example from [11]. Consider
a retailer that has multiple stores. The retailer carries many
items and has an elaborate relational database/wa- rehouse
for analysis, marketing, and promotion purposes. One of
the tables in the database has the schema Pos(trans- ac-

tionID, storeID, itemID, date, amount); the table has
one million rows. This table represents point-of-sale trans-
actions, with one tuple for every item sold in a transaction.
Each tuple has the transaction ID, the ID of the item sold,
the ID of the store selling it, the date, and the amount of
the sale.

The business-development division of this store chain would
typically analyze general trends and high-level aggregates over
the Pos relation. We assume that for this reason, the data
analysts in that division access data through a view, with the
schema Sales(storeID, itemID, date, amount), rather
than working with the “raw” data in the Pos relation. To
ensure correctness of the data-analyses results, the Sales

relation is a bag-valued relation; that is, for each tuple with
specific values of the attributes storeID, itemID, date, and
amount, the Sales relation makes available as many copies
of this tuple as there are rows with this information in the
base relation Pos.

Suppose that this business-development division of the store
chain would like to study the impact, on the total sales, of
those transactions in the stores where the item prices are the
same as on a fixed date,1 January 1, 2012. Consider a SQL
query Qc that could be used for the purpose of this analysis.

(Qc) SELECT storeID, amount FROM Sales S
WHERE EXISTS

(SELECT * FROM Sales
WHERE storeID = S.storeID AND itemID = S.itemID
AND amount = S.amount AND date = ‘01/01/12’)

For each store ID, query Qc returns separately the amount
for each transaction that took place in that store on the date
01/01/12. Moreover, for each item that was sold in the store

1We assume that the transaction amount can be used to
determine the price of the item. This is true, for instance,
for sales of big-ticket items, where each transaction typically
records the sale of one such item. We also assume that item
prices do not change in the middle of a business day.

on the date 01/01/12, the query Qc returns all the same
purchase amounts for the same item in the same store, as
many times as the purchases have happened, regardless of the
date. If the analysts want to calculate correctly the total per-
store returns for all the transactions that have the same item
prices as the same-store transactions for the date 01/01/12,
then all they have to do to write such a query is to (i) add
to the query Qc the clause GROUP BY storeID, and to (ii)
replace amount by sum(amount) in the SELECT clause of the
resulting query. Note that to evaluate the resulting analysis
query, the query processor would first evaluate the query Qc,
and would then apply to the answer to Qc the above grouping
and aggregation.

Due to the large size of the relation Sales (one million
rows), the self-join of Sales in the query Qc, via a corre-
lated subquery, should be avoided if at all possible. For some
SQL queries, such direct removal of a subquery is indeed pos-
sible. Consider, for instance, a query Qc2, whose definition
is almost the same as that of the query Qc:

(Qc2) SELECT storeID, amount FROM Sales S
WHERE date = ‘01/01/12’
AND EXISTS

(SELECT * FROM Sales
WHERE storeID = S.storeID AND itemID = S.itemID
AND amount = S.amount)

The only difference between the queries Qc and Qc2 is that
the equality comparison with the date ‘01/01/12’, which can
be found in the subquery of the query Qc, is a condition in
the main body of the query Qc2.

It is easy to argue informally, based on the “intended mean-
ing” of the query Qc2, that Qc2 always returns the same num-
ber of the same answers as the query Qc2min, which is ob-
tained by removing the correlated subquery from Qc2:

(Qc2min) SELECT storeID, amount FROM Sales S
WHERE date = ‘01/01/12’

Indeed, by the results of this paper, the queries Qc2 and
Qc2min are combined-semantics equivalent.

Thus, one question we could pose is whether the queries
Qc and Qc2 (or alternatively the queries Qc and Qc2min) are
combined-semantics equivalent. If we can answer this ques-
tion in the positive, then the query Qc2min, which is very
efficient to execute, can be evaluated on the relation Sales

to obtain the correct answer to the query of interest Qc. An-
other question we could of course pose is whether the query
Qc is combined-semantics equivalent to the SQL query that
results from removing the correlated subquery of the query
Qc. Intuitively, this is unlikely, as the latter query would
lack the equality comparison with the date ‘01/01/12’. 2

Combined-semantics CQ queries such as the query Qc of
Example 1.1, with grouping and aggregation added, arise
naturally in on-line analytical processing (OLAP) applica-
tions [14, 15]. Such queries occur whenever a data-analysis
task calls for a query structure with nested subqueries. Such
queries also arise due to joins that go beyond “star-schema
joins” [3, 4], which are the only well-understood joins in the
literature on OLAP query optimization. See [14, 15, 16, 17]
for more detailed discussions of why queries with nested sub-
queries and with “non-star joins” are natural and frequent in
OLAP. (For additional extended illustrations of such queries,
see the online version [6] of this paper.)

2

It turns out that the equivalence tests reported in [2, 5, 8,
9] do not apply to the SQL queries Qc or Qc2 of Example 1.1,
even though both queries are expressible in the syntax of [8,
9] for combined-semantics conjunctive queries. At the same
time, we can use the results of this paper and of [7] (the
latter results are also available online in [6]) to establish the
following:

1. Qc ≡C Qc2 does not hold, and neither does Qc ≡C
Qc2min;

2. Qc is not combined-semantics equivalent to a CQ set,
bag, or bag-set query (intuitively, a CQ query belong-
ing to each of the three classes would be expressible as
a SQL query without subqueries);

3. Qc2 ≡C Qc2min does hold (observe that Qc2min is a
conjunctive bag-semantics query);

4. Qc2min is a minimized version of Qc2; and

5. Qc is the only minimized version of itself.

To the best of our knowledge, none of the above inferences
1–5 can be made using formal results reported in prior work.
We use the results of [7] in making inferences 4–5 only, and
use the results of this current paper in making all the five
inferences.

Our contributions.
We study equivalence of unaggregated SQL queries with
equality comparisons (including comparisons with constants)
and possibly with subqueries. We follow the approach of [9],
where the study concentrates on Datalog translations of such
queries, that is on combined-semantics CQ queries. The req-
uisite translations from SQL to Datalog are straightforward
(“as expected”).2 In the remainder of this paper, all queries
are expressed using the Datalog-based formalism of [9]. In
the remainder of this paper, we refer to combined-semantics
CQ queries as CCQ queries.

We focus on the problem of determining whether two CCQ
queries are combined-semantics equivalent. We continue the
tradition of [2, 5, 9] of studying these problems using the
tool of containment between queries. Our first specific con-
tribution is to introduce in this work “covering mappings”
(CVMs) between CCQ queries, and to show that CVMs
furnish a sufficient condition for combined-semantics con-
tainment, for all CCQ queries.

The second specific contribution of this paper is in pro-
viding a necessary condition for combined-semantics equiva-
lence of CCQ queries. To formulate this condition, we isolate
a large class of CCQ queries, which we call “explicit-wave
queries”.3 We show that this class of queries encompasses,
but is not limited to, (i) all CQ set, bag, and bag-set queries,
and (ii) all CQ queries for which [9] provides its sufficient
and necessary equivalence tests. Further, it appears that
all combined-semantics CQ queries that are expressible in
SQL are explicit-wave queries. (Please see Section 4 for the
details.) Our necessary condition for query equivalence is
asymmetric – it states that if for CCQ queries Q1 and Q2

we have the combined-semantics equivalence Q1 ≡C Q2, and

2Section 1 in [9] provides some details of the translations.
3The term“explicit-wave query” is due to the structures gen-
erated by the proof of the necessary equivalence condition
reported in this paper.

Q is an explicit-wave query, then there exists a CVM from
Q2 to Q1. We also show that this necessary condition is
tight, in that we exhibit a specific CCQ query Q that is not
explicit wave, such that our necessary equivalence condition
does not hold when applied to Q and to another CCQ query
Q′, even though the two queries are provably combined-
semantics equivalent. The problem of combined-semantics
equivalence for general CCQ queries remains open.

The importance of the contributions of this paper is in
solving in the positive the decidability problem of determin-
ing combined-semantics equivalence, for pairs of explicit-
wave CCQ queries. That is, the results reported in this
paper imply immediately that for an arbitrary pair of CCQ
queries, it is decidable (i) to determine whether each of the
queries is explicit wave, and (ii) to determine, in case both
queries are explicit wave, whether or not they are combined-
semantics equivalent, by using our syntactic CVM-based cri-
terion. Note that even in case where one or both of the
input queries are not explicit wave, our syntactic (CVM-
based) sufficient condition for combined-semantics equiva-
lence could still be used to determine that the two queries
are equivalent.

The results of this paper combined with those of [7] can be
used directly in query optimizers for database-management
systems, as well as for developing optimization methods for
queries in more expressive languages than CQ queries and
in presence of integrity constraints. Our results can also be
used for developing algorithms for rewriting queries using
views, and for view selection under combined semantics.

The remainder of this paper is organized as follows. In
Section 1.1 we review related work. Section 2 formulates the
background notions and results. In Section 3, we introduce
covering mappings (CVMs) and present our sufficient CVM-
based condition for combined-semantics equivalence, which
is applicable to all CCQ queries. Section 4 formalizes the
notion of explicit-wave queries, presents in Theorem 4.1 the
CVM-based necessary condition for equivalence of explicit-
wave CCQ queries, and shows that this condition does not
necessarily apply to general CCQ queries. Section 4 also
contains the decidability test, which is the main result of this
paper. Finally, Section 5 contains the proof of Theorem 4.1.

1.1 Related Work
In their classic paper [2], Chandra and Merlin presented an

NP-complete containment test for CQ queries under set se-
mantics. This sound and complete test has been used in op-
timization, via minimization, of CQ set-semantics queries, as
well as in developing algorithms for rewriting queries (both
equivalently and nonequivalently) using views. In this cur-
rent paper we extend the containment and equivalence re-
sults of [2] to general CQ combined-semantics queries, and
show the limitations of each extension.

Equivalence tests for CQ bag and bag-set queries were for-
mulated by Chaudhuri and Vardi in [5]; correctness of the
tests follows from the results of [9]. Our equivalence results
for CQ combined-semantics queries reduce correctly to the
special cases of CQ bag and bag-set queries, as given in [5].
Further, this current paper provides a nontrivial generaliza-
tion and the first known proof of the well-known sufficient
containment condition for CQ bag queries, as outlined in [5].

Definitive results on containment between CQ queries un-
der bag and bag-set semantics have not been obtained so
far. Please see Jayram, Kolaitis, and Vee [13] for original

3

undecidability results on containment of CQ queries with in-
equalities under bag semantics. The authors point out that
it is not known whether the problem of bag containment for
CQ queries is even decidable. For the case of bag-set seman-
tics, sufficient conditions for containment of two CQ queries
can be expressed via containment of (the suitable) aggre-
gate queries with aggregate function count(*). The latter
containment problem can be solved using the methods pro-
posed in [10]. Please see [5, 1] for other results on bag and
bag-set containment of CQ queries. The general problems
of containment for CQ bag and bag-set queries remain open.

In her papers [8, 9], Cohen provided an elegant and pow-
erful formalism for treating queries evaluated under each of
set, bag, and bag-set semantics uniformly as special cases of
the more general combined semantics. The papers also con-
tain a general sufficient condition for combined-semantics
equivalence of CQ queries with disjunction, negation, and
arithmetic comparisons, as well as necessary and sufficient
equivalence conditions for special cases. (Interestingly, when
we restrict the language of the queries in question to the lan-
guage of CQ queries, it turns out that all the necessary and
sufficient query-equivalence conditions of [9] hold for queries
belonging collectively to a proper subclass of the class of
explicit-wave CQ queries, which (class) we introduce in this
current paper.) The proof in [9] of its general sufficient con-
dition for equivalence of queries is in terms of containment
between the queries under combined semantics. That (im-
plicit) sufficient query-containment condition is proved in [9]
for the case where the two queries have the same number of
multiset variables. In this current paper we provide proper
generalizations of all the results of [9], including of its im-
plicit sufficient condition for query containment, provided
that the results of [9] are applied to CQ queries only.

A discussion of query equivalence and containment for
query languages that properly contain the language of CQ
queries is beyond the scope of this paper. The interested
reader is referred to [9], which contains an excellent overview
of the literature in this direction.

2. PRELIMINARIES

2.1 Combined semantics: The framework [9]

2.1.1 Syntax of queries
Predicate symbols are denoted as p, q, r. Databases con-

tain ground atoms for a given set of predicate symbols; we
consider finite-size databases only. A database may have
several copies of the same atom. To denote this fact, each
atom in the database is associated with a copy number N .
Formally, if p is an n-ary predicate, for an n ∈ N+ (with
N+ the set of natural numbers), we write p(c1, . . . , cn;N),
with N ∈ N+, to denote that there are precisely N copies
of p(c1, . . . , cn) in the database. As a shorthand, if N = 1,
we often omit the copy number N . The active domain of
database D, denoted adom(D), is the set of all constants
mentioned in the ground atoms of D. We adopt a conven-
tion by which, for each atom of the form p(c1, . . . , cn) such
that database D has N ≥ 1 copies of that atom, N is an
element of adom(D) if and only if there exists in D an atom
r(c′1, . . . , c

′
m;N ′) (for some copy number N ′ ≥ 1 and where

r and p may or may not be the same predicate) such that
N is one of c′1, . . ., c′m.

For query syntax, we denote variables using X, Y , Z,

possibly with subscripts, and i, j, k. The former range over
constants in the database (i.e., over adom(D)), whereas the
latter range over copy numbers. For this reason, we call the
former regular variables (or simply variables for short), and
we call the latter copy variables. We use c, d to denote con-
stants. A term, denoted as S, T , is a variable or a constant.

A relational atom has the form p(S1, . . . , Sn), where p is a
predicate of arity n. We also use the notation p(S̄), where S̄
stands for a sequence of terms S1, . . . , Sn. A copy-sensitive
atom has the form p(S̄; i), and is simply a relational atom
with copy variable i. We call relational atom p(S̄) the re-
lational template of copy-sensitive atom p(S̄; i). For each
relational atom, its relational template is the atom itself. A
condition, denoted as L, is a conjunction of relational and
copy-sensitive atoms, with duplicate atoms allowed, such
that all copy variables in L are unique (i.e., appear in a sin-
gle copy-sensitive atom, and do not appear in other atoms).
Sometimes it will be convenient for us to view condition L
as a bag of all and only the elements in the conjunction L.

We distinguish between the variables that appear in the
head of a query, and those that only appear in the body.
The former are distinguished (head) variables, and the latter
are nondistinguished (nonhead) variables. Nondistinguished
variables come in two flavors: set variables and multiset vari-
ables. The intuition for the difference between these two
types of variables is as follows. When evaluating a query,
different assignments for set variables do not contribute to
the multiplicity in which a particular answer is returned by
the query. On the other hand, different assignments for
multiset variables do contribute to the multiplicity of the
returned answers. Technically, in order to differentiate be-
tween set variables and multiset variables, we always specify
the set of multiset variables in each condition immediately
to the right of the condition. As a syntactic requirement, all
copy variables must be in the set of multiset variables.

Definition 2.1. (Query syntax: CCQ query) A copy-
sensitive conjunctive query (CCQ query) is a nonrecursive
expression of the form

Q(X̄)← L,M,

where X̄ is a (possibly empty) vector, L is a nonempty con-
dition, and M is a set of variables, such that:

• L contains all the variables in X̄; that is, Q is safe;

• M is a subset of the set of nondistinguished variables
of L and contains all copy variables of L. We denote
all the copy variables of Q collectively as Mcopy ⊆ M ,
and all the remaining (“multiset noncopy”) variables in
M as Mnoncopy := M −Mcopy.

2

We call each element of the condition L a subgoal of Q.
The variables in M are the multiset variables of Q. The
variables in L that are not in X̄ or in M are the set variables
of Q. Consider an illustration.

EXAMPLE 2.1. Let CCQ query Qc be as follows.

Qc(X,Y)← sales(X,Z,U, Y ; i), sales(X,Z, c, Y), {Z,U, i}.

Suppose that we interpret c as the constant value ‘01/01/12.’
Then this query is the Datalog version of the SQL query Qc

of Example 1.1 (in Section 1).

4

The condition L of the query Qc is the conjunction of the
two subgoals of Q with the predicate sales. The variables
X and Y are the head variables of the query Qc. The set
{Z,U, i} is the set M of multiset variables of Qc; the set
Mcopy of Qc comprises the (only) copy variable i of Qc, and
the set Mnoncopy of Qc has the multiset noncopy variables Z
and U of Qc. By definition, M = Mcopy ∪ Mnoncopy . This
query does not have set variables. 2

We use S(Q) to denote an arbitrary vector, without rep-
etitions, of the set variables of Q, and S̄(Q) to denote an
arbitrary vector, without repetitions, of the remaining vari-
ables of Q (i.e., the distinguished and multiset variables of
Q). By abuse of notation, we will often refer to a query
by its head Q(X̄) or simply by its head predicate Q. For a
vector of terms X̄ with k ≥ 0 elements, we say that a CCQ
query with head Q(X̄) is a CCQ k-ary query. In the special
case where k = 0, we say that Q is a CCQ Boolean query,
and denote its head by Q().

We will sometimes be interested in special types of queries.
A CCQ query Q is a set query if it has no multiset variables,
that is, if M = ∅. Query Q is a multiset query if Q has no
set variables. Further, a multiset query Q is (i) a bag query
if Q has only copy-sensitive subgoals, and is (ii) a bag-set
query if Q has only relational subgoals.

2.1.2 Combined semantics for queries
We define how CCQ query Q(X̄)← L,M yields a multiset

of tuples on database D. Intuitively, we start by considering
satisfying assignments of the condition L. We then restrict
these assignments to the nonset variables of L, that is to
S̄(Q). Each of these restricted assignments yields a tuple in
the result. A formal description of the semantics follows.

Let γ be a mapping of the terms in condition L to values.
We will also apply γ to a sequence of terms to derive a
sequence of values, in the obvious way. We say that γ is a
satisfying assignment of L with respect to database D if all
of the following conditions hold:

• γ is the identity mapping on constants;

• for all relational atoms p(T̄) ∈ L, there exists an N ∈
N+ such that we have p(γT̄ ;N) ∈ D; and

• for all copy-sensitive atoms p(T̄ ; i) ∈ L, the following
two conditions hold:

– γi ∈ N+ (i.e, γi is a positive natural number);

– there is an N ≥ γi such that p(γT̄ ;N) ∈ D.

Let Γ(Q,D) denote the set of satisfying assignments of L
with respect to database D. Let γ be an assignment of the
variables in S̄(Q) to constants. We say that γ is satisfiably
extendible if there is an assignment γ′ ∈ Γ(Q,D) such that
γ and γ′ coincide on all terms for which γ is defined, that
is, γ′(X) = γ(X) for all X ∈ S̄(Q). Intuitively, this means
that it is possible to extend γ to derive a satisfying assign-
ment of L. We use ΓS̄(Q,D) to denote the set of satisfiably
extendible assignments of S̄(Q) with respect to D. For the
γ ∈ ΓS̄(Q,D) and for the γ′ ∈ Γ(Q,D) as specified in this
paragraph, we say that γ′ contributes γ to ΓS̄(Q,D).

We now define the result of applying a query Q to a
database D. (We use {{. . .}} to denote a bag of values.)

Definition 2.2. (Combined semantics) Let Q(T̄) ←
L,M be a CCQ query and let D be a database. The re-
sult of applying Q to D under combined semantics, denoted
ResC(Q,D), is defined as

ResC(Q,D) := {{ γ(T̄) | γ ∈ ΓS̄(Q,D) }} . 2

(In the special case where Q is a Boolean query, each
γ(T̄) as above is interpreted as a separate copy of the empty
tuple.) Note that ResC(Q,D) is a bag of tuples, that is,
ResC(Q, D) may contain multiple occurrences of the same
tuple. Consider an illustration.

EXAMPLE 2.2. Let CCQ query Qc be as in Example 2.1,
and consider a database D whose Sales relation has two dis-
tinct tuples: (85, 433, 01/01/12, 264; 2) and (85, 433,
03/15/12, 264). (Note that the first tuple of the Sales re-
lation is present in two copies in the database D.) Then
ResC(Qc,D) is a bag of exactly three copies of the tuple
(85, 264). 2

Under certain circumstances, combined semantics coin-
cides with set, bag, or bag-set semantics. Please see [9] for
the details on the three traditional query semantics, specif-
ically on how these semantics can be formulated as special
cases of combined semantics.

2.1.3 Query containment and equivalence
Query containment under combined, set, bag, and bag-set

semantics is defined in the standard manner. Formally, Q is
contained in Q′ under a given semantics if, for all databases,
the bag of values returned by Q is a subbag of the bag of
values returned by Q′. We write Q vC Q′, Q vS Q′, Q vB
Q′, and Q vBS Q′ if Q is contained in Q′ under combined,
set, bag, and bag-set semantics, respectively. Similarly, we
use Q ≡C Q′, Q ≡S Q′, Q ≡B Q′, and Q ≡BS Q′ to denote
the fact that Q is equivalent to Q′ under each semantics.
Q ≡C Q′ holds if and only if Q vC Q′ and Q′ vC Q both
hold. The definitions of Q ≡S Q′, Q ≡B Q′, and Q ≡BS Q′
parallel that of Q ≡C Q′ in the obvious manner.

For CCQ queries Q and Q′, we have that (1) Q vS Q′ iff
Q vC Q′, in case Q and Q′ are set queries; (2) Q vB Q′

iff Q vC Q′, in case Q and Q′ are bag queries; and (3)
Q vBS Q′ iff Q vC Q′, in case Q and Q′ are bag-set queries.

For a class Q of queries: The Q-containment problem for
combined semantics is: Given queries Q and Q′ in Q, de-
termine whether Q vC Q′. The Q-equivalence problem is
defined similarly using ≡C instead of vC . The two prob-
lems can be defined similarly for other semantics.

2.2 Equivalence and minimization results
Homomorphisms and set queries. Given two condi-

tions φ(Ū) and ψ(V̄), a homomorphism from φ(Ū) to ψ(V̄)
is a mapping h from the set of terms in Ū to the set of
terms in V̄ such that (1) h(c) = c for each constant c,
(2) for each relational atom r(U1, . . . , Un) of φ we have
that r(h(U1), . . . , h(Un)) is in ψ, and (3) for each copy-
sensitive atom p(W1, . . . ,Wn; i) of φ we have that p(h(W1),
. . . , h(Wn);h(i)) is in ψ. Given two CCQ k-ary queries
Q1(X̄)← φ(X̄, Ȳ),M1 and Q2(X̄ ′)← ψ(X̄ ′, Ȳ ′),M2, a con-
tainment mapping from Q1 to Q2 is a homomorphism h from
φ(X̄, Ȳ) to ψ(X̄ ′, Ȳ ′) such that h(X̄) = X̄ ′.

Theorem 2.1. [2] Given two CCQ set queries Q1 and Q2

of the same arity, Q1 vS Q2 holds if and only if there is a
containment mapping from Q2 to Q1. 2

5

This classic result of [2] forms the basis for a sound and
complete test for set-equivalence of CCQ set queries Q and
Q′, by definition of set-equivalence Q ≡S Q′.

Bag and bag-set queries. For bag and bag-set se-
mantics, the following conditions are known for CCQ query
equivalence. (Query Qc is a canonical representation of
query Q if Qc is the result of removing all duplicate atoms
from the condition of Q.)

Theorem 2.2. [5] Let Q and Q′ be CCQ queries. Then
(1) When Q and Q′ are bag queries, Q ≡B Q′ iff Q and
Q′ are isomorphic. (2) When Q and Q′ are bag-set queries,
Q ≡BS Q′ iff Qc and Q′c are isomorphic. 2

(Two CCQ queries Q1 and Q2, with respective sets of
multiset variables M1 and M2, are isomorphic if there exists
a one-to-one containment mapping from Q1 onto Q2 such
that the mapping induces a bijection from M1 to M2, and
there exists another containment mapping from Q2 onto Q1,
with (symmetrically) the same properties.)

Combined-semantics queries. The next result is a suf-
ficient condition of [9] for equivalence of two queries under
combined semantics. In [9], Cohen formulates each of Defi-
nition 2.3 and Theorem 2.3 for CCQ queries that may also
contain negation and inequality comparisons. (In condition
(3) of Definition 2.3 we treat the query conditions, which are
conjunctions of atoms, as bags of the same atoms. Given a
bag B, we call a set S the core-set of B if S is the result of
dropping all duplicates of all elements of B.)

Definition 2.3. (Multiset-homomorphism [9]) Let
Q(X̄) ← L,M and Q′(X̄ ′) ← L′,M ′ be two k-ary CCQ
queries, for k ≥ 0. Let ϕ be a mapping from the terms
of Q′ to the terms of Q.4 We say that ϕ is a multiset-
homomorphism from Q′ to Q if ϕ satisfies all of the follow-
ing conditions:

1. ϕX̄ ′ = X̄ ;

2. ϕ is the identity mapping on constants;

3. the core-set of ϕL′ is a subset of the core-set of L ;

4. ϕM ′ ⊆M ; and

5. ϕY 6= ϕY ′ for every two variables Y 6= Y ′ ∈M ′. 2

For every mapping ϕ that satisfies conditions 1–3 of Def-
inition 2.3, we call ϕ a generalized containment mapping
(GCM).

We say that two CCQ queries Q andQ′ are multiset homo-
morphic whenever there is a multiset-homomorphism from
Q to Q′ and another from Q′ to Q.

Theorem 2.3. [9] Given CCQ queries Q and Q′. If Q
and Q′ are multiset homomorphic then Q ≡C Q′. 2

Note 1. Theorem 2.3 is proved in [9] via showing that for
two (generalized) CCQ queries Q and Q′, the existence of a
multiset-homomorphism from Q′ to Q implies Q vC Q′.

It is shown in [9] that the sufficient equivalence condition
of Theorem 2.3 is not necessary for the query classes consid-
ered in [9].
4We also apply ϕ to atoms and conjunctions of atoms, in
the obvious way, e.g., ϕ(p(S̄)) = p(ϕ(S̄)).

3. CONTAINMENT AND MAPPINGS
In this section, for combined-semantics containment of

CCQ queries, we outline two necessary conditions, Theo-
rems 3.1 and 3.2, which are proved in [7], and introduce a
sufficient condition, Theorem 3.3. The latter result prop-
erly generalizes both (i) the sufficient condition outlined in
[5] for bag containment of CQ queries, and (ii) the general
sufficient containment condition for CCQ queries that can
be obtained from [9]. To formulate Theorem 3.3, we intro-
duce covering mappings (CVMs) between CCQ queries. We
use CVMs in our results throughout the remainder of this
paper.

Throughout this paper, we use the notationQ(X̄)← L,M
and Q′(X̄ ′) ← L′,M ′ for the definitions of CCQ queries Q
and Q′. The conditions of Q and Q′ may have constants.

3.1 Necessary conditions for containment
We outline here two necessary conditions for a CCQ query

Q being combined-semantics contained in CCQ query Q′,
Theorems 3.1 and 3.2. Both results are proved in [7]; we
will need them in this current paper in our discussion of
Theorem 4.1.

Theorem 3.1. Let Q and Q′ be two k-ary CCQ queries,
for a k ≥ 0. Then Q vC Q′ implies both |Mcopy| ≤ |M ′copy|
and |Mnoncopy| ≤ |M ′noncopy|. 2

(For a set S we denote by |S| the cardinality of S.)
We call a pair (Q, Q′) of CCQ queries a containment-

compatible CCQ pair if (i) The (nonnegative) head arities
of Q and Q′ are the same; (ii) |Mcopy| ≤ |M ′copy|; and (iii)
|Mnoncopy| ≤ |M ′noncopy|. (Note the asymmetry in the nota-
tion for the pair.) Further, we call a pair (Q, Q′) of CCQ
queries an equivalence-compatible CCQ pair if each of (Q,
Q′) and (Q′, Q) is a containment-compatible CCQ pair. By
Theorem 3.1 we have that, whenever Q vC Q′ (Q ≡C Q′, re-
spectively) holds, then (Q, Q′) is a containment-compatible
(an equivalence-compatible, respectively) CCQ pair.

The next result, Theorem 3.2 (also proved in [7]), gener-
alizes the “only-if” part of the classic result of [2], see The-
orem 2.1 in Section 2.2, to CCQ queries. For the definition
of generalized containment mapping, GCM, see Section 2.2.
We begin by introducing another definition that we need to
formulate Theorem 3.2.

For a CCQ query Q, we say that CCQ query Qce is a
copy-enhanced version of Q if Qce is the result of adding a
distinct copy variable to each relational subgoal of Q. We
can show that for a query Q, all copy-enhanced versions of Q
are identical up to renaming of the copy variables introduced
in the construction of Qce. A formalization is given in [7].

We are now ready to formulate Theorem 3.2.

Theorem 3.2. Given CCQ queries Q and Q′ such that
Q vC Q′. Then there exists a GCM from Q′ce to Qce. 2

Neither Theorem 3.1 nor Theorem 3.2 provides a sufficient
condition for combined-semantics containment of two CCQ
queries: The following Example 3.1 is a counterexample in
both cases.

EXAMPLE 3.1. Consider CCQ queries Q and Q′:

Q(X)← p(X,Y), p(Y,Z), p(Z,X; i), {Y, i}.
Q′(X)← p(X,Y), p(Y,Z), p(Z,X; i), {Z, i}.

6

Apart from the choice of multiset variables, Q and Q′ are
clearly isomorphic. However, Q ≡C Q′ does not hold, as
witnessed by database D = {p(1, 2), p(2, 3), p(3, 1), p(1, 4),
p(4, 3)}. Our results in this paper permit us to determine
Q ≡C/ Q′ syntactically, see Section 4. (To the best of our
knowledge, no previous work provides a formal procedure to
determine Q ≡C/ Q′ for queries such as in this example.) 2

Each of Theorem 3.1 and Theorem 3.2 yields a neces-
sary condition for combined-semantics equivalence of CCQ
queries in a natural way. For instance:

Corollary 3.1. Let Q and Q′ be two k-ary CCQ queries
such that Q ≡C Q′. Then we have |Mcopy| = |M ′copy| and
|Mnoncopy| = |M ′noncopy|. 2

3.2 Covering mappings for CCQ queries
In this subsection, we introduce covering mappings (CVMs)

between CCQ queries, and study properties of CVMs.

Definition 3.1. (Covering mapping (CVM)) Given
CCQ queries Q and Q′, a mapping, call it µ, from the terms
of Q′ to the terms of Q is called a covering mapping (CVM)
from Q′ to Q whenever µ satisfies all of the following con-
ditions:

(1) µ maps each constant (if any) in Q′ to itself;

(2) applying µ to the vector X̄ ′ yields the vector X̄;

(3) the set of terms in µM ′copy is exactly Mcopy, and the
set of terms in µM ′noncopy includes all of Mnoncopy;

(4) for each relational subgoal of Q′, of the form s(Ȳ),
there exists in Q either a relational subgoal s(µ(Ȳ)),
or a copy-sensitive subgoal s(µ(Ȳ); i), with i ∈ Mcopy;
and

(5) for each copy-sensitive subgoal of Q′ of the form s(Ȳ ; i),
there exists in Q a subgoal s(µ(Ȳ);µ(i)). 2

By Definition 3.1, if there exists a CVM from CCQ query
Q′ to CCQ queryQ, then (Q, Q′) is a containment-compatible
CCQ pair. It is immediate from Definition 3.1 that if a map-
ping µ is a CVM from Q′ to Q, then µ induces a surjection
from the set of copy-sensitive subgoals of Q′ to the set of
copy-sensitive subgoals of Q. Observe also that in case both
Q and Q′ are set queries, Definition 3.1 becomes the defini-
tion of containment mapping [2] from Q′ to Q.

For the special case where (Q, Q′) is an equivalence-compat-
ible CCQ pair, we call each CVM from Q′ to Q a same-scale
covering mapping (SCVM) from Q′ to Q. By definition,
each SCVM from Q′ to Q is a bijection from the set M ′ to
the set M when restricted to the domain M ′.

The intuition for Definition 3.1 comes from our use of
CVMs in [7] as a tool for minimizing CCQ queries. Consider
the following illustration.

EXAMPLE 3.2. Let queries Q and Q′ be as follows.

Q(X)← p(X,X, Y ; i), p(X,Z, Y), {Y, i}.
Q′(X)← p(X,X, Y ; i), {Y, i}.

By Definition 2.3, there does not exist a multiset homomor-
phism [9], or even a GCM, from Q to Q′. At the same time,
by the results of [7], Q′ is a minimized version of Q. We
can ascertain this fact by using a CVM, µ, from Q to Q′: µ
= { X → X, Y → Y , i→ i, Z → X } . 2

As illustrated by Example 3.2, CVMs are not GCMs. In-
deed, the definition of CVMs gives up explicitly on condition
(3) for GCMs (see Definition 2.3); by this condition, for each
subgoal s of Q in Example 3.2, we must have that µ(s) is a
subgoal of Q′. While CVMs are not GCMs, a nice relation-
ship exists between CVMs and GCMs, see Proposition 3.2.
To formulate Proposition 3.2, we use the following definition,
in which we treat query conditions as bags of atoms.

Given CCQ query Q, let T (Q) be the set of relational
templates of all (if any) copy-sensitive subgoals of Q. We
recall that CCQ query Qc is a canonical representation of
CCQ query Q if Qc is the result of removing all duplicate
atoms from the condition of Q.

Definition 3.2. ((Un)regularizing CCQ query) Given
CCQ query Q, with canonical representation Qc. Then (1)
A regularized version of Q is a CCQ query Qr obtained by
dropping from the condition of Qc all elements of the set
T (Q); (2) A deregularized version of Q is a CCQ query Qd
obtained by adding to the condition of Qr all elements of the
set T (Q); (3) An unregularized version of Q is a CCQ query
Qu obtained by adding to the condition of Qr one or more
duplicates of the existing relational subgoals, and/or one or
more elements (possibly with duplicates) of the set T (Q). 2

The following result is straightforward.

Proposition 3.1. Given a CCQ query Q. Then (1) Each
of Qr and Qd is a well-defined, unique and polynomial-time
computable CCQ query; (2) Qr ≡C Q and Qd ≡C Q both
hold; and (3) For each unregularized version Qu of Q, we
have that Qu ≡C Q holds. 2

We are now ready to formulate Proposition 3.2.

Proposition 3.2. Given CCQ queries Q and Q′. Then
for each CVM, µ, from Q′ to Q, we have that (1) µ is a
GCM from Q′ to the deregularized version of Q, and (2) µ
is a CVM from Q′ to the regularized version of Q. 2

In Example 3.2, we are given the regularized version Q′r of
the query Q′. The deregularized version of Q′ is Q′d(X) ←
p(X,X, Y ; i), p(X,X, Y), {Y, i}. The mapping µ of Exam-
ple 3.2 (i) is a GCM from Q to Q′d, (ii) is a CVM from Q to
Q′r, and (iii) is not a GCM from Q to Q′r.

Proof. (Proposition 3.2) Proof of (1): Let µ be a CVM
from CCQ query Q′ to CCQ query Q. We apply the map-
ping µ to the head and individually to each subgoal of the
query Q′; we will refer to the result as (query) µ(Q′). In ad-
dition, we impose a natural requirement that a variable Y in
the query µ(Q′) be a multiset variable of µ(Q′) if and only
if Y is a multiset variable of the query Q. It is immediate
from this requirement and from item (3) of Definition 3.1
that the multiset variables of µ(Q′) are exactly the multiset
variables of the query Q.

Now applying µ to the head vector of the query Q′ re-
sults in the head vector of Q, by item (2) of Definition 3.1.
Further, for each copy-sensitive subgoal of Q′, its image in
µ(Q′) is a copy-sensitive subgoal of the query Q, by item (5)
of Definition 3.1. We get a similar desired behavior, by item
(4) of Definition 3.1, for all relational subgoals of Q′ whose
images under µ are relational subgoals of the query Q.

The only problem in the application of the mapping µ to
the query Q′ would arise when, for some relational subgoal

7

of Q′ of the form s(Ȳ), the relational atom s(µ(Ȳ)) is not a
subgoal of the query Q. For an illustration, consider queries
Q and Q′ of Example 3.2: The mapping µ = {X → X,Y →
Y,Z → X, i→ i} is a CVM from query Q to query Q′ of the
Example. Applying this mapping to subgoal p(X,Z, Y) of
the query Q results in a relational subgoal p(X,X, Y) that
is not present in the query Q′.

However, items (3) through (5) of Definition 3.1 together
ensure that for each occurrence of the above problem, query
µ(Q′) has “the copy-sensitive version”, s(µ(Ȳ); i) (for some
copy variable i ∈ Mcopy), of the atom s(µ(Ȳ)) of the pre-
vious paragraph. That subgoal s(µ(Ȳ); i) would be added
to µ(Q′) as the result of applying µ to some copy-sensitive
subgoal of the query Q′. Thus, adding the relational atom
s(µ(Ȳ)) to µ(Q′), as the result of applying µ to the relational
subgoal s(Ȳ) of the query Q′, does not “take us outside” the
set of subgoals of the deregularized version of the query Q.
(Recall the definition of the set T (Q).) As a result, the con-
dition of the query µ(Q′) is a subset of the condition of the
deregularized version of the query Q. Q.E.D.

Proof of (2): Immediate from (1) and from definition of
CVM.

It turns out that CVMs furnish a rather general sufficient
condition for CCQ combined-semantics containment:

Theorem 3.3. Given CCQ queries Q and Q′, such that
there exists a CVM from Q′ to Q. Then Q vC Q′ holds. 2

Theorem 3.3 generalizes properly both (i) the sufficient
condition of [2] for containment between CCQ set queries,
see Theorem 2.1, and (ii) the well-known result of [5] stating
that a containment mapping5 from CCQ bag query Q′ onto
CCQ bag query Q ensures containment Q vB Q′. In fact,
to the best of our knowledge, the proof of our Theorem 3.3
is the first formal proof of the latter result from [5].

The condition of Theorem 3.3 does not appear to be a
necessary condition for containment of CCQ queries. In-
deed, a well-known example of [5] (see Appendix B), claims
containment Q vC Q′, but no CVM exists from Q′ to Q.

We now prove Theorem 3.3. Remarkably, the proof is
almost verbatim the proof, in [9], of the result that is given
as Theorem 2.3 in this current paper.

Proof. (Theorem 3.3) Consider the queriesQ(X̄)← L,M
and Q′(X̄ ′)← L′,M ′ . Let ϕ be a CVM from Q′ to Q. Re-
call that by item (3) of Definition 3.1, when ϕ is restricted
to the domain M ′ then we have that the range of ϕ includes
all of M .

By Proposition 3.2, ϕ is a generalized containment map-
ping from the query Q′ to the deregularized version Qd of
Q, Qd(X̄) ← Ld,Md. By Proposition 3.1, Qd ≡C Q. (In
particular, this means that the set Md is identical to M , and
that the set S̄(Qd) is identical to S̄(Q).)

Let D be a database with active domain adom(D), and
let t̄ be a tuple of constants in adom(D). Suppose that
ResC(Qd, D) contains k > 0 occurrences of t̄. (The case
where the head vectors of the two queries are empty, and
hence t̄ is the empty tuple, is proved in the same way as the
case where t̄ is a tuple with at least one constant. We omit

5The “containment mapping” terminology of [5] results from
the use in that paper of a syntax for bag queries that does
not coincide with the syntax of [9] used in this current paper.
See Appendix A for a detailed discussion.

the proof of the former case.) We show that ResC(Q′, D)
contains at least k occurrences of t̄. This is sufficient in order
to prove combined-semantics containment of Qd in Q′. From
this result, by Qd ≡C Q we obtain that Q vC Q′ also holds.

Let Γ be the set of satisfying assignments of Qd into D
that map X̄ to t̄. Let ΓS̄ be the restriction of assignments in
Γ to the variables in S̄(Qd). There are exactly k assignments
γ1, . . . , γk ∈ ΓS̄ . We associate each assignment γi ∈ ΓS̄ with
an assignment γ∗i ∈ Γ such that γi is the restriction of γ∗i
to the variables in S̄(Qd). If there are several candidates for
γ∗i , we choose one arbitrarily.

Recall that ϕ is a generalized containment mapping from
Q′ to Qd. Thus, we have that for each subgoal l′ of Q′,
ϕl′ ∈ Ld holds. Since γ∗i is a satisfying assignment of Qd
into D, we have that γ∗i (Ld) is satisfied by the database. (In
other words, all the ground atoms in γ∗i (Ld) appear in D.)
By composing the assignments we derive that γ∗i ◦ ϕ(L′) is
satisfied by D. Hence, γ∗i ◦ ϕ is a satisfying assignment of
Q′ into D. In addition, γ∗i ◦ ϕ(X̄ ′) = t̄, since ϕ(X̄ ′) = X̄.

Finally, we show that no two assignments γ∗i ◦ϕ and γ∗j ◦ϕ
(i 6= j) agree on all the multiset variables of Q′. By the
definition of ΓS̄ , it holds that γi and γj differ on at least
one multiset variable of Qd. Hence γ∗i and γ∗j also differ on
at least one multiset variable of Qd. Since the image of M ′

under ϕ includes all of M , we derive that γ∗i ◦ ϕ and γ∗j ◦ ϕ
differ on at least one multiset variable of Q′. Therefore,
the restrictions of the assignments γ∗j ◦ ϕ (for all j ≤ k) to
S̄(Q′) are all different satisfiably extendible assignments of
the nonset variables of Q′ into the database. We conclude
that ResC(Q′, D) contains at least k occurrences of t̄.

Our arguments apply for all D and for all t̄. Therefore,
Qd vC Q′ and (by Qd ≡C Q) we have Q vC Q′, as re-
quired.

3.3 CVMs and multiset homomorphisms of [9]
In this subsection we compare CVMs with multiset homo-

morphisms [9], see Definition 2.3. For a fixed pair of CCQ
queries Q and Q′, with respective sets of multiset variables
M and M ′, each CVM from Q′ to Q has range at least
M when restricted to the domain M ′, and each multiset
homomorphism from Q′ to Q has range at most M when
restricted to the domain M ′. Therefore, general CVMs and
multiset homomorphisms are incomparable when applied to
pairs of CCQ queries. (See Example C.1 in Appendix C.) At
the same time, we have the following result for SCVMs and
multiset-homomorphisms. (The proof, which is immediate
from Proposition 3.2, can be found in Appendix C.)

Proposition 3.3. Given an equivalence-compatible CCQ
pair (Q, Q′). Then each SCVM from Q′ to Q is a multiset-
homomorphism from Q′ to the deregularized version of Q,
and vice versa. 2

For instance, consider the mapping µ of Example 3.2 from
the terms of the query Q to the terms of the query Q′ of the
example. This mapping is a CVM from Q to Q′ and is
also a multiset-homomorphism from Q to the deregularized
version Q′d of Q′, Q′d(X)← p(X,X, Y ; i), p(X,X, Y), {Y, i}.
(Observe that there is no GCM from query Q′d to query Q′.)

As an immediate corollary of Propositions 3.2 and 3.3, we
have that for each equivalence-compatible CCQ pair (Q,Q′),
the existence of a multiset-homomorphism from Q′ to Q
implies the existence of a CVM from Q′ to Q. From this

8

result and from Example 3.2, we obtain that the restric-
tion of Theorem 2.3 (due to [9]) to CCQ queries does not
have quite the same power as the sufficient condition for
equivalence of CCQ queries that is immediate from Theo-
rem 3.3. (By Theorem 3.3, we have Q ≡C Q′ for the queries
of Example 3.2.) In fact, by Example 3.2 we have that
our Theorem 3.3 is a proper generalization of the (implicit)
query-containment condition of [9], provided that the latter
is applied to CCQ queries only; see Note 1 in Section 2.2.
(By Definition 2.3 and by Theorem 3.1, the existence of a
multiset-homomorphism from CCQ query Q′ to CCQ query
Q implies Q vC Q′ only when (Q,Q′) is an equivalence-
compatible CCQ pair.)

4. EQUIVALENCE: ASYMMETRIC
NECESSARY CONDITION

In this section we present a necessary condition for equiv-
alence of CCQ queries, Theorem 4.1. To formulate Theo-
rem 4.1, we isolate a large well-behaved class of combined-
semantics CQ queries, which we call “explicit-wave queries.”
Theorem 4.1 is asymmetric: It states that if for CCQ queries
Q and Q′ the combined-semantics equivalence Q ≡C Q′

holds, and we have that Q is an explicit-wave query, then
there exists a CVM from Q′ to Q. As we will see in Sec-
tion 5, establishing this result is not trivial. We also formu-
late and prove the main result of this paper, Theorem 4.2,
and show how it gives rise to an algorithm for determin-
ing whether two explicit-wave CCQ queries are or are not
combined-semantics equivalent.

We begin by introducing Definition 4.1. This technical
definition is required for the proof of Theorem 4.1 to go
through. Given a CCQ query Q, with set Mnoncopy 6= ∅ of
multiset noncopy variables, we say that a GCM µ from Q to
itself is a noncopy-permuting GCM if the mapping resulting
from restricting the domain of µ to Mnoncopy is a bijection
from Mnoncopy to itself. For two noncopy-permuting GCMs,
µ1 and µ2, from Q to itself, we say that µ1 and µ2 agree
on Mnoncopy if µ1 and µ2 induce the same mapping from
Mnoncopy to itself. If for CCQ query Q we have Mnoncopy

= ∅, we say that all GCMs from Q to itself are noncopy-
permuting GCMs, and that all pairs of such GCMs agree on
Mnoncopy.

In Definition 4.1, for a CCQ query Q and for its copy-
enhanced versionQce, we will call“the original copy-sensitive
subgoals of Q” those copy-sensitive atoms that are present
in the conditions of both Q and Qce.

Definition 4.1. (Explicit-wave CCQ query) A CCQ
query Q is an explicit-wave (CCQ) query if one of the fol-
lowing conditions holds:

(1) Q has at most one copy-sensitive subgoal; or

(2) For the set Mnoncopy of multiset noncopy variables of
Q, and for each pair (µ1, µ2) of noncopy-permuting
GCMs from Qce to itself, such that µ1 and µ2 agree
on Mnoncopy, for each original copy-sensitive subgoal,
s, of Q we have that µ1(s) and µ2(s) have the same
relational template.

2

The problem of determining whether a given CCQ query
is an explicit-wave query can easily be seen to be in co-NP.
It is open whether this upper complexity bound is tight.

As an example, any CCQ query Q that has a distinct
predicate name for each subgoal (i.e., is a query without self-
joins) can be shown to be an explicit-wave query. Further,
a polynomial-time checkable sufficient condition for a CCQ
query to be explicit wave is that each subgoal of the query
not contain both a set variable and a copy variable:

Proposition 4.1. Given a CCQ query Q such that each
copy-sensitive subgoal of Q has no set variables. Then Q is
an explicit-wave query. 2

(This result is straightforward. For completeness, a proof
can be found in Appendix D.)

By Proposition 4.1, each CCQ set query is an explicit-
wave query, and so is each CCQ bag query and each CCQ
bag-set query. In addition, Example 1.1 in Section 1 ex-
hibits SQL queries that are explicit-wave CCQ queries, and
such that none of the previously known tests for combined-
semantics equivalence are applicable to them.

Further, again by Proposition 4.1, we posit that explicit-
wave queries include all those CCQ queries that are express-
ible in SQL. (That is, it appears that all “practical” CCQ
queries are explicit wave.) Indeed, we are not aware of a
way in SQL to enforce, for some relation in the main FROM

clause of a query without the DISTINCT keyword, that the
multiplicity of one individual argument of the relation not
contribute to the multiplicity of the query answers.

For each CCQ query Q that is not explicit-wave, we call
Q an implicit-wave query. Consider an illustration.

EXAMPLE 4.1. Consider CCQ queries Q and Q′.

Q(X1)← r(X1, Y1, Y2, X2; i), r(X1, Y1, Y2, X3; j), {Y1, Y2, i, j}.
Q′(X1)← r(X1, Y1, Y2, X2; i), r(X1, Y1, Y2, X2; j), {Y1, Y2, i, j}.

The only difference between the queries is that the two
subgoals of the query Q have different set variables, X2 and
X3, whereas the two subgoals of Q′ have the same set variable
X2. We can show (see Appendix E) that the query Q is an
implicit-wave query.

There exist both a multiset homomorphism and a CVM
from the query Q to the query Q′. (Recall that each of the
two mappings provides a sufficient condition for Q′ vC Q.)
Observe that there is no isomorphism between Q and Q′.
The remarkable part is that no multiset homomorphism or
CVM exists in the opposite direction, that is from Q′ to Q.
Yet, Q ≡C Q′ does hold (see Appendix F). It does not help
much that there exists a GCM from Q′ to Q. By Theo-
rem 3.2, the existence of a GCM is a necessary, rather than
sufficient, condition for the containment Q vC Q′. (To ap-
ply Theorem 3.2, observe that Q and Qce are identical, as
are Q′ and Q′ce.) 2

Queries such as the query Q of Example 4.1 are of the
kind that does not seem to have been studied before. For
instance, as we have just argued, implicit-wave CCQ queries
cannot occur under set, bag, or bag-set semantics. By The-
orem 4.1 in this section, under these three traditional se-
mantics, as well as in other cases of combined semantics,
there exist symmetric CVM mappings between equivalent
CCQ queries. That is, for each pair (Q, Q′) of combined-
semantics CCQ queries such that each of Q and Q′ is an
explicit-wave query, Q ≡C Q′ implies that a CVM exists
from Q to Q′. What is important is that in all such cases,
a mapping of the same type (i.e., also a CVM) always exists

9

also from Q′ to Q. Example 4.1 illustrates that such symme-
try does not hold for unrestricted pairs of CQ queries under
combined semantics.

We now state Theorem 4.1.

Theorem 4.1. Given CCQ queries Q and Q′, such that
(i) Q is an explicit-wave query, and (ii) Q ≡C Q′. Then
there exists a SCVM from Q′ to Q. 2

Theorems 3.3 and 4.1 yield immediately a necessary and
sufficient equivalence condition for CCQ explicit-wave queries,
see Theorem 4.2.

Due to the well-known example of [5] (Appendix B), it
appears that condition (ii) of Theorem 4.1 cannot be re-
placed by condition Q vC Q′ (while also replacing SCVMs
by CVMs), even when Q is an explicit-wave query. Alter-
natively, we cannot remove condition (i) of Theorem 4.1.
Indeed, in Example 4.1 there is a SCVM from query Q to
explicit-wave query Q′, but there is no SCVM from Q′ to Q,
even though Q ≡C Q′ holds. Thus, Theorem 4.1 provides an
asymmetric necessary condition for CCQ-query equivalence.
This asymmetry does not appear to have been explored in
previous work. One reason for this is that, as we have shown,
under the three traditional semantics all CCQ queries are
explicit-wave queries. In [9], Cohen explores query classes
that properly subsume the class of CCQ queries. When re-
stricted to CCQ queries, all the necessary and sufficient con-
ditions of [9] for combined-semantics query equivalence re-
quire the queries to be explicit-wave queries. (We note that
none of the necessary and sufficient conditions of [9] applies
to our Examples 3.1 or 3.2, even though all the queries in the
two examples are explicit-wave queries. Yet, by an equiv-
alence test that is immediate from our Theorems 3.3 and
4.1, Q ≡C/ Q′ for the queries of Example 3.1, and Q ≡C Q′

for the queries of Example 3.2. See Appendix G for all the
details.)

We now formulate the main result of this paper, our de-
cidability result for combined-semantics equivalence of CCQ
explicit-wave queries.

Theorem 4.2. Given explicit-wave CCQ queries Q1 and
Q2. Then Q1 ≡C Q2 if and only if there exists a CVM from
Q1 to Q2, and another from Q2 to Q1. 2

The result of Theorem 4.2 is immediate from Theorems 4.1
and 3.3.

We use Theorem 4.2 to develop the following algorithm
for determining whether two explicit-wave CCQ queries Q
and Q′ are or are not combined-semantics equivalent. (The
correctness of the algorithm is by Theorems 3.1 and 4.2.)

Input: Pair (Q, Q′) of CCQ queries.
Output: Determination whether Q ≡C Q′ does or does

not hold, in case both Q and Q′ are explicit-wave queries.
Procedure:

1. If (Q, Q′) is not an equivalence-compatible CCQ pair,
then stop and return “not combined-semantics equiva-
lent.”

2. Use Definition 4.1 to ascertain that both Q and Q′ are
explicit-wave queries.

3. Whenever both Q and Q′ are explicit-wave queries, use
the test of Theorem 4.2 to report whether Q ≡C Q′

does or does not hold.

We note that instead of using in step 2 of the algorithm
the procedure of Definition 4.1, which is in co-NP, we can
alternatively apply the polynomial-time sufficient condition
of Proposition 4.1 for a CCQ query to be explicit wave.
As discussed earlier in this section, this sufficient condition
appears to cover all practical cases of SQL queries. Fur-
ther, step 3 of the algorithm is NP-complete; this is easy to
see when we recall that containment mappings of [2] are a
special case of CVMs. (It is straightforward to argue that
finding, for an equivalence-compatible CCQ pair (Q, Q′), a
CVM from Q to Q′ when both queries are set queries is at
least as hard as finding a CVM from Q to Q′ in the general
case. This claim follows from the fact that, in case where
(Q, Q′) is an equivalence-compatible CCQ pair, each CVM
from Q to Q′ is by definition a bijection from the set M of
multiset variables of Q to the set M ′ of multiset variables
of Q′. Intuitively, as CCQ set queries do not have multi-
set variables, when looking for the existence of a CVM from
CCQ set query Q to CCQ set query Q′ we “have to consider
the maximal possible number of options” when enumerating
candidate CVMs from the terms of Q to the terms of Q′.)

Finally, we observe that even if one or more of the queries
Q and Q′ is an implicit-wave CCQ query, then still Theo-
rem 3.3 could be used in at least some cases, to ascertain
that Q ≡C Q′. (Recall that Theorem 3.3 applies to all CCQ
queries, rather than just explicit wave.) Similarly, step 1 of
the algorithm would determine correctly nonequivalence for
pairs of CCQ queries where neither query in the pair has to
be explicit wave.

5. PROOF OF THEOREM 4.1
In this section we provide a proof of Theorem 4.1.

5.1 Intuition for the Proof and Extended
Example

5.1.1 Intuition for the Proof
In this subsection we outline the idea of the proof of The-

orem 4.1. Intuitively, we generalize the proof, via canon-
ical databases, of the existence of a containment mapping
[2] from CCQ set query Q′ to CCQ set query Q whenever
Q ≡S Q′. The challenge in the generalization is that we
are looking for a SCVM from Q′ to Q, that is, the desired
mapping must map each multiset variable of Q′ into a dis-
tinct multiset variable of Q. Showing that we have con-
structed a mapping with this property is thus an essential
part of the proof. (Observe that based on the conditions of
Theorem 4.1, we have no information about the structural
relationship between the two queries.)

For a given CCQ query Q, the proof of Theorem 4.1 con-
structs an infinite number of databases, where each database
DN̄(i)(Q), i ≥ 1, can be thought of as a union of (suitable
modifications of) “canonical databases” for Q. (See Section
5.2.1 for the definition.) Similarly to canonical databases
for CCQ set queries, each ground atom in each database
DN̄(i)(Q) can be associated, via a mapping that we denote

ν
(i)
Q , with a unique subgoal of the query Q. See Section 5.3

for the details.
The role of each database DN̄(i)(Q) in the proof is that

the database represents a particular combination of multi-
plicities of the values of (some of) the multiset variables Y1,
Y2, . . . , Yn, for some n ≥ 1, of the query Q. (We have that
n ≥ 1 for all CCQ queries Q and Q′ such that Q ≡C Q′

10

and at least one of Q and Q′ is not a set query.) For each
database DN̄(i)(Q), we represent the n respective multiplic-

ities as natural numbers N
(i)
1 through N

(i)
n , or equivalently

via the n-ary vector N̄ (i).
By construction of the databases, we have that some fixed

tuple, t∗Q, is an element of the bag ResC(Q,DN̄(i)(Q)) for
each i ≥ 1. Moreover, for all queries Q′′ such that (Q, Q′′) is
an equivalence-compatible CCQ pair, we have that the multi-
plicity of the tuple t∗Q in each bag ResC(Q′′, DN̄(i)(Q)) (that
is, for each i ≥ 1) can be expressed using the symbolic repre-

sentations, N1 through Nn, of the respective elements N
(i)
1 ,

. . . , N
(i)
n of the vector N̄ (i). That is, for each such query Q′′,

we can obtain explicitly a function, F (Q′′)
(Q) , in terms of the

n variables N1, . . . , Nn, such that whenever we substitute

N
(i)
j for Nj , for each j ∈ {1, . . . , n}, the resulting expression

in terms of N
(i)
1 , . . . , N

(i)
n evaluates to the multiplicity of the

tuple t∗Q in the bag ResC(Q′′, DN̄(i)(Q)). See Sections 5.4
through 5.6 and Section 5.9 for the construction of the func-
tion. Sections 5.8 and 5.9 contain extended illustrations of
the constructions.

Observe that for each CCQ query Q′ such that Q′ ≡C Q,

it must be that the functions F (Q′)
(Q) and F (Q)

(Q) output the

same value on each database DN̄(i)(Q), i ≥ 1.
Consider the simplest case, where our query Q has no self-

joins and has |M | = n ≥ 1. In this case, by construction

of the databases, we have that the function F (Q)

(Q) for the

query Q is the monomial Πn
j=1Nj . Consider an arbitrary

assignment, γ, from Q to a DN̄(i)(Q). Note that each such
γ has contributed to the construction of the database; we call
γ a generative assignment from Q to DN̄(i)(Q). We can show

that the composition ν
(i)
Q ◦ γ is a SCVM from Q to itself.

(Note the presence in the product Πn
j=1Nj of the variables

for all the n multiset variables of Q.) Moreover, for each

query Q′ such that Q′ ≡C Q, the function F (Q′)
(Q) is forced

(by Q′ ≡C Q and by F (Q)

(Q) being a multivariate polynomial)

to be exactly Πn
j=1Nj , regardless of the relationship between

the structures of Q and Q′. We show that whenever F (Q′)
(Q)

= Πn
j=1Nj , an assignment from Q′ to a database DN̄(i)(Q)

can be composed with the mapping ν
(i)
Q to yield a SCVM

from Q′ to Q, precisely due to the presence in the function

F (Q′)
(Q) of the “representative”Nj of each multiset variable Yj

of the query Q, for each j ≤ n.
The above exposition conveys the general intuition of the

proof of Theorem 4.1: For all CCQ queries Q, there is a
monomial, in terms of all of N1, . . ., Nn, that contributes

to the construction of the function F (Q)

(Q) and that reflects

the multiplicity, in the set Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)), of all gener-

ative assignments from Q to databases DN̄(i)(Q). (The set

Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)) is the set projection, on the vector S̄(Q),

of the set, denoted Γ(t∗Q)(Q,DN̄(i)(Q)), of all satisfiable as-
signments for Q and DN̄(i)(Q) that contribute the tuple t∗Q
to the answer to Q on DN̄(i)(Q).) We call this monomial,

P(Q)
∗ , the wave of the query Q w.r.t. {DN̄(i)(Q)}. (See Sec-

tion 5.7 for the definition.) Suppose that, for a query Q′

such that Q′ ≡C Q, we can show that the function F (Q′)
(Q)

has, as a term, the wave of Q w.r.t. {DN̄(i)(Q)}, backed up
by assignments from Q′ to the databases DN̄(i)(Q). Then we

can use these assignments and the mapping ν
(i)
Q to construct

a SCVM from Q′ to Q.
There are two challenges in implementing this idea for

general CCQ queries. First, the term P(Q)
∗ may not be “vis-

ible” in the expression for F (Q)

(Q) . As a result, the term P(Q)
∗

does not necessarily contribute to the construction of the

function F (Q′)
(Q) , even in case Q ≡C Q′. (This is exactly the

case of queries Q and Q′ of Example 4.1, see Example 5.1
in Section 5.1 for the details.) Second, in general, function

F (Q′)
(Q) may have terms that are not backed up by assignments

from Q′ to databases DN̄(i)(Q). Both challenges arise from

the fact that the function F (Q′′)
(Q) , in terms of N1, . . . , Nn,

is, in general, not a multivariate polynomial on its entire
domain.

To overcome the first challenge, we introduce the restric-
tion that Q be an explicit-wave query. (Hence Definition 4.1
is necessarily technical.) Even under this restriction, over-
coming the second challenge requires a nontrivial proof. (See
Section 5.10, with its main result Proposition 5.47.)

5.1.2 The main propositions that imply the result of
Theorem 4.1

In a little more detail, the proof of Theorem 4.1 is im-
mediate from the following three results. (Monomial classes
and their multiplicity monomials are constructs that we in-

troduce to build functions F (Q)

(Q) and F (Q′)
(Q) . All the details

on these constructs can be found in Section 5.6; Section 5.8
contains an extended illustration of these constructs. Intu-
itively, a monomial class for a query and database is a set of
certain-format assignments from the query to the database;
the multiplicity monomial of a monomial class is a mono-
mial that expresses how many tuples of a certain form the
assignments for that monomial class contribute to the bag of
answers to the query on the database.) A high-level map of
the entire proof of Theorem 4.1 can be found in Section 5.1.4.

• Proposition 5.33 of Section 5.7 states the following:
Given a CCQ query Q, there exists a nonempty mono-

mial class, call it C(Q)
∗ , for the query Q w.r.t. the

family of databases {DN̄(i)(Q)}, such that the multi-

plicity monomial of C(Q)
∗ is the wave of the query Q

w.r.t. {DN̄(i)(Q)}.

• Proposition 5.34 of Section 5.7 states the following:
Given CCQ queries Q(X̄) ← L,M and Q′(X̄ ′) ←
L′,M ′, such that (i) Q and Q′ have the same (positive-
integer) head arities, (ii) |Mcopy| = |M ′copy|, and (iii)
|Mnoncopy| = |M ′noncopy|. Suppose that there exists a

nonempty monomial class C(Q′)
∗ for the query Q′ w.r.t.

the family of databases {DN̄(i)(Q)}, such that the mul-

tiplicity monomial of C(Q′)
∗ is the wave of the query Q

w.r.t. {DN̄(i)(Q)}. Then there exists a SCVM from
the query Q′ to the query Q.

• Proposition 5.47 of Section 5.10 states the following:
Whenever

(a) Q ≡C Q′ for CCQ queries Q and Q′, and

(b) Q is an explicit-wave CCQ query (as specified by
Definition 4.1),

11

then there exists a (nonempty) monomial class C(Q′)
∗

for the queryQ′ and for the family of databases {DN̄(i)(Q)},
such that the multiplicity monomial of C(Q′)

∗ is the
wave of the query Q w.r.t. {DN̄(i)(Q)}.

5.1.3 An Illustration
We now provide an extended illustration of how the term

P(Q)
∗ may not be “visible” in the expression for F (Q)

(Q) , and of

how, in general, the function F (Q)

(Q) is not a multivariate poly-

nomial on its entire domain. Example 5.6 in Section 5.9.6
is an extended variant of this Example 5.1. In addition,

Example 5.6 illustrates how function F (Q)

(Q) may have terms

that are not backed up by assignments from Q to databases
DN̄(i)(Q).

EXAMPLE 5.1. For the query Q of Example 4.1, we use
the following notation for is variables:

Q(X1)← r(X1, Y1, Y2, X2;Y3), r(X1, Y1, Y2, X3;Y4),
{Y1, Y2, Y3, Y4}.

This notation makes it clear that the variables Y1 through Y4

are all multiset (copy or noncopy) variables of the query.
We associate a variable Nj with each of the n = 4 multiset

variables Yj of the query, 1 ≤ j ≤ 4. Consider assignments
N1 := 1, N2 := 1, N3 := 2, and N4 := 3. For some fixed i
and for 1 ≤ j ≤ 4, each of these assignments associates the

“value” N
(i)
j with the variable Nj. For the resulting vector

N̄ (i) = [1 1 2 3], we construct the database DN̄(i)(Q) =
{ r(a, b, c, d; 2), r(a, b, c, e; 3) }, as specified in the proof of
Theorem 4.1. We will refer to the ground atom r(a, b, c, d; 2)
as d1, and to r(a, b, c, e; 3) as d2.

Each generative assignment from Q to DN̄(i)(Q) maps X1

→ a, Y1 → b, Y2 → c, X2 → d, and X3 → e. By definition
of combined-semantics query evaluation, these generative as-

signments together contribute to the set Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)),

for t∗Q = (a), exactly Π4
j=1 N

(i)
j = 6 distinct tuples. (The

set Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)) is the set projection, on the vector

S̄(Q), of the set, denoted Γ(t∗Q)(Q,DN̄(i)(Q)), of all satis-
fiable assignments for Q and DN̄(i)(Q) that contribute the
tuple t∗Q to the answer to Q on DN̄(i)(Q).) As shown in the
proof of Theorem 4.1, the number of tuples contributed to the

set Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)) by the set of generative assignments

from Q to DN̄(i)(Q), for an arbitrary i ≥ 1, can be obtained

by substituting, into the formula Π4
j=1 Nj, the values N

(i)
j

of the variables Nj. The values N
(i)
j come from the specific

vector N̄ (i) representing the database DN̄(i)(Q). Recall that

Π4
j=1 Nj is the wave P(Q)

∗ of the query Q.
The variety of possible assignments from the query Q to

the above database DN̄(i)(Q) (for the fixed vector N̄ (i)) stems
from the ability of the first subgoal, g1, of Q to map to each
of the ground atoms d1 and d2, and from the ability of the
second subgoal, g2, of Q to independently also map to each
of d1 and d2. (All the above generative assignments map g1

to d1, and map g2 to d2.) It is easy to see that for those
assignments from Q to DN̄(i)(Q) that map each of g1 and
g2 to d1, the set of all such assignments contributes to the

set Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)) exactly (N

(i)
3)2 = 4 distinct tuples.

Similarly, mapping g1 to d2 and g2 to d1 contributes to the

set Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)) exactly N

(i)
3 × N

(i)
4 = 6 distinct tu-

ples, and mapping each of g1 and g2 to d2 contributes to the

set Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)) exactly (N

(i)
4)2 = 9 distinct tuples.

(Recall that for our fixed database DN̄(i)(Q), N
(i)
1 = N

(i)
2 =

1.) Similarly to the previous paragraph, the contribution of
each such class of assignments from Q to DN̄(i)(Q) for an
arbitrary i ≥ 1 can be expressed symbolically using mono-
mials in terms of some of the variables N1, . . . , N4. For
instance, for the class of all assignments that map each of
g1 and g2 to d2, the number of distinct tuples contributed by

these assignments to Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)), for each i ≥ 1, can

be obtained using the monomial T(d2) = N1 × N2 × (N4)2

and each specific vector N̄ (i).

In constructing the function F (Q)

(Q) using all the above mono-

mials in terms of N1 through N4, the problem is that we

cannot simply set F (Q)

(Q) to the sum of the monomial P(Q)
∗

with the monomial T(d2) and with the monomials that can
be built from the other classes of assignments from Q to
DN̄(i)(Q) using the above reasoning. The reason is, for our

fixed vector N̄ (i) = [1 1 2 3], the total number of tuples in

the set Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)) – and thus the total number of

copies of the tuple t∗Q = (a) in the bag ResC(Q,DN̄(i)(Q))

– is the result of substituting the values from the vector N̄ (i)

into the single monomial T(d2). The problem stems from
these different classes of assignments possibly contributing

the same tuples into the set Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)). (Recall that

the set Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)) is the result of set-projecting out

the columns for the set variables of the query Q from the set

Γ(t∗Q)(Q,DN̄(i)(Q)) (i.e., from the set of all assignments for
Q and DN̄(i)(Q) that contribute the tuple t∗Q to the answer
to Q on DN̄(i)(Q)). This set projection “bundles together,”
into the same extendible assignment, possibly multiple dis-
tinct satisfying assignments from the query to the database.)

Thus, in general, constructing the function F (Q)

(Q) from the

monomials representing different classes of assignments has
to be done in a way that takes into account these overlapping
contributions.

For our specific query Q of Example 4.1, we show in Ex-

ample 5.6 in Section 5.9.6 that (1) F (Q)

(Q) = N1 × N2 ×
(N4)2 for all vectors N̄ (i) where N

(i)
3 ≤ N

(i)
4 , and that (2)

F (Q)

(Q) = N1 × N2 × (N3)2 for all vectors N̄ (i) where N
(i)
3 ≥

N
(i)
4 . A compact representation of F (Q)

(Q) that works for all

i ≥ 1 is F (Q)

(Q) = N1 × N2 × (max(N3, N4))2. Clearly, this

expression cannot be rewritten equivalently as a multivariate
polynomial on the entire domain { N̄ (i), i ≥ 1 } of the vector
N̄ .

Consider an illustration of the problem with the term P(Q)
∗

not being “visible” in any of the above expressions for the

function F (Q)

(Q) . Indeed, recall the query Q′ of Example 4.1;

we have that Q ≡C Q′. It turns out that, even though P(Q)
∗

has (technically) contributed to the construction of the func-

tion F (Q)

(Q) for the query Q, there still does not exist a class

of assignments from the query Q′ to database DN̄(i)(Q),
such that the total number of tuples contributed to the set

Γ
(t∗Q)

S̄
(Q′, DN̄(i)(Q)) by the assignments in this class can be

expressed by the monomial P(Q)
∗ . (Intuitively, such a class

12

of assignments from Q′ to the databases cannot exist be-
cause the query Q′ has the same set variable in both subgoals,
whereas Q has different set variables in the two subgoals.) It
is easy to verify that for the queries of Example 4.1, there
does not exist a SCVM from Q′ to Q. 2

5.1.4 A Map of the Proof
The remainder of the proof of Theorem 4.1 is structured

as follows. In Section 5.2, we lay out the notation, assump-
tions, and basic results that run through the entire proof of
Theorem 4.1. In Section 5.3, we show how to construct the
family of databases DN̄ (Q) for an arbitrary CCQ query Q.
Then, Sections 5.4 through 5.7 furnish all the building blocks

for the construction of the function F (Q′′)
(Q) , for the family

of databases DN̄ (Q) and for a CCQ query Q′′, such that Q
and Q′′ are an equivalence-compatible CCQ pair. (By Theo-
rem 3.1, whenever two CCQ queries are combined-semantics
equivalent, they must constitute an equivalence-compatible
CCQ pair, please see Section 3 for the details.)

Among these sections, Section 5.7 introduces “the wave”
of a CCQ query Q; that “wave” notion will play a major role
in our reasoning in Section 5.10 to complete the proof of
Theorem 4.1. In addition, in Section 5.7 we prove Proposi-
tions 5.33 and 5.34, which are two of the three main results
toward the proof of Theorem 4.1 (see Section 5.1.2).

Further in the proof of Theorem 4.1, Section 5.8 provides
an extended example that illustrates in a single flow the
contents of Sections 5.2 through 5.7. Then, Section 5.9 puts

together the function F (Q′′)
(Q) based on the results of the pre-

ceding sections.
Finally, Section 5.10 answers the following question: For

two CCQ queries Q and Q′ such that Q ≡C Q′, when does
Q′ have the wave of Q? The answer to this question com-
pletes the proof of Theorem 4.1. In particular, the proof
of Proposition 5.47, which is the third and last main result
toward the proof of Theorem 4.1 (see Section 5.1.2), can be
found in Section 5.10.

5.2 Assumptions, Conventions, Basic Results
To streamline the exposition in the proof of Theorem 4.1,

we reserve a number of uppercase and lowercase Latin let-
ters, in a variety of fonts and some with sub- and super-
scripts, to each have “the standard meaning” throughout
the proof. To make referencing the notation easier, every
effort has been made to introduce all of the notation into
these initial subsections, which are separate from sections
for (portions of) the proof of Theorem 4.1.

5.2.1 Canonical databases of CCQ queries
Set queries. We first recall the notion of a “canonical

database” of a CCQ set query. Every CCQ set query Q can
be regarded as a symbolic database D(Q). D(Q) is defined as
the result of turning each subgoal pi(. . .) of Q into a tuple
in the relation Pi that corresponds to predicate pi. The
procedure is to keep each constant in the body of Q, and
to replace consistently each variable in the body of Q by
a distinct constant different from all constants in Q. The
tuples that correspond to the resulting ground atoms are
the only tuples in the canonical database D(Q) for Q, which
(database) is unique up to isomorphism.

General CCQ queries: Extended canonical data-
bases: We now extend the above notion, to define an ex-
tended canonical database for a general (i.e., not necessarily

set) CCQ query Q. We first partition all the subgoals of

Q into equivalence classes C(Q)
1 , . . . , C(Q)

k , k ≥ 1, where
two subgoals of Q belong to the same class if and only if the
subgoals have the same relational template. We then choose

one representative element, c
(Q)
j , of each class C(Q)

j , j ∈ {1,
. . . , k}; if C(Q)

j has at least one copy-sensitive atom then

c
(Q)
j must be a copy-sensitive atom. Finally, an extended

canonical database for the query Q is constructed from the

subgoals c
(Q)
1 , . . . , c

(Q)
k of Q in the same way as the “stan-

dard” canonical database is constructed from the condition
of a CCQ set query. The only difference is in that whenever

c
(Q)
j is a copy-sensitive atom, the copy variable of the atom

must be replaced by a natural number that is distinct from
all the other constants in the database (both in the active
domain of the database and among the copy numbers of all
ground atoms). The above mapping of terms of Q to the
constants in the database, such that the mapping is used
to generate the database, can be used to define in a nat-
ural way an assignment mapping from the query Q to the
database. In defining that assignment mapping, we accept
the convention that the mapping maps each copy variable
of the query to the constant 1. We call that assignment
mapping the generative mapping for the query and for the
database; observe that, by definition, the generative map-
ping is always a valid (i.e., satisfying) assignment mapping
from all subgoals of the query Q to the extended canonical
database for Q. We can show that for each CCQ query, its
extended canonical database is unique up to isomorphism.

For instance, an extended canonical database of the query
Q′ of Example 4.1 is {r(a, b, c, d; 2)}. The query generates

exactly one equivalence class C(Q′)
1 , due to the fact that the

two subgoals of the query Q′ have the same relational tem-

plate. We choose arbitrarily the atom c
(Q′)
1 to be the first

subgoal of the query Q′. The generative mapping in this
case is { X1 → a, Y1 → b, Y2 → c, X2 → d, i → 1, j → 1 }.

General CCQ queries: Copy-neutral canonical data-
bases: A database is called a copy-neutral canonical database
for a CCQ query Q if it can be obtained from an extended
canonical database for Q by changing, in an unrestricted
way, the values of zero or more copy numbers in the latter
database. That is, in a copy-neutral canonical database for
Q, the copy number of each ground atom can (but does not
have to) (i) coincide with the copy number of another ground
atom in the database, and (ii) coincide with an element of
the active domain of the database (in case the active domain
includes natural numbers). Clearly, each CCQ query can be
associated with an infinite number (up to isomorphism) of
copy-neutral canonical databases.

5.2.2 The Queries

The basics.
For the fixed (input) CCQ queries Q and Q′, as well as

for the CCQ query Q′′ that we use in this proof, we use the
notation Q(X̄) ← L,M ; Q′(X̄ ′) ← L′,M ′; and Q′′(X̄ ′′) ←
L′′,M ′′. Denote by l ≥ 0 the head arity of Q. Denote
by P (by P ′, respectively) the (possibly empty) set of all
constants in the query Q (in the query Q′, respectively).

Proposition 5.1. Let Q ≡C Q′. Then P = P ′. 2

Proof. The proof is by contradiction: Assume that P
and P ′ are not the same sets. Pick a constant c in P − P ′.

13

(If P−P ′ = ∅ then pick a constant c ∈ P ′−P and modify the
rest of this proof by swappingQ withQ′ in all the statements

of the proof.) Construct the canonical database D(Q′) of Q′

in such a way that adom(D(Q′)) does not have the value c.

(It is always possible to construct a D(Q′) that would satisfy
this restriction.) Then it is easy to see that (i) the bag

ResC(Q′, D(Q′)) must be nonempty by construction of the

database, and (ii) the bag ResC(Q,D(Q′)) must be empty

due to the absence of the constant c in adom(D(Q′)). Hence
we arrive at a contradiction with the assumption that Q ≡C
Q′.

We use the notation Mcopy (M ′copy, M ′′copy, respectively)
for the set of copy variables of query Q (of Q′, of Q′′, respec-
tively). We use the notation Mnoncopy (M ′noncopy, M ′′noncopy,
respectively) for the set of multiset noncopy variables of
query Q (of Q′, of Q′′, respectively).

We denote by m the number |Mnoncopy| of multiset non-
copy variables in the query Q, and by r the number |Mcopy|
of copy variables in the query Q. For the CCQ query Q′′ in
this proof, we assume that (i) Queries Q and Q′′ have the
same head arity (l); (ii) |Mnoncopy| = |M ′′noncopy|; and (iii)
|Mcopy| = |M ′′copy|.

The following observation is immediate from the assump-
tion Q ≡C Q′ (of Theorem 4.1) and from Theorem 3.1.

Proposition 5.2. (i) Queries Q and Q′ have the same
head arity (l); (ii) |Mnoncopy| = |M ′noncopy|; and (iii) |Mcopy|
= |M ′copy|. 2

The following result is immediate from the containment-
mapping theorem of [2]. Thus, for the remainder of the
proof of Theorem 4.1, we assume that the set M of multiset
variables of Q is not empty (that is, m+ r ≥ 1).

Proposition 5.3. Let M = ∅. Then Theorem 4.1 holds.
2

Throughout the proof of Theorem 4.1 we assume that we
are given the regularized version of the query Q.

Equivalence classes of subgoals of query Q.
We now introduce the notation that will help us to deal

cleanly with the case where query Q has more than one copy-
sensitive subgoal for a particular relational template. (For
an illustration, see query Q′ in Example 4.1.)

We first partition all the copy-sensitive subgoals (in case
r ≥ 1) of the query Q into equivalence classes: Place two
copy-sensitive subgoals of Q into the same equivalence class
if and only if the two subgoals agree on the predicate name
and on all the arguments except the copy variable. That
is, two distinct copy-sensitive subgoals g1 and g2 of Q are
in the same equivalence class if and only if the relational
templates of g1 and g2 are the same. Denote by C′1, . . . , C

′
w,

w ≥ 1, the resulting equivalence classes for all the copy-
sensitive subgoals of Q. (We have w ≥ 1 only in case where
r = |Mcopy| > 0. Otherwise we set w := 0.)

Further, we assume that each (if any) relational subgoal,
g, of the query Q is in its own equivalence class {g}. Let
C1, . . . , Cv, v ≥ 0, be the resulting equivalence classes of the
relational subgoals of the query Q. (The case v = 0 holds
if and only if all subgoals of the query Q are copy-sensitive,
rather than relational, atoms.)

Denote by CQ = {C1, . . . , Cv, C
′
1, . . . , C

′
w}, with v+w ≥ 1,

the set of all equivalence classes of the subgoals of the query
Q, as defined in the preceding paragraphs. (By Defini-
tion 2.1, the condition of the query Q contains at least one
atom, thus v + w ≥ 1 must hold.) Further, for each class
C ∈ CQ, choose one arbitrary element of C, call this element
s(C), and fix s(C) as the representative element of the class
C. Denote by SC(Q) = {s(C1), . . . , s(Cv), s(C′1), . . . , s(C′w)},
with v+w ≥ 1, the set of the representative-element subgoals
of the query Q. The following observation is immediate from
the definitions and from the fact that we use the regularized
version of the query Q. (Recall that L is the condition of
the query Q, and that r = |Mcopy|. Item (v) is immediate
from item (iv) and from our assumption m+ r = |M | ≥ 1.)

Proposition 5.4. (i) SC(Q) ⊆ L. (ii) For an arbitrary
(relational or copy-sensitive) atom g, the set SC(Q) has at
most one element whose relational template is the same as
the relational template of g. (iii) r ≥ w always holds. (iv)
If r > 0 then w > 0. (v) m+ w ≥ 1. 2

Notation for query variables.
For ease of exposition, we assume that in case where l
≥ 1, each of Q, Q′, and Q′′ has l distinct head variables.
(Recall that l ≥ 0 denotes the head arity of the query Q.
Handling the cases where (l ≥ 1 and) Q, Q′, or Q′′ has either
repeated occurrences of the same variable in the head, or has
constants in the head, would be straightforward extensions
of this proof but would make the exposition considerably
harder to follow.) Suppose that Q has u ≥ 0 nonhead set
variables. W.l.o.g. denote (in case l ≥ 1) by X1, . . . , Xl all
the head variables of Q (from left to right in the head vector
X̄ of Q), and (in case u ≥ 1) denote by Xl+1, . . . , Xl+u all
the u nonhead set variables of Q.

In case m = |Mnoncopy| ≥ 1, let Y1, . . . , Ym be w.l.o.g.
all the multiset noncopy variables of the query Q. Further,
in case w ≥ 1 let Ym+1, . . . , Ym+w be the copy variables of
the elements s(C′1), . . . , s(C′w) of the set SC(Q). By Proposi-
tion 5.4 (v), the set of variables {Y1, . . . , Ym, Ym+1, . . . , Ym+w}
is not empty.

Further, consider the set of all r copy-sensitive subgoals of
Q. Whenever r > w — that is, in case there exists a copy-
sensitive subgoal of Q that is not the representative element
of any of the classes C′1, . . . , C

′
w — let Ym+w+1, . . . , Ym+r be

(w.l.o.g.) the copy variables of all the copy-sensitive sub-
goals of Q that are not the representative elements of any of
the classes C′1, . . . , C

′
w.

In case m ≥ 1 we denote by Y ′1 , . . . , Y
′
m (by Y ′′1 , . . . ,

Y ′′m, respectively) the multiset noncopy variables of query
Q′ (of query Q′′, respectively). In case r ≥ 1 we denote by
Y ′m+1, . . . , Y

′
m+r (by Y ′′m+1, . . . , Y

′′
m+r, respectively) the copy

variables of query Q′ (of query Q′′, respectively). Finally,
in case l ≥ 1 we denote by X ′1, . . . , X

′
l (by X ′′1 , . . . , X

′′
l ,

respectively) the (distinct) head variables of query Q′ from
left to right in the vector X̄ ′ (of query Q′′ from left to right in
the vector X̄ ′′, respectively). All of this notation is w.l.o.g.
by the basic results and assumptions about Q′ and Q′′ in
the beginning of this section.

5.2.3 Convention for Ground Atoms in Databases
We use the following convention for ground atoms in databases

in this proof. Let g = p(Ȳ), for some choice of p and Ȳ , be
a ground atom in database D, and let n ≥ 1 be the total

14

number of copies of g in D. Then we treat the n copies of
g in D as a single ground atom p(Ȳ) with associated copy
number n, and represent it as p(Ȳ ;n), as defined in Sec-
tion 2.1.1. As a result, every database is a set when using
this representation.

5.3 Constructing Family of Databases DN̄ (Q)

This section describes the construction of an infinite fam-
ily of databases based on the input query Q. Each database
in the family is constructed as a union of copy-neutral canon-
ical databases for the query Q. In the exposition in this
section we use the notation introduced in Section 5.2.

Throughout the proof of Theorem 4.1, whenever we dis-
cuss or use “the family of databases as constructed in Sec-
tion 5.3”, we always refer to the family of databases built
based on the fixed input query Q (see Section 5.2.2), re-
gardless of the context. (This convention is lifted in part of
Example 5.5 in Section 5.9.4.)

5.3.1 Mappings ν0 and ν
(i)
Q , vector N̄ and its domain

N , sets S0 and S
(i)
1 , . . . , S

(i)
m , tuple t∗Q

We begin by defining a bijective mapping called ν0. The
domain of ν0 is the set of all terms of the query Q that are
not multiset variables of the query. The range of ν0 is a
subset of the active domain of each database in the family
DN̄ (Q). The assignment ν0 is fixed to be the same across all
the databases in the family DN̄ (Q).

We define ν0 as follows: To each head variable and each set
variable of Q, that is to each of the variables X1, . . . , Xl+u
(l + u ≥ 0), ν0 assigns a distinct constant value that is also
distinct from all the values in the set P of constants used in
the query Q. Denote by S0 the set of l + u constant values
in the range of ν0, S0

⋂
P = ∅. Further, to each (if any)

constant c used in Q, c ∈ P , ν0(c) := c. The mapping ν0 is
bijective by construction.

We define tuple t∗Q as t∗Q = ν0[X̄] in case l ≥ 1, and as
the empty tuple in case l = 0. (Recall that X̄ is the vector
of head terms of the query Q.) By definition, tuple t∗Q is
fixed to be the same across all the databases in the family
DN̄ (Q).

Define N̄ as a vector of variables N1, N2, . . . , Nm+w, m+
w ≥ 1. (For m and w, see Section 5.2.) We assume that the
vector N̄ accepts values from the Cartesian product of m+w
copies of the set N+ of natural numbers; we denote by N
this domain from which N̄ accepts values. Fix an arbitrary
enumeration (starting with 1) of the set N . By the vector

N̄ (i) ∈ N , i ∈ N+, we denote the ith element of N in this

enumeration. We use the notation N
(i)
1 , N

(i)
2 , . . . , N

(i)
m+w for

the natural-number values, from left to right, in the vector

N̄ (i). That is, the natural number N
(i)
j , 1 ≤ j ≤ m + w, in

the jth position of vector N̄ (i), is the value, w.r.t. the fixed
i, of the variable Nj in the vector N̄ .

Suppose that the query Q is such that we have m =
|Mnoncopy| ≥ 1. Fix an i ∈ N+ and consider the vector

N̄ (i). For each value N
(i)
j such that 1 ≤ j ≤ m, define S

(i)
j

as a set of N
(i)
j distinct constants such that all the sets S

(i)
j

(1 ≤ j ≤ m) are pairwise disjoint and such that S
(i)
j

⋂
P = ∅

and S
(i)
j

⋂
S0 = ∅ for all j ∈ {1, . . . ,m}.

We define the set S
(i)
∗ as the empty set in case m = 0, and

as the union
⋃m
j=1 S

(i)
j in case m ≥ 1.

Finally, for the vector N̄ (i), for each i ∈ N+, we define

mapping ν
(i)
Q , to be used in Section 5.3.3 and in other parts

of the proof of Theorem 4.1. Define the domain of the map-

ping ν
(i)
Q as the union P

⋃
S0

⋃
S

(i)
∗ . Define mapping ν

(i)
Q as

follows:

• For each c ∈ S0

⋃
P , let ν

(i)
Q (c) := ν−1

0 (c) .

• In case m ≥ 1: For each j ∈ {1, . . . ,m} and for each

c ∈ S(i)
j , let ν

(i)
Q (c) := Yj .

5.3.2 Main Construction Cycle for DN̄(i)(Q) ∈ DN̄ (Q)

The family of databases DN̄ (Q) that we are about to con-
struct is the infinite set {DN̄(1)(Q), DN̄(2)(Q), . . . , DN̄(i)(Q),
. . .}, where each database DN̄(i)(Q), i ∈ N+, is associated

with the vector N̄ (i) ∈ N . We will refer to the family DN̄ (Q)
either as {DN̄(i)(Q) | i ∈ N+ } or simply as {DN̄(i)(Q)}.

Fix an i ∈ N+ and consider the vector N̄ (i). We first define
the set S(i), to be used in the main construction cycle for
creating the database DN̄(i)(Q) for the vector N̄ (i). In case

that we have m = 0, define the set S(i) as a singleton set
consisting of a single empty tuple. With that (only) element

of the set S(i), we associate an empty assignment νnoncopyt .
Now consider the case where the query Q is such that we

have m ≥ 1. Let S(i) be the cross product S
(i)
1 ×S

(i)
2 × . . .×

S
(i)
m . For each tuple t in S(i) in this case m ≥ 1, we treat t

as an assignment νnoncopyt of values to the multiset noncopy
variables (from left to right) Y1, . . . , Ym of Q.

In case r ≥ 1 we define a mapping νcopy on the set
Ym+1, . . . , Ym+r of copy variables of the query Q. (I) For
each copy variable from among Ym+1, . . . , Ym+w of Q, de-

fine νcopy(Yj) := N
(i)
j for each j ∈ {m + 1, . . . ,m + w}.

(II) Whenever r > w, for each j ∈ {m + w + 1, . . . ,m + r}
we define νcopy(Yj) := νcopy(Yk(j)). Here, by Yk(j), with
k(j) ∈ {m + 1, . . . ,m + w}, we denote the copy variable of
the representative element of the class C′k(j) ∈ {C′1, . . . , C′w}
⊆ CQ, such that the subgoal of Q having copy variable Yj
belongs to that class C′k(j).

It is convenient to also define here the mapping νcopyQ , to
be used in Section 5.4 and beyond, again for the case where
r ≥ 1. The mapping νcopyQ uses “the same logic” as the

mapping νcopy, except that νcopyQ maps each copy variable
of Q into the variable name from among Nm+1, . . . , Nm+w

in the vector N̄ , whereas νcopy maps each copy variable

of Q into the variable value from among N
(i)
m+1, . . . , N

(i)
m+w

in the vector N̄ (i) for a fixed i ∈ N+. That is, (I) For
each copy variable from among Ym+1, . . . , Ym+w of Q, de-
fine νcopyQ (Yj) := Nj for each j ∈ {m + 1, . . . ,m + w}. (II)
Whenever r > w, for each j ∈ {m + w + 1, . . . ,m + r}
we define νcopyQ (Yj) := νcopyQ (Yk(j)). Here, by Yk(j), k(j) ∈
{m+ 1, . . . ,m+w}, we denote the copy variable of the rep-
resentative element of the class C′k(j) ∈ {C′1, . . . , C′w} ⊆ CQ,
such that the subgoal of Q having copy variable Yj belongs
to that class C′k(j).

We now associate with each tuple t ∈ S(i) exactly one
assignment νt of constants to all the variables and constants
of the query Q, such that (i) νt[Xj] coincides with ν0[Xj] for
all j ∈ {1, . . . , l+u}; (ii) νt[Yj] (in case m ≥ 1 only) coincides
with νnoncopyt [Yj] for all j ∈ {1, . . . ,m}; (iii) for each copy
variable (in case r ≥ 1 only) from among Ym+1, . . . , Ym+r of
Q, define νt(Yj) := νcopy(Yj) for each j ∈ {m+1, . . . ,m+r};
and (iv) for each constant c used in Q, νt(c) := ν0(c).

15

We now construct all the ground atoms in the database
DN̄(i)(Q). In the construction, we use only the elements of
the subset SC(Q) of the condition of the query Q.

Main construction cycle: For each tuple t in S(i), we add
to the database DN̄(i)(Q) the following ground atoms:

• For each relational subgoal of Q of the form b(R̄),
where b is a predicate name and R̄ is a vector of vari-
ables from among X1, . . . , Xl+u and (in case m ≥ 1)
from among Y1, . . . , Ym, and of constants from P . Add
to the database DN̄(i)(Q) the ground atom b(νt(R̄); 1)
(if not already there). Note that the copy number of
this ground atom equals one.

• In case w ≥ 1: For each copy-sensitive atom from
among s(C′1), . . . , s(C′w): Suppose the copy-sensitive
atom in question is of the form b(R̄; z), where b is a
predicate name, R̄ is a vector of variables from among
X1, . . . , Xl+u and (in casem ≥ 1) from among Y1, . . . , Ym,
and of constants from P , and z is a copy variable
from among Ym+1, . . . , Ym+w. Add to the database
DN̄(i)(Q) the ground atom b(νt(R̄); νt(z)) (if not al-
ready there).

Finally, DN̄(i)(Q) has no other ground atoms than those

added for the tuples t in S(i) as described above.

5.3.3 Properties of Databases DN̄(i)(Q)

We now state some properties of the databases in the
set {DN̄(i)(Q)} and of the answer to the query Q on each
database. The first four results are immediate from the con-
structions and definitions in this section and in Section 5.2.

Proposition 5.5. Let i ∈ N+. (i) The set adom(DN̄(i)(Q))

is the union P
⋃
S0

⋃
S

(i)
∗ . (ii) The mapping ν

(i)
Q is defined

on all elements of adom(DN̄(i)(Q)). (iii) For each sub-
set T 6= ∅ of adom(DN̄(i)(Q)) such that (in case m ≥ 1)

the cardinality of T
⋂
S

(i)
j does not exceed 1 for each j ∈

{1, . . . ,m}, the mapping ν
(i)
Q is a bijection from its domain

T to the set ν
(i)
Q (T). 2

Proposition 5.6. Let i ∈ N+. For the database DN̄(i)(Q),
we have that:

(i) DN̄(i)(Q) 6= ∅.

(ii) For each ground atom h ∈ DN̄(i)(Q), of the form p(W̄ ;n),
for some predicate p and with copy number n ≥ 1, there
exists exactly one element, call it g, of the set SC(Q)

of (representative-element) subgoals of query Q, where
the relational template of g is p(Z̄), and such that (a)

the result of applying the mapping ν
(i)
Q to the vector W̄

in h is the vector Z̄ in g, and (b) ν
(i)
Q is a bijection

from W̄ to Z̄. 2

For the next result, we introduce some terminology. Let
i ∈ N+. For a ground atom in h ∈ DN̄(i)(Q) and for the
corresponding atom g ∈ SC(Q) as defined by Proposition 5.6

(ii), we call g the ν
(i)
Q -image of h. Further, by adom(h) we

denote all those terms of ground atom h ∈ DN̄(i)(Q) that
are elements of adom(DN̄(i)(Q)). (That is, for atom h of the
form p(W̄ ;n), for some predicate p and with copy number
n ≥ 1, adom(h) is the set of all elements of the vector W̄ .)

Finally, in case m ≥ 1, for a j ∈ {1, . . . ,m}, we denote by

S
(i)
h,j the intersection of the set adom(h) with the set S

(i)
j .

The following result holds by construction of the family
of databases {DN̄(i)(Q)}.

Proposition 5.7. Suppose m ≥ 1. Let i ∈ N+. Let h
be an arbitrary ground atom in DN̄(i)(Q), of the form h =
p(W̄ ;n), for some predicate p and with copy number n ≥ 1.
Then we have that:

(i) For each j ∈ {1, . . . ,m}, the set S
(i)
h,j is either the

empty set or a singleton set.

(ii) In case the ground atom h is such that for at least one

j ∈ {1, . . . ,m}, the set S
(i)
h,j is not the empty set: Let µ

be an arbitrary mapping from all elements of the vector
W̄ to adom(DN̄(i)(Q)), such that (a) µ is the identity
mapping on each element of W̄ that does not belong to

the set S
(i)
∗ , and such that (b) for each element e of W̄

such that e belongs to a S
(i)
h,j for some j ∈ {1, . . . ,m},

we have that µ(e) is an element of S
(i)
j for the same j.

Then it holds that:

(ii-a) The ground atom h′ = p(µ(W̄);n) is an element
of the set DN̄(i)(Q); and

(ii-b) The ν
(i)
Q -image of h and the ν

(i)
Q -image of h′ are

the same element of the set SC(Q).

2

Proposition 5.8. Let i ∈ N+. For the database DN̄(i)(Q),
we have that:

(i) In the construction of database DN̄(i)(Q), each main

construction cycle (for some fixed tuple t in S(i)) gen-
erates in the database DN̄(i)(Q) a copy-neutral canoni-
cal database for the query Q, call this database Dt. For

each t ∈ S(i), the mapping ν
(i)
Q induces an isomorphism

from Dt to the set SC(Q) of (representative-element)
subgoals of the query Q.

(ii) There exists in DN̄(i)(Q) at least one copy-neutral canon-
ical database for query Q.

(iii) For each pair (D1, D2) of copy-neutral canonical databases
for query Q within database DN̄(i)(Q), such that each
of D1 and D2 was generated using the main construc-
tion cycle (using some t1 ∈ S(i) to construct D1, and

using some t2 ∈ S(i) to construct D2), the only dif-
ference (if any) between the values of variables of Q,
in D1 and D2, is in the values of multiset noncopy
variables of Q.

(iv) Let T 6= ∅ be an arbitrary subset of adom(DN̄(i)(Q))
such that (a) P

⋃
S0 is a subset of T , and (b) in case

m ≥ 1, the cardinality of T
⋂
S

(i)
j is exactly 1 for each

j ∈ {1, . . . ,m}. Then there exists in DN̄(i)(Q) a copy-
neutral canonical database of the query Q such that the
active domain of that copy-neutral canonical database
is exactly T . 2

For an i ∈ N+, let T be a nonempty set of ground atoms
of database DN̄(i)(Q). We denote by adom(T) the set of all
values of adom(DN̄(i)(Q)) that are used in the atoms of T .

16

Proposition 5.9. Let i ∈ N+. Let T be a nonempty set
of ground atoms of database DN̄(i)(Q). Suppose the set T
is such that (in case m = |Mnoncopy| ≥ 1) for each j ∈
{1, . . . ,m}, the cardinality of the intersection of adom(T)

with S
(i)
j is at most one.6 Then there exists in DN̄(i)(Q)

a copy-neutral canonical database for Q, call this database
D, such that T ⊆ D (as set of ground atoms with copy
numbers). 2

Proof. For each ground atom h in T , we label h with
the subgoal s of Q such that s “has generated” h in the
construction of database DN̄(i)(Q). (See Proposition 5.6
(ii) for the details.) We then partition all the atoms of T
into equivalence classes, call them E1, . . . , En, n ≥ 1, using
the labels. (That is, two atoms of T belong to the same
equivalence class if and only if they have the same label.)
Now we show that for each possible label (w.r.t. query Q),
the equivalence class for T and for this label has at most
one element. Indeed, recall that for each j ∈ {1, . . . ,m},
the cardinality of the intersection of adom(T) with S

(i)
j is

at most one. By construction of the database DN̄(i)(Q) and
of the equivalence classes for T , we obtain the desired result.

Now we use the classes E1, . . . , En to construct from T
some of the subgoals of Q. By the properties of adom(T)

and of the mapping ν
(i)
Q , as well as from the fact that each of

E1, . . . , En is a singleton set, we obtain that the mapping ν
(i)
Q

induces an isomorphism from the set T to a nonempty sub-
set, call it S, of the set SC(Q) of (representative-element)
subgoals of the query Q. Denote by adom(S) the set of
all terms of the query Q that are not copy variables of Q,
such that these terms are used in the atoms of S. By con-

struction, the mapping (ν
(i)
Q)−1 is a bijection from adom(S)

to adom(T). By definition of the main construction cycle
in constructing the database DN̄(i)(Q), at least one itera-
tion of the main construction cycle in the construction has

used (some extension of) the mapping (ν
(i)
Q)−1, to gener-

ate in DN̄(i)(Q) a copy-neutral canonical database for Q.
(See Proposition 5.8 for the justifications.) It follows that
that iteration of the main construction cycle mapped the set
SC(Q) of (representative-element) subgoals of the query Q to
a superset of the set T . Q.E.D.

We now establish that the fixed tuple t∗Q = ν0[X̄] (where
X̄ is the vector of head terms of the queryQ, whenever l ≥ 1)
is present in ResC(Q,DN̄(i)(Q)), for each i ≥ 1. (Recall that
in case l = 0, we have that t∗Q is the empty tuple. For ease of
exposition, in the remainder of this proof of Theorem 4.1, we
omit the discussion of the case l = 0 and of its implications
for the definition of the tuple t∗Q.)

Proposition 5.10. Let i ∈ N+. Then the bag ResC (Q,
DN̄(i)(Q)) has at least one copy of the tuple t∗Q. 2

Proof. (sketch) This result holds by construction of the
databases in the family {DN̄(i)(Q)}. Indeed, recall that the
assignment mapping ν0 is fixed to be the same across all
the databases in {DN̄(i)(Q)}. Choose an arbitrary tuple t

in the set S(i) for DN̄(i)(Q); consider the mapping νt as-
sociated with t. It is easy to verify that νt is an assign-
ment mapping from the query Q to the database DN̄(i)(Q),
such that νt contributes the tuple t∗Q = ν0[X̄] to the bag
ResC(Q,DN̄(i)(Q)).

6In case m = 0, we require only that T 6= ∅.

5.4 t∗Q-Valid Assignment Mappings for Query
Q′′ and Databases in {DN̄(i)(Q)}

Consider the family {DN̄(i)(Q)} of databases constructed
as described in Section 5.3. Let Q′′ be an arbitrary CCQ
query that satisfies all the requirements (for Q′′ specifically)
of Section 5.2.2. In this section, for the query Q′′ and for
an arbitrary i ∈ N+, we provide an algorithm for gener-
ating the set of all assignment mappings from Q′′ to the
database DN̄(i)(Q) such that each of the assignments “gen-
erates”7 the fixed tuple t∗Q (as defined in Section 5.3) in the
bag ResC(Q′′, DN̄(i)(Q)). We call these assignment map-
pings “t∗Q-valid assignment mappings”. We also formulate
some useful properties of the t∗Q-valid assignment mappings,
for Q′′ and for each i ∈ N+.

The notions introduced in this and previous sections are
illustrated by a detailed Example 5.3 in Section 5.8.

5.4.1 Definitions and Construction

The basics.
Denote by G > 0 the number of subgoals, call them

g1, . . . , gG, of the query Q′′. For convenience, we choose
the ordering g1, . . . , gG of the subgoals of Q′′ in such a way
that all the copy-sensitive atoms, if any, in the ordering pre-
cede all the relational atoms, if any, in the ordering, and
such that, in case r ≥ 1, each jth atom gj in the ordering
has copy variable Y ′′m+j of the query Q′′, 1 ≤ j ≤ r. (See
Section 5.2.2 for the notation Y ′′j .) Fix an arbitrary i ∈ N+,
and denote by F > 0 the number of ground atoms in the
database DN̄(i)(Q).

We find all the t∗Q-valid assignment mappings for Q′′ and
DN̄(i)(Q) (i.e., those satisfying assignments, in the terminol-

ogy of Section 2.1.2, that are in the set Γ(t∗Q) (Q′′, DN̄(i)(Q)))
by enumerating all associations between the G subgoals of
Q′′ and the F ground atoms in DN̄(i)(Q). The definition
of “valid assignment mapping” is “as expected”. However,
since we use associations between atoms to determine which
assignment mappings are valid, we provide here the required
formal definitions.

Definition 5.1. (Association for Q and D) Given a
CCQ query Q with G > 0 subgoals and a nonempty database
D, a set of G pairs {(g1, dj1), (g2, dj2), . . . , (gG, djG)} be-
tween all the G subgoals of Q and some (not necessarily dis-
tinct) G ground atoms of D is called an association for Q
and D. 2

Definition 5.2. (Candidate assignment mapping) Given
a CCQ query Q with G > 0 subgoals, a nonempty database
D, and an association A = {(g1, dj1), (g2, dj2), . . . , (gG, djG)}
for Q and D. Define a candidate assignment mapping θ for
Q and D w.r.t. A as follows:

(a) θ is the empty mapping in case there exists an integer
k, 1 ≤ k ≤ G, such that gk and djk have different
predicate names, and

(b) θ is the union of the G associations of the terms of
each gk, 1 ≤ k ≤ G, to the terms of its respective djk,
where each association is a set of assignments of the
values in W̄ (k), from left to right, to the terms in Z̄(k)

7That is, each of these assignments generates a separate

element of the set Γ(t∗Q)(Q′′, DN̄(i)(Q)).

17

in the same (from left to right) positions. Here, Z̄(k)

is the vector of all terms including the copy variable
(if any) in gk, and W̄ (k) is the vector of all arguments
of djk.

We do not include the copy number of djk per se as

an element of W̄ (k). Instead, we do the following. In
case gk is a relational atom, the copy number of djk
is not used in the construction of θ for gk. If gk is
a copy-sensitive atom, then we consider the copy vari-
able of gk to be the last element of vector Z̄(k), and
add to the vector W̄ (k), as its rightmost element, a
natural-number value between (inclusively) 1 and the
copy number of djk. 2

Note that whenever queryQ has copy variables and database
D has ground atoms with nonunity copy numbers, for a sin-
gle association A for Q and D there could be more than one
(but always a finite number, on finite databases) candidate
assignment mappings for Q and D w.r.t. A. Definition 5.2
provides a straightforward algorithm to generate all can-
didate assignment mappings for any CCQ query Q, finite
database D, and association A for Q and D.

Definition 5.3. ((t∗Q-)Valid assignment mapping) Given
a CCQ query Q, a nonempty database D, an association A
for Q and D, and a candidate assignment mapping θ for
Q and D w.r.t. A. Then θ is a valid assignment map-
ping from the variables and constants of Q to the values in
adom(D) ∪ N+ w.r.t. A if: (i) θ is not an empty mapping;
(ii) θ associates all occurrences of each constant of Q with
the same constant; and (iii) for each variable of Q, θ asso-
ciates all occurrences of the variable with the same value in
adom(D)∪N+. A valid assignment mapping θ is a t∗Q-valid
assignment mapping for Q, D, and A if the restriction of θ
to the head vector of the query Q results in the tuple t∗Q. 2

For brevity, we will refer to each valid assignment map-
ping from the variables and constants of Q to the values in
adom(D) ∪ N+ w.r.t. A, for some Q, D, and A, as a “valid
assignment mapping for Q, D, and A”. In addition, we say
that θ is a “valid assignment mapping for Q and D” if there
exists an association, A, for Q and D, such that θ is a valid
assignment mapping for Q, D, and A.

By definition, each valid assignment mapping for Q and
D is an element of the set Γ(Q,D), and each t∗Q-valid as-
signment mapping for Q and D is an element of the set

Γ(t∗Q)(Q,D). If θ is a valid assignment mapping for query
Q, database D, and association A (for Q and D), then we
say that A generates the mapping θ, or that A contributes
the mapping θ to the set Γ(Q,D).

Definition 5.4. (Unity (t∗Q-)valid assignment map-
ping) Given a CCQ query Q, a nonempty database D, an
association A for Q and D, and a (t∗Q-)valid assignment
mapping θ for Q, D, and A. Then θ is a unity (t∗Q-)valid
assignment mapping for Q, D, and A if θ maps each (if
any) copy variable of the query Q into value 1. 2

EXAMPLE 5.2. Let CCQ query Q′′ be defined as

Q′′(X)← p(X,Y), p(X,X; i), {Y, i}.

Let g1 be the rightmost subgoal of Q′′ (that is, p(X,X; i));
and let g2 be the leftmost subgoal of Q′′ (that is, p(X,Y));
then G for Q′′ equals 2.

For ease of exposition, assume that the database, call it
D, is D = {p(1, 1; 3), p(1, 2; 5), p(3, 3; 7)}. We refer to the
ground atom p(1, 1; 3) of D as d1, to the ground atom p(1, 2; 5)
of D as d2, and to the ground atom p(3, 3; 7) of D as d3.

Consider three (from the total of nine possible) associa-
tions between the subgoals of the query Q′′ and the ground
atoms of the database D:

• A1 : {(g1, d2), (g2, d1)};

• A2 : {(g1, d1), (g2, d1)}; and

• A3 : {(g1, d3), (g2, d3)}.

It is easy to see that each candidate assignment mapping
associated with A1 is not a valid assignment mapping, as
each such candidate mapping maps the two occurrences of
X in g1 into distinct values (1 and 2) in adom(D).

At the same time:

• Given A2, θ21 = {X → 1, Y → 1, i → 1} is a unity
valid assignment mapping from the terms of Q′′ to the
elements of adom(D) ∪ N+.

• Given A3, θ3 = {X → 3, Y → 3, i → 7} is a valid
assignment mapping from the terms of Q′′ to the ele-
ments of adom(D)∪N+; it is not a unity valid assign-
ment mapping.

Now observe that in addition to θ21, two more candidate
mappings w.r.t. A2 would also be valid assignment mappings
from the terms of Q′′ to the elements of adom(D) ∪ N+.
These mappings are θ22 = {X → 1, Y → 1, i → 2} and
θ23 = {X → 1, Y → 1, i → 3}. The only difference between
θ21, θ22, and θ23 is in the value assigned to the copy variable
i of the query Q′′. Unlike θ21, neither θ22 nor θ23 is a unity
valid assignment mapping for Q′′, D, and A2. No other
candidate mappings are possible for Q′′, D, and A2, because
the copy number of d1 in D is three.

Finally, suppose we are given tuple t∗Q = (1). Then θ21 is
a (unity) t∗Q-valid assignment mapping for Q′′, D, and A2,
because θ21[X] coincides with t∗Q. At the same time, while
being a valid assignment mapping from Q′′ to D, θ3 is not
a t∗Q-valid assignment mapping for Q′′, D, and A3, because
θ3[X] = 3 does not coincide with t∗Q. 2

Signatures of associations.
Fix an i ∈ N+. Recall Proposition 5.6 (ii), which says that

by construction of the database DN̄(i)(Q), each ground atom
in the database can be “mapped into” a unique subgoal of
the subset SC(Q) of the condition of the fixed input query Q,

using the mapping ν
(i)
Q defined in Section 5.3.1. We denote

by ψ
gen(Q)

N̄(i) this mapping, induced by the mapping ν
(i)
Q , from

the ground atoms of DN̄(i)(Q) to the elements of the set
SC(Q).

Definition 5.5. (Atom-signature of association) Let
i ∈ N+, and let A = {(g1, dj1), . . . , (gG, djG)} be an associa-
tion for query Q′′, with G ≥ 1 subgoals, and for the database

DN̄(i)(Q). Then the G-ary vector Ψa[A] = [ψ
gen(Q)

N̄(i) [dj1],

ψ
gen(Q)

N̄(i) [dj2], . . . , ψ
gen(Q)

N̄(i) [djG]] is the atom-signature of A
for Q′′ and DN̄(i)(Q). 2

18

The intuition for Definition 5.5 is as follows. Suppose
that for an association A for a query Q′′ and for a database
DN̄(i)(Q), the association A contributes at least one valid
assignment mapping to the set Γ(Q′′, DN̄(i)(Q)). Then, in-
tuitively, the atom-signature ofA shows the pattern in which
the condition of the query Q′′ can be mapped into the (sub-
set SC(Q) of the) condition of the query Q.

Recall the notation Y ′′1 , . . . , Y
′′
m+r of Section 5.2.2 for the

multiset variables of the query Q′′. Here, Y ′′1 , . . . , Y
′′
m are all

the multiset noncopy variables of Q′′ (in case m ≥ 1), and
Y ′′m+1, . . . , Y

′′
m+r are all the copy variables of Q′′ (in case

r ≥ 1).
Suppose that the query Q is such that r = |Mcopy| ≥ 1.

Recall the mapping νcopyQ defined in Section 5.3.2: νcopyQ

maps each copy variable of the query Q into one of the vari-
ables Nm+1, . . . , Nm+w in the vector N̄ .

We use νcopyQ to define the following mapping νcopy−sig on
all atoms in the set SC(Q) for the query Q:

• For each (if any) relational atom h in SC(Q), ν
copy−sig(h)

:= 1.

• For each (if any) copy-sensitive atom h in SC(Q), where

h has copy variable of the name Z ∈Mcopy, νcopy−sig(h) :=
νcopyQ (Z).

Recall (see beginning of Section 5.4.1) that we have fixed
an ordering of the subgoals g1, . . . , gG of the query Q′′ in
such a way that:

• all the copy-sensitive atoms in the ordering precede all
the relational atoms, if any, in the ordering, and

• each jth atom gj in the ordering has copy variable
Y ′′m+j of the query Q′′, 1 ≤ j ≤ r (in case r ≥ 1).

Definition 5.6. (Copy-signature of association) Let
i ∈ N+, and let A = {(g1, dj1), . . . , (gG, djG)} be an associ-
ation for query Q′′ and for the database DN̄(i)(Q). Then
vector Φc[A], called the copy-signature of A for Q′′ and
DN̄(i)(Q), is defined as follows:

• In case r = 0, Φc[A] is the empty vector; and

• In case r ≥ 1, Φc[A] is the r-ary vector [νcopy−sig

(ψ
gen(Q)

N̄(i) [dj1]), . . . , νcopy−sig (ψ
gen(Q)

N̄(i) [djr])].

2

Definition 5.7. (Noncopy-signature of association)
Let i ∈ N+, and let A = {(g1, dj1), . . . , (gG, djG)} be an
association for query Q′′ and for the database DN̄(i)(Q),
such that there exists a valid assignment mapping, θ, for
Q′′, DN̄(i)(Q), and A. Then vector Φn[A], called noncopy-
signature of A for Q′′ and DN̄(i)(Q), is defined as follows:

• In case m = 0, Φn[A] is the empty vector; and

• In case m ≥ 1, Φn[A] is the m-ary vector [ν
(i)
Q (θ(Y ′′1)),

. . . , ν
(i)
Q (θ(Y ′′m))].

2

The intuition for Definitions 5.6 and 5.7 parallels the intu-
ition for atom-signatures, see the discussion, above, of Def-
inition 5.5. That is, suppose that for an association A for
a query Q′′ and for a database DN̄(i)(Q), the association A
contributes at least one valid assignment mapping to the set
Γ(Q′′, DN̄(i)(Q)). Then, intuitively, we have that:

• The copy-signature of A shows how the copy variables
of the query Q′′ could be mapped, via all the valid
assignments associated with A, into copy variables of
(the subset SC(Q) of subgoals of) the query Q;

some of the “copy variables” in the vector could equal
unity, to indicate those cases where the image, in the
sense of A via Φc[A], of a copy-sensitive subgoal of Q′′

is a relational subgoal of Q;

and

• The noncopy-signature of A shows how the multiset
noncopy variables of the query Q′′ could be mapped,
via all the valid assignments associated with A, into
terms in (the subset SC(Q) of subgoals of) the query
Q.

In the remainder of this proof, we will use the atom-
signatures, the copy-signatures, and the noncopy-signatures
of associations for Q′′ and DN̄(i)(Q), for each natural num-
ber i, to classify all the t∗Q-valid assignment mappings from
Q′′ to the database DN̄(i)(Q). We will use the classification

to construct the closed-form expressions, F (Q′′)
(Q) , for the mul-

tiplicity of the tuple t∗Q in the answer to the queryQ′′ on each

such database DN̄(i)(Q). (For an introduction to F (Q′′)
(Q) ,

please refer back to Section 5.1.1.) More specifically, in Sec-
tion 5.6 we will find a very practical use for copy-signatures
and for noncopy-signatures of associations, in that these sig-
natures of association A will help us compute the number

of distinct entries, in the set Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)), that (en-

tries) are contributed by the (valid) mappings of A for Q′′

and DN̄(i)(Q). Please see Example 5.3 for an extended il-
lustration of copy-signatures and of noncopy-signatures of
associations.

The following result is immediate from the definitions.

Proposition 5.11. Let i ∈ N+, and let A be an associa-
tion for query Q′′ and for the database DN̄(i)(Q), such that
there exists a valid assignment mapping for Q′′, DN̄(i)(Q),
and A. Then the noncopy-signature of A for Q′′ and DN̄(i)(Q)
exists and is unique. 2

Proposition 5.11 lets us refer to the noncopy-signature of
a given association, for some query and database, provided
that the association generates at least one valid assignment
mapping.

5.4.2 Properties of Associations for Q′′ and DN̄(i)(Q)

The results of Propositions 5.12 through 5.17 are imme-
diate from the definitions (unless discussed further in this
subsection).

Proposition 5.12. Let i ∈ N+, and let A1 and A2 be two
associations for query Q′′ and for the database DN̄(i)(Q),
such that A1 and A2 have the same atom-signature. Then:

(i) A1 and A2 have the same copy-signature.

(ii) Suppose that, in addition, there exists a valid assign-
ment mapping, call it θ1, for Q′′, DN̄(i)(Q), and A1.
Let t(θ1) be the tuple resulting from restricting θ1 to the
head vector of the query Q′′. Then we have that:

(ii-a) There exists a valid assignment mapping, call it
θ2, for Q′′, DN̄(i)(Q), and A2;

19

(ii-b) A1 and A2 have the same noncopy-signature; and

(ii-c) If t(θ1) is the tuple t∗Q, then restricting θ2 to the
head vector of the query Q′′ results in the same
tuple t(θ1) (which is t∗Q).

2

The following result holds due to our convention for ground
atoms in databases, see Section 5.2.3, as well as to our defi-
nition of the databases DN̄(i)(Q) using the subset SC(Q) of
subgoals of the query Q. (Recall that all the elements of
the set SC(Q) have pairwise distinct relational templates.)
Note that the associations A1 and A2, in the statement of
Proposition 5.13, are not restricted to have either the same
atom-signature or different atom-signatures.

Proposition 5.13. Let i ∈ N+, and let A1 and A2 be
two distinct associations for query Q′′ and for the database
DN̄(i)(Q). Let (θ1, θ2) be an arbitrary pair (if any exists),
such that θ1 is a valid assignment mapping for Q′′, DN̄(i)(Q),
and A1, and θ2 is a valid assignment mapping for Q′′, DN̄(i)(Q),
and A2. Then there exists a variable X of Q′′ such that (i)
X is not a copy variable of Q′′, and (ii) θ1(X) 6= θ2(X). 2

Proposition 5.14. Let i ∈ N+, and let A be an asso-
ciation for query Q′′ and for the database DN̄(i)(Q), such
that there exists a valid assignment mapping, θ, for Q′′,
DN̄(i)(Q), and A. Let tuple tθ be the result of restricting θ to
the head vector of the query Q′′. Then there exists a unity
valid assignment mapping, call it θ(u), for Q′′, DN̄(i)(Q),

and A, such that the restriction of θ(u) to the head vector of
the query Q′′ results in the same tuple tθ. 2

Proposition 5.15. Let i ∈ N+, and let A be an associa-
tion for query Q′′ and for the database DN̄(i)(Q), such that
there exists a unity valid assignment mapping, θ, for Q′′,
DN̄(i)(Q), and A. Then there does not exist any unity valid
assignment mapping for Q′′, DN̄(i)(Q), and A, that (unity
valid assignment mapping) would be distinct from θ. 2

Proposition 5.16. Let i ∈ N+, and let A be an associ-
ation for query Q′′and for the database DN̄(i)(Q). Suppose
A is such that there exists a unity valid assignment map-
ping, θ(u), for Q′′, DN̄(i)(Q), and A. Let tuple tθ(u) be the

restriction of θ(u) to the head vector of the query Q′′. Then
we have that for each candidate assignment mapping, call it
θ′, for Q′′, DN̄(i)(Q), and A, θ′ is a valid assignment map-
ping for Q′′, DN̄(i)(Q), and A, and the restriction of θ′ to
the head vector of the query Q′′ is the tuple tθ(u) . 2

For the next result we introduce some notation. Let i ∈
N+, and let A be an association for query Q′′and for the
database DN̄(i)(Q). In case r ≥ 1, denote the entries in
the copy-signature Φc[A] as Φc[A] = [Vj1, . . . , Vjr]. Here,
for each k ∈ {1, . . . , r} we have that Vjk ∈ {1, Nm+1, . . . ,
Nm+w}, where the N -values are variables in the vector N̄ .
(In case r = 0, Φc[A] is the empty vector by definition.)

Further, again for each k ∈ {1, . . . , r}, by V
(i)
jk we denote the

value of Vjk in the vector N̄ (i) whenever Vjk ∈ {Nm+1, . . . , Nm+r};
we set V

(i)
jk := 1 for the case Vjk = 1.

We also use the notation Γ(A) (for all cases r ≥ 0 of the
value r = |Mcopy|): For an i ∈ N+ and an association A
for Q′′ and DN̄(i)(Q), Γ(A) stands for the set of all tuples

contributed to the set Γ
(t
θ(u)

)

S̄
(Q′′, DN̄(i)(Q)), for some tu-

ple tθ(u) , by the valid assignment mappings (if any) for the
association A. (By Proposition 5.16, all the valid assign-
ment mappings (if any) for an association A for Q′′ and
DN̄(i)(Q), agree on their restriction to the head vector of

the query Q′′.) Finally, in case r ≥ 1, we denote by Γ
(A)
c

the set projection of the set Γ(A) on the columns Y ′′m+1, . . . ,
Y ′′m+r, for all the copy variables of the query Q′′.

Proposition 5.17. Let i ∈ N+, and let A be an associ-
ation for query Q′′and for the database DN̄(i)(Q). Suppose
A is such that there exists a unity valid assignment map-
ping, θ(u), for Q′′, DN̄(i)(Q), and A. Let tuple tθ(u) be the

restriction of θ(u) to the head vector of the query Q′′. Then
the following holds:

(i) The set Γ(A) is not empty;

(ii) In case r = 0, the association A has exactly one valid
assignment mapping and contributes exactly one tuple

to the set Γ
(t
θ(u)

)

S̄
(Q′′, DN̄(i)(Q));

(iii) In case r ≥ 1, the set Γ
(A)
c has the tuple (n1, n2, . . . ,

nr) for each 1 ≤ nk ≤ V
(i)
jk for each k ∈ {1, . . . , r},

and Γ
(A)
c does not have any other tuples;

(iv) The total number of distinct valid assignment map-

pings for Q′′, DN̄(i)(Q), and A, call it T (A), is 1 in

case r = 0, and is Πr
k=1V

(i)
jk in case r ≥ 1; and

(v) The cardinality of the set Γ(A) is equal to T (A).

2

5.5 Sets of Associations for Q′′ and DN̄(i)(Q)

Consider each of the FG associations, A1, . . . ,AFG , of the
formA as defined in Section 5.4, between the G ≥ 1 subgoals
g1, . . . , gG of the fixed query Q′′ and the F ≥ 1 ground atoms
of the database DN̄(i)(Q), for an arbitrary fixed i ∈ N+.
Clearly, enumerating all the FG associations is a way to
find all satisfiable assignments for Q′′ and DN̄(i)(Q). In

this section we construct a set, A(i)

Q′′ , which includes some
of the above associations, and “captures”, in a very precise
sense (see Proposition 5.18), all of the t∗Q-valid assignment

mappings for Q′′ and DN̄(i)(Q). We will use the set A(i)

Q′′

in Section 5.6, to define a function, F (Q′′)
(Q) , in terms of the

variables in the vector N̄ . For each i ∈ N+, the function

F (Q′′)
(Q) uses the values (in N̄ (i)) of the variables in the vec-

tor N̄ to return the multiplicity of the tuple t∗Q in the bag
ResC(Q′′, DN̄(i)(Q)).

Definition 5.8. (Set A(i)

Q′′ of t
∗
Q-valid assignment map-

pings for Q′′ and DN̄(i)(Q)) Let i ∈ N+. The set A(i)

Q′′ of

t∗Q-valid assignment mappings for CCQ query Q′′ and for the
database DN̄(i)(Q), is the set of all of the associations for

Q′′ and DN̄(i)(Q), such that for each A ∈ A(i)

Q′′ there exists

at least one t∗Q-valid assignment mapping for Q′′, DN̄(i)(Q),
and A. 2

For each i ∈ N+, we denote the cardinality of the set

A(i)

Q′′ by R
(i)

Q′′ . Further, whenever R
(i)

Q′′ ≥ 1, we refer to the

20

individual elements of the set A(i)

Q′′ as A
(i)
j , for 1 ≤ j ≤

R
(i)

Q′′ . (We will avoid the confusion as to which query A
(i)
j

“refers to”, by always using the notation A
(i)
j in the context

of exactly one query.)
Consider an arbitrary set A∗Q′′ of associations for query

Q′′ and for database DN̄(i)(Q). Let A be an association for
Q′′ and DN̄(i)(Q) such that there exists a valid assignment
mapping, θ, for Q′′, for DN̄(i)(Q), and for A. Then we say
that the set A∗Q′′ captures the valid assignment mapping θ
if and only if we have that A ∈ A∗Q′′ . (See Proposition 5.13
for a justification of this definition.)

Proposition 5.18. Let i ∈ N+. Then (i) The set A(i)

Q′′

of t∗Q-valid assignment mappings for CCQ query Q′′ and for
the database DN̄(i)(Q) captures all the t∗Q-valid assignment
mappings for Q′′ and DN̄(i)(Q); and (ii) For each valid as-

signment mapping θ for Q′′ and DN̄(i)(Q) such that A(i)

Q′′

captures θ, θ is a t∗Q-valid assignment mapping for Q′′ and
DN̄(i)(Q). 2

Proposition 5.19. Suppose that there exists an i∗ ∈ N+

such that for some association A(i∗)
j∗ ∈ A(i∗)

Q′′ , a valid as-

signment mapping for A(i∗)
j∗ induces a mapping from all the

subgoals of Q′′ to a single copy-neutral canonical database
for query Q.8 Then for each i ∈ N+, there exists a j,

1 ≤ j ≤ R(i)

Q′′ , such that a valid assignment mapping for the

association A(i)
j (exists and) induces a mapping from all the

subgoals of the query Q′′ to a single copy-neutral canonical
database for query Q (within database DN̄(i)(Q)). Moreover,

A(i)
j and A(i∗)

j∗ have the same atom-signature. 2

Proof. We are given that there exists a pair (i∗, j∗), with

i∗ ∈ N+ and with 1 ≤ j∗ ≤ R
(i∗)
Q′′ , such that the association

A(i∗)
j∗ generates a valid assignment mapping from query Q′′

to a single copy-neutral canonical database, call it D∗, for
query Q (within database DN̄(i∗)(Q)). By Proposition 5.14
in Section 5.4.2, there exists a unity valid assignment map-
ping, call it θ′, for Q′′ and DN̄(i∗)(Q), such that θ′ uses only
the atoms of the database D∗ to generate the tuple t∗Q in
the answer to Q′′ on database DN̄(i∗)(Q).

Now fix an abitrary i ∈ N+. By Proposition 5.8 in Sec-
tion 5.3.3, database DN̄(i)(Q) has at least one copy-neutral
canonical database for query Q. Choose and fix in DN̄(i)(Q)
one arbitrary such copy-neutral canonical database for Q,
call this database D. By definition of copy-neutral canon-
ical database, there is an isomorphism from all the ground
atoms of the database D∗ (within DN̄(i∗)(Q), see first para-
graph of this proof), to all the ground atoms of database
D (within DN̄(i)(Q)). Moreover, there exists at least one
isomorphism from D∗ to D, call this isomorphism ι∗, such

that for each atom d∗ in D∗, it holds that ψ
gen(Q)

N̄(i) [d∗] is the

same (atom in set SC(Q)) as ψ
gen(Q)

N̄(i) [ι∗(d∗)]. Then the com-

position, call it ϕ, of θ′ (of the first paragraph of this proof)
with ι∗ gives us a valid assignment mapping from query
Q′′ to the copy-neutral canonical database D for query Q
in database DN̄(i)(Q), such that the restriction of ϕ to the
head variables of Q′′ is the tuple t∗Q. By Proposition 5.18,

8That copy-neutral canonical database for Q is within
database DN̄(i∗)(Q), see Proposition 5.8 in Section 5.3.3.

the association represented by ϕ must be in the set A(i)

Q′′ for

database DN̄(i)(Q). By construction, this association and

A(i∗)
j∗ have the same atom-signature. By the fact that i has

been chosen arbitrarily, Q.E.D.

Proposition 5.20. Suppose that, for some i ∈ N+, there

exists an association A(i)
j in the set A(i)

Q′′ such that the unity

valid assignment mapping, θj, for A(i)
j induces a mapping

from the subgoals of Q′′ into elements of two or more copy-
neutral canonical databases of Q in database DN̄(i)(Q). Then

there exists an association A(i)

j′ in A(i)

Q′′ , and there exists in

DN̄(i)(Q) a copy-neutral canonical database of Q, call this
database D∗, such that the unity valid assignment mapping,

θj′ , for A(i)

j′ induces a mapping from all the subgoals of Q′′

into ground atoms belonging to D∗ only. Moreover, A(i)
j and

A(i)

j′ have the same atom-signature. 2

Proof. We observe first that ifMnoncopy = ∅ then database
DN̄(i)(Q) comprises exactly one copy-neutral canonical database
for Q. This observation is immediate from the construction
of DN̄(i)(Q).

Thus we assume for the remainder of this proof that m =

|Mnoncopy| ≥ 1. For the association A(i)
j as in the state-

ment of this Observation, denote by (set of ground atoms)
T the image of the condition of query Q′′ under the mapping
θj . By Proposition 5.9, the only way the valid assignment

mapping θj for A(i)
j can map the subgoals of Q′′ into ele-

ments of two or more copy-neutral canonical databases of
Q in database DN̄(i)(Q) is when the result of intersecting

adom(T) with S
(i)
l , for at least one l ∈ {1, . . . ,m}, has size

two or more. (For the notation adom(T), see note before
Proposition 5.9.)

We show an algorithm for producing the association A(i)

j′

and the (copy-neutral canonical) database D∗, of the state-

ment of this Proposition, from the association A(i)
j . First,

for each l ∈ {1, . . . ,m} such that the result of intersecting

adom(T) with S
(i)
l is not empty, fix a single value in that

intersection. Let the result be values v
(i)
l1
, . . . , v

(i)
lk

, where:

1 ≤ k ≤ m, all the values l1, . . . , lk are distinct, each ln (for

all 1 ≤ n ≤ k) satisfies 1 ≤ ln ≤ m, and each v
(i)
ln

(for all 1 ≤
ln ≤ m, for all 1 ≤ n ≤ k) satisfies v

(i)
ln
∈ S(i)

ln
. Call all val-

ues in the set E = ((
⋃m
n=1 S

(i)
n)

⋂
adom(T))−{v(i)

l1
, . . . , v

(i)
lk
}

the “extra multiset noncopy” values in adom(T). By the as-
sumptions in the statement of this Proposition, the set E is
not empty.

The next step of the algorithm is to modify the mapping

θj for the association A(i)
j , by replacing in θj each value v

belonging to S
(i)
n

⋂
E, 1 ≤ n ≤ m, by the value v

(i)
n that we

fixed as described in the previous paragraph. (The intuition
is that for each mapping in θj of a variable of Q′′ to an
“extra multiset noncopy”value, we“redirect”the mapping to
a mapping of the same variable into an “appropriate” value

from among the values v
(i)
l1
, . . . , v

(i)
lk

fixed in the previous

paragraph.) As we modify θj this way, we also modify the

association A(i)
j , by replacing in it all occurrences of each

v ∈ S(i)
n

⋂
E, 1 ≤ n ≤ m, by the value v

(i)
n . Denote by θj′

the result of this modification of θj , and by A(i)

j′ the result

of this modification of A(i)
j . By construction, we have that:

21

(a) θj′ is a mapping;

(b) for all the terms of Q′′ that are not copy variables, θj′
maps all these terms ofQ′′ into the values in adom(T)−
E;

(c) all ground atoms mentioned inA(i)

j′ belong toDN̄(i)(Q)

(by construction of the database);

(d) θj′ is a candidate assignment mapping forQ′′, DN̄(i)(Q),

and A(i)

j′ ; and

(e) A(i)
j and A(i)

j′ have the same atom-signature.

We now show that the association A(i)

j′ belongs to the set

A(i)

Q′′ . This is immediate from the fact that θj and θj′ agree

on the images for all the head variables of Q′′ and from
items (a) and (c) of the previous paragraph. Finally, let T ′
be the set of all ground atoms mentioned in the association

A(i)

j′ . From item (b) of the previous paragraph and from

Proposition 5.9, we have that there exists in DN̄(i)(Q) a
(single) copy-neutral canonical database for query Q, call
that database D∗, such that T ′ ⊆ D∗. We conclude that
the unity valid assignment mapping θj′ for Q′′, DN̄(i)(Q),

and A(i)

j′ maps query Q′′ into a single copy-neutral canonical

database (in DN̄(i)(Q)) for the query Q.

Proposition 5.21. Suppose there exists an i ∈ N+ such

that the set A(i)

Q′′ for database DN̄(i)(Q) is not empty. Then

the set A(i)

Q′′ is not empty for each i ∈ N+. 2

Proof. The proof is immediate from Propositions 5.19
and 5.20. That is:

• Case 1: Suppose that, for some i ∈ N+, the set A(i)

Q′′ for

databaseDN̄(i)(Q) has an association corresponding to
a valid assignment mapping from query Q′′ to a sin-
gle copy-neutral canonical database for Q in DN̄(i)(Q).
Then, by Proposition 5.19, for all i ∈ N+, the set

A(i)

Q′′ for database DN̄(i)(Q) has an association corre-
sponding to a valid assignment mapping from query
Q′′ to a single copy-neutral canonical database for Q
in DN̄(i)(Q). Q.E.D.

• Case 2: Suppose that, for some i ∈ N+, the set A(i)

Q′′

for database DN̄(i)(Q) has an association correspond-
ing to a valid assignment mapping from query Q′′ to
(ground atoms in) two or more copy-neutral canoni-
cal databases for Q in DN̄(i)(Q). Then, by Proposi-

tion 5.20, the set A(i)

Q′′ for the same value of i has an
association corresponding to a valid assignment map-
ping from query Q′′ to a single copy-neutral canonical
database for Q in DN̄(i)(Q). Thus we have reduced
this case to Case 1. Q.E.D.

Proposition 5.22. Suppose there exists an i∗ ∈ N+ such
that the query Q′′ has no answer t∗Q on database DN̄(i∗)(Q).
Then the multiplicity of the tuple t∗Q in the bag ResC(Q′′, DN̄(i)(Q))
equals zero on the database DN̄(i)(Q) for each i ∈ N+. 2

Proof. It is immediate from Proposition 5.21 that if

there exists an i∗ ∈ N+ such that the set A(i∗)
Q′′ for database

DN̄(i∗)(Q) is empty, then the set A(i)

Q′′ is empty for each
i ∈ N+.

5.6 Monomials for the Multiplicity of Tuple t∗Q
in Bag ResC(Q′′, DN̄(i)(Q))

In this section we provide an algorithm for constructing

monomials for a function, call it F (Q′′)
(Q) , defined in terms of

the variables in the vector N̄ . F (Q′′)
(Q) computes the multi-

plicity of the tuple t∗Q in the bag ResC(Q′′, DN̄(i)(Q)) for

each i ∈ N+, by using the values in the vector N̄ (i) as values
of the variables in the vector N̄ .

We observe first that, by Proposition 5.22, F (Q′′)
(Q) either

equals zero for all input vectors N̄ (i), or returns a positive-
integer value for each N̄ (i), i ∈ N+. In the remainder of the

proof of Theorem 4.1, we assume that the function F (Q′′)
(Q)

returns a positive-integer value for each N̄ (i). By the results
of Section 5.5, we infer from this assumption that the car-

dinality R
(i)

Q′′ of the set A(i)

Q′′ is a positive integer for each
i ∈ N+.

5.6.1 Defining the Monomial Classes C(Q′′)

Fix an i ∈ N+. We partition all the elements of the set

A(i)

Q′′ 6= ∅ into equivalence classes: Two distinct elements (in

case R
(i)

Q′′ ≥ 2) A(i)
j and A(i)

k of the set A(i)

Q′′ belong to the

same monomial class if and only if A(i)
j and A(i)

k have the
same atom-signature. Call all the resulting nonempty mono-

mial classes C(Q′′)(i)
1 , C(Q′′)(i)

2 , . . . , C(Q′′)(i)

n(i) , n(i) ≤ R
(i)

Q′′ .
From the definition of the monomial classes, we have that
n(i) ≥ 1, and that n(i) is exactly the number of all the atom-

signatures of the elements of the set A(i)

Q′′ . In addition, by

Proposition 5.12 and from the definition of the set A(i)

Q′′ we

have that for each j, 1 ≤ j ≤ n(i), all the elements of the

set C(Q′′)(i)
j (by having the same atom-signature) have the

same noncopy-signature and have the same copy-signature.

Hence, for each monomial class C(Q′′)(i)
j we can refer to

the atom-signature of C(Q′′)(i)
j , to the noncopy-signature of

C(Q′′)(i)
j , and to the copy-signature of C(Q′′)(i)

j .
By Proposition 5.18, we have that for each i ∈ N+ and

for each monomial class for Q′′ and DN̄(i)(Q), all the valid
assignment mappings of all the elements of the class con-

tribute tuples to the set Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)). That is, for

all the valid assignment mappings in each monomial class,
the restriction of each valid assignment mapping to the head
vector of the query Q′′ is the tuple t∗Q.

This result follows from the results of Sections 5.4.2 and
5.5:

Proposition 5.23. Let Ξ be a G-ary vector of (not nec-
essarily distinct) elements of the set SC(Q). Suppose there

exists an i∗ ∈ N+ such that the monomial class C(Q′′)(i∗)

with atom-signature Ξ is not empty. Then for all i ∈ N+ it

holds that the monomial class C(Q′′)(i) with atom-signature
Ξ is not empty. 2

From Proposition 5.23 it follows that for a fixed query
Q′′, we can drop the (i)-superscript from the notation for
monomial classes. (That is, the set of nonempty monomial
classes for Q′′, w.r.t. the family {DN̄(i)(Q)}, does not de-
pend on the specific database DN̄(i)(Q) in the family.) From
now on, when referring to the set of all nonempty monomial
classes for query Q′′ on database DN̄(i)(Q), we will use the

22

notation C(Q′′)
1 , C(Q′′)

2 , . . . , C(Q′′)
n∗ , for a constant (w.r.t. i)

positive-integer value n∗ ≥ 1. We will abuse the notation
somewhat, by using, in the context of a fixed i ∈ N+, the

expression “the set C(Q′′)” (where C(Q′′) is one of the C(Q′′)
1 ,

C(Q′′)
2 , . . . , C(Q′′)

n∗) to refer to the contents of the set C(Q′′)

w.r.t. the set A(i)

Q′′ for the fixed i.

5.6.2 Monomials Corresponding to the Monomial
Classes for Q′′ and DN̄(i)(Q):
Useful Properties

In this subsection we set the stage for the introduction, in
Section 5.6.3, of “multiplicity monomials” for the monomial

classes C(Q′′)
1 , . . . , C(Q′′)

n∗ .
Assuming a fixed i ∈ N+, we recall the mapping ν0 and the

sets S
(i)
j , which (sets) were introduced (for 1 ≤ j ≤ m) for

the case m ≥ 1, see Section 5.3.1. We use these constructs to
define the domain, on the database DN̄(i)(Q), of each term
of the query Q that (term) is not a copy variable of Q.

Definition 5.9. (Domain of term of Q in DN̄(i)(Q))
Let i ∈ N+. For each term s of query Q such that s is not

a copy variable of Q, the domain Dom
(i)
Q (s) of the term in

the database DN̄(i)(Q) is defined as follows:

• If s is a constant, or a head variable of Q, or a set

variable of Q, then Dom
(i)
Q (s) := {ν0(s)}.

• In case m ≥ 1, for each variable Yj of the query Q, for

1 ≤ j ≤ m, Dom
(i)
Q (Yj) := S

(i)
j .

2

Proposition 5.24. Let i ∈ N+. (i) For each (if any)
pair (s, t) of terms of query Q such that s 6= t and such

that neither s nor t is a copy variable of Q, Dom
(i)
Q (s)

⋂
Dom

(i)
Q (t) = ∅. (ii) For each term s of query Q such that s

is not a multiset variable of Q, |Dom(i)
Q (s)| = 1. (iii) In case

m ≥ 1, for each j ∈ {1, . . . ,m} we have that |Dom(i)
Q (Yj)|

= N
(i)
j (in the vector N̄ (i)). 2

For the next results, we introduce some notation. Given a

query Q′′, an i ∈ N+, and a nonempty monomial class C(Q′′)

of associations in the set A(i)

Q′′ for the query Q′′ and for the

database DN̄(i)(Q), denote by Γ(i)[C(Q′′)] the set of all tuples

contributed to the set Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)) by all the valid

assignment mappings for all the elements of the class C(Q′′).
The following result is immediate from the definitions.

Proposition 5.25. Let i ∈ N+. Then

(i) For each j ∈ {1, . . . , n∗}, Γ(i)[C(Q′′)
j] 6= ∅.

(ii) The set Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)) is the union

⋃n∗

j=1 Γ(i)[C(Q′′)
j].

2

We introduce some further notation: In case m ≥ 1, for a

monomial class C(Q′′) and for some j ∈ {1, . . . ,m}, we de-

note by Γ
(i)

(Y ′′j)
[C(Q′′)] the set projection of the set Γ(i)[C(Q′′)]

on the multiset noncopy variable Y ′′j of the query Q′′.

Proposition 5.26. Suppose m ≥ 1. Let Ξ be a G-ary
vector of (not necessarily distinct) elements of the set SC(Q),

such that the monomial class C(Q′′) with atom-signature Ξ
is not empty. Then for each i ∈ N+ the following holds:

(i) For each j ∈ {1, . . . ,m}: Suppose Z is the jth compo-
nent of the noncopy-signature vector of the monomial

class C(Q′′). Then the set Γ
(i)

(Y ′′j)
[C(Q′′)]:

(i-a) has all the elements of Dom
(i)
Q (Z), and

(i-b) has no values from the set (adom(DN̄(i)(Q)) −
Dom

(i)
Q (Z)).

(ii) The set projection of the set Γ(i)[C(Q′′)] on all the mul-
tiset noncopy variables Y ′′1 , Y

′′
2 , . . . , Y

′′
m of the query

Q′′ is the Cartesian product of the sets Γ
(i)

(Y ′′1)
[C(Q′′)],

Γ
(i)

(Y ′′2)
[C(Q′′)], . . . , Γ

(i)

(Y ′′m) [C(Q′′)].

2

Now suppose r ≥ 1. In this case, we denote by Γ
(i)

(Y ′′j)
[C(Q′′)]

the set projection of the set Γ(i)[C(Q′′)] on the copy variable
Y ′′j of the query Q′′, for some j ∈ {m+ 1, . . . ,m+ r}.

Proposition 5.27. Suppose r ≥ 1. Let Ξ be a G-ary
vector of (not necessarily distinct) elements of the set SC(Q),

such that the monomial class C(Q′′) with atom-signature Ξ
is not empty. Then for each i ∈ N+ the following holds:

(i) For each j ∈ {1, . . . , r}: Suppose Z is the jth com-
ponent of the copy-signature vector of the monomial

class C(Q′′). Then the set Γ
(i)

(Y ′′m+j)
[C(Q′′)] is the set

{1, . . . , Z(i)}, where (a) Z(i) is 1 in case Z = 1, and (b)

Z(i) is N
(i)
k in case Z = Nk for some k ∈ {m+ 1, . . . ,m+ w}.

(ii) The set projection of the set Γ(i)[C(Q′′)] on all the copy
variables Y ′′m+1, Y

′′
m+2, . . . , Y

′′
m+r of the query Q′′ is the

Cartesian product of the sets Γ
(i)

(Y ′′m+1)
[C(Q′′)], Γ

(i)

(Y ′′m+2)
[C(Q′′)],

. . . , Γ
(i)

(Y ′′m+r)
[C(Q′′)].

2

(The proof is immediate from Proposition 5.17, once we
recall that all associations in a monomial class share the
same copy-signature.)

For each i ∈ N+, we now characterize the set Γ(i)[C(Q′′)]

for each nonempty monomial class C(Q′′) for the query Q′′

and family of databases {DN̄(i)(Q)}, for all combinations of
values of m ≥ 0 and of r ≥ 0.

Proposition 5.28. Let Ξ be a G-ary vector of (not nec-
essarily distinct) elements of the set SC(Q), such that the

monomial class C(Q′′) with atom-signature Ξ is not empty.
Then for each i ∈ N+ the following holds:

• In case m ≥ 1 and r ≥ 1, the set Γ(i)[C(Q′′)] is the
Cartesian product of two sets:

– the set projection of Γ(i)[C(Q′′)] on all the multiset
noncopy variables Y ′′1 , . . . , Y

′′
m of the query Q′′,

and

23

– the set projection of Γ(i)[C(Q′′)] on all the copy
variables Y ′′m+1, . . . , Y

′′
m+r of the query Q′′.

• In case r = 0, Γ(i)[C(Q′′)] is its own set projection on
all the multiset noncopy variables of the query Q′′.

• In case m = 0, Γ(i)[C(Q′′)] is its own set projection on
all the copy variables of the query Q′′.

2

(Recall from Section 5.2.2 that we assume m + r ≥ 1;
thus in case r = 0 we have m ≥ 1, and in case m = 0 we
have r ≥ 1. For a characterization of the set projection of

Γ(i)[C(Q′′)] on all the multiset noncopy variables Y ′′1 , . . . , Y
′′
m

of the query Q′′, in case m ≥ 1, see Proposition 5.26. For

a characterization of the set projection of Γ(i)[C(Q′′)] on all
the copy variables Y ′′m+1, . . . , Y

′′
m+r of the query Q′′, in case

r ≥ 1, see Proposition 5.27.)

5.6.3 Multiplicity Monomials for the Monomial
Classes C(Q′′)

1 , . . . , C(Q′′)
n∗

In this subsection, for each nonempty monomial class C(Q′′)

for the query Q′′ we construct an expression, such that for
each i ∈ N+, this expression will return the number of dis-

tinct tuples contributed by the associations in C(Q′′) to the

set Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)). That is, we construct an expres-

sion that, for each i ∈ N+, will provide the cardinality

of the set Γ(i)[C(Q′′)]. (See Section 5.6.2 for the notation

Γ(i)[C(Q′′)].) For each monomial class C(Q′′) ∈ {C(Q′′)
1 , . . . ,

C(Q′′)
n∗ }, we call the respective expression “the multiplicity

monomial of the monomial class C(Q′′).” Each multiplicity
monomial is a product of (some powers of) the elements of
the noncopy singature and of the copy signature of the corre-
sponding monomial class. These multiplicity monomials, to-
gether with the copy-signatures and the noncopy-signatures
of the monomial classes, are all that will be needed in Sec-

tion 5.9 to construct the function F (Q′′)
(Q) .

We begin by introducing the necessary notation. For each
term s of the query Q such that s is not a copy variable
of Q, by DomLabelQ(s) we denote (i) variable Nj in case
where m ≥ 1 and where s is (a multiset noncopy variable of
Q, i.e.,) the variable Yj of Q for some 1 ≤ j ≤ m; and (ii)
constant value 1 in case s is either a constant used in Q or
is one of the variables X1, . . . , Xl+u of Q.

Further, for Propositions 5.29 and 5.30, we use the fol-
lowing notation, for ease of reference to the elements of the
noncopy signatures and of the copy signatures of the mono-
mial classes. Let Ξ be a G-ary vector of (not necessarily
distinct) elements of the set SC(Q), such that the monomial

class C(Q′′) with atom-signature Ξ is not empty.

(1) Let ΦC
(Q′′)
n be the noncopy-signature of the class C(Q′′).

Then:

• In case m ≥ 1, denote the elements of ΦC
(Q′′)
n , from

left to right, as Z1, Z2, . . . , Zm. For all j ∈ {1, . . . ,m},
we have that Zj ∈ {Y1, . . . , Ym, X1, . . . , Xl+u}

⋃
P .

• For an i ∈ N+, denote by Π
(i)

ΦC
(Q′′)
n

the value 1 in case

m = 0, and the product Πm
j=1|Dom

(i)
Q (Zj)| in case m ≥

1.

• Finally, denote by Π
ΦC

(Q′′)
n

the value 1 in case m = 0,

and the product Πm
j=1DomLabelQ(Zj) in case m ≥ 1.

(2) Let ΦC
(Q′′)
c be the copy-signature of the class C(Q′′).

Then:

• In case r ≥ 1, denote the elements of ΦC
(Q′′)
c , from left

to right, as W1,W2, . . . ,Wr. For all j ∈ {1, . . . , r}, we
have that Wj ∈ {1, Nm+1, . . . , Nm+w}.

• For an i ∈ N+ and for each j ∈ {1, . . . , r} (still assum-

ing r ≥ 1), denote by W
(i)
j the value of the variable

Wj in the vector N̄ (i), in case Wj 6= 1. (That is, when-

ever Wj = Nm+l, for some l ∈ {1, . . . , w}, then W
(i)
j

= N
(i)
m+l.) If Wj = 1 then let W

(i)
j := 1.

• For an i ∈ N+, denote by Π
(i)

ΦC
(Q′′)
c

the value 1 in case

r = 0, and the product Πr
j=1W

(i)
j in case r ≥ 1.

• Finally, denote by Π
ΦC

(Q′′)
c

the value 1 in case r = 0,

and the product Πr
j=1Wj in case r ≥ 1.

Proposition 5.29. Let Ξ be a G-ary vector of (not nec-
essarily distinct) elements of the set SC(Q), such that the

monomial class C(Q′′) with atom-signature Ξ is not empty.

Let i ∈ N+. Then the cardinality of the set Γ(i)[C(Q′′)]
(that is, the number of distinct tuples contributed, to the set

Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)) for the query Q′′ and for the database

DN̄(i)(Q), by all the valid assignment mappings for all the

elements of the class C(Q′′)) is exactly Π
(i)

ΦC
(Q′′)
n

× Π
(i)

ΦC
(Q′′)
c

.

2

Please see Example 5.3 for an illustration. he proof of
Proposition 5.29 is immediate from Proposition 5.28. (See

Proposition 5.17 for the details on the Π
(i)

ΦC
(Q′′)
c

part of the

computation. The Π
(i)

ΦC
(Q′′)
n

part of the computation follows

from the construction of the database DN̄(i)(Q), specifically
from the definition of the main construction cycle as de-
scribed in Section 5.3.2.)

We note that the expression Π
(i)

ΦC
(Q′′)
n

× Π
(i)

ΦC
(Q′′)
c

in Propo-

sition 5.29 is in terms of only the elements of the vector N̄ (i),
and is uniform across all i ∈ N+. Thus, we obtain the fol-
lowing result as an easy corollary of Proposition 5.29.

Proposition 5.30. Let Ξ be a G-ary vector of (not nec-
essarily distinct) elements of the set SC(Q), such that the

monomial class C(Q′′) with atom-signature Ξ is not empty.

Then, for all i ∈ N+, the cardinality of the set Γ(i)[C(Q′′)]
(that is, the number of distinct tuples contributed, to the set

Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)) for the query Q′′ and for the database

DN̄(i)(Q), by all the valid assignment mappings for all the

elements of the class C(Q′′)) can be computed by substituting

the values in the vector N̄ (i) (specifically value N
(i)
j as value

of variable Nj, for each j ∈ {1, . . . ,m+w}) into the formula
Π

ΦC
(Q′′)
n

× Π
ΦC

(Q′′)
c

. 2

24

For a monomial class C(Q′′) with noncopy signature ΦC
(Q′′)
n

and with copy signature ΦC
(Q′′)
c , such that C(Q′′) is not

empty, we call the expression (of Proposition 5.30) Π
ΦC

(Q′′)
n

× Π
ΦC

(Q′′)
c

, in terms of the variables in the vector N̄ , the

multiplicity monomial of the monomial class C(Q′′).

5.7 The Wave Monomial of the Query Q

In this section we obtain results that are instrumental in
proving Theorem 4.1. Namely, we show that:

(1) There exists a (nonempty) monomial class C(Q) for the

query Q, such that the multiplicity monomial of C(Q) is
“the wave of the query Q.” (See Proposition 5.33.) The
wave of the query Q is defined in this section (see Defi-
nition 5.10) based on the vector N̄ and on the mapping
νcopyQ defined in Section 5.3.2.

(2) Suppose that for a CCQ queryQ′′, there exists a (nonempty)

monomial class C(Q′′), such that the multiplicity mono-

mial of C(Q′′) is “the wave of the query Q.” Then there
exists a SCVM from the query Q′′ to the query Q. (See
Proposition 5.34.)

In Section 5.10 we will see that whenever (a) Q′ ≡C Q for
a CCQ query Q′ and (b) Q is an explicit-wave CCQ query,

then there exists a (nonempty) monomial class C(Q′)
∗ for the

query Q′, such that the multiplicity monomial of C(Q′)
∗ is

“the wave of the query Q.” The proof of Theorem 4.1 is
immediate from that result and from Propositions 5.33 and
5.34 of this section. (We remind the reader that throughout
the proof of Theorem 4.1, all monomial classes of all queries
are defined w.r.t. the family of databases {DN̄(i)(Q)} for
the fixed input query Q.)

We begin the exposition by defining“the wave of the query
Q.” We introduce some notation to make the definition con-
cise:

(A) Denote by P(Q)
noncopy (i) the constant 1 in case m = 0,

and (ii) the product Πm
j=1Nj in case m ≥ 1.

(B) Denote by P(Q)
copy (i) the constant 1 in case r = 0, and

(ii) the product Πr
j=1ν

copy
Q (Ym+j) in case r ≥ 1. (For

the notation νcopyQ , see Section 5.3.2.)

Definition 5.10. (The wave of CCQ query Q) For

a CCQ query Q, the wave P(Q)
∗ of Q w.r.t. the family

of databases {DN̄(i)(Q)} is the product P(Q)
∗ = P(Q)

noncopy ×
P(Q)
copy. 2

The intuition for the wave P(Q)
∗ of a CCQ query Q is that

P(Q)
∗ reflects (i) the association of each multiset noncopy

variable of Q (in case m ≥ 1) with a separate variable among
N1, . . . , Nm, and (ii) the association, in case r ≥ 1, of
each copy-sensitive subgoal, call it s, of Q (via the copy
variable of the subgoal) with the unique element, call it s′,
of the set SC(Q) (see Section 5.2.2) such that the subgoal s
and the element s′ have the same relational template. The
provenance of each association will become explicit in the
proof of Proposition 5.33. As an illustration of the definition,
in Example 5.3 in Section 5.8, the wave of query Q w.r.t. the

family of databases {DN̄(i)(Q)} is the product P(Q)
∗ = N1 ×

N2, where N1 refers to the only multiset noncopy variable

of the query Q, and N2 refers to its only (multiset) copy
variable.

Proposition 5.31. Given a CCQ query Q and the vector
N̄ = [N1 N2 . . . Nm+w] that is used to construct the family
of databases {DN̄(i)(Q)} for the query Q. Then each element
of the vector N̄ occurs in the wave of the query Q w.r.t.
{DN̄(i)(Q)}. 2

The proof of Proposition 5.31 is immediate from the def-

inition of the products P(Q)
noncopy and P(Q)

copy used in Defini-
tion 5.10. (In case where r ≥ 1, the less obvious part of the
proof, that is the presence of each ofNm+1, Nm+2, . . . , Nm+w

in the product P(Q)
copy, is immediate from the definition of the

mapping νcopyQ , see Section 5.3.2.)
Our next result is immediate from the definition of the

wave of the query Q. (For each expression of the form Nk
j ,

such that Nj ∈ {N1, N2, . . . , Nm+r } and k ≥ 1, we say that
the expression Nk

j has k occurrences of the variable Nj .)

Proposition 5.32. Given a CCQ query Q and the vector
N̄ = [N1 N2 . . . Nm+w] that is used to construct the family
of databases {DN̄(i)(Q)} for the query Q. Then the wave of
the query Q w.r.t. {DN̄(i)(Q)} has exactly m + r occur-
rences of the variables from the set {N1, N2, . . . , Nm+w }.
2

Proposition 5.33. Given a CCQ query Q, there exists

a nonempty monomial class, call it C(Q)
∗ , for the query Q

w.r.t. the family of databases {DN̄(i)(Q)}, such that the

multiplicity monomial of C(Q)
∗ is the wave of the query Q

w.r.t. {DN̄(i)(Q)}. 2

Proof. The proof has three parts:

(1) We first show that for each i ∈ N+, there exists an asso-
ciation for the query Q and for the database DN̄(i)(Q),

call this association A(i)
∗ , such that:

(i) The association A(i)
∗ has a t∗Q-valid assignment

mapping for the query Q and for the database
DN̄(i)(Q);

(ii) In casem ≥ 1, we have that the noncopy-signature9

Φn[A(i)
∗] of the association A(i)

∗ is the vector [Y1

. . . Ym]; and, finally,

(iii) In case r ≥ 1, we have that the copy-signature

Φc[A(i)
∗] of the association A(i)

∗ is the vector [νcopyQ

(Ym+1) . . . νcopyQ (Ym+r)].

(2) We then show that the query Q, w.r.t. the family of
databases {DN̄(i)(Q)}, has a nonempty monomial class
whose noncopy-signature (whose copy-signature, re-
spectively) is the noncopy-signature (the copy-signature,

respectively) of the associations A(i)
∗ , for all i ∈ N+, of

item (1) of this proof. We denote this monomial class

by C(Q)
∗ .

(3) Finally, we show that the multiplicity monomial of the

monomial class C(Q)
∗ of item (2) is the wave of the query

Q.

9Observe that the noncopy-signature of the association A(i)
∗

is well defined, by A(i)
∗ having a valid assignment mapping

for the query Q and for the database DN̄(i)(Q).

25

In fact, items (2) and (3) are straightforward: Item (2) is
immediate from the definition of monomial classes and from
item (1), and item (3) is immediate from item (2) and from
Proposition 5.30. Hence, in the remainder of this proof we
prove parts (i) through (iii) of item (1) above.

Recall that we assume m + r ≥ 1. Hence the set SC(Q)

(see Section 5.2.2) for the query Q is not empty.

Fix an i ∈ N+. Recall the set S(i) 6= ∅ introduced in
Section 5.3.2 to construct the database DN̄(i)(Q). Fix an

arbitrary tuple t ∈ S(i). For the tuple t ∈ S(i), Section 5.3.2
defined a mapping, νt, from all the terms of the query Q
to constants in the set adom(DN̄(i)(Q))

⋃
N+. By defi-

nition, for the t ∈ S(i) we have that the restriction of νt
to all the terms of the query Q occurring in the elements
of the set SC(Q) induces a bijection from the subset SC(Q)

of the condition of Q to a set, call it Dt, of ground atoms
of the database DN̄(i)(Q). By construction of the database
DN̄(i)(Q), the set Dt (i) was generated from SC(Q) using the
mapping νt, and (ii) is a copy-neutral canonical database for
the query Q.

We now construct the association A(i)
∗ . We begin by as-

sociating each atom s ∈ SC(Q) with its image (in the set of
ground atoms Dt ⊆ DN̄(i)(Q)) under νt. Now there are two
cases: (a) In case all the subgoals of the (regularized ver-
sion of the) query Q are elements of the set SC(Q), we are

done with the construction of the association A(i)
∗ . We now

consider the remaining case (b), where there exist subgoals
of the (regularized version of the) query Q that are not ele-
ments of the set SC(Q). Consider an arbitrary subgoal s of
Q such that s ∈ (L − SC(Q)), where L is the condition of
the regularized version of the query Q. By definition of the
set SC(Q), s is a copy-sensitive atom, such that there exists
a unique element, call it s′, of the set SC(Q), such that s and
s′ have the same relational template.

Then in our construction of the association A(i)
∗ , for each

such subgoal s of the query Q, s ∈ (L − SC(Q)), we associate

(in A(i)
∗) the atom s with the atom νt(s

′) ∈DN̄(i)(Q), for the
s′ as determined in the previous paragraph. This completes

the construction of the association A(i)
∗ . Observe that by

construction, in both cases (a) and (b) as in the preceding

paragraphs, the association A(i)
∗ associates all the elements

of the condition of the queryQ with exactly the set of ground
atoms Dt ⊆ DN̄(i)(Q).

We now prove claim (1)(i) of the beginning of this proof.

We first show that the association A(i)
∗ has a valid assign-

ment mapping for the queryQ and for the databaseDN̄(i)(Q).
Indeed, by definition of νt it holds that νt assigns values to
all terms of the query Q, consistently across all the pairs

in the association A(i)
∗ . Denote by θ

(Q)
∗ the resulting valid

assignment mapping for the query Q and for the database
DN̄(i)(Q). Now, it is immediate from the definition of νt

that the restriction of the mapping θ
(Q)
∗ to the head vec-

tor [X1 . . . Xl] of the query Q is the tuple t∗Q. Thus, θ
(Q)
∗

is a t∗Q-valid assignment mapping for the query Q and for
the database DN̄(i)(Q), which completes our proof of claim
(1)(i).

We now prove claim (1)(ii) of the beginning of this proof.
This claim requires the assumption that m ≥ 1. Under this
assumption, by definition of νt we have that νt maps the
variable Yj , for each j ∈ {1, . . . ,m}, into an element of the

set S
(i)
j . (See Section 5.3.1 for the definition of S

(i)
j .) Hence,

by definition of the vector Φn[A(i)
∗] (see Section 5.4.1), the

jth element of Φn[A(i)
∗] is the variable Yj , for each j ∈

{1, . . . ,m}. Q.E.D.
To complete the proof of Proposition 5.33, it remains to

prove claim (1)(iii) of the beginning of this proof. This claim
requires the assumption that r ≥ 1. Under this assumption,
the claim is immediate from the construction of the associa-
tion A(i)

∗ and from the definition of the vector Φc[A(i)
∗] (see

Section 5.4.1). Q.E.D.

Proposition 5.34. Given CCQ queries Q(X̄) ← L,M
and Q′′(X̄ ′′) ← L′′,M ′′, such that (i) Q and Q′′ have the
same (nonnegative-integer) head arities, (ii) |Mcopy| = |M ′′copy|,
and (iii) |Mnoncopy| = |M ′′noncopy|. Suppose that there exists

a nonempty monomial class C(Q′′) for the query Q′′ w.r.t.
the family of databases {DN̄(i)(Q)}, such that the multiplic-

ity monomial of C(Q′′) is the wave of the query Q w.r.t.
{DN̄(i)(Q)}. Then there exists a SCVM from the query Q′′

to the query Q. 2

The proof of Proposition 5.34 is constructive: That is, the
proof generates a SCVM from the query Q′′ to the query Q
of the statement of Proposition 5.34.

Proof. We are given that there exists a nonempty mono-

mial class C(Q′′) for the queryQ′′ w.r.t. the family of databases

{DN̄(i)(Q)}, such that the multiplicity monomial of C(Q′′) is
the wave of the query Q w.r.t. {DN̄(i)(Q)}. Then, by defi-
nition of multiplicity monomials (Section 5.6.3) and of copy-
/noncopy-sigature vectors (Section 5.4.1), we have that:

• In case m ≥ 1, the vector Φn[C(Q′′)] must be a permu-
tation of the vector [Y1 . . . Ym]; and

• In case r ≥ 1, the vector Φc[C(Q′′)] must be a permu-
tation of the vector [νcopyQ (Ym+1) . . . νcopyQ (Ym+r)].

By definition of monomial classes and from the fact that

the monomial class C(Q′′) for the query Q′′ w.r.t. the family
of databases {DN̄(i)(Q)} is not empty (see Section 5.5 for
the relevant results), we have that for each i ∈ N+, the

monomial class C(Q′′) has an association with at least one t∗Q-
valid assignment mapping for Q′′ and {DN̄(i)(Q)}. Fix an
arbitrary i ∈ N+ and consider an arbitrary such association

in C(Q′′). Denote the association by A(init)
∗ , and denote by

θ
(init)
∗ its unity t∗Q-valid assignment mapping for Q′′ and

{DN̄(i)(Q)}; the mapping θ
(init)
∗ exists by Proposition 5.14.

By Proposition 5.20, in case the association A(init)
∗ is such

that the mapping θ
(init)
∗ induces a mapping from the sub-

goals of the query Q′′ into two or more copy-neutral canoni-
cal databases (inDN̄(i)(Q)) for the queryQ, there must exist
an association, call it A∗, that has the same atom-signature

as A(init)
∗ and such that the unity valid assignment mapping

for A∗, call this mapping θ∗, induces a mapping from the
subgoals of the query Q′′ into a single copy-neutral canonical
database (in DN̄(i)(Q)) for the query Q, call this database

D∗. Observe that from the fact that A(init)
∗ and A∗ have the

same atom-signature, we have that A∗ belongs to the mono-

mial class C(Q′′), just as A(init)
∗ does. In addition, A(init)

∗

and A∗ have the same copy-signature (which is Φc[C(Q′′)]),

as well as the same noncopy-signature (which is Φn[C(Q′′)]).

If, on the other hand, the association A(init)
∗ is such that

the mapping θ
(init)
∗ induces a mapping from the subgoals of

26

the query Q′′ into a single copy-neutral canonical database
(in DN̄(i)(Q)) for the query Q, call this database D∗, then

for the remainder of the proof we refer to A(init)
∗ as A∗, and

refer to θ
(init)
∗ as θ∗.

Now denote by νQ′′ the mapping (i) whose domain in the
set of all the terms of the query Q′′ that are not copy vari-
ables of Q′′, and (ii) such that on the entire domain of νQ′′ ,
the mapping νQ′′ coincides with the mapping θ∗. Further,

define µ′Q′′ as the composition ν
(i)
Q ◦νQ′′ of the mapping νQ′′

with the mapping ν
(i)
Q defined in Section 5.3.1. By defini-

tion, µ′Q′′ is a mapping from all the terms of the query Q′′

that are not copy variables of Q′′ to terms of the query Q.
Finally, define µQ′′ as the mapping (i) whose domain is the
set of all terms of the query Q′′ (that is, including all the
copy variables of Q′′), and (ii) such that on the entire do-
main of µ′Q′′ , the mapping µQ′′ coincides with the mapping

µ′Q′′ . Observe that in case r = 0, the mapping µQ′′ is fully
specified and is unique.

It remains to define µQ′′ on the copy variables of the query
Q′′, in case, which we refer to as (iii), where r ≥ 1. In this
case, for each j ∈ {1, . . . , r}, we define µQ′′(Y

′′
m+j) as follows:

Suppose the jth element of the vector Φc[C(Q′′)], being the
variable (in the vector N̄) Nm+k for some 1 ≤ k ≤ w,10

occurs in the vector Φc[C(Q′′)] a total of n times, where 1 ≤
n ≤ r. Suppose further that out of these n positions in which

this fixed variable Nm+k occurs in the vector Φc[C(Q′′)], our
fixed position j is the lth such position from the left, 1 ≤
l ≤ n. Then, by definition of the wave of the query Q,
it must be that for the equivalence class, call it C(Ym+k),
for the same value k as above (i.e., the k in Ym+k is the
same as in the Nm+k), of the copy-sensitive subgoal s of Q
where the copy variable of s is Ym+k, the class C(Ym+k) has
exactly n copy-sensitive subgoals of the query Q. All these n
subgoals of the query Q have the same relational template,
but have distinct copy variables, call the assortment of these
copy variables Yi1, Yi2, . . . , Yin, with i1 < i2 < . . . < in.
(Naturally, the variable Ym+k is one of these n copy variables
Yi1, Yi2, . . . , Yin.) Then define µQ′′(Y

′′
m+j) to be the copy

variable Yil of the query Q, where Yil is the lth variable
in the list (Yi1, Yi2, . . . , Yin). Note that this assignment
algorithm terminates and results in the same assignments,
in µQ′′ , for all copy variables of the query Q′′ independently
of the order in which we choose the positions j out of the set
{1, . . . , r}. Observe also that µQ′′ is still a mapping once we
are done with all the assignments in (iii). (Indeed, each copy
variable of the query Q′′, in case r ≥ 1, is assigned by µQ′′
to a distinct copy variable of the query Q.) Finally, observe
that in case r = w ≥ 1, the mapping µQ′′(Y

′′
m+j) is defined

by (iii), for each j ∈ {1, . . . , r}, as the copy variable Ym+k

of query Q, where k is such that Nm+k is the jth element of

the vector Φc[C(Q′′)].
We now show that properties (1) through (5) of same-scale

covering mappings (SCVMs) in Definition 3.1 are satisfied
by the mapping µQ′′ . (Hence, we conclude that the mapping
µQ′′ is a SCVM from the query Q′′ to the query Q.)

(1) This property in Definition 3.1 is satisfied by the map-
ping µQ′′ due to the fact that the association A∗ has
a (unity) valid assignment mapping, by definition of

10By definition of the wave of the query Q, the vector

Φc[C(Q′′)] cannot contain the constant 1.

valid assignment mappings, and by definition of the

mapping ν
(i)
Q used in the construction of the mapping

µQ′′ .

(2) This property in Definition 3.1 is satisfied by the map-
ping µQ′′ due to the fact that the association A∗ has a
(unity) t∗Q-valid assignment mapping, by definition of
t∗Q-valid assignment mappings, and by definition of the

mapping ν
(i)
Q used in the construction of the mapping

µQ′′ .

(3) This property in Definition 3.1 is satisfied by the map-
ping µQ′′ due to the facts that:

– The noncopy-signature of the associationA∗ is (in
case m ≥ 1) a permutation of the list [Y1 . . . Ym],
and by definition of the mapping µ′Q′′ (and hence
also of the mapping µQ′′) on the set of multi-
set noncopy variables of the query Q′′; thus, µQ′′
maps the set of multiset noncopy variables of the
query Q′′ onto the (same-cardinality) set of mul-
tiset noncopy variables of the query Q; and

– The copy-signature of the association A∗ is (in
case r ≥ 1) a permutation of the list [νcopyQ (Ym+1)

. . . νcopyQ (Ym+r)], and by definition of the map-
ping µQ′′ on the set of copy variables of the query
Q′′; thus, µQ′′ maps the set of copy variables of
the query Q′′ onto the (same-cardinality) set of
copy variables of the query Q.

(4) This property in Definition 3.1 is satisfied by the map-
ping µQ′′ due to the fact that, by its definition, map-
ping µQ′′ maps each relational subgoal of the query
Q′′ into a unique element of the set SC(Q) of subgoals
of the query Q.

(5) This property in Definition 3.1 is satisfied by the map-
ping µQ′′ due to the facts that:

– by its definition, mapping µQ′′ maps each copy-
sensitive subgoal of the query Q′′ into a subgoal
of the query Q; and

– the copy-signature of the association A∗ does not
have occurrences of the constant 1, hence the map-
ping µQ′′ maps each copy-sensitive subgoal of the
queryQ′′ into a copy-sensitive subgoal of the query
Q.

We conclude that µQ′′ is, by construction, a SCVM from
the query Q′′ to the query Q.

5.8 Extended Example: Basic Notation and
Constructs

In this section we provide an extended example that il-
lustrates the notions and constructions introduced in Sec-
tions 5.2 through 5.7 of the proof of Theorem 4.1. The
example uses three CCQ queries, Q, Q′, and Q′′; each of
the queries is an explicit-wave query by part (1) of Defini-
tion 4.1. By the results in this paper, for the queries Q and
Q′ of Example 5.3 we have that Q ≡C Q′. In the beginning
of the example, we exhibit a SCVM from Q′ to Q. (The
existence of the mapping is stipulated by Theorem 4.1.) At
the same time, it is easy to ascertain that there does not

27

exist a SCVM from the query Q′′ to the query Q of Exam-
ple 5.3. Thus, by Theorem 4.1, Q ≡C Q′′ cannot hold for
the queries Q′′ and Q of Example 5.3. We build on this
example a little later (see Example 5.4 in Section 5.9.3), to
show how to use the proof of Theorem 4.1 to construct a
counterexample database to Q ≡C Q′′. At the end of Ex-
ample 5.3, we also illustrate the constructs of Section 5.7,
by discussing “the wave” of the query Q (see Definition 5.10
in Section 5.7) and the monomial classes of the queries Q
and Q′ that “have the wave” of Q. We also show that query
Q′′ does not “have the wave” of the query Q, and discuss the
implications of this fact.

EXAMPLE 5.3. Let CCQ queries Q, Q′, and Q′′ be as
follows.

Q(X1)← p(X1, Y1), p(X1, X2;Y2), {Y1, Y2}.
Q′(X ′1)← p(X ′1, Y

′
1), p(X ′1, X

′
2;Y ′2), p(X ′1, X

′
3), {Y ′1 , Y ′2}.

Q′′(X ′′1)← p(X ′′1 , X
′′
2), p(X ′′1 , Y

′′
1 ;Y ′′2), {Y ′′1 , Y ′′2 }.

Observe that by each of the three queries having exactly one
copy-sensitive subgoal, each of Q, Q′, and Q′′ is an explicit-
wave query. (See part (1) of Definition 4.1.)

By Theorem 3.3 and by the existence of a SCVM from
Q to Q′ and of another SCVM from Q′ to Q, we have that
Q ≡C Q′. A SCVM µ from Q′ to Q is µ = {X ′1 → X1, Y

′
1 →

Y1, X
′
2 → X2, Y

′
2 → Y2, X

′
3 → X2}.

It is easy to see that there does not exist a SCVM from Q′′

to Q. (Indeed, for each mapping from the terms of Q′′ to the
terms of Q, the mapping violates at least one of conditions
(3) through (5) of Definition 3.1.) Thus, by Theorem 4.1,
Q ≡C Q′′ cannot hold. Later, we build on this example (see
Example 5.4 in Section 5.9.3) to show how to use the proof
of Theorem 4.1 to construct a counterexample database to
Q ≡C Q′′.

We now use queries Q and Q′′ to illustrate the notation
and constructions of the proof of Theorem 4.1, sequentially
by subsections of the proof.

Constructing Database DN̄(i)(Q) for N̄ (i) = [2 3].
We first use the notation introduced in Section 5.2 of the

proof of Theorem 4.1. We have that m = |Mnoncopy| =
|{Y1}| = 1, and that r = |Mcopy| = |{Y2}| = 1. The set
SC(Q) of the representative-element subgoals of the query Q
is SC(Q) = {p(X1, Y1), p(X1, X2;Y2)}, with w = 1. The rea-
son is, the only relational subgoal of Q, call this subgoal h1,
is the representative element of the equivalence class {h1},
and the only copy-sensitive subgoal of Q, call this subgoal h2,
is the representative element of the equivalence class {h2}.

We now follow Section 5.3 of the proof of Theorem 4.1,
to illustrate the construction of a database in the family
{DN̄(i)(Q)} for the query Q. We define mapping ν0 =
{X1 → a,X2 → b}, for distinct constants a and b. Then we
have that S0 = {a, b}, and that t∗Q = (a). As m+w = 2 for
the query Q, the vector N̄ for Q comprises two variables,
N1 (intuitively for the multiset noncopy variable Y1 of Q)
and N2 (intuitively for the copy variable Y2 of Q). Let i be
a fixed natural number (i.e., we treat i as the same constant

throughout this example), and let the vector N̄ (i) = [2 3].

That is, N
(i)
1 = 2, and N

(i)
2 = 3. For two distinct con-

stants c and d, such that c and d are also distinct from
the constants a and b used above to form the set S0, let

S
(i)
1 = {c, d}; this set, of cardinality N

(i)
1 , provides the do-

main (in the database) of the multiset noncopy variable Y1

of Q. Then we have, by the definitions in Section 5.3, that:

• S(i)
∗ = S0

⋃
S

(i)
1 ;

• ν(i)
Q = {a→ X1, b→ X2, c→ Y1, d→ Y1};

• νcopy(Y2) = N
(i)
2 = 3; and

• νcopyQ (Y2) = N2.

For the set S(i) = {(c), (d)}, we have that ν(c) = {X1 →
a,X2 → b, Y1 → c, Y2 → 3} and that ν(d) = {X1 → a,X2 →
b, Y1 → d, Y2 → 3}. We use mappings ν(c) and ν(d) each in
one iteration of the main construction cycle for the database
DN̄(i)(Q). The mapping ν(c) applied to the two atoms in the
set SC(Q) results in ground atoms p(a, c; 1) and p(a, b; 3),
and the mapping ν(d) applied to the set SC(Q) results in
ground atoms p(a, d; 1) and (again) p(a, b; 3). Therefore, by
construction we have the database DN̄(i)(Q) = { p(a, c; 1),
p(a, b; 3), p(a, d; 1) }. We will refer to the ground atom
p(a, c; 1) in the database DN̄(i)(Q) as d1, to the atom p(a, b; 3)
as d2, and to the atom p(a, d; 1) as d3.

Construction of the Terms for F (Q′′)
(Q) .

We now follow Sections 5.4 through 5.7 of the proof of
Theorem 4.1, to illustrate the construction of the terms for

the function F (Q′′)
(Q) , for the query Q′′ and for the database

DN̄(i)(Q) as constructed above in this example.
The number G of subgoals of the query Q′′ is G = 2. De-

note by g1 the copy-sensitive subgoal p(X ′′1 , Y
′′
1 ;Y ′′2) of Q′′,

and by g2 the relational subgoal p(X ′′1 , X
′′
2) of the query. In

query Q, denote by h1 the subgoal p(X1, Y1) and by h2 the
subgoal p(X1, X2;Y2).

There are nine associations between the G = 2 subgoals of
the query Q′′ and the three ground atoms (d1, d2, d3) of the
database DN̄(i)(Q). We list all the associations in this table:

ID DB Ψa[Aj] Φn Φc Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q))

A1 [d1, d1] [h1, h1] Y1 1 (a, c, 1)
A2 [d1, d2] [h1, h2] Y1 1 (a, c, 1)
A3 [d1, d3] [h1, h1] Y1 1 (a, c, 1)
A4 [d2, d1] [h2, h1] X2 N2 (a, b, 1), (a, b, 2), (a, b, 3)
A5 [d2, d2] [h2, h2] X2 N2 (a, b, 1), (a, b, 2), (a, b, 3)
A6 [d2, d3] [h2, h1] X2 N2 (a, b, 1), (a, b, 2), (a, b, 3)
A7 [d3, d1] [h1, h1] Y1 1 (a, d, 1)
A8 [d3, d2] [h1, h2] Y1 1 (a, d, 1)
A9 [d3, d3] [h1, h1] Y1 1 (a, d, 1)

The columns of the table, from left to right, refer to:

1. Association ID, Aj, for each of the associations A1

through A9 between query Q′′ and database DN̄(i)(Q);

2. List of those ground atoms of the database that are
associated by Aj with the subgoals of Q′′; this list is to
be read as “the first item in the list is associated by Aj
with subgoal g1 of Q′′,” and “the second item in the list
is associated by Aj with subgoal g2 of Q′′;”

3. Atom-signature Ψa[Aj] of the association Aj; this list
is to be read as “the first item in the list is associated
by Aj with subgoal g1 of Q′′,” and “the second item in
the list is associated by Aj with subgoal g2 of Q′′;”

4. Noncopy-signature Φn[Aj] of the association Aj;

28

5. Copy-signature Φc[Aj] of the association Aj; and

6. All the tuples contributed by the association Aj to the

set Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)). (We assume that the columns

of the relation Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)) are, from left to

right, X ′′1 , Y
′′
1 , and Y ′′2 .)

For instance, the next-to-last row of the table is to be read
as follows: Association A8 for the query Q′′ and for the
database DN̄(i)(Q) as defined above, associates subgoal g1 of
Q′′ with atom d3 of DN̄(i)(Q), and associates subgoal g2 of
Q′′ with atom d2 of DN̄(i)(Q). Therefore, the atom-signature
Ψa[A8] associates g1 with subgoal h1 of the query Q, and
associates g2 with subgoal h2 of Q. The noncopy-signature
of A8 maps the multiset noncopy variable Y ′′1 of the query
Q′′ to the multiset noncopy variable Y1 of the query Q, and
the copy-signature of A8 maps the copy variable Y ′′2 of the
query Q′′ to the “copy value” 1 of the relational subgoal h1

of the query Q. Finally, association A8 contributes tuple

(a, d, 1) to the set Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)).

The construction of the table uses the notation and defi-

nitions of Section 5.4.1: The mapping ψ
gen(Q)

N̄(i) , as induced

by the mapping ν
(i)
Q , is defined as ψ

gen(Q)

N̄(i) = {d1 → h1, d2 →
h2, d3 → h1}. Then the atom-signature of, say, association

A8 is computed as the vector with first element ψ
gen(Q)

N̄(i) [d3] =

h1 and with second element ψ
gen(Q)

N̄(i) [d2] = h2.

The computation of the noncopy-signature Φn[Aj] for each
association Aj uses an arbitrary valid assignment mapping,
call it θ, for Q′′, DN̄(i)(Q), and Aj, as well as the map-

ping ν
(i)
Q defined earlier in this example. Then the noncopy-

signature of, say, association A8 is computed as the unary

(because m = 1) vector Φn[A8] = [ν
(i)
Q (θ8(Y ′′1))] = [ν

(i)
Q (d)] =

Y1. The reason is, A8 generates a unique valid assignment
mapping θ8 = {X ′′1 → a, Y ′′1 → d, Y ′′2 → 1, X ′′2 → b} for Q′′

and DN̄(i)(Q). (By definition, θ8 is a unity t∗Q-valid assign-
ment mapping for Q′′, DN̄(i)(Q), and A8.) Then we obtain

for Φn[A8] that [ν
(i)
Q (θ8(Y ′′1))] = [ν

(i)
Q (d)] = Y1.

The computation of the copy-signature Φc[Aj] for each as-
sociation Aj uses the mapping νcopy−sig, which maps sub-
goal h1 of the query Q to constant 1 (because h1 is a re-
lational atom), and maps copy-sensitive subgoal h2 of Q,
with copy variable Y2, to variable νcopyQ (Y2) = N2 in the

vector N̄ . Then the copy-signature of, say, association A8

is computed as the unary (because r = 1) vector Φc[A8] =

[νcopy−sig(ψ
gen(Q)

N̄(i) [d3])] = [νcopy−sig(h1)] = 1.

Finally, we use all the t∗Q-valid assignment mappings for
Q′′, DN̄(i)(Q), and each Aj, to determine the contributions

of each association Aj to the set Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)). For

instance, for the association A8 we use the mapping θ8 (which
is the only t∗Q-valid assignment mapping for A8) to construct

the tuple (a, d, 1) for the set Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)).

We now illustrate the construction of the set A(i)

Q′′ for the

query Q′′ and database DN̄(i)(Q), as defined in Section 5.5.

The set comprises all the nine associations above: A(i)

Q′′ =

{A1, A2, . . . , A9}. We use Proposition 5.18 to conclude that
the tuples shown in the last column of the table in this exam-

ple are all and the only tuples in the set Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q))

for the query and for the database.
Now we illustrate the construction of all the monomial

classes, as equivalence classes of elements of the set A(i)

Q′′

for the query Q′′ and database DN̄(i)(Q), as defined in Sec-
tion 5.6. The classes are:

• C(Q′′)
1 = {A1, A3, A7, A9} (for the atom-signature

[h1, h1] of A1, A3, A7, and A9). We have that Φ
C(Q
′′)

1
n =

[Y1] and Φ
C(Q
′′)

1
c = [1].

• C(Q′′)
2 = {A2, A8} (for the atom-signature [h1, h2] of

A2 and A8). We have that Φ
C(Q
′′)

2
n = [Y1] and Φ

C(Q
′′)

2
c =

[1].

• C(Q′′)
3 = {A4, A6} (for the atom-signature [h2, h1] of

A4 and A6). We have that Φ
C(Q
′′)

3
n = [X2] and Φ

C(Q
′′)

3
c =

[N2].

• C(Q′′)
4 = {A5} (for the atom-signature [h2, h2] of A5).

We have that Φ
C(Q
′′)

4
n = [X2] and Φ

C(Q
′′)

4
c = [N2].

Each of the four monomial classes has the noncopy-signature
and the copy-signature of all its constituent associations.

That is, for C(Q′′)
1 , we have above that Φ

C(Q
′′)

1
n = [Y1] and

Φ
C(Q
′′)

1
c = [1], and so on.
For those terms of the query Q that are not copy variables,

we use the mapping ν0 and the set S
(i)
1 to determine that

Dom
(i)
Q (X1) = {a}, Dom(i)

Q (X2) = {b}, and Dom
(i)
Q (Y1) =

{c, d}. Further, DomLabelQ(X1) = DomLabelQ(X2) = 1,
and DomLabelQ(Y1) = N1.

We now compute the multiplicity monomial for each of
the four monomial classes for Q′′ and for DN̄(i)(Q). For

each of C(Q′′)
1 and C(Q′′)

2 , we have that Π
Φ
C(Q
′′)

1
n

= Π
Φ
C(Q
′′)

2
n

is the product Π1
j=1DomLabelQ(Yj) = N1. Further, we have

that Π
Φ
C(Q
′′)

1
c

= Π
Φ
C(Q
′′)

2
c

is the product Π1
j=11. Thus, the

multiplicity monomial for each of C(Q′′)
1 and C(Q′′)

2 is the

monomial N1×1 = N1. Observe that N
(i)
1 = 2 in our vector

N̄ (i) = [2 3], and that the value N
(i)
1 = 2 of the monomial N1

for each of C(Q′′)
1 and C(Q′′)

2 is the correct count of the two
tuples, (a, c, 1) and (a, d, 1), contributed by each of the two

classes individually to the set Γ
t∗Q
S̄

(Q′′, DN̄(i)(Q)). Note that

the projection of all these tuples on Y ′′1 (in Γ
t∗Q
S̄

(Q′′, DN̄(i)(Q)))

is exactly all the elements of the set Dom
(i)
Q (Y1); recall that

Y1 is the only element of the vector Π
Φ
C(Q
′′)

1
n

and of the vec-

tor Π
Φ
C(Q
′′)

2
n

. (See Proposition 5.26 for the details.)

For each of C(Q′′)
3 and C(Q′′)

4 , we have that Π
Φ
C(Q
′′)

3
n

=

Π
Φ
C(Q
′′)

4
n

is the product Π1
j=1DomLabelQ(X2) = 1. Further,

we have that Π
Φ
C(Q
′′)

3
c

= Π
Φ
C(Q
′′)

4
c

is the product Π1
j=1N2 =

N2. Thus, the multiplicity monomial for each of C(Q′′)
3 and

C(Q′′)
4 is the monomial 1×N2 = N2. Observe that N

(i)
2 = 3

in our vector N̄ (i) = [2 3], and that the value N
(i)
2 = 3 of

the monomial N2 for each of C(Q′′)
3 and C(Q′′)

4 is the cor-
rect count of the three tuples, (a, b, 1), (a, b, 2), and (a, b, 3),

29

contributed by each of the two classes individually to the set

Γ
t∗Q
S̄

(Q′′, DN̄(i)(Q)). Note that the only element in the pro-

jection of all these tuples on Y ′′1 (in Γ
t∗Q
S̄

(Q′′, DN̄(i)(Q))) is

exactly the only element of the set Dom
(i)
Q (X2); recall that

X2 is the only element of the vector Π
Φ
C(Q
′′)

3
n

and of the

vector Π
Φ
C(Q
′′)

4
n

. (See Proposition 5.26 for the details.)

For the construction of the function F (Q′′)
(Q) from the above

multiplicity monomials, please see Example 5.4 (Section 5.9.3).

Construction of the Terms for F (Q)

(Q) .
We now follow Sections 5.4 through 5.7 of the proof of

Theorem 4.1, to illustrate the construction of the terms for

the function F (Q)

(Q) , for the query Q and for the database

DN̄(i)(Q) as constructed above in this example. We follow
steps similar to those used in the construction of the terms

for the function F (Q′′)
(Q) for the query Q′′, see preceding sec-

tion of this example. As a result of the steps, we obtain four
monomial classes for the query Q:

• Monomial class C(Q)
1 has noncopy-signature [Y1] and

copy-signature [1]; it contributes tuples (a, c, 1) and

(a, d, 1) to the set Γ
t∗Q
S̄

(Q,DN̄(i)(Q)). The multiplic-

ity monomial for C(Q)
1 is the term N1.

• Monomial class C(Q)
2 has noncopy-signature [Y1] and

copy-signature [N2]; it contributes tuples (a, c, 1), (a, c, 2),

(a, c, 3), (a, d, 1), (a, d, 2), and (a, d, 3) to the set Γ
t∗Q
S̄

(Q,DN̄(i)(Q)).

The multiplicity monomial for C(Q)
2 is the term N1 ×

N2.

• Monomial class C(Q)
3 has noncopy-signature [X2] and

copy-signature [1]; it contributes tuple (a, b, 1) to the

set Γ
t∗Q
S̄

(Q,DN̄(i)(Q)). The multiplicity monomial for

C(Q)
3 is the term 1 (i.e., constant 1).

• Monomial class C(Q)
4 has noncopy-signature [X2] and

copy-signature [N2]; it contributes tuples (a, b, 1), (a, b, 2),

and (a, b, 3) to the set Γ
t∗Q
S̄

(Q,DN̄(i)(Q)). The multi-

plicity monomial for C(Q)
4 is the term N2.

For the construction of the function F (Q)

(Q) from the above

multiplicity monomials, please see Example 5.4 (Section 5.9.3).

Construction of the Terms for F (Q′)
(Q) .

The construction of the terms for the function F (Q′)
(Q) is

almost identical to that for the function F (Q)

(Q) , because the

only difference between Q and Q′ is in the presence of an
extra subgoal p(X ′1, X

′
3) in Q′, and this subgoal does not in-

troduce any multiset variables (of Q′). Thus, we obtain the
same monomial classes for Q′ and for Q (modulo renaming
all the variables of Q into “same-name” variables of Q′, for
instance variable X1 of Q corresponds to variable X ′1 of Q′).
Please see Example 5.4 (Section 5.9.3) for the construction

of the function F (Q′)
(Q) from the above multiplicity monomials.

The Wave of Query Q w.r.t. {DN̄(i)(Q)}.
We now use the monomial classes of the queries Q, Q′,

and Q′′ to illustrate the notion of the “wave of CCQ query,”
which was introduced in Section 5.7. By Definition 5.10, the
wave of the query Q of this example, w.r.t. the family of
databases {DN̄(i)(Q)}, is the product N1 × N2. By Proposi-
tion 5.33, the query Q has a nonempty monomial class w.r.t.

{DN̄(i)(Q)}, specifically the monomial class C(Q)
2 , such that

the multiplicity monomial of the class C(Q)
2 is exactly the

wave of the query Q w.r.t. {DN̄(i)(Q)}.
Now the query Q′ of this example also has a nonempty

monomial class w.r.t. {DN̄(i)(Q)}, such that the multiplicity
monomial of that monomial class is the wave of the query Q.
(Recall that in this example we obtained the same monomial
classes for Q′ and for Q, modulo renaming all the variables
of Q into “same-name” variables of Q′.) Thus, by Proposi-
tion 5.34, there must exist a SCVM from the query Q′ to the
query Q. Indeed, the same-scale covering mapping µ of the
beginning of this example is built as specified in the proof of
Proposition 5.34.

Finally, observe that for the query Q′′ of this example and
for each nonempty monomial class of Q′′ w.r.t. {DN̄(i)(Q)},
the multiplicity monomial of the monomial class is not the
wave of the query Q. Thus, Proposition 5.34 does not ap-
ply. Indeed, as we showed in the beginning of this example,
there does not exist a SCVM from Q′′ to Q. Then from
Theorem 4.1 we conclude that Q ≡C Q′′ does not hold for
the queries Q and Q′′ of this example. Please see Exam-
ple 5.4 (Section 5.9.3) for a discussion of how the database
DN̄(i)(Q) constructed earlier (in Example 5.3) is a coun-
terexample database for Q ≡C Q′′. In addition, for the wave

P(Q)
∗ = N1 × N2 of the query Q w.r.t. {DN̄(i)(Q)}, Exam-

ple 5.4 points out the presence of the monomial P(Q)
∗ in the

functions F (Q)

(Q) and F (Q′)
(Q) , for the queries Q and Q′ of this

example, and also points out the absence of the monomial

P(Q)
∗ in the function F (Q′′)

(Q) , for the query Q′′ of this exam-

ple. 2

5.9 Putting Together the Function F (Q′′)
(Q)

In this section we define the function F (Q′′)
(Q) outlined in

the beginning of Section 5.6. The reason that we construct
this function in this proof of Theorem 4.1 is that we want to
be able to pinpoint those queries Q′′ that are associated with
the wave (see Definition 5.10) of the query Q. That is, later
in this proof of Theorem 4.1 (specifically in Section 5.10), for
the query Q′ specified in the statement of the Theorem we
will use the facts that (i) Q′ ≡C Q (and thus their respective

functions F (Q′)
(Q) and F (Q)

(Q) must return the same value on

each database) and that (ii) Q is an explicit-wave query, to

infer that the function F (Q′)
(Q) for the query Q′ must have

as its component the wave monomial of the query Q. The
claim of Theorem 4.1 will then follow from Proposition 5.34.

The only entities that we use in this section to specify the

function F (Q′′)
(Q) are (a) the multiplicity monomials defined in

Section 5.6, and (b) the noncopy-signatures and the copy-
signatures of the monomial classes introduced in Section 5.6.
Recall that each of the multiplicity monomials, as well as
each of the copy-signatures, is in terms of the variables in
the vector N̄ ; we will show in this section how to “convert”
the noncopy-signatures into collections of variables in the
vector N̄ .

30

We specify the function F (Q′′)
(Q) for an arbitrary CCQ query

Q, for the family {DN̄(i)(Q)} of databases defined using Q
(as outlined in Section 5.3), and for an arbitrary CCQ query
Q′′ that satisfies the restrictions (w.r.t. the query Q) of
Section 5.2.

5.9.1 Notation, Definitions, Basic Results
For CCQ queries Q and Q′′ satisfying the requirements

of Section 5.2, suppose that Q and Q′′ are also such that
(as discussed in the beginning of Section 5.6) the set of all
nonempty monomial classes for Q′′ and for the family of
databases {DN̄(i)(Q)} is not empty. That is, suppose that

{C(Q′′)
1 , . . . , C(Q′′)

n∗ } is the set of all nonempty monomial
classes for Q′′ and for {DN̄(i)(Q)}, with n∗ ≥ 1.

We begin the exposition by making a few straightfor-
ward observations. Recall that in Section 5.6, we denoted

by Γ(i)[C(Q′′)] the set of all tuples contributed to the set

Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)) by all the valid assignment mappings

for all the elements of the class C(Q′′). The following proposi-
tion is immediate from Proposition 5.26, for the cases where
n∗ ≥ 2.

Proposition 5.35. Given CCQ queries Q and Q′′, sup-

pose that the set C[Q′′] = {C(Q′′)
1 , . . . , C(Q′′)

n∗ } of all nonempty
monomial classes for Q′′ and for the family of databases

{DN̄(i)(Q)} has n∗ ≥ 2 elements. Further, let C(Q′′)
n and

C(Q′′)
p , for some n, p ∈ {1, . . . , n∗}, be two monomial classes

in the set C[Q′′], such that the noncopy-signatures of C(Q′′)
n

and of C(Q′′)
p are not identical vectors. Then for each i ∈ N+,

we have that Γ(i)[C(Q′′)
n]

⋂
Γ(i)[C(Q′′)

p] = ∅. 2

For the other observations in this subsection, we will need
the following notation. For an arbitrary monomial class

C(Q′′)
n 6= ∅, n ∈ {1, . . . , n∗}, in case r ≥ 1, we denote the ele-

ments of the copy-signature vector Φc[C(Q′′)
n] as [Vj1[n], . . . , Vjr[n]].

Recall that, by definition of copy-signature, for each k ∈
{1, . . . , r} we have that Vjk[n] ∈ {1, Nm+1, . . . , Nm+w},
where the N -values are variables in the vector N̄ . (In case

r = 0, Φc[C(Q′′)
n] is the empty vector by definition.)

Definition 5.11. (Unconditional dominance for mono-

mial classes) Let C(Q′′)
n and C(Q′′)

p be two (not necessarily

distinct) monomial classes in the set {C(Q′′)
1 , . . . , C(Q′′)

n∗ }.
(That is, n, p ∈ {1, . . . , n∗}.) Further, let C(Q′′)

n and C(Q′′)
p

have the same noncopy-signature. Then we say that mono-

mial class C(Q′′)
n unconditionally dominates monomial class

C(Q′′)
p if:

• We have the case r = 0; or

• We have the case r ≥ 1, and for the pair (Vjk[p], Vjk[n])
for each k ∈ {1, . . . , r}, we have that either Vjk[p] = 1,
or Vjk[p] = Vjk[n].

2

We observe that the unconditional-dominance relation is
reflexive by definition.

The following important property of unconditional-dominance
holds by the results of Section 5.6.

Proposition 5.36. Let C(Q′′)
n and C(Q′′)

p be two mono-

mial classes in the set {C(Q′′)
1 , . . . , C(Q′′)

n∗ }. (That is, n, p ∈
{1, . . . , n∗}.) Suppose that C(Q′′)

n unconditionally dominates

C(Q′′)
p . Then for each i ∈ N+, we have that Γ(i)[C(Q′′)

p] ⊆
Γ(i)[C(Q′′)

n]. 2

The following result is immediate from Definition 5.11.

Proposition 5.37. Let C(Q′′)
n and C(Q′′)

p be two mono-

mial classes in the set {C(Q′′)
1 , . . . , C(Q′′)

n∗ }. (That is, n, p ∈
{1, . . . , n∗}.) Further, let C(Q′′)

n and C(Q′′)
p have the same

noncopy-signature. Then we have that (i) C(Q′′)
n uncondi-

tionally dominates C(Q′′)
p and C(Q′′)

p unconditionally domi-

nates C(Q′′)
n , if and only if (ii) C(Q′′)

n and C(Q′′)
p have the

same copy-signature. 2

From reflexivity of unconditional-dominance and from Propo-
sitions 5.36 and 5.37, we obtain the following result.

Proposition 5.38. Let C(Q′′)
n and C(Q′′)

p be two mono-

mial classes in the set {C(Q′′)
1 , . . . , C(Q′′)

n∗ }. (That is, n, p ∈
{1, . . . , n∗}.) Further, let C(Q′′)

n and C(Q′′)
p have the same

noncopy-signature and the same copy-signature. Then for

each i ∈ N+, we have that Γ(i)[C(Q′′)
p] = Γ(i)[C(Q′′)

n]. 2

In Example 5.3 in Section 5.8, monomial class C(Q′′)
1 un-

conditionally dominates a nonidentical 11 (to C(Q′′)
1) mono-

mial class C(Q′′)
2 , and vice versa (that is, monomial class

C(Q′′)
2 unconditionally dominates monomial class C(Q′′)

1). Sim-

ilarly, monomial class C(Q′′)
3 of the same Example uncondi-

tionally dominates a nonidentical (to C(Q′′)
3) monomial class

C(Q′′)
4 , and vice versa.
We now outline an algorithm template that we call Re-

moval of duplicate monomial classes. The input is

the set {C(Q′′)
1 , . . . , C(Q′′)

n∗ }, n
∗ ≥ 1, for CCQ query Q′′ and

for family of databases {DN̄(i)(Q)}; the output is a subset
(denoted by C(Q′′)) of the input. The algorithm template
involves three steps:

(1) Partition all elements of the set {C(Q′′)
1 , . . . , C(Q′′)

n∗ }
into equivalence classes, where two distinct (in case

n∗ ≥ 2) monomial classes C(Q′′)
n and C(Q′′)

p , for n 6=
p ∈ {1, . . . , n∗}, belong to the same equivalence class

if and only if C(Q′′)
n and C(Q′′)

p have identical noncopy-
signatures and identical copy-signatures.

(2) Use an arbitrary algorithm, call it Choose-Represent-
ative-Element, to choose one element of each of the
equivalence classes as the representative element of the
equivalence class.

(3) Return the set C(Q′′) of representative elements (only)

of all of the equivalence classes of the set {C(Q′′)
1 , . . . ,

C(Q′′)
n∗ }.

11Recall (see Section 5.6) that the identity of a monomial
class is determined by its atom-signature.

31

A specific algorithm instantiating the algorithm template
Removal of duplicate monomial classes is obtained by
specifying the algorithm Choose-Representative-Element.
Observe that C(Q′′) 6= ∅ for all nonempty inputs to Re-
moval of duplicate monomial classes and for all choices
of the algorithm Choose-Representative-Element.

Clearly, in general, the contents of the set C(Q′′) depend
on the algorithm, Choose-Representative-Element, for
choosing the representative element of each equivalence class,
within the algorithm template Removal of duplicate mono-
mial classes. (For instance, given as input the four mono-
mial classes of Example 5.3 in Section 5.8, the algorithm
template could produce four different outputs.) At the same
time, the following two results, Proposition 5.39 and Propo-
sition 5.40, hold regardless of the choice of the algorithm
Choose-Representative-Element when instantiating the
algorithm template Removal of duplicate monomial classes.

Proposition 5.39. Given the set C[Q′′] of all nonempty
monomial classes for CCQ query Q′′ and for family of databases
{DN̄(i)(Q)}, and given an algorithm Choose-Representative-
Element to instantiate the algorithm template Removal of
duplicate monomial classes. Then for the output C(Q′′)
of the resulting algorithm given the input C[Q′′], the follow-
ing two facts hold:

(i) For each pair (e1, e2) of distinct (i.e., e1 6= e2) ele-
ments of the set C(Q′′), e1 and e2 either have different
noncopy-signatures or have different copy-signatures;
and

(ii) For all i ∈ N+, we have that:⋃
C∈C[Q′′]

Γ(i)[C] =
⋃

C′∈C(Q′′)

Γ(i)[C′].

2

Proposition 5.39 is immediate from Proposition 5.38 and
from the construction of the algorithm template Removal
of duplicate monomial classes.

In the next result, Proposition 5.40, we denote by |S| the
cardinality of set S. Proposition 5.40 holds by construction
of the algorithm template Removal of duplicate mono-
mial classes.

Proposition 5.40. Let C[Q′′] be the set of all nonempty
monomial classes for CCQ query Q′′ and for family of databases
{DN̄(i)(Q)}. Let a1 and a2 be two instantiations of the algo-
rithm template Removal of duplicate monomial classes,
where a1 and a2 may use different ways of choosing the rep-
resentative element of each equivalence class generated by
the algorithm. Let Cj(Q′′) be the output of algorithm aj on
the input C[Q′′], for j ∈ {1, 2}. Then we have that:

(1) |C1(Q′′)| = |C2(Q′′)|; and

(2) There exists an isomorphism, call it µ, from the set
C1(Q′′) to the set C2(Q′′), such that for each element
e of the set C1(Q′′), e and µ(e) have the same copy-
signature as well as the same noncopy-signature.

2

For our purpose of constructing a function that would
return the multiplicity of the tuple t∗Q in the bag ResC

(Q′′, DN̄(i)(Q)), for all i ∈ N+, Propositions 5.39 and 5.40
let us refer to the output of an arbitrary instantiation of
the algorithm template Removal of duplicate monomial
classes as the output, C(Q′′), of the algorithm (template).
We can show that the unconditional-dominance relation of
Definition 5.11 is reflexive, antisymmetric, and transitive on
the set C(Q′′). It follows that the unconditional-dominance
relation is a partial order on that set.

We now use any standard algorithm12 for removal of all
those monomial classes from the set C(Q′′) that (monomial
classes) are unconditionally dominated by some other mono-
mial class in the set C(Q′′). Clearly, the output of that al-
gorithm is a unique subset, call it Cnondom(Q′′), of the set
C(Q′′). We say that the set Cnondom(Q′′) is the result of
dropping unconditionally-dominated monomial classes from
the set C(Q′′).

Using Propositions 5.39 and 5.40, it is straightforward to
show the following.

Proposition 5.41. Let C[Q′′] be the set of all nonempty
monomial classes for CCQ query Q′′ and for family of databases
{DN̄(i)(Q)}. Let a1 and a2 be two instantiations of the algo-
rithm template Removal of duplicate monomial classes,
where a1 and a2 may use different ways of choosing the rep-
resentative element of each equivalence class generated by
the algorithm. Let Cj(Q′′) be the output of algorithm aj on
the input C[Q′′], for j ∈ {1, 2}. Further, let Cnondomj (Q′′) be
the result of dropping unconditionally-dominated monomial
classes from the set Cj(Q′′), for j ∈ {1, 2}. Then for all
i ∈ N+, we have that:⋃

C∈C[Q′′]

Γ(i)[C] =
⋃

C′∈Cnondom1 (Q′′)

Γ(i)[C′]

=
⋃

C′′∈Cnondom2 (Q′′)

Γ(i)[C′′].

2

As a result of Proposition 5.41, for our purpose (of con-
structing a function that would return the multiplicity of
the tuple t∗Q in the bag ResC(Q′′, DN̄(i)(Q))) we can refer

to each set Cnondom(Q′′) as the set Cnondom(Q′′) for the set
of all nonempty monomial classes for CCQ query Q′′ and for
family of databases {DN̄(i)(Q)}, regardless of the identity of
the exact set C(Q′′) as discussed above.

5.9.2 The Easy Case of Constructing F (Q′′)
(Q)

The following observation lets us finalize the construction

of the function F (Q′′)
(Q) for the case where all elements of the

set Cnondom(Q′′) have different noncopy-signatures. In this

case, we have that the function F (Q′′)
(Q) is always a multi-

variate polynomial in terms of the variables in the vector
N̄ and with integer coefficients, on the entire domain N of
the function. The result of Proposition 5.42 is immediate
from Propositions 5.35, 5.39, and 5.40. For the definition of
multiplicity monomial for monomial class, see Section 5.6.3.

Proposition 5.42. Given the set Cnondom(Q′′) for a CCQ
query Q′′ and for a family of databases {DN̄(i)(Q)}, such

12We use the observation that the unconditional-dominance
relation of Definition 5.11 is a partial order on the set C(Q′′).

32

that the elements of the set Cnondom(Q′′) have |Cnondom(Q′′)|
distinct noncopy-signatures. Then, for each i ∈ N+, the car-

dinality of the set Γ
(t∗Q)

S̄
(Q′′, DN̄(i)(Q)), can be computed

exactly, by substituting the values in the vector N̄ (i) (specifi-

cally value N
(i)
j as value of variable Nj, for each j ∈ {1, . . . ,m+

w}) into the formula

ΣC∈Cnondom(Q′′)M[C]

where M[C] is the multiplicity monomial of monomial class
C. 2

That is, under the conditions of Proposition 5.42, the func-

tion F (Q′′)
(Q) is given by the formula

ΣC∈Cnondom(Q′′)M[C]

in the Proposition.
For instance, if we choose the set {C1(Q′′), C3(Q′′)} as

the set Cnondom(Q′′) for Example 5.3 in Section 5.8, then,

for query Q′′ of the Example, the function F (Q′′)
(Q) is the

following multivariate polynomial in terms of the variables

in the vector N̄ : F (Q′′)
(Q) = N1 + N2. For the vector N̄ (i)

of Example 5.3, F (Q′′)
(Q) returns the correct multiplicity, 5, of

the tuple t∗Q = (a) in the bag ResC(Q′′, DN̄(i)(Q)). (For the
details, please see Example 5.4 in Section 5.9.3.)

Corollary 5.1. In case r ≤ 1, given a CCQ query Q′′

and a family of databases {DN̄(i)(Q)}. Then, for each i ∈
N+, the cardinality of the set Γ

(t∗Q)

S̄
(Q′′, DN̄(i)(Q)), can be

computed exactly, by substituting the values in the vector

N̄ (i) (specifically value N
(i)
j as value of variable Nj, for each

j ∈ {1, . . . ,m+ w}) into the formula

ΣC∈Cnondom(Q′′)M[C]

where M[C] is the multiplicity monomial of monomial class
C. 2

Proof. (sketch) The reason that Corollary 5.1 of Propo-
sition 5.42 holds is that in case r ≤ 1, either r = 0 holds and
then the copy-signature of each monomial class for Q′′ is the
empty vector, or r = 1 holds and then the copy-signature
of each monomial class for Q′′ is either the vector [1] or
the vector [N], for exactly one variable name N across all
the copy-signatures. Then the unconditional-dominance re-
lation of Definition 5.11 holds for each pair of the monomial
classes for the query Q′′ such that the classes in the pair
have the same noncopy-signature, and hence all elements of
the set Cnondom(Q′′) have different noncopy-signatures.

Observe that it is not obvious how to generalize the state-
ment of Corollary 5.1 to the case r ≥ 2. Indeed, even
when w ≤ 1 (and hence we still have exactly one vari-
able name N as the only possible variable across all the
noncopy-signatures),13 the case r = 2 already presents us
with the (theoretical) possibility where two monomial classes
for Q′′, with the same noncopy-signature, might have respec-
tive copy-signatures [1N] and [N 1], for which unconditional-
dominance does not hold in either direction.

13By Proposition 5.4, r ≥ 1 implies w ≥ 1, hence from r ≥ 2
and w ≤ 1 we have the exact equality w = 1.

5.9.3 Illustration
In this subsection we build on Example 5.3 (of Section 5.8),

to show the construction of the functions F (Q)

(Q) , F (Q′)
(Q) , and

F (Q′′)
(Q) , for the three queries of Example 5.3 and for the

database constructed in Example 5.3. We also show how
that database is a counterexample to Q ≡C Q′′, for the
queries Q and Q′′ of Example 5.3. Finally, we continue
our discussion (started in Example 5.3) of “the wave of”
the query Q, and explore the relationship between that en-

tity and the multivariate polynomials for F (Q)

(Q) , F (Q′)
(Q) , and

F (Q′′)
(Q) .

EXAMPLE 5.4. Recall the queries Q, Q′, and Q′′ of Ex-
ample 5.3 (of Section 5.8). Recall also the database DN̄(i)(Q)
that we constructed in Example 5.3 for the query Q. In this

example we build functions F (Q)

(Q) , F (Q′)
(Q) , and F (Q′′)

(Q) , for the

three queries Q, Q′, and Q′′ and for the database DN̄(i)(Q).
We also show how the database DN̄(i)(Q) is a counterex-
ample to Q ≡C Q′′. Finally, we continue our discussion
(started in Example 5.3) of “the wave of” the query Q, and
explore the relationship between that entity and the multi-

variate polynomials for F (Q)

(Q) , F (Q′)
(Q) , and F (Q′′)

(Q) .

Construction of Function F (Q)

(Q) .
For the query Q and database DN̄(i)(Q), we came up in

Example 5.3 with four monomial classes C(Q)
1 , C(Q)

2 , C(Q)
3 ,

and C(Q)
4 . By Definition 5.11, monomial class C(Q)

2 unconditionally-

dominates monomial class C(Q)
1 . The reason is, C(Q)

1 and

C(Q)
2 have identical noncopy-signatures, the copy-signature of

the monomial class C(Q)
1 is [1], and the copy-signature of the

monomial class C(Q)
2 is [N2]. (See Section 5.9.1 for further

details on unconditional-dominance.) Similarly, monomial

class C(Q)
4 unconditionally-dominates monomial class C(Q)

3 .

Thus, the set {C(Q)
2 , C(Q)

4 } is the set Cnondom(Q) as defined
in Section 5.9.1.

Then, by Proposition 5.42, the function F (Q)

(Q) is the follow-

ing multivariate polynomial in terms of the variables in the

vector N̄ : F (Q)

(Q) = N1×N2 +N2. For the vector N̄ (i) = [2 3]

that we fixed in Example 5.3, F (Q)

(Q) returns the correct multi-

plicity, 9, of the tuple t∗Q = (a) in the bag ResC(Q,DN̄(i)(Q)).

Construction of Function F (Q′)
(Q) .

For the query Q′ and database DN̄(i)(Q) of Example 5.3,
we use the reasoning similar to that for constructing the

function F (Q)

(Q) earlier in this example, to obtain the function

F (Q′)
(Q) = N1 × N2 + N2. As the multivariate polynomials

F (Q)

(Q) and F (Q′)
(Q) are identical to each other, they output the

same answer for each N̄ (i) ∈ N .

Construction of Function F (Q′′)
(Q) .

For the query Q′′ and database DN̄(i)(Q), we came up

in Example 5.3 with four monomial classes C(Q′′)
1 , C(Q′′)

2 ,

C(Q′′)
3 , and C(Q′′)

4 . By Definition 5.11, monomial classes

C(Q′′)
1 and C(Q′′)

2 unconditionally-dominate each other. (The

reason is, C(Q′′)
1 and C(Q′′)

2 have identical noncopy-signatures,

33

and have identical copy-signatures.) Similarly, monomial

classes C(Q′′)
3 and C(Q′′)

4 unconditionally-dominate each other.

Suppose that we choose the set {C(Q′′)
1 , C(Q′′)

3 } as the set
Cnondom(Q′′) as defined in Section 5.9.1. (See Section 5.9.1
for the discussion of possible choices for the set Cnondom(Q′′).)

Then, by Proposition 5.42, the function F (Q′′)
(Q) is the fol-

lowing multivariate polynomial in terms of the variables in

the vector N̄ : F (Q′′)
(Q) = N1 +N2. For the vector N̄ (i) = [2 3]

that we fixed in Example 5.3, F (Q′′)
(Q) returns the correct mul-

tiplicity, 5, of the tuple t∗Q = (a) in the bag ResC(Q′′, DN̄(i)(Q)).

Database DN̄(i)(Q) Is a Counterexample to Q ≡C Q′′.
From the different sizes of the sets Γ

t∗Q
S̄

(Q,DN̄(i)(Q)) and

Γ
t∗Q
S̄

(Q′′, DN̄(i)(Q)) on the database DN̄(i)(Q), as discussed
earlier in this example, we have that the database DN̄(i)(Q)
is a counterexample to Q ≡C Q′′.

The Wave of Q in the Functions F (Q)

(Q) , F (Q′)
(Q) .

Recall from Example 5.3 (Section 5.8) our discussion of
“the wave of” the query Q of that example. By Defini-
tion 5.10, the wave of that query Q w.r.t. the family of
databases {DN̄(i)(Q)} is the monomial N1 × N2.

For the queries Q, Q′ and Q′′ discussed in this example
(see Example 5.3 for their definitions), we now contrast the

functions F (Q)

(Q) and F (Q′)
(Q) , on the one hand, with the func-

tion F (Q′′)
(Q) , on the other hand. Recall that F (Q)

(Q) = F (Q′)
(Q)

= N1 × N2 + N2. Observe that each of F (Q)

(Q) and F (Q′)
(Q)

has a term that is exactly the wave of the query Q (w.r.t.
{DN̄(i)(Q)}), that is the term N1 × N2. In contrast, the

function F (Q′′)
(Q) = N1 +N2 clearly does not have a term that

is the wave N1 × N2 of the query Q w.r.t. {DN̄(i)(Q)}. 2

5.9.4 Beyond the Easy Case: Example
In this subsection we exhibit a CCQ query Q, such that

the function F (Q)

(Q) , w.r.t. the family of databases {DN̄(i)(Q)},
cannot be computed using the results of Section 5.9.2, specif-
ically using Proposition 5.42. This example motivates the
development, in Section 5.9.5, of a more general (as com-
pared to that of Section 5.9.2) approach toward constructing

the function F (Q)

(Q) for CCQ queryQ′′ and family of databases

{DN̄(i)(Q)}.

EXAMPLE 5.5. Let CCQ query Q be as follows.

Q(X1)← r(X1, Y1, Y2, X2;Y3), r(X1, Y1, Y2, X3;Y4),
{Y1, Y2, Y3, Y4}.

(This is the query Q of Example 4.1, rendered here using
somewhat different notation.)

Toward Constructing Function F (Q)

(Q) for the Databases
{ DN̄(i)(Q) }.

We show here how to develop a database in the family
of databases {DN̄(i)(Q)} for the query Q, and start con-

structing function F (Q)

(Q) w.r.t. the databases in the family.

(We will complete the construction in Example 5.6 in Sec-
tion 5.9.6.)

We begin by following Section 5.3 of the proof of Theo-
rem 4.1. Fix an i ∈ N+. Let the vector N̄ (i), for this fixed i,

of values of the variables in the vector N̄ = [N1 N2 N3 N4],

be N̄ (i) = [1 2 3 5]. Here, each Nj in N̄ is generated for
the variable Yj of Q, for j ∈ {1, 2, 3, 4}. We use ν0(X1) =
a (hence t∗Q = (a)), ν0(X2) = b, and ν0(X3) = c. Let

S
(i)
1 = {e}, and let S

(i)
2 = {f, g}. These setting generate,

for the fixed i, the database DN̄(i)(Q) = { r(a, e, f, b; 3),
r(a, e, g, b; 3), r(a, e, f, c; 5), r(a, e, g, c; 5) }. We will refer
to the ground atoms in the set DN̄(i)(Q), from left to right,
as d1 through d4. Denote by h1 the first subgoal of the
query Q, and by h2 its second subgoal. By construction of

DN̄(i)(Q), we have that ψ
gen(Q)

N̄(i) [d1] = ψ
gen(Q)

N̄(i) [d2] = h1, and

that ψ
gen(Q)

N̄(i) [d3] = ψ
gen(Q)

N̄(i) [d4] = h2.
We now follow Sections 5.4 through 5.9.1 of the proof of

Theorem 4.1, to construct the monomial classes for the func-

tion F (Q)

(Q) , for the query Q and for the database DN̄(i)(Q)

as generated above in this example. As a result of the con-
struction steps,14 we obtain four monomial classes for the
query Q:

• Monomial class C(Q)
1 has noncopy-signature [Y1 Y2] and

copy-signature [N3 N3]; it contributes to the set Γ
t∗Q
S̄

(Q,DN̄(i)(Q)), with columns (from left to right) X1 Y1

Y2 Y3 Y4, nine tuples (a, e, f, 1, 1) through (a, e, f, 3, 3)
(that is, tuples (a, e, f, 1, 1), (a, e, f, 1, 2), (a, e, f, 1, 3),
(a, e, f, 2, 1), . . . , (a, e, f, 3, 2), (a, e, f, 3, 3)), as well as
nine tuples (a, e, g, 1, 1) through (a, e, g, 3, 3).

• Monomial class C(Q)
2 has noncopy-signature [Y1 Y2] and

copy-signature [N3 N4]; it contributes to the set Γ
t∗Q
S̄

(Q,DN̄(i)(Q)) fifteen tuples (a, e, f, 1, 1) through (a, e, f, 3, 5),
as well as fifteen tuples (a, e, g, 1, 1) through (a, e, g, 3, 5).

• Monomial class C(Q)
3 has noncopy-signature [Y1 Y2] and

copy-signature [N4 N3]; it contributes to the set Γ
t∗Q
S̄

(Q,DN̄(i)(Q)) fifteen tuples (a, e, f, 1, 1) through (a, e, f, 5, 3),
as well as fifteen tuples (a, e, g, 1, 1) through (a, e, g, 5, 3).

• Monomial class C(Q)
4 has noncopy-signature [Y1 Y2] and

copy-signature [N4 N4]; it contributes to the set Γ
t∗Q
S̄

(Q,DN̄(i)(Q)) twenty five tuples (a, e, f, 1, 1) through
(a, e, f, 5, 5), as well as twenty five tuples (a, e, g, 1, 1)
through (a, e, g, 5, 5).

While all four of the above monomial classes have the
same noncopy-signature, none of the classes unconditionally
dominates (see Definition 5.11) any other monomial class in

the set {C(Q)
1 , C(Q)

2 , C(Q)
3 , C(Q)

4 }. 2

5.9.5 The General Case of Constructing F (Q′′)
(Q)

In this subsection we address the construction of the func-
tion F (Q′′)

(Q) for the general case, as opposed to the (easy)

case considered in Section 5.9.2. That is, we introduce
an approach to computing, for a query Q′′ and database

DN̄(i)(Q), the cardinality of the set Γ(t∗Q)(Q′′, DN̄(i)(Q)) –
and therefore the multiplicity of the tuple t∗Q in the bag
ResC(Q′′, DN̄(i)(Q)) – for those cases where at least two

distinct elements of the set Cnondom (Q′′) could have the
same noncopy-signature. The approach introduced in this

14These steps are outlined in significant detail in Exam-
ple 5.3, albeit using queries that are different from the
queries of the current example.

34

subsection is applicable to constructing the function F (Q′′)
(Q)

for all cases, including the special case of Section 5.9.2.
Consider Example 5.5 of Section 5.9.4: For the CCQ query

Q and for the family of databases {DN̄(i)(Q)} of the exam-

ple, the set C(Q) = {C(Q)
1 , C(Q)

2 , C(Q)
3 , C(Q)

4 } has four mono-
mial classes with the same noncopy-signature [Y1 Y2] and
with the respective copy-signatures [N3 N3], [N3 N4], [N4 N3],
and [N4 N4]. Clearly, no unconditional-dominance of Def-
inition 5.11 holds for any pair of monomial classes in the
set C(Q). Hence the set Cnondom(Q) (see Section 5.9.1) is
the set C(Q). Further, as the set Cnondom(Q) does not sat-

isfy the conditions of Proposition 5.42, the function F (Q)

(Q) for

the example cannot be constructed using Proposition 5.42.

Indeed, it is easy to see that F (Q)

(Q) for Example 5.5 is not

the sum of the multiplicity monomials for the elements of
the above set Cnondom(Q). Specifically, Example 5.5 shows
that w.r.t. the fixed database DN̄(i)(Q) used in the exam-

ple, each element of the set Cnondom(Q) contributes to the

set Γ(t∗Q)(Q,DN̄(i)(Q)) the same tuple (a, e, f, 1, 1).
We summarize that the problem with the general case con-

sidered in this subsection is that the multiplicity of the tu-

ples contributed, to the set Γ(t∗Q)(. . .), by distinct monomial
classes for the query in question, cannot always be added up
to obtain the correct total contribution of the classes to that
set. At the same time, we know from Proposition 5.25 that

for each i ∈ N+, the size of the set Γ(t∗Q)(Q′′, DN̄(i)(Q)) is

the size of the union
⋃n∗

j=1 Γ(i)[C(Q′′)
j], over all the nonempty

monomial classes C(Q′′)
1 , . . . , C(Q′′)

n∗ for the query Q′′ w.r.t.
the family of databases {DN̄(i)(Q)}. We also know, from

Proposition 5.35, that for each pair (C(Q′′)
n , C(Q′′)

p) of distinct

monomial classes among C(Q′′)
1 , . . . , C(Q′′)

n∗ , such that C(Q′′)
n

and C(Q′′)
p have distinct noncopy signatures, it holds that the

intersection of the sets Γ(i)[C(Q′′)
n] and Γ(i)[C(Q′′)

p] is empty

for each i ∈ N+. Thus, to obtain the function F (Q′′)
(Q) for the

general case, it remains to consider the (perhaps nonempty)

intersections of the sets Γ(i)[C(Q′′)
n] and Γ(i)[C(Q′′)

p] only for

those pairs (C(Q′′)
n , C(Q′′)

p) where C(Q′′)
n and C(Q′′)

p have the
same noncopy signature.

Thus, the two last missing links in (finally) constructing

the function F (Q′′)
(Q) for the general case, are based on the fol-

lowing two results, Propositions 5.43 and 5.44. Example 5.6
in Section 5.9.6 provides an illustration of the construction

of the function F (Q)

(Q) for the query Q of Example 5.5 in Sec-

tion 5.9.4.

Proposition 5.43. Suppose the monomial classes in the

set C[Q′′] = {C(Q′′)
1 , . . . , C(Q′′)

n∗ } are indexed (by 1, 2, . . . ,

n∗) in such a way that for all triples (C(Q′′)
j1

, C(Q′′)
j2

, C(Q′′)
j3

),

with 1 ≤ j1 < j2 < j3 ≤ n∗, it cannot be that (a) C(Q′′)
j1

and

C(Q′′)
j3

have the same noncopy signature, and (b) C(Q′′)
j1

and

C(Q′′)
j2

have different noncopy signatures. Further, let n ∈
{1, . . . , n∗} be such that n is the number of distinct noncopy
signatures of all the elements of the set C[Q′′]. Finally, let
k0 = 0 and, for this value of n, let 1 ≤ k1 < k2 < . . . < kn
= n∗ be such that for each j ∈ {1, 2, . . . , n}, all monomial

classes C(Q′′)
kj−1+1, C(Q′′)

kj−1+2, . . ., C(Q′′)
kj

have the same noncopy

signature.15

Let i ∈ N+. Then the cardinality of the set Γ(t∗Q)(Q′′,
DN̄(i)(Q)) is given exactly as the sum

n−1∑
j=0

|
(kj+1)−(kj)⋃

l=1

Γ(i)[C(Q′′)
(kj)+l

] | .

(Here, each C(Q′′)
(kj)+l

referenced in the formula is the(kj + l)’th

element of the set C[Q′′] = {C(Q′′)
1 , . . . , C(Q′′)

n∗ }, under a
fixed ordering of the elements of the set as specified in the
beginning of the statement of this result.) 2

(As usual, we denote by |S| the cardinality of the set S.
The result of Proposition 5.43 is immediate from Proposi-
tions 5.25 and 5.35.)

Now we will be able to compute correctly the function

F (Q′′)
(Q) for each i ∈ N+, as soon as we are able to evaluate

the formulas of the form

|
(kj+1)−(kj)⋃

l=1

Γ(i)[C(Q′′)
(kj)+l

] |, (1)

as introduced in Proposition 5.43. We compute the value of
such formulas using the basic inclusion-exclusion principle
for computing the cardinality of the union of several sets.
All that the inclusion-exclusion principle requires as inputs
is the cardinalities of the intersections of the relevant (groups
of) sets. (We handle the case of determining the size of each
individual set, S, in the input to the cardinality-of-union
formula, as the special case of “intersection of S with itself.”
As will be clear from the statement of Proposition 5.44, this
special case is captured correctly – as expected – by Propo-
sition 5.30.)

Thus, our next result, Proposition 5.44, is the final missing

link in the construction of the function F (Q′′)
(Q) , as Proposi-

tion 5.44 tells us how to compute correctly the cardinali-

ties of the intersections of sets of the form Γ(i)[C(Q′′)], using
only the elements of the vector N̄ , that is only variables N1

through Nm+w and nothing else. (More precisely, Proposi-
tion 5.44 gives us a formula where, for each specific i ∈ N+,
we can compute the cardinalities of all the requisite inter-
sections by using the specific values, in N̄ (i) for this value
i, of the respective variables in N̄ . The formula itself is in
terms of N̄ only, and does not use N̄ (i).)

For the formulation of Proposition 5.44, assume that in

the set C[Q′′] = {C(Q′′)
1 , . . . , C(Q′′)

n∗ } there exist (at least) k
monomial classes, for some k ∈ {1, . . . , n∗}, whose noncopy
signature is a given vector Ξ of length m. Suppose that
for some fixed i ∈ N+, we want to compute the cardinality
of the intersection of the sets Γ(i) (using the notation of
Proposition 5.43) for exactly these k elements of the set
C[Q′′]. To make easier the notation in the formal results to

15All of the above conditions together just say that the ele-
ments of the set C[Q′′] are indexed in such a way that, in

the sequence C(Q′′)
1 , . . . , C(Q′′)

n∗ , we first have all the mono-
mial classes with some noncopy-signature NS1, then all the
monomial classes with a different noncopy-signature NS2,
and so on. That is, for each noncopy-signature, NS, of at
least one element of the set C[Q′′], all monomial classes in
C[Q′′] that have the noncopy-signature NS are “grouped to-

gether” in the sequence C(Q′′)
1 , . . . , C(Q′′)

n∗ .

35

follow, assume w.l.o.g. that the elements of the set C[Q′′] are
indexed in such a way that for all these chosen k elements
of C[Q′′] that have noncopy-signature Ξ, these k monomial
classes are the first k elements of the set C[Q′′]. (That is,

these k monomial classes are the elements C(Q′′)
1 , . . . , C(Q′′)

k

of the set C[Q′′].)

Now let us refer to the vector Ξ as Φ
C(Q
′′)

1
n . (By our index-

ing of the elements of the set C[Q′′] , as introduced in the
previous paragraph, the noncopy-signature of the monomial

class C(Q′′)
1 is exactly Ξ.) The reason that we want to refer

to the vector Ξ as Φ
C(Q
′′)

1
n is that we want, in the formal

results to follow, to use the notation Π
Φ
C(Q
′′)

1
n

introduced in

Section 5.6.3.
We also use the following notation of Section 5.9.1: For

an arbitrary monomial class C(Q′′)
l ∈ {C(Q′′)

1 , . . . , C(Q′′)
k }, for

the k ∈ {1, . . . , n∗} fixed as explained above, in case where
r ≥ 1, we denote the elements of the copy-signature vector

Φc[C(Q′′)
l] as [Vj1[l], Vj2[l], . . . , Vjr[l]]. (In case where r = 0,

the copy-signature vector of each of C(Q′′)
1 , . . . , C(Q′′)

k is the
empty vector by definition.) Further, in case r ≥ 1, for

the element Vjs[l] of the vector Φc[C(Q′′)
l] (for an arbitrary

s ∈ {1, . . . , r}) and for an i ∈ N+, we denote by V
(i)

js[l] (a)

the constant 1 in case Vjs[l] = 1, and (b) the value N
(i)
u

from the vector N̄ (i) in case Vjs[l] is the element Nu, for an
u ∈ {m+ 1, . . . ,m+ w}, of the vector N̄ .

We are finally ready to phrase the final formal result needed

in the construction of the function F (Q′′)
(Q) . As has been noted

earlier in this subsection, Example 5.6 in Section 5.9.6 pro-

vides an illustration of the construction of the function F (Q)

(Q)

for the query Q and for the database of Example 5.5 in Sec-
tion 5.9.4.

Proposition 5.44. In the set C[Q′′] = {C(Q′′)
1 , . . . , C(Q′′)

n∗ },
let (at least) the first k elements, for some k ∈ {1, . . . , n∗},

have the same noncopy-signature Φ
C(Q
′′)

1
n . Then, for an ar-

bitrary i ∈ N+, the cardinality of the set

k⋂
s=1

Γ(i)[C(Q′′)
s]

is provided by substituting the constants in N̄ (i) as the values
of the respective variables in N̄ , into the formula:

• Π
Φ
C(Q
′′)

1
n

, in case where r = 0; and

• Π
Φ
C(Q
′′)

1
n

× Πr
u=1 min(Vju[1], Vju[2], . . . , Vju[k]), in case

where r ≥ 1.

2

Proof. For the case where r = 0, observe that for each

pair of monomial classes among C(Q′′)
1 , . . . , C(Q′′)

k , the mono-
mial classes in the pair unconditionally dominate each other,
by Definition 5.11. Therefore, the result of Proposition 5.44
is immediate from Proposition 5.36.

For the case where r ≥ 1, the result of Proposition 5.44 is
immediate from Lemma 5.1.

To formulate Lemma 5.1, we use the following terminol-

ogy. For an element C(Q′′) of the set C[Q′′] = {C(Q′′)
1 , . . . ,

C(Q′′)
n∗ }, and for an i ∈ N+, consider the set Γ(i)[C(Q′′)]. In

case where m ≥ 1, let an m-tuple t(M) be an arbitrary tuple

in the projection of the set Γ(i)[C(Q′′)] on all the multiset
noncopy variables of the query Q′′ (in some arbitrary fixed
order of these variables). Then we say that z ≥ 1 tuples t1,

t2, . . . , tz in the set Γ(i)[C(Q′′)] agree on the multiset-noncopy

projection t(M), if we have that the set projection of the sub-

set {t1, t2, . . . , tz} of the set Γ(i)[C(Q′′)] on all the multiset
noncopy variables of the query Q′′ (in the same fixed order)

is a singleton set {t(M)}. In case where m = 0, we say that

(by default) all the tuples in the set Γ(i)[C(Q′′)] agree on the
multiset-noncopy projection, which is the empty tuple when
m = 0.

Lemma 5.1. Suppose r ≥ 1. In the set C[Q′′] = {C(Q′′)
1 ,

. . . , C(Q′′)
n∗ }, let (at least) the first k elements, for some k ∈

{1, . . . , n∗}, have the same noncopy-signature Φ
C(Q
′′)

1
n . Let

i ∈ N+. Let t(M) be an arbitrary tuple in the projection of
the set

S =

k⋂
s=1

Γ(i)[C(Q′′)
s]

on all the multiset noncopy variables of the query Q′′, in
case m ≥ 1, and let t(M) be the empty tuple in case m = 0.
Then, for the number K of all those tuples in the set S =⋂k
s=1 Γ(i)[C(Q′′)

s] that agree on the multiset-noncopy projec-

tion t(M), we have that the value of K is provided by sub-
stituting the constants in N̄ (i) as the values of the respective
variables in N̄ , into the formula

K = Πr
u=1 min(Vju[1], Vju[2], . . . , Vju[k]).

2

Proof. (sketch) Assume a fixed i ∈ N+. The proof of
Lemma 5.1 is immediate from Proposition 5.27, which ex-

hibits the structure of the projection of the set Γ(i)[C(Q′′)]

(for an arbitrary monomial class C(Q′′) in the set {C(Q′′)
1 ,

. . . , C(Q′′)
n∗ }) on the set of all copy variables of the query

Q′′, and from Proposition 5.28, which explores the “symme-

tries” of the set Γ(i)[C(Q′′)] on the databases in the family
{DN̄(i)(Q)}. Specifically, we have that:

• The values in the projection of the set Γ(i)[C(Q′′)] on
the set of all copy variables of the query Q′′ are natu-
ral numbers in a specified range according to the copy

signature of the monomial class C(Q′′). More precisely,

let the copy signature for the monomial class C(Q′′) be
[Vj1 Vj2 . . . Vjr]. Then for each u ∈ {1, . . . , r},
each value in the projection of Γ(i)[C(Q′′)] onto the
copy variable Y ′′m+u of Q′′ is a natural number belong-

ing to the set {1, . . . , V (i)
ju }. Moreover, for each u ∈

{1, . . . , r} and for each value vu ∈ {1, . . . , V (i)
ju }, the

tuple (v1, v2, . . . , vr) is in the projection of Γ(i)[C(Q′′)]
onto all the copy variables Y ′′m+1, Y

′′
m+2, . . . , Y

′′
m+r of

Q′′, in this order.

• Consider now the monomial classes C(Q′′)
1 , . . . , C(Q′′)

k

in the statement of Lemma 5.1. For the fixed i ∈ N+

36

and for each u ∈ {1, . . . , r}, denote by Zu the value

min(V
(i)

ju[1], V
(i)

ju[2], . . . , V
(i)

ju[k]). Then we can show that:

– For each u ∈ {1, . . . , r} and for each value vu ∈
{1, . . . , Zu}, the tuple (v1, v2, . . . , vr) is in the pro-

jection of the set
⋂k
s=1 Γ(i)[C(Q′′)

s] onto all the
copy variables Y ′′m+1, Y

′′
m+2, . . . , Y

′′
m+r of Q′′, in

this order; and

– Whenever, for at least one u ∈ {1, . . . , r}, the
value vu is not an element of the set {1, . . . , Zu},
then we have that the tuple (v1, v2, . . . , vr) is not

in the projection of the set
⋂k
s=1 Γ(i)[C(Q′′)

s] onto
all the copy variables Y ′′m+1, Y

′′
m+2, . . . , Y

′′
m+r of

Q′′, in this order.

At the conclusion of this subsection, we observe that by
the inclusion-exclusion principle for unions of sets, the value

of the function F (Q′′)
(Q) for each i ∈ N+, that is the cardinality

of the set Γ(t∗Q)(Q′′, DN̄(i)(Q)), can also be computed exactly

using the set Cnondom(Q′′) of Section 5.9.1. That is, we can

use the set Cnondom(Q′′), rather than the set {C(Q′′)
1 , . . . ,

C(Q′′)
n∗ } of all nonempty monomial classes for query Q′′ and

database DN̄(i)(Q) (cf. Proposition 5.43):

Proposition 5.45. Suppose the monomial classes in the

set Cnondom(Q′′) = {C(Q′′)
1 , . . . , C(Q′′)

p } are indexed (by 1,

2, . . . , p) in such a way that for all triples (C(Q′′)
j1

, C(Q′′)
j2

,

C(Q′′)
j3

), with 1 ≤ j1 < j2 < j3 ≤ p, it cannot be that (a)

C(Q′′)
j1

and C(Q′′)
j3

have the same noncopy signature, and (b)

C(Q′′)
j1

and C(Q′′)
j2

have different noncopy signatures. Further,
let n ∈ {1, . . . , p} be such that n is the number of distinct
noncopy signatures of all the elements of the set C[Q′′]. Fi-
nally, let k0 = 0 and, for this value of n, let 1 ≤ k1 < k2

< . . . < kn = p be such that for each j ∈ {1, 2, . . . , n},
all monomial classes C(Q′′)

kj−1+1, C(Q′′)
kj−1+2, . . ., C(Q′′)

kj
have the

same noncopy signature.16

Let i ∈ N+. Then the cardinality of the set Γ(t∗Q)(Q′′,
DN̄(i)(Q)) is given exactly as the sum

n−1∑
j=0

|
(kj+1)−(kj)⋃

l=1

Γ(i)[C(Q′′)
(kj)+l

] | .

(Here, each C(Q′′)
(kj)+l

referenced in the formula is an element

of the set Cnondom(Q′′) = {C(Q′′)
1 , . . . , C(Q′′)

p }.) 2

16Similarly to the condition of Proposition 5.43, all of the
above conditions together just say that the elements of the
set Cnondom(Q′′) are indexed in such a way that, in the

sequence C(Q′′)
1 , . . . , C(Q′′)

p , we first have all the mono-
mial classes with some noncopy-signature NS1, then all the
monomial classes with a different noncopy-signature NS2,
and so on. That is, for each noncopy-signature, NS, of
at least one element of the set Cnondom(Q′′), all monomial
classes in Cnondom(Q′′) that have the noncopy-signature NS

are “grouped together” in the sequence C(Q′′)
1 , . . . , C(Q′′)

p .

Observe that Proposition 5.42, which constructs the func-

tion F (Q′′)
(Q) for a special “easy” case as considered in Sec-

tion 5.9.2, is an immediate corollary of Proposition 5.45 and
of the definition of the set Cnondom(Q′′).

For an illustration, consider again the function F (Q)

(Q) of

Example 5.4 in Section 5.9.3. When we construct func-

tion F (Q)

(Q) using all four monomial classes of the example,

the inclusion-exclusion formulae of this current subsection
correctly account for the fact that the Γ(i)() for the mono-

mial class C(Q)
1 is a subset of the Γ(i)() for the monomial

class C(Q)
2 on all the databases in question. We observe the

similar effect when considering how the inclusion-exclusion
formulae account for the relationship between the mono-

mial classes C(Q)
3 and C(Q)

4 of the example. Hence, by the
inclusion-exclusion principle for unions of sets, the construc-

tion of the function F (Q)

(Q) using all four monomial classes of

the example results in the same function as the construction
using the set Cnondom(Q), as shown in the example.

5.9.6 Illustration of the general construction
In this subsection, we provide an illustration of the results

of Section 5.9.5, by following the construction of the function

F (Q)

(Q) for the query Q and for the database of Example 5.5 in

Section 5.9.4. As discussed in the beginning of Section 5.9.5,
the construction cannot be carried out correctly when using
just the results of the “easy-case” Section 5.9.2.

EXAMPLE 5.6. We refer to the query Q and database
DN̄(i)(Q) of Example 5.5 in Section 5.9.4. In this example

we construct the function F (Q)

(Q) for that query Q and for the

entire family of databases {DN̄(i)(Q)}, i ≥ 1. In addition,
we illustrate the correctness of the construction, by using the
multiplicity of the tuple t∗Q of Example 5.5 in the combined-
semantics answer to the query Q on the specific database
DN̄(i)(Q) of Example 5.5.

Recall that the query Q has four nonempty monomial classes,

C(Q)
1 , C(Q)

2 , C(Q)
3 , and C(Q)

4 , w.r.t. the family of databases
{DN̄(i)(Q)}. (Refer to Example 5.5 for the details.) Each
of the monomial classes has noncopy-signature [Y1 Y2]; the
copy-signatures of the four monomial classes are [N3 N3],
[N3 N4], [N4 N3], and [N4 N4], in this order.

To construct function F (Q)

(Q) for the query Q and for the

family of databases {DN̄(i)(Q)}, we use Proposition 5.43,
to establish that for each i ∈ N+, the cardinality of the set

Γ(t∗Q)(Q,DN̄(i)(Q)) is given exactly as the sum

|
4⋃
l=1

Γ(i)[C(Q)
l] | .

For greater succinctness of the formulae to follow, we label

more compactly each of the sets Γ(i)[C(Q)
1] through Γ(i)[C(Q)

4]

used in the above formula, as follows: Denote Γ(i)[C(Q)
1] by

A, Γ(i)[C(Q)
2] by B, Γ(i)[C(Q)

3] by C, and Γ(i)[C(Q)
4] by D.

Then, by the inclusion-exclusion principle for unions of sets,
we have that the above union formula can be rewritten as
follows:

|A ∪ B ∪ C ∪ D| = |A|+ |B|+ |C|+ |D|−|A∩B|−|A∩C|

−|A∩D|−|B∩C|−|B∩D|−|C∩D|+|A∩B∩C|+|A∩B∩D|

37

+|A ∩ C ∩D|+ |B ∩ C ∩D| − |A ∩B ∩ C ∩D|.

We now use Proposition 5.44 to obtain the cardinality
of each of the set intersections in the right-hand side of
this formula. First, observe that the multipliers Π

Φ
C(Q)
l
n

, for

l ∈ {1, 2, 3, 4}, are all equal to each other, and are each the
product N1 × N2. (This is due to the fact that all the four
monomial classes have the same noncopy signature.)

Thus, what remains to be done, in the construction of the

formula F (Q)

(Q) , is to compute the products

Πk
u=1 min(Vju[1], Vju[2], . . . , Vju[k])

of Proposition 5.44 for all the above set intersections, for all
k between 2 (for |A∩B|, |A∩C|, . . . , |C∩D|) and 4 (for |A∩
B ∩C ∩D|). (For convenience in the statement of Proposi-
tion 5.44, the indexing in the product Πk

u=1 min(Vju[1], Vju[2],
. . . , Vju[k]) assumes that each time we look at the cardinality

of the intersection of the sets Γ(i)() for the first k consecutive

elements of the set {C(Q)
1 , . . . , C(Q)

4 }. That is, the statement
of the Proposition assumes reindexing of the elements of the

set {C(Q)
1 , . . . , C(Q)

4 } “as needed.” This assumption needs to
be kept in mind when understanding the consecutive index-
ing by u in the formula Πk

u=1 min(Vju[1], Vju[2], . . . , Vju[k])
in this example.) Then, by multiplying each of these prod-
ucts by N1 × N2 and by “putting the multiplication results
back correctly” into our inclusion-exclusion formula for the
cardinality of the union of Proposition 5.43, we will obtain

the expression for the function F (Q)

(Q) .

We make the basic observation that each min() expression
for this example will result in N3 (when the only value in the
min expression is N3 – that is, when all arguments of the
min expression are the same variable N3), in N4 (when the
only value in the min expression is N4), or in min(N3, N4)
(in all the remaining cases, regardless of the number of times
each of N3 and N4 is an argument of the min expression).
To make the writeup more concise, we refer to the latter
minimum expression as Z. (That is, we denote by Z the
expression min(N3, N4).) In addition, we denote by T the
term N1 × N2. As the union expressions of Proposition 5.43
are uniform (as expressed using the elements of the vector

N̄ (i)) across all values of i ∈ N+, in the remainder of this
example we switch to the elements of the vector N̄ as basic

blocks in the construction of the formula F (Q)

(Q) , and refrain

from clarifying all the time that the values for specific i can
be obtained by substituting the elements of the vector N̄ (i)

for the respective elements of N̄ in the expressions that we
are to obtain.

By the formula of Proposition 5.44, we obtain that:

|A| = T × (N3)2; |B| = |C| = T ×N3 ×N4;
|D| = T × (N4)2; |A ∩B| = |A ∩ C| = T ×N3 × Z;
|B ∩D| = |C ∩D| = T ×N4 × Z .

Further, it is easy to check that each of the remaining cardi-
nalities, in the inclusion-exclusion formula for |A∪B ∪C ∪
D|, equals T × Z2.

Thus, we obtain that

(|A∪B∪C∪D|)/T = (N3)2+2N3N4+(N4)2−2ZN3−2ZN4+Z2.

That is, we obtain that, by Propositions 5.43 and 5.44,

F (Q)

(Q) = N1N2×[(N3)2+2N3N4+(N4)2−2ZN3−2ZN4+Z2].

Recall that Z here denotes the expression min(N3, N4).

Observe that in this formula for F (Q)

(Q) , for each of the terms

−2N1 ×N2 ×min(N3, N4)×N3,

−2N1 ×N2 ×min(N3, N4)×N4, and

+N1 ×N2 × (min(N3, N4))2,

we have that none of the three terms corresponds to mono-
mial classes for the query Q. Thus, none of these terms is
“backed up” by assignments from the query Q to any database
DN̄(i)(Q).

Due to the presence of the term min(N3, N4) in the above

expression for the function F (Q)

(Q) , the function is not a mul-

tivariate polynomial (in terms of the elements of the vector
N̄) on the entire domain N of the function. At the same
time:

• For all i ∈ N+ such that N
(i)
3 ≤ N (i)

4 in the vector N̄ (i),
we have that (after we substitute Z = min(N3, N4) =
N3 and then cancel out in the resulting formula) the

function F (Q)

(Q) on this subdomain of N is the following

multivariate polynomial in terms of the elements of the
vector N̄ :

F (Q)

(Q) = N1 ×N2 × (N4)2.

• Similarly, for all i ∈ N+ such that N
(i)
3 ≥ N

(i)
4 in

the vector N̄ (i), we have that (after we substitute Z =
min(N3, N4) = N4 and then cancel out in the resulting

formula) the function F (Q)

(Q) on this subdomain of N is

the following multivariate polynomial in terms of the
elements of the vector N̄ :

F (Q)

(Q) = N1 ×N2 × (N3)2.

Specifically, for the vector N̄ (i) = [1 2 3 5] of Example 5.5,
we have that N3 = 3 ≤ N4 = 5. Hence, for this i we have

that F (Q)

(Q) (N̄ (i)) = N
(i)
1 × N (i)

2 × (N
(i)
4)2. Observe that the

result of evaluating this expression F (Q)

(Q) (N̄ (i)) for this i is

1× 2× (5)2 = 50. This value 50 is the correct multiplicity of
the tuple t∗Q = (a) of Example 5.5 in the combined-semantics
answer to the query Q on the specific database DN̄(i)(Q) of
Example 5.5. (Please refer to Example 5.5 for the specific
50 tuples in the set ΓS̄(Q,DN̄(i)(Q)) that generate the tuple
t∗Q in the answer to the query on the database.) 2

5.9.7 Function for the query Q′ of Example 4.1
[[[Insert manually here the ID of Example 4.1]]]
In this section we illustrate by example that, when the

condition (i) of Theorem 4.1 (i.e., the condition of Q being
an explicit-wave query) is not satisfied, then even in case
where Q ≡C Q′ does hold, there does not have to exist a
monomial class for the query Q′ such that the multiplicity
monomial of that class is the wave of the query Q.

38

EXAMPLE 5.7. Let CCQ query Q′ be as follows.

Q′(X1)← r(X1, Y1, Y2, X2;Y3), r(X1, Y1, Y2, X2;Y4),
{Y1, Y2, Y3, Y4}.

(This is the query Q′ of Example 4.1, rendered here using
somewhat different notation.)

Toward Constructing the Function F (Q′)
(Q) for the Databases

{ DN̄(i)(Q) } of Example 5.5.
We briefly outline here how we construct the function F (Q′)

(Q)

for the databases { DN̄(i)(Q) }, which (databases) we con-
structed in Example 5.5 of Section 5.9.4. The two monomial

classes for the function F (Q′)
(Q) , for the query Q′ and for the

databases DN̄(i)(Q), are as follows:

• Monomial class C(Q′)
1 has noncopy-signature [Y1 Y2]

and copy-signature [N3 N3]; intuitively, this monomial
class results from mapping the query Q′ in all possi-
ble ways into those atoms of databases DN̄(i)(Q) that
(atoms) are associated with the copy variable of the
first subgoal of the query Q (in the specific database
DN̄(i)(Q) of Example 5.5, these atoms would be ground
atoms d1 an d2 – recall that the copy number in each

of those atoms is 3 = N
(i)
3);

and

• Monomial class C(Q′)
2 has noncopy-signature [Y1 Y2]

and copy-signature [N4 N4]; intuitively, this monomial
class results from mapping the query Q′ in all possi-
ble ways into those atoms of databases DN̄(i)(Q) that
(atoms) are associated with the copy variable of the
second subgoal of the query Q (in the specific database
DN̄(i)(Q) of Example 5.5, these atoms would be ground
atoms d3 an d4).

There are no other monomial classes for the query Q′ and
for the databases DN̄(i)(Q). The reason is, both subgoals of
the query Q′ have the same relational template. (Specifi-
cally, unlike the subgoals of the query Q, the two subgoals of
the query Q′ use the same set variable X2.) Thus, the two
subgoals of the query Q′ can only be mapped into one ground
atom at a time. At the same time, each database DN̄(i)(Q)
always has at least two “relational templates” for its ground
atoms. (To gain the intuition, recall that by construction
of the databases DN̄(i)(Q), the two set variables X2 and X3

used in the two subgoals of the query Q are mapped in the
databases into two distinct fixed values.)

As a result, we obtain in a process that is similar to that
of Example 5.6 (in Section 5.9.6) that the closed-form ex-

pression function F (Q′)
(Q) is

F (Q′)
(Q) = N1 × N2 × (N2

3 +N2
4 − (min(N3, N4))2) .

This is the expression for the multiplicity of the tuple t∗Q =
(a) in the answer to the query Q′ on the databases DN̄(i)(Q)
constructed for the query Q, hence the expression is in terms
of the elements of the vector N̄ for the query Q. We can

obtain a more compact expression for F (Q′)
(Q) , which is

F (Q′)
(Q) = N1 × N2 × max(N3, N4))2 .

Not surprisingly, the latter expression is identical to what we

can obtain for F (Q)

(Q) (for the query Q), see the end of Exam-

ple 5.6 in Section 5.9.6. (Recall that we have proved that the
two queries Q and Q′ are combined-semantics equivalent.)

Observe that while Q ≡C Q′ has been proved to hold, nei-
ther monomial class for the query Q′ on the databases for
the query Q is associated with the wave monomial Π4

j=1Nj
of the query Q. Indeed, based on the intuition that we dis-
cussed for each monomial class of Q′ earlier in this example,
we cannot map the two subgoals of the query Q′ onto both
subgoals of the query Q. (Such a mapping would be the only
possibility for a SCVM from Q′ to Q, as a SCVM must map
each copy variable of Q′ into a distinct copy variable of Q.)
The reason that we cannot find such a mapping is simple:
The query Q′ has the same relational template for both sub-
goals (note the same set variable in both subgoals of Q′), and
hence these subgoals are only mappable into one subgoal of
Q at a time.

Finally, the intuition discussed in the preceding paragraph
can also be used to understand why there exists a SCVM
from Q to Q′ (as opposed to from Q′ to Q). Indeed, as Q
has different set variables in its two subgoals, it is easy to
see that the condition of Q can be mapped onto the condition
of Q′ – as a result, we can construct a SCVM from Q to Q′.
2

5.10 For the Q and Q′ such that Q ≡C Q′, When
Does Q′ Have the Wave of Q?

In Section 5.9 we learned how to construct, for CCQ
queries Q and Q′′ as specified in Section 5.2.2, a function

F (Q′′)
(Q) . For each i ∈ N+, the function F (Q′′)

(Q) returns the

multiplicity of the tuple t∗Q in the bag ResC(Q′′, DN̄(i)(Q)).
The main result of this current section, Proposition 5.47,
shows that, whenever

(a) Q ≡C Q′ for CCQ queries Q and Q′, and

(b) Q is an explicit-wave CCQ query (as specified by Def-
inition 4.1),

then there exists a (nonempty) monomial class C(Q′)
∗ for the

query Q′ and for the family of databases {DN̄(i)(Q)}, such

that the multiplicity monomial of C(Q′)
∗ is “the wave of the

query Q” (as specified in Definition 5.10). We show the re-
sult of Proposition 5.47 using the properties of the functions

F (Q)

(Q) and F (Q′)
(Q) . The proof of Theorem 4.1 is immediate

from Proposition 5.47 and from Propositions 5.33 and 5.34
of Section 5.7.

Example 5.7 of Section 5.9.7 illustrates that, when the
above condition (b) (of Q being an explicit-wave query) is

not satisfied, then such a monomial class C(Q′)
∗ does not have

to exist, and hence a SCVM from the query Q′ to the query
Q does not have to exist even in case Q ≡C Q′.

We begin the technical exposition by stating a useful aux-
iliary result in Section 5.10.1.

5.10.1 Equivalence of Multivariate Polynomials

Proposition 5.46. For a positive integer n, let X1, X2,
. . . , Xn be n distinct variables, where each variable accepts
values from (at least) an infinite-cardinality subset of the

39

set Z of all integers.17 Let each of P1 and P2 be a finite-
degree multivariate polynomial in terms of the variables X1,
. . . , Xn and with integer coefficients. Further, assume that
(w.l.o.g.) P1 ≡/ 0. Then P1−P2 ≡ 0 if and only if for each

term Πn
i=1X

li
i , where li ∈ {0}

⋃
N+ for all18 i ∈ {1, . . . , n},

the term has the same integer coefficient in P1 and P2. 2

Proof. If: Immediate from the definitions.
Only-If: The proof is by contradiction: Assume that for

the finite-degree multivariate polynomial P1 −P2, call it P,
we have that P ≡ 0. Assume further that there exists a term,
call it T , of the form Πn

i=1X
li
i , such that the polynomial

P has a nonzero integer coefficient for T . We will show
that in this case, P ≡ 0 cannot hold, hence we arrive at a
contradiction with the assumption P ≡ 0.

Case 1: T is the only term with nonzero coefficient in the
polynomial P, and li = 0 for all i ∈ {1, . . . , n} in T . Then
P is equivalent to a nonzero-valued constant function, and
the contradiction with the assumption P ≡ 0 is immediate;
Q.E.D.

Case 2: There exists a nonzero-coefficient term in P, call
this term T ′, such that there exists a j ∈ {1, . . . , n}, where
the power lj of variable Xj in T ′ is a positive integer. Then
for each Xl such that l ∈ {1, . . . , n} − {j}, fix one arbitrary
integer value xl 6= 0 in the domain of Xl. (Clearly, it is
possible to find a nonzero integer domain value for each Xl.)
The result of substituting all the values xl, l ∈ {1, . . . , n}
− {j}, into the polynomial P is a finite-degree univariate
polynomial with integer coefficients, call it P(Xj), in terms
of the variable Xj and with at least one term with a nonzero
(integer) coefficient. (One term with a nonzero coefficient in
P(Xj) results from T ′.) By our assumption that P ≡ 0,
the value of P(Xj) equals zero on the entire infinite integer-
valued domain of the variable Xj . This is impossible, hence
we have arrived at a contradiction with the assumption that
P ≡ 0; Q.E.D.

5.10.2 When the Query Q′ Has the Wave of Q
We now state and prove the main result of Section 5.10.

Proposition 5.47. Let Q and Q′ be two CCQ queries,
such that

(a) we have that Q ≡C Q′, and

(b) Q is an explicit-wave CCQ query.

Then for the query Q′ and for the family of databases {DN̄(i)(Q)},
there exists a nonempty monomial class C(Q′)

∗ , such that the

multiplicity monomial of C(Q′)
∗ is the wave of the query Q.

2

The proof of Proposition 5.47, to be given in Section 5.10.9,
hinges on several results, which we now proceed to introduce.
For the entire exposition, please keep in mind that through-
out the proof of Theorem 4.1, all monomial classes of all

queries, as well as each of the functions F (Q)

(Q) and F (Q′)
(Q) , are

defined w.r.t. the family of databases {DN̄(i)(Q)} for the
fixed input query Q.

17For different variables Xi, Xj , i 6= j, in the set {X1, . . . ,
Xn}, the domains of Xi and of Xj may include nonidentical
(infinite-cardinality) subsets of the set Z.

18When li = 0 for all i ∈ {1, . . . , n} in the term Πn
i=1X

li
i , we

set Πn
i=1X

li
i to the constant 1.

5.10.3 Multivariate polynomials on total orders
Recall that in general, for CCQ query Q′′ and for the fam-

ily of databases {DN̄(i)(Q)} (for CCQ query Q), the func-

tion F (Q′′)
(Q) for Q′′ and for {DN̄(i)(Q)} is not a multivariate

polynomial on its entire domain N . (See Example 5.6 for
an illustration.) At the same time, it turns out that the set
N can be represented as a union of infinite-cardinality sets,

such that for each set S in the union, the function F (Q′′)
(Q) ,

for all the elements of the set S, can be rewritten equiva-
lently as a multivariate polynomial in terms of the elements
of the vector N̄ and with integer coefficients. (That is, for

each N̄ (i) ∈ S, the value of F (Q′′)
(Q) (N̄ (i)) can be obtained by

substituting the values in N̄ (i) into the relevant multivari-
ate polynomial in terms of the elements of the vector N̄ and
with integer coefficients.)

In fact, as we know already for the case r ≤ 1 (that is,
for the input CCQ query Q that has r = |Mcopy| ≤ 1), the

function F (Q′′)
(Q) for this case is a multivariate polynomial

in terms of the elements of the vector N̄ and with integer
coefficients, on the entire domain N of the function. (See
Section 5.9.2.) Hence we proceed to prove the above claim
for the case r ≥ 2. Recall from Proposition 5.4(iv) that for
all r > 0 we have that w > 0. We conclude that whenever
r ≥ 2, the vector N̄ has at least one element in the sequence
Nm+1 Nm+2 . . . Nm+w. Of these cases, we first consider
the special case w = 1, and then the general case w ≥ 1.

The special case: r ≥ 2 and w = 1.
We first consider all those cases (for the input CCQ query

Q) where r ≥ 2 and w = 1. In all such cases, the copy
signatures of all relevant monomial classes (for both Q and
Q′′) are composed, by their definition, of the elements of
the set {1, Nm+1}. Clearly, then, each min expression of
Proposition 5.44 in terms of elements of all the relevant copy
signatures (in each case where w = 1) evaluates to either

1 or Nm+1, independently of the value N
(i)
m+1 of Nm+1 in

each vector N̄ (i) ∈ N . (Recall that 1 ≤ N
(i)
m+1 holds for all

vectors N̄ (i), by definition of the set N .) Using the results
of Section 5.9.5, we conclude that in all cases of query Q for

which r ≥ 2 and w = 1, the function F (Q′′)
(Q) for each such

case is a multivariate polynomial in terms of the elements
of the vector N̄ and with integer coefficients, on the entire
domain N of the function.

The general case: r ≥ 2 (and w ≥ 1).
Now consider all those cases (for the input CCQ query Q)

where r ≥ 2, and therefore, by Proposition 5.4(iv), w ≥ 1.
We will define the sets S suggested above (such that N is
a union of such infinite-cardinality sets) using total orders
on the elements of the vector N̄w = [1 Nm+1 Nm+2 . . .
Nm+w]. By w ≥ 1, we have that the vector N̄w has at least
two elements. (Note: We will see that in the above special
case of r ≥ 2 and w = 1, the set N is a union of only one
such set S.)

Let vector K̄w = [1 K1 K2 . . . Kw] be an arbitrary fixed
permutation of the vector N̄w that satisfies the condition
that the first element of K̄w is always the constant 1. (That
is, in each vector K̄w we have that the sequence K1 K2

. . . Kw is a permutation of the sequence Nm+1 Nm+2 . . .
Nm+w in the vector N̄w.) We refer to each such vector K̄w

40

as a copy-variable-ordering vector for the vector N̄ .
Let a total order O on the set {1, Nm+1, Nm+2, . . . ,

Nm+w} be defined as the reflexive transitive closure on the
relation { (1,K1), (K1,K2), (K2,K3), . . . , (Kj ,Kj+1), . . . ,
(Kw−1,Kw) }, using the fixed vector K̄w. (We interpret the
pair (1,K1) in O as 1 ≤ K1. Further, whenever w ≥ 2, for
1 ≤ j ≤ w − 1, we interpret the pair (Kj ,Kj+1) in O as
Kj ≤ Kj+1. That is, O is the ≤ relation.) Then we say that
the vector K̄w determines the total-order relation O on N̄w,

and use the notation O(K̄w) for that total-order relation O.
Now for a vector K̄w as above and for an arbitrary vector

N̄ (i) ∈ N , we define the interpretation of each element of
K̄w w.r.t. N̄ (i), as follows:

(1) We define the interpretation of the first element of K̄w

(that is, of the constant 1) to be the constant 1; and

(2) For each j ∈ {2, . . . , w + 1}, suppose that the jth
element of the vector K̄w (that is, Kj−1 in our notation
for the vector K̄w) is the variable Nk of N̄ , for some k
∈ {m+1, . . . , m+w}. Then the interpretation of Kj−1

w.r.t. N̄ (i) is the value N
(i)
k in N̄ (i) of the variable Nk

in N̄ . We denote this interpretation of Kj−1 w.r.t.

N̄ (i) as K
(i)
j−1.

EXAMPLE 5.8. For m = 1 and for w = 3, the vector
N̄w is N̄w = [1 N2 N3 N4]. Let K̄w := [1 N3 N4

N2]. Let N̄ (i), for some fixed natural number i, be [5 3 7
6]. Then the interpretation of the elements of the vector K̄w

w.r.t. the vector N̄ (i) is as follows: 1 in K̄w is interpreted

as 1, the element K1 = N3 in K̄w is interpreted as K
(i)
1 =

7, the element K2 = N4 in K̄w is interpreted as K
(i)
2 = 6,

and, finally, the element K3 = N2 in K̄w is interpreted as

K
(i)
3 = 3. 2

Now suppose that we are given a vector K̄w as defined
above, and are given a vector N̄ (i) ∈ N . Then we say that

the vector N̄ (i) agrees with the total order O(K̄w) if and only
if the interpretation of the elements of the vector K̄w w.r.t.
the vector N̄ (i) results in all (i.e., in only) true inequalities,
on the set of natural numbers, in the reflexive transitive

closure of the relation { (1,K
(i)
1), (K

(i)
1 ,K

(i)
2), (K

(i)
2 ,K

(i)
3),

. . . , (K
(i)
j ,K

(i)
j+1), . . . , (K

(i)
w−1,K

(i)
w) }. (We interpret the

pair (1,K
(i)
1) as 1 ≤ K

(i)
1 . Further, in case w ≥ 2, for each

j ∈ {1, . . . , w − 1}, the pair (K
(i)
j ,K

(i)
j+1) in this relation is

interpreted asK
(i)
j ≤ K

(i)
j+1 .) The latter relation is obtained

by replacing each Kj with K
(i)
j , for j ∈ {1, . . . , w}, in the

relation that defines the total order O(K̄w), that is in the
relation { (1,K1), (K1,K2), (K2,K3), . . . , (Kw−1,Kw) }.

EXAMPLE 5.9. For the vectors K̄w and N̄ (i) of Exam-
ple 5.8, we have that the reflexive transitive closure of the

relation { (1,K
(i)
1), (K

(i)
1 ,K

(i)
2), (K

(i)
2 ,K

(i)
3) }, that is of

the relation { (1, 7), (7, 6), (6, 3) }, has elements violating
true inequalities on natural numbers. For instance, one of

the violations comes from the pair (K
(i)
1 ,K

(i)
2) in this rela-

tion, that is from the pair (7, 6). (Recall that we interpret

(K
(i)
j ,K

(i)
j+1) as K

(i)
j ≤ K

(i)
j+1 .) We conclude that the vector

N̄ (i) does not agree with the total order O(K̄w).
Now consider a different vector K̄′w := [1 N2 N4 N3].

The interpretation of the elements of the vector K̄′w w.r.t.

the vector N̄ (i) (which is the same as before) is as follows:
1 in K̄′w is interpreted as 1, the element K′1 = N2 in K̄′w
is interpreted as K

′ (i)
1 = 3, the element K′2 = N4 in K̄′w

is interpreted as K
′ (i)
2 = 6, and, finally, the element K′3 =

N3 in K̄′w is interpreted as K
′ (i)
3 = 7. Then we have that

the reflexive transitive closure of the relation { (1,K
′ (i)
1),

(K
′ (i)
1 ,K

′ (i)
2), (K

′ (i)
2 ,K

′ (i)
3) }, that is of the relation {

(1, 3), (3, 6), (6, 7) }, does not have elements violating true
inequalities on natural numbers. Thus, we conclude that the

vector N̄ (i) agrees with the total order O(K̄′w). 2

We now define the sets S as suggested in the beginning
of this subsection. For a CCQ query Q for which r ≥ 2
(and thus w ≥ 1), and for the vector N̄ for the query Q
(as defined in Section 5.3.1), let K̄w be an arbitrary copy-
variable-ordering vector for the vector N̄ . Then we define a
subset N (K̄w) of the set N as

N (K̄w) = {N̄ (i) ∈ N | N̄ (i) agrees with the total order O(K̄w)}.

(Note that in the case w = 1, there is only one possible
vector K̄w = [1 Nm+1]. Therefore, it is not hard to see
that in the case w = 1, we have that the only possible set

N (K̄w) coincides with the entire set N .)
The following result captures straightforward observations

about the sets N (K̄w).

Proposition 5.48. Given a CCQ query Q for which r ≥
2, with vector N̄ for the query Q constructed as defined in
Section 5.3.1. Then we have that:

• For each element N̄ (i) of the set N , there exists at least
one copy-variable-ordering vector, K̄w, for the vector

N̄ , such that N̄ (i) belongs to the set N (K̄w);

• For each copy-variable-ordering vector, K̄w, for the

vector N̄ , the set N (K̄w) is an infinite-cardinality sub-
set of the set N .

2

We conclude from Proposition 5.48 that the set N is a

union of the infinite-cardinality sets N (K̄w) ranging over all
possible vectors K̄w for the vector N̄ (via the vector N̄w).

Proposition 5.49. Given a CCQ query Q for which r ≥
2, with vector N̄ for the query Q constructed as defined in
Section 5.3.1; and given a CCQ query Q′′ satisfying the re-
strictions of Section 5.2.2 w.r.t. the query Q. Then for each
copy-variable-ordering vector, K̄w, for the vector N̄ , there

exists a multivariate polynomial f
(Q′′)
(Q) [K̄w] in terms of the

elements of the vector N̄ and with integer coefficients, such
that:

• The polynomial f
(Q′′)
(Q) [K̄w] is defined on (at least) the

set N (K̄w) ⊆ N ; and

• For each element N̄ (i) of the set N (K̄w), we have that

f
(Q′′)
(Q) [K̄w](N̄ (i)) = F (Q′′)

(Q) (N̄ (i)) .

2

The proof of Proposition 5.49 is constructive and gener-
alizes the intuition that we gained by considering (earlier in

41

this subsection) the special case r = 2 and w = 1. Indeed,
for each copy-variable-ordering vector, K̄w, for the vector
N̄ , each min expression of Proposition 5.44 in terms of el-
ements of all the relevant copy signatures evaluates to one
fixed argument among all its arguments, regardless of the

identity of specific elements N̄ (i) of the set N (K̄w). Hence

the result of replacing all the min expressions in F (Q′′)
(Q) with

these fixed elements of the set {1, Nm+1, . . . , Nm+w} is the

required function f
(Q′′)
(Q) [K̄w] for the subset N (K̄w) of the do-

main N of the function F (Q′′)
(Q) . The end of Example 5.6 (in

Section 5.9.6) provides an illustration.
For each vector K̄w in case r ≥ 2, in the remainder

of this proof we will refer to the polynomial f
(Q′′)
(Q) [K̄w] as

F (Q′′)
(Q) [K̄w]; we will use similar notation for the respective

functions for the queries Q and Q′. (See Proposition 5.49
for a justification.) Further, for uniformity of notation, in

the case where r ≤ 1 we will refer to the function F (Q′′)
(Q)

(which we showed in Section 5.9.2 to be a multivariate poly-
nomial in terms of the elements of the vector N̄ and with
integer coefficients, on the entire domain N of the function)

as F (Q′′)
(Q) [N]. In the latter case (of r ≤ 1), the only subdo-

main N (K̄w) of the domain N is the set N ; hence we can

use the notations F (Q′′)
(Q) [K̄w] and F (Q′′)

(Q) [N] interchangeably

when r ≤ 1. (Formally, in case r = 0, we define the vector
N̄w as N̄w = [1], and in case r = 1, we define N̄w as N̄w =
[1 Nm+1]. In either case, there exists exactly one permu-
tation K̄w of the vector N̄w, such that the first element of

the vector K̄w is the constant 1. Thus, the domain N (K̄w)

does indeed coincide with the domain N in all cases where
r ≤ 1.)

5.10.4 Query equivalence implies identical multivari-
ate polynomials

We now show that for two CCQ queries Q and Q′ such

that Q ≡C Q′, the functions F (Q)

(Q) and F (Q′)
(Q) can be ex-

pressed, on each well-defined (as in Sections 5.9.2 and 5.10.3)
infinite-cardinality subdomain of the setN , as identical mul-
tivariate polynomials in terms of the elements of the vec-
tor N̄ and with integer coefficients. This result, Proposi-
tion 5.50, is immediate from the results of Section 5.9.5 and
from Propositions 5.46 and 5.49.

Proposition 5.50. Given a CCQ query Q, with vector
N̄ for the query Q constructed as defined in Section 5.3.1;
and given a CCQ query Q′ such that Q ≡C Q′ holds. Then
for each copy-variable-ordering vector, K̄w, for the vector

N̄ , we have that the multivariate polynomials F (Q)

(Q) [K̄w] and

F (Q′)
(Q) [K̄w], in terms of the elements of the vector N̄ and with

integer coefficients, are identical functions on the domain

N (K̄w). 2

5.10.5 Solid terms and phantom terms of the polyno-
mials for the multiplicity functions

To proceed with the proof of Proposition 5.47 (see Sec-
tion 5.10.2), we need to introduce technical denotations for
the terms of the multivariate polynomials that we have been
considering. Suppose that for CCQ queries Q and Q′′, we

are given the multivariate polynomial F (Q′′)
(Q) [K̄w] for an ar-

bitrary K̄w, as defined earlier in Section 5.10. Consider a

monomial (excluding the nonzero integer coefficient of the

term) T in F (Q′′)
(Q) [K̄w]. We say that:

• T is a solid term of F (Q′′)
(Q) [K̄w] if there exists a nonempty

monomial class, C(Q′′), for the query Q′′ and for the
family of databases {DN̄(i)(Q)}, such that T is the

multiplicity monomial for the class C(Q′′).

• Conversely, we say that T is a phantom term of F (Q′′)
(Q) [K̄w]

whenever T is not a solid term of F (Q′′)
(Q) [K̄w].

For instance, in Example 5.6 (in Section 5.9.6), the multi-

variate polynomial F (Q)

(Q) [[1 N3 N4]], that is the polynomial

N1×N2× (N4)2, has one solid term, T = N1×N2× (N4)2.
The reason for the term T being a solid term of the polyno-

mial F (Q)

(Q) [[1 N3 N4]] is that the query Q w.r.t. the family

of databases {DN̄(i)(Q)} has a monomial class C(Q)
4 whose

multiplicity monomial is exactly the term T . (See Exam-
ple 5.5 in Section 5.9.4 for the details on the monomial class

C(Q)
4 .)
Now consider an abstract example of a phantom term.

(We do not know whether there are CCQ queries whose
associated functions F have phantom terms, hence this ex-
ample is abstract. However, to prove Theorem 4.1, we have
to prove that phantom terms do not arise in certain parts of

F (Q′)
(Q) for those CCQ queries Q′ that are combined-semantics

equivalent to explicit-wave CCQ query Q.)

EXAMPLE 5.10. Consider the case where m = 0 and
r = w = 2. Suppose that for these values of m, r, and w, for
some hypothetical CCQ query Q′′ and for some hypothetical
family of databases {DN̄(i)(Q)}, it holds that the set of all
monomial classes in this setting consists of two monomial

classes, say C(Q′′)
1 and C(Q′′)

2 . By m = 0, we have that the

noncopy signature of each of C(Q′′)
1 and C(Q′′)

2 is the empty

vector. Suppose that the copy signature of C(Q′′)
1 is [N1 N2],

and that the copy signature of C(Q′′)
2 is [N2 N1].

The noncopy signatures of the two monomial classes are
identical. Thus, by our results of Section 5.9.5, the function
for the multiplicity of the tuple t∗Q, in the answer to the query
Q′′ on the databases {DN̄(i)(Q)}, will be computed as the
cardinality of the union of the sets for the copy signatures of
the two monomial classes. That is, the multiplicity function
will be

2×N1 ×N2 − (min(N1, N2))2 .

Then for the vector K̄w = [1 N1 N2], the multivari-
ate polynomial for this multiplicity function on the domain

N (K̄w) will be

2×N1 ×N2 − (N1)2 .

In this polynomial, (i) the term N1×N2 is a solid term of

the polynomial, because the monomial class C(Q′′)
1 (as well

as C(Q′′)
2) has the term N1×N2 as its multiplicity monomial.

In contrast, (ii) the term (N1)2 is by definition a phantom
term of the polynomial. 2

42

5.10.6 The multiplicity function for the query Q
We now make several observations concerning the solid

and phantom terms in the polynomials F (Q)

(Q) [K̄w] for the

function F (Q)

(Q) of the query Q. First, as usual, we will need

some terminology. For CCQ queries Q and Q′′ (where Q′′,
as usual, may or may not be the query Q) and for the vector
N̄ constructed for the query Q as defined in Section 5.3.1,
fix an arbitrary copy-variable-ordering vector, K̄w, for N̄ . In

case m ≥ 1, consider all the terms in the function F (Q′′)
(Q) [K̄w]

such that each term has the product N1 × N2 × . . . × Nm
. Call all these terms collectively “the m-covering part of

the function F (Q′′)
(Q) [K̄w] .” For the case m = 0, we say that

all the terms of the function F (Q′′)
(Q) [K̄w] constitute the m-

covering part of the function.
The observations of this subsection, Propositions 5.51 and 5.52,

are made for the polynomials F (Q)

(Q) [K̄w], that is for the case

where the query Q′′ coincides with the query Q.

Proposition 5.51. Given an explicit-wave CCQ query
Q, with vector N̄ constructed as defined in Section 5.3.1.
Then we have that:

• For each copy-variable-ordering vector, K̄w, for the

vector N̄ , the m-covering part of the function F (Q)

(Q) [K̄w]

has at least one term with a nonzero coefficient; and

• For each pair (K̄w, K̄
′
w) of copy-variable-ordering vec-

tors for the vector N̄ , the m-covering part of the func-

tion F (Q)

(Q) [K̄w] and the m-covering part of the func-

tion F (Q)

(Q) [K̄′w] are identical multivariate polynomials

(in terms of the elements of the vector N̄ and with
integer coefficients).

2

We note that implicit-wave CCQ queries are not covered
by the above result. In fact, the implicit-wave query Q of
Example 4.1 does not satisfy Proposition 5.51. (Please see
Example 5.6 of Section 5.9.6 for the details on this query.)

The observations of Proposition 5.51 are immediate from
the relevant definitions, from the construction of the func-

tion F (Q)

(Q) , and from the definition of explicit-wave query.

(Intuitively, we use the definition of explicit-wave CCQ queries,
Definition 4.1, to argue that all the monomial classes in ques-
tion that have the same noncopy signature, must also have
the same copy signature. In fact, Definition 4.1 has been
formulated so that Proposition 5.51, and consequently The-
orem 4.1, could go through.) Specifically, the second bullet
of Proposition 5.51 follows from the fact that among all the
monomial classes for the query Q whose (classes’) noncopy
signature is a permutation of the vector [N1 N2 . . . Nm] in
case m ≥ 1, or is the empty vector in case m = 0, for each
pair of such monomial classes with the same noncopy sig-
nature, there is unconditional dominance between the two
classes. This fact holds by the definition of explicit-wave
query and by the definition of its wave function, Defini-
tion 5.10. We then use the results of Section 5.9.2 (specif-
ically of Proposition 5.42) to establish that the respective
m-covering polynomials do not depend on the vector K̄w,
because the relevant sets Cnondom do not depend on the
vector K̄w.

The results of Proposition 5.51 permit us to talk about

“them-covering part of the function F (Q)

(Q) ,” for every explicit-

wave CCQ query Q. We denote by G(Q)

(Q) this nonempty mul-

tivariate polynomial in terms of the elements of the vector
N̄ and with integer coefficients. Notice that the reference to
copy-variable-ordering vectors has been dropped from the

notation for G(Q)

(Q) .

The next observations, in Proposition 5.52, are about the

properties of the function G(Q)

(Q) for explicit-wave queries Q.

The results of Proposition 5.52 hold by the relevant defini-
tions and by Proposition 5.33. The intuition for Proposi-
tion 5.52 is the same as the intuition for Proposition 5.51.

Proposition 5.52. Given an explicit-wave CCQ query
Q, we have that:

• In the function G(Q)

(Q) , each term is a solid term;

• Each term of the function G(Q)

(Q) has a positive coeffi-

cient; and

• The multivariate polynomial G(Q)

(Q) has a (solid) term

which is the wave P(Q)
∗ of the query Q w.r.t. the family

of databases {DN̄(i)(Q)}.

2

5.10.7 Intuition for the proof of Proposition 5.47
In this subsection we provide the intuition for the remain-

der of this proof of Theorem 4.1. Specifically, we explain
how we plan, in the remainder of this proof, to prove Propo-
sition 5.47 of Section 5.10.2.

We have just established (see Proposition 5.52) that for

the query Q given in Theorem 4.1, the wave P(Q)
∗ of the

query Q is present as a solid term in the m-covering part of

the function F (Q)

(Q) . We now make an easy observation that

follows trivially from Propositions 5.50 and 5.52:

Proposition 5.53. Given an explicit-wave CCQ query Q
and a CCQ query Q′ such that Q ≡C Q′. Then for each
copy-variable-ordering vector, K̄w, for the vector N̄ , the m-

covering part of the function F (Q′)
(Q) [K̄w] has, with a positive-

integer coefficient, the wave P(Q)
∗ of the query Q w.r.t. the

family of databases {DN̄(i)(Q)}. 2

What remains to be shown, to complete the proof of Propo-
sition 5.47 of Section 5.10.2, is the following claim:

Conjecture 5.1. Given an explicit-wave CCQ query Q
and a CCQ query Q′ such that Q ≡C Q′. Then for each
copy-variable-ordering vector, K̄w, for the vector N̄ , the m-

covering part of the function F (Q′)
(Q) [K̄w] has, as a solid term,

the wave P(Q)
∗ of the query Q w.r.t. the family of databases

{DN̄(i)(Q)}. 2

The only difference between the formulations of Proposi-
tion 5.53 and of Conjecture 5.1 is that Conjecture 5.1 claims

that the term P(Q)
∗ is a solid term in the m-covering part of

the function F (Q′)
(Q) [K̄w], for each vector K̄w.

Observe that if Conjecture 5.1 is true, then it implies the
result of Proposition 5.47 of Section 5.10.2. That is, prov-
ing Conjecture 5.1 would complete immediately the proof of
Theorem 4.1, please see Section 5.1.2.

43

Conjecture 5.1 does turn out to be true. (We will intro-
duce its recasting, in identical wording, as Proposition 5.57
of Section 5.10.9.) In the remainder of this subsection, we
provide the intuition for the planned proof.

Our plan of attack for the proof of the result of Conjec-
ture 5.1 is as follows. We obtain that result by contradiction,

by assuming that P(Q)
∗ is a phantom term in the m-covering

part of the function F (Q′)
(Q) [K̄w], for at least one vector K̄w.

Our key point in the proof is that if P(Q)
∗ is a phantom term

for some fixed vector K̄w, then the expression for P(Q)
∗ using

a product of min-expressions (i.e., in a way that does not
factor in any specific orderings K̄w) must include a min-
expression involving at least two distinct variables among
the variables Nm+1, . . . , Nm+w of the query Q. (Hence our
assumption that w ≥ 2 would be essential in that part of
the remainder of the proof of Theorem 4.1.) It is rather
straightforward to obtain from this fact that for some vec-
tor K̄′w different from the fixed vector K̄w, we could get

a different monomial for the term that “looked like” P(Q)
∗

under the ordering K̄w, because we would obtain K̄′w essen-
tially by swapping the relative order of some two distinct
variables NA and NB in the vector K̄w. Then, unless the

latter monomial (i.e., the monomial that results from P(Q)
∗

when we replace K̄w with K̄′w) gets canceled out by other

terms in the polynomial resulting from F (Q′)
(Q) under K̄′w, we

can achieve the desired contradiction by observing that the
overall m-covering parts of the tuple-multiplicity function
for Q′ are different under the vectors K̄w and K̄′w. (The
contradiction follows immediately from the results of Sec-
tion 5.10.6 and from Proposition 5.50, which together say
that for each pair (K̄w, K̄′w), the m-covering part of the
tuple-multiplicity function for the query Q′ under K̄w and
the m-covering part of the tuple-multiplicity function for Q′

under K̄′w must be identical polynomials.)
However, it is not clear at all how to prove the claim that

the requisite terms in the functions forQ′ do not get canceled
out in a way that is “convenient for the function Q′.” Here is

the source of the difficulty: Observe that if P(Q)
∗ is indeed a

phantom term in the tuple-multiplicity polynomial for some

fixed K̄w, then it must be that P(Q)
∗ under that K̄w is a term

in a polynomial, R, such that R arises from the inclusion-
exclusion principle for counting the cardinality of a union of
sets of tuples for some monomial classes for the query Q′

and for databases DN(i)(Q). Further, P(Q)
∗ under that K̄w

being a phantom term of that polynomial R means that:
(*) The polynomial for the union that we are speaking

about must be for a union of the sets of tuples for at least
two such monomial classes.

(This fact is immediate from our assumption that P(Q)
∗

is a phantom term, that is, P(Q)
∗ cannot be the multiplicity

monomial for any monomial class for Q′ and for databases
DN(i)(Q)).

As a result, we have that:
(**) The polynomial R for the above union must have

terms with positive coefficients, as well as terms with nega-
tive coefficients.

The fact (**) furnishes a significant challenge in the proof

of Conjecture 5.1. Indeed, if P(Q)
∗ is a phantom term in

such a polynomial for some fixed K̄w, then (by definition

of phantom terms) P(Q)
∗ must be a phantom term in the

relevant polynomials for all possible vectors K̄w, and thus

the polynomials as in (*) for all possible vectors K̄w must
have terms with positive coefficients, as well as terms with
negative coefficients. As a result, there is a theoretical possi-
bility, for the query Q′, that under each different vector K̄w,

P(Q)
∗ is a different term in some such union-of-multiplicities

polynomial. Thus, it is theoretically possible that in the
overall polynomial that is the m-covering part of the func-

tion F (Q′)
(Q) [K̄w], the remaining terms (i.e., those terms that

do not “look like” P(Q)
∗ under the given vector K̄w) always

cancel each other out in a convenient way. This way, we

can make no conclusion about the wave P(Q)
∗ of the query

Q being backed up by assignments from the query Q′ to the
databases DN̄(i)(Q), and thus can make no conclusion about
the result of Theorem 4.1 for (explicit-wave CCQ queries Q
and) arbitrary CCQ queries Q′.

Our plan of attack for overcoming this major challenge
is in developing a class of signatures, for multivariate poly-
nomials with integer coefficients in the context of the proof
of Theorem 4.1, in such a way that the signature for each
such polynomial is always a set that features (some combi-
nations of) variables used in those polynomials, always with
positive coefficients. (As a result, no part of such a signa-
ture can cancel out another part of the signature.) Further,
whenever the signatures for two such polynomials are differ-
ent, then the polynomials must also be different. We explain
how to construct the signatures in Section 5.10.8.

Then, in Section 5.10.9, we prove Conjecture 5.1, by essen-
tially following the idea-of-the-proof argument of this sub-
section, but by looking at the signatures instead of at the
polynomials that generate those signatures. This way, we
overcome the challenge that arises from the presence of both
positive- and negative-coefficient terms under our assumption-
toward-contradiction in the proof of Conjecture 5.1, and
thus complete the proof of Theorem 4.1.

5.10.8 Signatures for the polynomials F (Q′)
(Q) [K̄w]

In this subsection, for the multivariate polynomials with
integer coefficients in the context of the proof of Theorem 4.1,
we define a class of signatures. One property of these signa-
tures is that the signature for each such polynomial is always
a set that features (some combinations of) variables used in
those polynomials, always with positive coefficients. (As a
result, no part of such a signature can cancel out another
part of the signature.) Another property of these signatures
is that, whenever the signatures for two such polynomials
are different, then the polynomials must also be different.
We use these signatures in Section 5.10.9, to complete the
proof of Theorem 4.1.

The general idea of our proposed signatures is to produce,
for a given multivariate polynomial, in terms of the vari-
ables Nm+1 through Nm+w and with integer coefficients, the
“overall count” of the number of occurrences of each variable
in the polynomial, separately for each of the variables. (We
count as positive occurrences all such occurrences of vari-
ables in terms with positive coefficients, and count as neg-
ative occurrences all such occurrences of variables in terms
with negative coefficients.) Intuitively, we do the counting
on a version of the polynomial where (i) each power of the
form Xp, with X a variable of interest and with p an integer
value greater than two, is expanded as X×X× . . .×X, with
X occurring p times in the product, and where (ii) each term
of the form C×Π, with Π being a product of variables with

44

the unity coefficient and with the absolute value |C| of C
being strictly greater than unity, is expanded as sign(C) ×
Π × Π × . . . × Π, with Π occurring |C| times in the product.

To construct the signatures, we recall the“original” formu-

lations of the m-covering part (only) of the functions F (Q′′)
(Q) ,

as given via Propositions 5.43 and 5.44 of Section 5.9.5. For

the functions F (Q′′)
(Q) , these are the formulations that do not

take into account any fixed copy-variable-ordering vectors
K̄w, and hence the formulations may use min-expressions.
To construct the signatures in this section, in each such

formulation of a function F (Q′′)
(Q) , we order the elements of

each term according to the provenance of each element from
the respective copy signature. That is, whenever a min-
expression, M, in any such term T , is a min-expression
for some fixed value of u between 1 and r, as given in the
notation of Proposition 5.44 of Section 5.9.5, then the min-
expression M is exactly the uth element, from left to right,
in the term T . (In any special case where themin-expression
M evaluates either to the constant 1 or to a single variable
name Nj for some jth element, j ∈ { m + 1, . . ., m + w
}, of the vector N̄ , – that is, in all cases where the min-
expression contains only one element, – the respective uth
element in the term T is exactly the value 1 or that variable
name, rather than the (unevaluated) min-expression.)

In the expression that results from the procedure described
in the previous paragraph, we further group together, by
using parentheses, each separate union-of-multiplicity-terms
expression as in the format of Proposition 5.43 of Section 5.9.5.

The purpose of the above ordering is to make it drastically
easier, as we will see in Proposition 5.56, to compute our
proposed signatures. To make it even easier to compute
the signatures, in case where m ≥ 1 we divide each such
ordered expression as above by the product Πm

i=1Ni. Thus,
the expression that we use to construct a signature is always
an (ordered) expression in terms of only the variables Nm+1

through Nm+w.
For a fixed CCQ query Q′′, the first input to our signa-

ture constructor is always the m-covering part of the func-

tion F (Q′′)
(Q) , which we then preprocess by (a) dividing the

entire expression by Πm
i=1Ni in case where m ≥ 1, and by

then (b) ordering, as explained in the third and fourth para-
graphs of this subsection, the elements of all the terms in
the output of the step (a). (All the “expansions” outlined
in the second paragraph of this subsection result naturally
from the preprocessing step (b).) The second input to our
signature constructor is always some copy-variable-ordering
vector K̄w for the query Q.

In the remainder of this subsection, we denote by f (S)(Q′′)
the output of our preprocessing steps (a) and (b) when given

as input the function F (Q′′)
(Q) for a CCQ query Q′′ and for a

family of databases DN̄(i)(Q).
Consider an illustration.

EXAMPLE 5.11. Consider the function

2×N1 ×N2 − (min(N1, N2))2 (2)

that was constructed in Example 5.10 for a hypothetical CCQ
query Q′′. As m = 0 in the context of that example, Eq. (2)

defines exactly the m-covering part of the function F (Q′′)
(Q) .

Observe that Eq. (2) contains terms with nonunity coeffi-
cients (see the first term in the Equation) and, as we will

see in this example, does not observe the ordering that we
proposed in the third paragraph of this subsection.

Our preprocessing step (a) is to divide the entire expres-
sion by Πm

i=1Ni, in case where m ≥ 1. As m = 0 for this
query Q′′, the output of this step for the function of Eq. (2)
is exactly the input of this step (a).

We now begin the preprocessing step (b), by ordering, as
explained in the third paragraph of this subsection, the ele-
ments of all the terms in the output of the step (a). Specifi-
cally, the first term 2×N1×N2 in Eq. (2) stands for two sep-
arate identical expressions N1×N2, with different meanings,
as follows. The first expression N1 × N2 is the expression

for the cardinality of the set
⋂1
s=1 Γ(i)[C(Q′′)

s] (see Proposi-
tion 5.44 of Section 5.9.5), that is for the cardinality of the
intersection with itself of the tuple-multiplicity set for the

monomial class C(Q′′)
1 of Example 5.10. The copy signature

of that monomial class is [N1 N2], hence this first expression
is reordered (vacuously) in this step (b) as the product of N1

and N2, in this order. (Trivially, when we compute the car-
dinality of the intersection of a cardinality set with itself, in
each product-of-min-expressions term as given by Proposi-
tion 5.44 of Section 5.9.5 we have that each min-expression
has only one argument, and hence is evaluated immediately
to the respective element of the copy signature.)

The meaning of the second copy of the expression N1 ×
N2 in Eq. (2) is different from the meaning of the first
copy of that expression. Specifically, the second copy of the
expression N1×N2 is the expression for the cardinality of the

set
⋂2
s=2 Γ(i)[C(Q′′)

s] (see Proposition 5.44 of Section 5.9.5),
that is for the cardinality of the intersection with itself of

the tuple-multiplicity set for the monomial class C(Q′′)
2 of

Example 5.10. The copy signature of that monomial class
is [N2 N1], hence this expression (unlike the first expression
N1 × N2) is reordered (nontrivially) in this step (b) as the
product of N2 and N1, in this order.

Now the term “−(min(N1, N2))2” of Eq. (2) is refor-
matted in this preprocessing step (b) as the product of two
copies of the expression “min(N1, N2),” with the negative
sign then passed over to the output from the input expres-
sion. That is, the step (b) reformats “−(min(N1, N2))2” into
“−min(N1, N2) × min(N1, N2).” In this product expression,
the leftmost element of the product stands for the minimum
between the first element (N1) of the copy signature of the

monomial class C(Q′′)
1 and the first element (N2) of the copy

signature of the monomial class C(Q′′)
2 . Similarly, the right-

most element of the product stands for the minimum between
the second element (N2) of the copy signature of the mono-

mial class C(Q′′)
1 and the second element (N1) of the copy

signature of the monomial class C(Q′′)
2 .

Finally, all three expressions above, that is, “N1 × N2,”
“N2 ×N1,” and “−min(N1, N2) × min(N1, N2),” all belong
to the same cardinality expression for a union of monomial
classes. Hence, as explained in the fourth paragraph of this
subsection, the output f (S)(Q′′) of the step (b) and of the
overall preprocessing of this subsection is the single paren-
thesized expression

f (S)(Q′′) = (N1 ×N2 + N2 ×N1

− min(N1, N2) × min(N1, N2)) . 2

We make the following observation, which holds trivially
by construction of the expression f (S)(Q′′):

45

Proposition 5.54. Given the m-covering part, call it F (Q′′)
m ,

of the function F (Q′′)
(Q) for CCQ queries Q and Q′′. Denote

by G(Q′′)
m the result of dividing the expression F (Q′′)

m by the
product Πm

j=1Nj in case m ≥ 1; in case where m = 0 we de-

note by G(Q′′)
m the original expression F (Q′′)

m . Then for each

i ≥ 1, the expressions f (S)(Q′′) and G(Q′′)
m evaluate to the

same value when the elements of the vector N̄ (i) are substi-
tuted into each expression as values for the elements of N̄ .
2

We now define the signatures, which will be the key el-
ement of the proof in Section 5.10.9. Given the function
f (S)(Q′′) for a CCQ query Q′′ and given a copy-variable-
ordering vector K̄w for the vector N̄ of the fixed explicit-
wave query query Q, we say that the signature S(Q′′, K̄w)

of f (S)(Q′′) with respect to K̄w is the set resulting from (i)

evaluating the value of each min-expression in f (S)(Q′′) us-
ing the total (≤) order K̄w (that is, given a fixed K̄w, each
min-expression as in Proposition 5.44 of Section 5.9.5 eval-
uates to a single element of the set { 1, Nm+1, . . ., Nm+w

}), and then from (ii) counting the number of occurrences
of each variable name separately in the resulting expression,
taking into account the sign of each term (that is, an occur-
rence of a variable name in a term with the negative sign is
a negative occurrence, whereas an occurrence of a variable
name in a term with the positive sign is a positive occur-
rence). The resulting signature S(Q′′, K̄w) is a set that has
a separate element for each variable name in the set { Nm+1,
. . ., Nm+w }, giving the total number of occurrences of that

variable name in f (S)(Q′′) under the vector K̄w; we omit
from S(Q′′, K̄w) the mention of all the variable names whose

total occurrence in f (S)(Q′′) under K̄w is zero. For instance,
in the context of Example 5.11, the signature S(Q′′, K̄w) of

f (S)(Q′′) with respect to K̄w = [1 N1 N2] is S(Q′′, K̄w) =
{ 2 × N2 }, as is easy to ascertain using the expression for

f (S)(Q′′) that we obtained in Example 5.11.
In evaluating S(Q′′, K̄w), we must take care not to“bundle

together” into exponents repeated occurrences of the same
variable name; that is, for instance, the product Nm+1 ×
Nm+1, which is the same asN2

m+1, counts as two occurrences
of Nm+1 rather than one. Further, we do not count any
occurrences of the constant 1 in evaluating S(Q′′, K̄w). The
reason is, all we need to complete the proof of Theorem 4.1 is
to show that a hypothetical function of the form f (S)(Q′′), in
the context of two distinct vectors K̄w and K̄′w, results in two
nonidentical multivariate polynomials. We will do this in
our proof in Section 5.10.9 by arguing that the signatures of
those polynomials are not the same. Clearly, by construction
of the signatures we have that:

Proposition 5.55. Given expressions f (S)(Q′) and f (S)(Q′′),
where Q′ and Q′′ may or may not be the same CCQ query,
and given two distinct vectors K̄w and K̄′w. Then, whenever
the signatures S(Q′, K̄w) and S(Q′′, K̄′w) are nonidentical
sets, then the polynomial that results from evaluating the
value of each min-expression in f (S)(Q′) under the total (≤)
order K̄w is not identical to the polynomial that results from
evaluating the value of each min-expression in f (S)(Q′′) un-
der the total (≤) order K̄′w. 2

In the remainder of this subsection, we make a key obser-
vation, Proposition 5.56. The intuition for that result is that

it is very easy to compute the signature of each expression
f (S)(Q′′), w.r.t. each fixed vector K̄w, by first forming a sin-
gle positive-sign max-expression for each position (from 1st
to rth) of the copy signatures associated with each paren-

thesized expression of f (S)(Q′′), by then evaluating the re-
sulting max-expressions under the total (≤) order K̄w, and
by finally summing up all the resulting positive-sign-only oc-
currences of the variable names.

EXAMPLE 5.12. We continue Example 5.11. In the ex-
pression for f (S)(Q′′) that we obtained in that Example,

f (S)(Q′′) = (N1 ×N2 + N2 ×N1

− min(N1, N2) × min(N1, N2)) .

the “first position” in the only parenthesized expression in
f (S)(Q′′) is the expression

f
(S)
1 (Q′′) = (N1 + N2 − min(N1, N2)) .

Intuitively, that first position in the only parenthesized ex-
pression in f (S)(Q′′) was obtained by keeping only the first
element of each term in the original parenthesized expres-
sion. These correspond to a “union expression” for exactly
the first element of each of the two copy signatures ([N1 N2]
and [N2 N1]) associated with this parenthesized expression.

Similarly, the “second position” in the only parenthesized
expression in f (S)(Q′′) is the expression

f
(S)
2 (Q′′) = (N2 + N1 − min(N1, N2)) .

Intuitively, that second position in the only parenthesized ex-
pression in f (S)(Q′′) was obtained by keeping only the sec-
ond element of each term in the original parenthesized ex-
pression. These correspond to a “union expression” for ex-
actly the second element of each of the two copy signatures
([N1 N2] and [N2 N1]) associated with this parenthesized ex-
pression. 2

Interestingly, a more concise expression for f
(S)
1 (Q′′) in

Example 5.12 is f
(S)
1 (Q′′) = max(N1, N2). Indeed, the ex-

pression given as f
(S)
1 (Q′′) in Example 5.12 is the equiv-

alent expansion of the expression max(N1, N2) using the
inclusion-exclusion principle for unions of sets. This is ex-
actly the intuition for our promised easy evaluation for sig-
natures: The first position in the expression for f (S)(Q′′) in
Example 5.11 corresponds to a formula, using the inclusion-
exclusion principle, for the cardinality of the union of the
sets { 1, . . ., N1 } and { 1, . . ., N2 }. The former set is
exactly the range of the values that are provided by the as-

signments in the monomial class C(Q′′)
1 to the column for the

first copy variable of the query Q′′ (see Example 5.11 for the
first element of the copy signature of that monomial class),
when Q′′ is evaluated on any of the databases DN̄(i)(Q).
Similarly, the latter set, i.e., { 1, . . ., N2 }, is exactly the
range of the values that are provided by the assignments in

the monomial class C(Q′′)
2 to the column for the first copy

variable of the query Q′′ (see Example 5.11 for the first el-
ement of the copy signature of that monomial class), when
Q′′ is evaluated on any of the databases DN̄(i)(Q). That is,

the expression for f
(S)
1 (Q′′) in Example 5.12 is an expression

for evaluating the cardinality of the union of these two sets;
the latter union is exactly the set of values of the first copy

46

variable of the query Q′′, when Q′′ is evaluated on any of
the databases DN̄(i)(Q) under all the assignments provided

by the monomial classes C(Q′′)
1 and C(Q′′)

2 together. We can

obtain a similar intuition for the expression for f
(S)
2 (Q′′) in

Example 5.12, that is again as a max(N1, N2).

EXAMPLE 5.13. We continue with Example 5.12. Fix a

vector K̄w = { N1 N2 }. Then the expression for f
(S)
1 (Q′′)

in Example 5.12 evaluates to N2, and so does the expres-

sion for f
(S)
2 (Q′′) in Example 5.12. As a result, the set

S(Q′′, K̄w) for this vector K̄w is the result of adding up these

two positive-sign occurrences of N2, from f
(S)
1 (Q′′)[K̄w] =

max(N1, N2)[K̄w] = N2 and similarly from f
(S)
2 (Q′′)[K̄w]

= N2. That is, the set S(Q′′, K̄w) for this vector K̄w is
S(Q′′, K̄w) = { 2N2 }. 2

We now formalize the above intuition in Proposition 5.56.
To formulate Proposition 5.56, we use the following notation:
Let the function f (S)(Q′′), for a CCQ queryQ′′, have exactly
q ≥ 1 parenthesized subexpressions as defined by the fourth
paragraph of this subsection; we enumerate these parenthe-
sized subexpressions from left to right as the 1st through
qth parenthesized subexpression of the function f (S)(Q′′).
In the kth such parenthesized subexpression, for any k be-
tween 1 and q inclusively, let the lk ≥ 1 monomial classes

involved in the union in this subexpression be C(Q′′)
k1 through

C(Q′′)
klk

. Further, for each p ∈ { 1, . . . , lk }, let the copy sig-

nature of the class C(Q′′)
kp be denoted by [V

(1)
kp , V

(2)
kp , . . .,

V
(r)
kp], where each element of the vector is (by definition of

copy signature) an element of the set { 1, Nm+1, . . ., Nm+w

}. For a fixed j ∈ { 1, . . ., r }, consider the result of keep-

ing in the kth parenthesized subexpression of f (S)(Q′′) only
the jth element of each term, with the (positive or nega-
tive) sign of the original term kept around. We refer to the
resulting expression as the jth projection of the kth paren-
thesized subexpression of f (S)(Q′′). (For instance, for the

function f (S)(Q′′) that we obtained in Example 5.11, the
1st projection of the first (and only) parenthesized subex-

pression of f (S)(Q′′) is the expression f
(S)
1 (Q′′) = (N1 + N2

− min(N1, N2)); see Example 5.12 for the details.)
We are now ready to formulate Proposition 5.56.

Proposition 5.56. Let the function f (S)(Q′′), for a CCQ
query Q′′, have q ≥ 1 parenthesized subexpressions. Fix a
value k ∈ { 1, . . ., q } and a value j ∈ { 1, . . ., r }. Denote

by C(Q′′)
k1 through C(Q′′)

klk
, for some lk ≥ 1, all the monomial

classes contributing to the kth parenthesized subexpression
of f (S)(Q′′). Then the jth projection of the kth parenthe-

sized subexpression of f (S)(Q′′) is equivalent to the expres-

sion f
(S)
kj (Q′′) = max(V

(j)
k1 , . . . , V

(j)
klk

), where each of V
(j)
k1 ,

. . ., V
(j)
klk

is the jth element of the copy signature of the re-
spective monomial class. 2

The result of Proposition 5.56 is by construction of the
union expressions for Proposition 5.43 of Section 5.9.5, as
given by the inclusion-exclusion principle for unions of sets
and by themin-expressions of Proposition 5.44 of Section 5.9.5
for intersections of sets.

Proposition 5.56 gives us immediately a linear-time pro-
cedure for constructing the signature S(Q′′, K̄w) for each

function f (S)(Q′′) and copy-variable-ordering vector K̄w:

Corollary 5.2. Let the function f (S)(Q′′), for a CCQ
query Q′′, have q ≥ 1 parenthesized subexpressions. Then for
each copy-variable-ordering vector K̄w, the signature S(Q′′, K̄w)

of f (S)(Q′′) with respect to K̄w can be constructed by (1) ob-
taining all the q × r positive-sign max-expressions given by
Proposition 5.56, by then (2) evaluating each max-expression
under the total (≤) order K̄w, and by finally (3) adding up
all the positive-sign occurrences of all the variables Nm+1,
. . ., Nm+w, separately for each variable, in these results of
evaluating the max-expressions under K̄w. 2

The result of Corollary 5.2 is straightforward from Propo-
sition 5.56 and from the following Lemma 5.2.

Lemma 5.2. Given n ≥ 1 natural numbers a1, a2, . . . ,
an such that a1 ≤ a2 ≤ . . . ≤ an. For each j ∈ {1, . . . , n},
let the set Aj be Aj := {1, 2, . . . , aj − 1, aj}. Then the
cardinality of the set

⋃n
j=1Aj is the natural number an. 2

The claim of Lemma 5.2 is trivial. (Observe that for all
n we have that (a) Aj ⊆ An for all j ∈ {1, . . . , n}, and that
(b) the cardinality of the set An is exactly an.)

We end this subsection by observing that all elements of
the set S(Q′, K̄w) have positive coefficients, which add up
to exactly q × r. This result is immediate from Proposi-
tion 5.56.

Corollary 5.3. Given a CCQ query Q′ and a copy-variable-
ordering vector K̄w as specified in the proof of Theorem 4.1.
Denote by q ≥ 1 the total number of parenthesized expres-
sions in the function f (S)(Q′). Then we have that:

1. Each element of the signature S(Q′, K̄w) of f (S)(Q′)
w.r.t. K̄w has a positive coefficient; and

2. All the positive coefficients of all the elements of the
set S(Q′, K̄w) add up to q × r.

2

5.10.9 Proof of Proposition 5.57
We are now ready to prove Conjecture 5.1 (of Section 5.10.7),

that is the following Proposition 5.57. This proof completes
the proof of Proposition 5.47 of Section 5.10.2 (see Sec-
tion 5.10.7), and hence the proof of Theorem 4.1, as outlined
in Section 5.1.2.

Proposition 5.57. Given an explicit-wave CCQ query Q
and a CCQ query Q′ such that Q ≡C Q′. Then for each
copy-variable-ordering vector, K̄w, for the vector N̄ , the m-

covering part of the function F (Q′)
(Q) [K̄w] has, as a solid term,

the wave P(Q)
∗ of the query Q w.r.t. the family of databases

{DN̄(i)(Q)}. 2

In the proof of Proposition 5.57, we will use the following
observation.

Proposition 5.58. Consider two CCQ queries Q and Q′

as in the statement of Theorem 4.1. Let K̄w be a copy-
variable-ordering vector, for the vector N̄ of the query Q,
and let P[K̄w] be an arbitrary phantom term in the m-covering

part of F (Q′)
(Q) [K̄w]. Then for the product-of-min-expressions,

P, in F (Q′)
(Q) , such that P gives rise to P[K̄w] under the total

(≤) order K̄w, we have that for at least one j ∈ { 1, . . ., r },
the min-expression that is the jth projection of P has (the
min-expression) at least two distinct arguments from the set
{ 1, Nm+1, . . ., Nm+w }. 2

47

(Please see Section 5.10.8 for both the jth-projection ter-
minology and for the idea of product-of-min-expressions gen-

erating terms of m-covering parts of F (Q′)
(Q) [K̄w] under the

total (≤) orders K̄w.)

Proof. The proof is by contradiction: Assume that for
no j between 1 and r inclusively does the (min-expression
that is the) jth projection of P have more than one argu-

ment. Then P must be a solid term, and so must be P(Q)
∗

generated from P under K̄w, a contradiction. (It is im-
mediate from Proposition 5.44 of Section 5.9.5 that, if the
min-expression that is the jth projection of a term has only
one argument, for all j from 1 to r inclusively, then the
term must be a multiplicity monomial for some nonempty
monomial class for the CCQ query in question.)

Proof. (Proposition 5.57) We consider first the special
case where Q′ is under the jurisdiction of Proposition 5.42
(of Section 5.9.2; our query Q′ would be the Q′′ in the state-
ment of Proposition 5.42). In that case, for each vector K̄w

we clearly have that all terms in the m-covering part of

the function F (Q′)
(Q) [K̄w] are solid terms. Hence, by Proposi-

tion 5.53 we have the desired result of Proposition 5.57 for
this case. Observe that this special case includes all cases
where w = 0.

Note that in all cases where Q′ is not under the juris-
diction of Proposition 5.42, it holds that we have r ≥ 2.
(Recall Corollary 5.1 of Section 5.9.2; the Corollary outlines
a special case of Proposition 5.42 and covers all cases where
r ≤ 1.) In the remainder of the proof, we consider this case
of Q′ not satisfying the conditions of Proposition 5.42 (and
hence r ≥ 2 for this case).

The proof for this case is by contradiction: We assume
that for some vector K̄w, the m-covering part of the multi-

variate polynomial F (Q′)
(Q) [K̄w] has the wave P(Q)

∗ of the query

Q, w.r.t. the family of databases {DN̄(i)(Q)}, as a phantom

term. (The fact that the m-covering part of F (Q′)
(Q) [K̄w] has

the wave of the query Q is by Proposition 5.53.) Note that it
follows immediately from the definitions of solid and phan-
tom terms (see Section 5.10.5) that for all vectors K̄w, the

m-covering part of the multivariate polynomial F (Q′)
(Q) [K̄w]

has the wave P(Q)
∗ of the query Q (w.r.t. the family of

databases {DN̄(i)(Q)}) as a phantom term.
For the remainder of the proof, we fix any one vector K̄w

such that the m-covering part of the multivariate polynomial

F (Q′)
(Q) [K̄w] has the wave P(Q)

∗ of the query Q, w.r.t. the

family of databases {DN̄(i)(Q)}, as a phantom term. In
addition, we denote by P the product-of-min-expressions in

F (Q′)
(Q) , such that P gives rise to P[K̄w] under the total (≤)

order K̄w. (We use here the same terminology as in the
statement of Proposition 5.58.)

In the proof by contradiction, we consider separately the
special case where w = 1, and then the case where w ≥
2. (Recall that we dealt with the case w = 0 in the first
paragraph of the proof.)

(1) Suppose w = 1. For the P fixed as explained above,
by Proposition 5.58 there must be a j between 1 and r in-
clusively, such that the min-expression that is the jth pro-
jection of P has (the min-expression) at least two distinct
arguments from the set { 1, Nm+1, . . ., Nm+w }. Fix an ar-
bitrary value of j that satisfies this condition. Observe that
in case where w = 1, the set { 1, Nm+1, . . ., Nm+w } has ex-

actly two elements, 1 and Nm+1. Thus, the only case where
the jth projection of P can have at least two arguments is
when that min-expression (which is the jth projection of
P) has exactly two arguments, one of them 1 and the other
Nm+1.

We now recall that for all copy-variable-ordering vectors
K̄w, the value of Nm+1 is always greater than or equal to 1.
Thus, any min-expression as above would always evaluate
immediately to 1 in P. With this conclusion, we arrive at the
desired contradiction with the assumption that under the
fixed vector K̄w, the term P could give rise, in the function

F (Q′)
(Q) [K̄w], to the wave P(Q)

∗ of the query Q. Indeed, the

wave of the query Q is by definition a product of m+ r (not
necessarily distinct) variable names from the set { 1, N1, . . .,
Nm+w }. At the same time, each term generated from the

function F (Q′)
(Q) under each vector K̄w cannot be a product

of more than m+ r elements, please see Proposition 5.44 of
Section 5.9.5. That is, whenever any element of the product
in any such term is the constant 1, then the total number
of the remaining multipliers constituting the term cannot
exceed m+r−1. This contradiction concludes our proof for
the case where w = 1.

(2) Suppose now that w ≥ 2; that is, we have that the set
{ 1, Nm+1, . . ., Nm+w } has at least two distinct variable
names corresponding to the copy variables of the query Q.
Similarly to our argument for the case where w = 1, for the P
fixed as explained above, by Proposition 5.58 there must be
a j between 1 and r inclusively, such that the min-expression
that is the jth projection of P has (the min-expression) at
least two distinct arguments from the set { 1, Nm+1, . . .,
Nm+w }.

Fix an arbitrary value of j that satisfies this condition.
Again similarly to our argument for the case where w = 1,
we obtain that for the (at least) two distinct arguments from
the set { 1, Nm+1, . . ., Nm+w } in the min-expression that
is the jth projection of P, these distinct arguments must
include at least two distinct elements of the set { Nm+1,
. . ., Nm+w }. That is, the jth projection of P must have
at least two distinct variable names, from among Nm+1, . . .,
Nm+w, as arguments of its min-expression. Denote the set
of all those distinct arguments of that min-expression that
are elements of the set { Nm+1, . . ., Nm+w } as the set S∗.
By our argument, the cardinality |S∗| of the set S∗ is at
least two.

Now consider the function f (S)(Q′) constructed for the

m-covering part of the function F (Q′)
(Q) as described in Sec-

tion 5.10.8. Suppose that the term P in f (S)(Q′), where P
is fixed as explained before item (1) of this proof, belongs to

the kth parenthesized expression of f (S)(Q′), for some k ≥
1. In the remainder of the proof, we keep this value k fixed.

Denote by (w.l.o.g.) C(Q′)
1 through C(Q′)

p , for some p ≥ 1,
all the p distinct monomial classes that have contributed
to the construction of this kth parenthesized expression of
f (S)(Q′). From the set S∗, of cardinality at least two, being
the set of arguments of the min-expression in the jth pro-
jection of P, we infer that p ≥ 2. Further, for the j fixed
as above, consider the set, call it S∗∗, of all items that oc-

cur as the jth element of the copy signature of C(Q′)
l , for

all l ∈ { 1, . . . , p }. From the fact that P is a term in the

kth parenthesized expression of f (S)(Q′) to whose (the kth

parenthesized expression) construction all of C(Q′)
1 through

48

C(Q′)
p have contributed, we have that S∗∗ is a superset of the

set S∗. Hence, the set S∗∗ contains at least two distinct el-
ements of the set { Nm+1, . . ., Nm+w }, and the cardinality
|S∗∗| of the set S∗∗ is at least two.

The contradiction that we are to arrive at is going to be
as follows. We will show that, in addition to the vector
K̄w fixed as explained above, there exists a different copy-
variable-ordering vector K̄′w for the query Q, with the fol-
lowing property: The signature S(Q′, K̄w) of the function

f (S)(Q′) w.r.t. the vector K̄w is not identical to the signa-

ture S(Q′, K̄′w) of the function f (S)(Q′) w.r.t. the vector
K̄′w. By Proposition 5.55, we will then obtain that the m-

covering part of the function F (Q′)
(Q) [K̄w] and the m-covering

part of the function F (Q′)
(Q) [K̄′w] (for the query Q′ and for the

two distinct vectors K̄w and K̄′w) are nonidentical polyno-
mials. That allows us to immediately obtain a contradiction
with Propositions 5.50 and 5.51, which together claim that
for all pairs (K̄w, K̄′w) of copy-variable-ordering vectors for

the query Q, the m-covering part of the function F (Q′)
(Q) [K̄w]

and the m-covering part of the function F (Q′)
(Q) [K̄′w] must

be identical polynomials, whenever Q ≡C Q′ and Q is an
explicit-wave query.

Thus, to complete this proof it remains to show that there
exists a copy-variable-ordering vector K̄′w for the query Q
such that K̄′w is not identical to the fixed vector K̄w, and
such that the signature S(Q′, K̄w) of the function f (S)(Q′)
w.r.t. the vector K̄w is not identical to the signature S(Q′, K̄′w)

of the function f (S)(Q′) w.r.t. the vector K̄′w.
We construct one vector K̄′w with this desired property

from the vector K̄w, as follows. Recall the set S∗∗, which
contains at least two distinct elements of the set { Nm+1,
. . ., Nm+w }. In the set S∗∗, let NA be the element that
is the minimal element of S∗∗ under the total (≤) order
K̄w. Similarly, in the set S∗∗, let NB be the element that
is the maximal element of S∗∗ under the total (≤) order
K̄w. (Actually, picking NA to be any element of S∗∗ that
is distinct from variable name NB would be sufficient for
our purpose in this proof. We choose NA as the minimal
element to make it easy to see how we construct K̄′w from
K̄w – by swapping, in the relative ≤ order of the variable
names, the minimal element with the maximal element of
S∗∗ in the vectors K̄w and K̄′w.)

By construction of the set S∗∗, it is immediate that:

• NA and NB are two distinct elements of the set {
Nm+1, . . ., Nm+w }; and

• NB is the variable name that the jth projection of the
kth parenthesized expression of f (S)(Q′) contributes

to the signature S(Q′, K̄w) of the function f (S)(Q′)
w.r.t. the vector K̄w. (This fact is immediate from
Proposition 5.56.)

We now take as the desired vector K̄′w an arbitrary copy-
variable-ordering vector for Q such that NB is the minimal
element of K̄′w, with the exception of the element 1 of K̄′w,
and such that NA is the maximal element of K̄′w. That is,
we take as K̄′w an arbitrary copy-variable-ordering vector for
Q whose first two elements are 1 and NB , in this order, and
whose last element is NA. Clearly, by w ≥ 2 we have that
at least one such vector K̄′w must exist.

Consider the variable name that the jth projection of the
kth parenthesized expression of f (S)(Q′) contributes to the

signature S(Q′, K̄′w) of the function f (S)(Q′) w.r.t. the vec-
tor K̄′w. By construction of the set S∗∗ and of the vector
K̄′w, we have that this variable name is NA.

Now for the two signatures S(Q′, K̄w) and S(Q′, K̄′w) to
still be identical sets, it must be that some other, fixed pro-
jection of some fixed parenthesized expression of f (S)(Q′)
would contribute:

• the variable name NB to the signature S(Q′, K̄′w), and

• some variable name NC that is distinct from NB , to
the signature S(Q′, K̄w). (NC may or may not be iden-
tical to NA. Intuitively, for the two signatures to be
identical sets “on the balance,” there is to be a cycle
going through the variable names NA and NB , and
that cycle may or may not involve other elements of
the set { Nm+1, . . ., Nm+w }.)

This observation gives is the desired contradiction. In-
deed, if some projection of some parenthesized expression of
f (S)(Q′) contributes the variable name NB to the signature
S(Q′, K̄′w), then the max-expression for that projection can
contain, as its arguments, only 1 in addition to NB . (Recall
that NB is the minimal-value variable name under the total
(≤) order K̄′w.) Thus, it is not possible for the signatures
S(Q′, K̄w) and S(Q′, K̄′w) to be identical sets. This obser-
vation completes the proof for the case w ≥ 2, and hence
completes the proof of the entire Proposition 5.57.

5.10.10 Theorem 4.1: End of the proof
As summarized in Section 5.1.1, the proof of Theorem 4.1

is immediate from three results, as follows.

• Proposition 5.33 of Section 5.7 states the following:
Given a CCQ query Q, there exists a nonempty mono-

mial class, call it C(Q)
∗ , for the query Q w.r.t. the

family of databases {DN̄(i)(Q)}, such that the multi-

plicity monomial of C(Q)
∗ is the wave of the query Q

w.r.t. {DN̄(i)(Q)}.

• Proposition 5.34 of Section 5.7 states the following:
Given CCQ queries Q(X̄) ← L,M and Q′(X̄ ′) ←
L′,M ′, such that (i) Q and Q′ have the same (positive-
integer) head arities, (ii) |Mcopy| = |M ′copy|, and (iii)
|Mnoncopy| = |M ′noncopy|. Suppose that there exists a

nonempty monomial class C(Q′)
∗ for the query Q′ w.r.t.

the family of databases {DN̄(i)(Q)}, such that the mul-

tiplicity monomial of C(Q′)
∗ is the wave of the query Q

w.r.t. {DN̄(i)(Q)}. Then there exists a SCVM from
the query Q′ to the query Q.

• Proposition 5.47 of Section 5.10 states the following:
Whenever

(a) Q ≡C Q′ for CCQ queries Q and Q′, and

(b) Q is an explicit-wave CCQ query (as specified by
Definition 4.1),

then there exists a (nonempty) monomial class C(Q′)
∗

for the queryQ′ and for the family of databases {DN̄(i)(Q)},
such that the multiplicity monomial of C(Q′)

∗ is the
wave of the query Q w.r.t. {DN̄(i)(Q)}.

We can finally conclude that the result of Theorem 4.1
holds. Q.E.D.

49

6. REFERENCES
[1] F. N. Afrati, M. Damigos, and M. Gergatsoulis. Query

containment under bag and bag-set semantics. Information
Processing Letters, 110(10):360–369, 2010.

[2] A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In ACM
STOC, 1977.

[3] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD Record,
26(1):65–74, 1997.

[4] S. Chaudhuri, U. Dayal, and V. R. Narasayya. An overview
of business intelligence technology. Commun. ACM,
54(8):88–98, 2011.

[5] S. Chaudhuri and M. Y. Vardi. Optimization of real
conjunctive queries (extended abstract). In PODS, 1993.

[6] R. Chirkova. Equivalence and minimization of conjunctive
queries under combined semantics. Technical Report
TR-2010-24, NCSU, 2010. Available from
http://www.csc.ncsu.edu/research/tech/reports.php.

[7] R. Chirkova. Equivalence and minimization tests for
conjunctive queries under combined semantics. Submitted
for publication, 2012.

[8] S. Cohen. Equivalence of queries combining set and bag-set
semantics. In PODS, pages 70–79, 2006.

[9] S. Cohen. Equivalence of queries that are sensitive to
multiplicities. The VLDB Journal, 18:765–785, 2009.

[10] S. Cohen, W. Nutt, and Y. Sagiv. Containment of
aggregate queries. In ICDT, pages 111–125, 2003.

[11] A. Gupta and I. S. Mumick, editors. Materialized Views:
Techniques, Implementations, and Applications. The MIT
Press, 1999.

[12] Y. Ioannidis and R. Ramakrishnan. Containment of
conjunctive queries: beyond relations as sets. ACM TODS,
20(3):288–324, 1995.

[13] T. Jayram, P. Kolaitis, and E. Vee. The containment
problem for real conjunctive queries with inequalities. In
PODS, pages 80–89, 2006.

[14] W. Lehner. Query processing in data warehouses. In
Encyclopedia of Database Systems, pages 2297–2301.
Springer, 2009.

[15] N. Pendse and R. Creeth. The OLAP report. Business
Intelligence, 1995. The 2008 update available at http://
www.bi-verdict.com/fileadmin/FreeAnalyses/fasmi.htm.

[16] A. Shukla, P. Deshpande, and J. F. Naughton. Materialized
view selection for multi-cube data models. In EDBT, 2000.

[17] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and
M. Urata. Answering complex SQL queries using automatic
summary tables. In SIGMOD, pages 105–116, 2000.

APPENDIX
For the convenience of the reviewers, this optional appendix
provides additional information from the online paper [6]
concerning the results presented in this current manuscript.

A. SUFFICIENT CONDITION FOR BAG
CONTAINMENT

In this appendix we provide a detailed discussion of the
relationship of Theorem 3.3 with the following result of [5].

Theorem A.1. [5] Given two CCQ bag queries Q and Q′

such that there exists a CVM from Q′ to Q. Then we have
that Q vB Q′. 2

It is easy to see that Theorem A.1 is an immediate corol-
lary of Theorem 3.3.

Note that Theorem A.1 is formulated here using the syn-
tax of [9] that we adopt in this current paper. Recall that in
[5], definitions of bag queries are written using the implicit
bag syntax. That is, suppose that we know that a query Q
is a bag query. This means that we know that (i) for all the
nondistinguished variables of Q that are not copy variables,
each such variable is a multiset (noncopy) variable of Q, and
that (ii) all subgoals of Q are copy-sensitive subgoals. In this
case, we can drop altogether from the (explicit, i.e., in the
style of [9]) definition of Q (a) the set M , and (b) all copy
variables in all subgoals of Q – just because we know how
to interpret all subgoals and all explicit variables of a bag
query.

The resulting implicit notation makes a CVM from Q′

to Q “look like” a containment mapping. That is, suppose
there exists an“onto-style containment mapping”µ from bag
query Q′ to bag query Q when the definitions of both queries
use the implicit bag syntax of [5]. By the definition of µ, we
have that

(1) Each subgoal l′ of Q′ is associated by µ with a subgoal
l of Q, such that µ(l′) and l have identical relational
templates; and that

(2) For each subgoal l of Q, there exists at least one subgoal
l′ of Q′ such that µ associates l′ with l.

When we change this definition of µ in such a way that
µ still applies to Q′ and Q using the (explicit) syntax of
[9], it is easy to see that µ is exactly a CVM from the (ex-
plicitly defined) Q′ to the (explicitly defined) Q. Hence the
formulation of Theorem A.1 reflects correctly the result of
[5].

B. THE NONSURJECTIVE CONTAINMENT
EXAMPLE

In this appendix we recall an example from [5].

EXAMPLE B.1. Let CCQ queries Q and Q′ be as fol-
lows.

Q(X,Z)← p(X; i), s(U,X; j), s(V,Z; k), r(Z; l),
{U, V, i, j, k, l}.

Q′(X,Z)← p(X; i), s(U, Y ; j), s(V, Y ; k), r(Z; l),
{U, V, Y, i, j, k, l}.

For bag queries Q and Q′, the authors of [5] claim Q vB
Q′, that is Q vC Q′ in the context of this present paper. 2

50

Observe that for the queries Q and Q′ of Example B.1,
(Q, Q′) is a containment-compatible CCQ pair. (That is,
Q and Q′ satisfy the necessary containment condition of
Theorem 3.1.) At the same time, it is easy to check that no
CVM exists from the query Q′ to the query Q.

C. CVMS VS MULTISET HOMOMORPHISMS
In this appendix we provide Example C.1 showing that

general CVMs and multiset homomorphisms are incompa-
rable when applied to pairs of CCQ queries. We also prove
Proposition 3.3.

EXAMPLE C.1. Let CCQ queries Q and Q′ be as fol-
lows.

Q(A)← p(A,B), p(A,C), {B,C}.
Q′(D)← p(D,E), p(D,F), {E}.

Consider mapping µ from the terms of query Q to the
terms of query Q′, and mappings µ′ and µ′′ from the terms
of Q′ to the terms of Q: µ = {A → D,B → E,C → E};
µ′ = {D → A,E → B,F → B}; and µ′′ = {D → A,E →
B,F → C}. Mapping µ is a CVM but not a multiset-
homomorphism (because µ maps B and C into the same
multiset variable E of Q′). Further, each of µ′ and µ′′ is a
multiset-homomorphism but not a CVM. (For each of µ′ and
µ′′, the image of {E} under the mapping is not a superset
of {B,C}.) 2

Proof. (Proposition 3.3) The proof is immediate from
Proposition 3.2. Indeed, suppose that for an equivalence-
compatible CCQ pair (Q, Q′), there exists a SCVM µ from
Q′ to Q. By Proposition 3.2, µ is a generalized contain-
ment mapping from Q′ to the deregularized version of Q.
Thus, using Definition 3.2, we obtain that condition (4) of
Definition 3.1, when applied to µ, to Q′, and to the deregu-
larized version of Q, guarantees that condition (3) of Defini-
tion 2.3 is satisfied by µ. Observe that by (Q, Q′) being an
equivalence-compatible CCQ pair, we have that condition
(3) of Definition 3.1 for µ guarantees conditions (4) and (5)
of Definition 2.3 for µ. Finally, the satisfaction by µ (when
applied to Q′ and Q) of conditions (1) and (2) of Defini-
tion 3.1 guarantees the satisfaction by µ (when applied to
Q′ and to the deregularized version of Q) of conditions (1)
and (2) of Definition 2.3. The opposite direction (that is, a
multiset homomorphism ϕ from Q′ to the deregularized ver-
sion of Q is always a SCVM from Q′ to Q) is proved using
the above proof “in the opposite direction.”

D. PROOF OF SUFFICIENT CONDITION
FOR A CCQ QUERY TO BE AN EXPLICIT-
WAVE QUERY

This appendix provides a proof of Proposition 4.1.

Proof. We prove that for all queries such as Q in the
statement of Proposition 4.1, each such query satisfies Defi-
nition 4.1. Indeed, consider a query Q satisfying the condi-
tion that each copy-sensitive subgoal of Q has no set vari-
ables. In case Q has at most one copy-sensitive subgoal, we
obtain immediately that Q satisfies Definition 4.1 (1). Thus,
in the remainder of this proof we assume that Q has at least
two copy-sensitive subgoals. We will show that in this case,
Q always satisfies Definition 4.1 (2).

Let (µ1, µ2) be an arbitrary pair of noncopy-permuting
GCMs from Qce to itself such that µ1 and µ2 agree on
Mnoncopy. Consider an arbitrary copy-sensitive subgoal of
Q, call this subgoal s. By definition of the query Qce, s must
be a subgoal of Qce. The atom s may have as arguments
only constants, head variables of the query Q, and multiset
variables. (Recall that no set variables of Q may be argu-
ments of s.) Now each of µ1 and µ2 map each constant to
itself (by each of µ1 and µ2 being a GCM), and by each
of µ1 and µ2 being a mapping from Qce to itself we obtain
that each of µ1 and µ2 maps each head variable of Qce (that
is, each head variable of Q, by definition of Qce) to itself.
Finally, consider each multiset noncopy variable, call it Y ,
such that Y is an argument of the atom s. By µ1 and µ2

agreeing on Mnoncopy, we have that µ1(Y) and µ2(Y) are
the same term of the query Q. (Recall that, by definition
of Qce, we have that for all terms that are present in Qce
but not in Q, each such term is a copy variable.) We con-
clude that atoms µ1(s) and µ2(s) have the same relational
template. Hence, Q satisfies Definition 4.1 (2). Q.E.D.

E. QUERY Q OF EXAMPLE 4.1 IS AN
IMPLICIT-WAVE QUERY

In this appendix we show that query Q of Example 4.1
is an implicit-wave query. We observe first that the query
Q has two copy-sensitive subgoals. Now the copy-enhanced
version Qce of Q is exactly Q. (Recall that to construct the
copy-enhanced version Qce of query Q, all one needs to do
is add distinct copy variables to all relational subgoals of Q.
The query Q of Example 4.1 does not have any relational
subgoals.) Consider two GCMs from Qce to itself. (We use
here the formulation, specifically the variable naming, for
the query Q as given in the beginning of Appendix F.)
µ1 = {X1 → X1, Y1 → Y1, Y2 → Y2, X2 → X2, X3 → X2,

Y3 → Y3, Y4 → Y3 }; and
µ2 = {X1 → X1, Y1 → Y1, Y2 → Y2, X2 → X3, X3 → X3,

Y3 → Y4, Y4 → Y4 }.
The set Mnoncopy for the query Q, as well as for the query

Qce, is {Y1, Y2}. Each of µ1 and µ2 is a noncopy-permuting
GCM from Qce to itself, because each of µ1 and µ2 maps
each element of Mnoncopy to itself. For the same reason, the
mappings µ1 and µ2 agree on Mnoncopy.

Mappings µ1 and µ2 map the first subgoal of Q (which is
an original copy-sensitive subgoal of Q) into atoms with dif-
ferent relational templates. Indeed,
µ1(r(X1, Y1, Y2, X2;Y3)) is atom r(X1, Y1, Y2, X2;Y3), and
µ2(r(X1, Y1, Y2, X2;Y3)) is atom r(X1, Y1, Y2, X3;Y4). We
conclude that Q is not an explicit-wave query.

F. IN EXAMPLE 4.1, Q ≡C Q′ HOLDS
In this appendix we show that, for the queries of Exam-

ple 4.1, Q ≡C Q′ holds.

Proposition F.1. For the queries Q and Q′ of Exam-
ple 4.1, we have that Q ≡C Q′. 2

For the convenience of the exposition in the proof, we use
a version of the query Q′ where all variables have been re-
named into “same-name” primed variables. We also rename
the copy variables in a consistent way. That is, we use

Q(X1)← r(X1, Y1, Y2, X2;Y3), r(X1, Y1, Y2, X3;Y4),

51

{Y1, Y2, Y3, Y4}.
Q′(X ′1)← r(X ′1, Y

′
1 , Y

′
2 , X

′
2;Y ′3), r(X ′1, Y

′
1 , Y

′
2 , X

′
2;Y ′4),

{Y ′1 , Y ′2 , Y ′3 , Y ′4}.
Proof. We will prove the claim of Proposition F.1 if we

show that for an arbitrary database D and for an arbitrary

constant a ∈ adom(D), the sets Γ
(a)

S̄
(Q,D) and Γ

(a)

S̄
(Q′, D)

are of the same cardinality. (Recall the definition of query
answer under combined semantics.) To prove this, it is
sufficient to show that (for the fixed database D and) for
an arbitrary 3-tuple t of constants from adom(D), the sets
ΓS̄(Q,D)[t] and ΓS̄(Q′, D)[t] are of the same cardinality.
Here, by the set ΓS̄(Q,D)[t] we denote the set of all tu-
ples in ΓS̄(Q,D) such that the projection of each tuple on
the variables X1, Y1, Y2, in this order, is exactly the fixed
tuple t. Similarly, by the set ΓS̄(Q′, D)[t] we denote the set
of all tuples in ΓS̄(Q′, D) such that the projection of each
tuple on the variables X ′1, Y

′
1 , Y

′
2 , in this order, is exactly the

fixed tuple t.
We now prove the latter claim. For the fixed database D,

for the remainder of this proof fix a tuple t = (a, b, c), for
some a, b, c ∈ adom(D), as described above.

(1) We first show that whenever the set ΓS̄(Q,D)[t] is not
empty, the sets ΓS̄(Q,D)[t] and ΓS̄(Q′, D)[t] are of the same
cardinality k2, for some constant k ∈ N+ where k is a copy
number of some ground atom of the database D.

Suppose that the set ΓS̄(Q,D)[t] is not empty. Then there
must exist in D ground atoms (perhaps identical to each
other) g1 = r(a, b, c, d; e) and g2 = r(a, b, c, f ;h), for some
d, f ∈ adom(D) and for some e, h ∈ N+. These atoms g1

and g2 must, intuitively, be the images of the first and of the
second subgoal of the query Q, respectively, under a valid
assignment mapping from Q to D. That is, formally, for the
set ΓS̄(Q,D)[t] to be a nonempty set, it must be that the
mapping { X1 → a, Y1 → b, Y2 → c, X2 → d, X3 → e,
Y3 → 1, Y4 → 1 } is a valid assignment mapping from all
the terms of the query Q to the elements of adom(D)

⋃
N+.

The validity of this assignment mapping is justified by the
presence of the ground atoms g1 and g2 in the database D.

We now consider all those ground atoms in relation R in
the database D, such that each of the atoms has a, b, c, in
this order, as the values of the first three attributes of the
relation R, from left to right. We know that the set, call
it S[Q], of all such atoms is not empty, as g1 and g2 of the
previous paragraph will be elements of this set. Now let the
constant k ∈ N+ be the maximal value of the copy number
among all the ground atoms in the set S[Q]. From the set
S[Q], choose an arbitrary atom, call it g, whose copy number
is k. Let g be r(a, b, c, l; k), for some l ∈ adom(D).

We now argue that for each n1, n2 ∈ {1, . . . , k} and for
the constant l in the ground atom g, the mapping µ(n1,n2,l)

= { X1 → a, Y1 → b, Y2 → c, X2 → l, X3 → l, Y3 → n1,
Y4 → n2 } is a valid assignment mapping from all the terms
of the query Q to the elements of adom(D)

⋃
N+. Indeed,

the required fact is immediate from the definition of the set
Γ(Q,D) and from the presence of the atom g in the database
D.

Further, we argue that for each natural number n1 that
is strictly greater than the constant k, for each n2 ∈ N+,
and for each constant l ∈ adom(D), the mapping µ(n1,n2,l)

as defined above is not a valid assignment mapping from all
the terms of the query Q to the elements of adom(D)

⋃
N+.

Indeed, it is sufficient to observe that the set S[Q] does not
have atoms whose copy number is greater than k. (Recall

that µ(n1,n2,l) fixes the images of the variables X1, Y1, and
Y2 to the respective elements of the tuple t = (a, b, c).) We
show in a similar way that for each natural number n2 that
is strictly greater than the constant k, for each n1 ∈ N+,
and for each constant l ∈ adom(D), the mapping µ(n1,n2,l)

is not a valid assignment mapping from all the terms of the
query Q to the elements of adom(D)

⋃
N+.

From the facts established about the mappings µ(n1,n2) we

conclude that the set ΓS̄(Q,D)[t] has exactly k2 elements.
Now consider the set ΓS̄(Q′, D)[t]. It is easy to show (in
fact, easier than for ΓS̄(Q,D)[t] as we did above) that the
set ΓS̄(Q′, D)[t] also has exactly k2 elements. (For each valid
assignment mapping µ from all the terms of the query Q′

to the elements of adom(D)
⋃

N+, such that µ maps X ′1
to a, Y ′1 to b and Y ′2 to c, µ induces a mapping from both
subgoals of the query Q′ into the same ground atom of the
database D. Specifically, for the ground atom g ∈ S[Q] as
defined above, there exists a valid assignment mapping of
this form µ, such that the mapping induces a mapping from
both subgoals of the query Q′ into the atom g.)

(2) Now suppose that for the above fixed D and t, the set
ΓS̄(Q′, D)[t] is not empty. We show that in this case, the sets
ΓS̄(Q,D)[t] and ΓS̄(Q′, D)[t] are of the same cardinality p2,
for some constant p ∈ N+ where p is a copy number of some
ground atom of the database D. The proof is symmetric to
the proof of the claim (1) above. Q.E.D.

G. NECESSARY AND SUFFICIENT CON-
DITIONS OF [9] FOR COMBINED-SEMAN-
TICS QUERY EQUIVALENCE

Cohen in [9] provides necessary and sufficient conditions
for combined-semantics equivalence of CQ queries, possi-
bly with negation, comparisons, and disjunction. For these
necessary and sufficient conditions to be applicable, both
queries to be tested for combined-semantics equivalence are
to satisfy one of the following conditions:

1. Neither of the two queries has set variables; or

2. Neither of the two queries has multiset variables; or

3. Neither of the two queries has same-name predicate
twice or more in positive (i.e., nonnegated) subgoals;
or

4. Each query is a join of a set (i.e., no multiset variables)
subquery with a multiset (i.e., no set variables) sub-
query. The formal definition is that neither query may
have a subgoal that would have both a multiset variable
and a set variable; or

5. Neither query may have copy variables.

Now consider a restriction of the query language stud-
ied in [9] to CCQ queries. In the remainder of this sec-
tion, we consider the above conditions 1–5 only as applied
to the queries that satisfy this restriction. (That is, in the re-
mainder of this section we consider CQ combined-semantics
queries only, without any extensions of this query language.)
Under this query-language restriction, each of the above con-
ditions 1–5 enforces that each CCQ query in question be an
explicit-wave query, by Definition 4.1 in this current paper.
Specifically:

1. Whenever neither of the two queries has set variables,
then both queries are explicit-wave queries because in

52

each query, each copy-sensitive subgoal has no set vari-
ables. (See Proposition 4.1 in this current paper for
this syntactic sufficient condition for a CCQ query to
be an explicit-wave query.)

2. Whenever neither of the two queries has multiset vari-
ables, then neither query has copy-sensitive subgoals.
Hence, both queries in question are explicit-wave queries
by Definition 4.1 (1).

3. Whenever neither of the two queries has same-name
predicate twice or more in positive (i.e., nonnegated)
subgoals, then both queries are explicit-wave queries
because neither (CCQ) query has self-joins. (The fact
that a CCQ query without self-joins is an explicit-wave
query is an easy inference from Definition 4.1 (2).)

4. Whenever neither query may have a subgoal that would
have both a multiset variable and a set variable, then
both queries are explicit-wave queries because in each
query, each copy-sensitive subgoal has no set variables.
(See Proposition 4.1 in this current paper for this syn-
tactic sufficient condition for a CCQ query to be an
explicit-wave query.)

5. Whenever neither query may have copy variables, then
both queries are explicit-wave queries by Definition 4.1
(1).

We conclude that if we apply to only CCQ queries the
necessary and sufficient conditions of [9] for query combined-
semantics equivalence, then each of these conditions would
be applicable exclusively to pairs of explicit-wave queries.
Thus, when all the queries in question are required to be CCQ
queries, we have that all the necessary and sufficient condi-
tions of [9] for combined-semantics equivalence of queries are
subsumed by Theorem 4.2 of this current paper.

Observe that the CCQ query Q of Example 3.1 does not
satisfy (individually) any of the conditions 1–5 of this sec-
tion. Thus, none of the necessary and sufficient query-
equivalence conditions of [9] would apply to a pairing of
this query with an arbitrary query in the query language
considered in [9]. (By definition, see Definition 2.1, CCQ
queries do belong to the query language considered in [9].)
We make the same observation about the CCQ query Q′ of
Example 3.1, as well as about the query CCQ Q of Exam-
ple 3.2. Still, by Theorem 4.2 of this current paper we obtain
that (i) Q ≡C/ Q′ for the queries of Example 3.1, and that
(ii) Q ≡C Q′ for the queries of Example 3.2.

53

