
Extracting Database Role Based Access Control from
Unconstrained Natural Language Text

John Slankas and Laurie Williams
North Carolina State University

890 Oval Drive
Raleigh, NC 27695-8206, USA

+1(919) 515-7926

[john.slankas,laurie_williams]@ncsu.edu

ABSTRACT
Although software can and does implement access control
at the application layer, failure to enforce data access at the
persistence layer often allows uncontrolled data access
when individuals bypass application controls. The goal of
our research is to help developers improve security by
ensuring the access controls defined within unaltered
natural language texts are appropriately implemented
within a system’s persistence layer. Access control
implemented in both the application and persistence layers
strongly supports a defense in depth strategy. We propose
a tool-based process to 1) parse existing, unaltered natural
language documents such as requirements and policy
statements; 2) classify a statement as being access control
related or not; and, as appropriate, 3) extract subjects,
actions, and data objects; and 4) automatically generate the
necessary SQL commands to enforce role-based access
control within a relational database. To evaluate our
process, we analyzed a public requirements specification.
Our classifier correctly predicted 78% of the access control
statements while recalling 92% of the applicable
statements. The process correctly identified and mapped
92% of the actual database tables to the extracted resources.
We successfully executed the application with application
and persistence layer role based access control in place.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Documentation, Reliability, Security, Verification.

Keywords
Security, persistence, access control, role based access
control, RBAC, classification, natural language parsing

1. INTRODUCTION
In the 2011 CWE/SANS Top 25 Most Dangerous Software
Errors [1], 30% of the errors directly relate to access
control1. Data breaches continually make news headlines
such as when Israeli authorities charged a contract worker
from Labor and Welfare Ministry with stealing the personal
information of over nine million Israelis from the country’s
Population Registry [7] in October 2011.

To mitigate data security issues, organizations must
properly implement access control across all system
components. Developers often utilize role-based access
control (RBAC), considered the “gold standard” [10], to
enforce authorization policies within systems. However,
many software systems establish the access control only at
the application level. If those controls are breached due to
malicious activity or defective implementation, no
additional layers of security exist to protect data within the
database. Insider threats exist if individuals can bypass
application level security and access the database directly.
Additionally, programmers can intentionally or
inadvertently implement functionality that violates the
RBAC policy. A defense in depth security approach
requires access control at both the application and
persistence layers. However, creating and defining RBAC
policy for databases can be a tedious, time-consuming, and
error-prone endeavor. Developers must sift through
existing documentation, application code, and database
implementations.

The goal of our research is to help developers improve
security by ensuring the access controls defined within
unaltered natural language texts are appropriately
implemented within a system’s persistence layer.

We propose a process, which we call Role Extraction and
Database Enforcement (REDE), which allows
organizations to utilize existing, unconstrained natural
language text to generate RBAC policies for databases.
REDE analyzes requirements or other natural language
statements for their subject, action, and resource parts.
REDE then uses an instance-based learner to make a

1 Including CWE-306,862,798,829,250,863,732,307, and 807.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODASPY’13, February 18–20, 2012, San Antonio, Texas, USA.
Copyright 2013 ACM 1-58113-000-0/00/0010…$10.00.

decision about whether the sentence is related to access
control or not. If the sentence involves access control, then
the process extracts actors, permissions, and data objects,
maps the data objects to existing database tables, and then
generates the appropriate SQL commands to execute within
a database to enforce the appropriate access control. We
evaluated our process and tool against 1114 statements
from the requirements for an open source educational
testbed, the iTrust2 Electronic Health Records System.

The contributions of this paper are as follows:

• We introduce the first methodology to classify natural
language statements as RBAC policy-related or not.

• We present a process and a supporting tool that can assist
developers and security experts in automatically
generating SQL commands to create RBAC within a
DBMS.

• We present a distance function to compute the similarity
between two sentences.

The rest of this paper is organized as follows: Section 2
provides requisite background information Section 3
presents related work. Next, Section 4 details REDE and
the associated tool. Section 5 presents our evaluation of the
approach. Section 6 discusses limitations. In Section 7, we
discuss future work. Finally, we conclude in Section 8.

2. BACKGROUND
In this section we provide background with regards to
access control, natural language parsing, machine
classification, and evaluation criteria.

2.1 Access Control
Access control is a critical application mechanism to ensure
confidentiality and integrity [27]. Most access control
models utilize a tuple (subject, resource, action) to
represent a rule as to whether or not the subject (a user) can
perform the requested action on the specified resource
(object) within the system. Access control models are
grouped into three classes: Discretionary Access Control
(DAC), Mandatory Access Control (MAC), and Role-
Based Access Control (RBAC). All three classes control
access based upon the subject’s identity and what
permissions they have been granted. They differ in how
the access is granted. In DAC, the resource’s owners have
the authority to decide who can access the resource. In
MAC, organizational rules determine who can access data.
Military and intelligence systems often utilize MAC to
ensure users have the appropriate security clearances to
access data. Finally, RBAC controls access based upon
rules granted to roles with users assed to roles. Most
relational database management systems (RDBMS) support

2 http://agile.csc.ncsu.edu/iTrust/

forms of DAC and RBAC3. Roles were added to the 1999
Structured Query Language Standard (SQL) [31].

2.2 Classification
To determine whether a sentence implies access control or
not, we classify each sentence using machine learning
techniques. Specifically, we employ a k-nearest neighbor
classifier (k-NN) which works by classifying a test item
based upon which items are classified as closest to test
item. The classifier finds the k nearest “neighbors” and
returns a majority vote of those neighbors to classify the
test item. A distance metric determines the closeness
between two items. Euclidean distance often serves as a
metric for numerical attributes. For nominal values, the
distance is generally considered to be zero if both attribute
values are the same or one if they differ. k-NN classifiers
may use custom distance functions. Advantages of k-NN
classifiers include ability to incrementally learn as new
items are classified, to classify multiple types of data, and
to handle large number of attributes for each item. The
primary drawback to k-NN classifiers is that if they have n
items stored, classification takes time. Additionally,
irrelevant attributes can skew classification results.
To train the classifier, we use an active learning approach
[12]. As new items are evaluated by the classifier, we
validate the initial response, correct the response if
necessary, and then place the correctly classified item into
the classifier.

2.3 Evaluation Criteria
To evaluate our classifier, we examine how well it
produces correct results. As our classifier produces binary
results, it either correctly or incorrectly predicts each class.
We term correct predictions as true positives (TP) and true
negatives (TN) if the classifier correctly predicted yes or no
respectively. For incorrect classifications, we term these as
false positives (FP) and false negatives (FN). To evaluate
the binary classification, we use precision, recall, and the

Measure. Precision (P) is the proportion of correctly
predicted access control statements: .
Recall (R) is the proportion of access control statements
found: . The Measure is the
harmonic mean of precision and recall, giving an equal
weight to both elements: . From an access
control perspective, high values for both precision and
recall are desired. Lower precision implies that the process
will ultimately grant a role more incorrect permissions than
a classification with higher precision. For example, a
precision of .75 implies 75% of the access control
statements are correctly generated, while 25% of the
statements would grant additional access not required. A
lower recall value implies that we will have missed access

3 The notable exception is MySQL which does not provide

support for RBAC. http://dev.mysql.com/doc/refman/5.6/

control sentences. So a recall of .75 implies that 75% of all
of the actual access control statements needed would be
discovered, leaving undefined the other 25%. Assuming
access control starts from a basis of no access, having
lower recall is not as significant of a problem from a
security perspective, but would require additional
verification to ensure all access is eventually granted.

3. RELATED WORK
This section reviews the work related to our proposed
process.

3.1 Natural Language and Access Control
Other researchers have explored using natural language to
generate access control policies from natural language. He
and Antón [14] proposed an approach based upon available
project documents, database design, and existing policies.
Utilizing a series of heuristics, humans would analyze the
documents to find additional access control policies. In
addition to heuristics to find the elements within the typical
access control tuple (subject, resource, action), they created
heuristics to identify policy constraints (temporal, location,
relationship, privacy, etc.) and obligations. More recently,
Xaio et al. [30] present an approach, Text2Policy, where
they parsed use cases to create eXtensible Access Control
Markup Language4 (XACML) policies. Their approach
was specific to use cases and relied upon matching four
specific sentence patterns to deduce the necessary
information to populate an access control method. Using
XACML as a target simplified their process as well as they
did not have to map objects in the natural language to
existing application elements or database entities. Our
processing utilizes machine learning to make decisions and
implements access control against a system’s database.

3.2 Controlled Natural Language
Other researchers have resolved converting natural
language to and from policies by utilizing a controlled
natural language (CNL). Schwitter [28] defines CNLs as
“engineered subsets of natural languages whose grammar
and vocabulary have been restricted in a systematic way in
order to reduce both ambiguity and complexity of full
natural languages.” While CNLs provide consistent,
semantic interpretations, CNLs limit authors and typically
require language specific tools to stay within the constraints
of the language. Project documents previously created
cannot be used as inputs without processing the documents
manually into the tools. Policy authored outside of tools
must confirm to strict limited grammars to be automatically
parsed as well. Brodie et al. [4] used this approach in the
SPARCLE Policy Workbench. By using their own natural
language parser and a controlled grammar, they were
effectively able to translate from natural language into
formal policy. Users also responded favorably to their

4 http://www.oasis-open.org/committees/xacml

policy authoring tool. Inglesant et al. [16] demonstrated
similar success with their tool, PERMIS, which utilized a
RBAC authorization model. However, they did report
issues with users not understanding the predefined
“building blocks” imposed by using a CNL. Recently, Shi
and Chadwick [29] presented their results of an application
to author access control policies using a CNL. While they
showed the improved usability of CNL interface, they were
limited in the complexity of the policies that could be
created as the interface didn’t support conditions or
obligations. Our process removes the CNL constraint,
working against original, unaltered texts.

3.3 Schema and Ontology Matching
A challenge with our approach is to map resources found in
the natural language text to database tables and columns.
This problem is similar to the challenges of matching one
database scheme to another database schema as well as
matching different ontologies. Multiple survey papers have
been written on database schema matching [3, 9, 26] and
ontology matching [6, 18]. Research continues in this field
with such recent work as Po and Sorrentino [24] who
utilized probabilistic techniques to derive lexical
relationships and disambiguate word sense across different
ontologies. Currently, our approach utilizes an approach
based upon word similarity.

3.4 Databases from Natural Language
Different approaches exist to discover database entities
from natural language. The first approach has been to
produce database design from the natural language text. In
1983, Chen [5] first presented a series of heuristics to
produce entity relationship diagrams from natural language.
Hartman and Link [13] updated this work in 2007 through
additional heuristics and refinements. Both approaches
require humans to analyze the text. Omar [23] applied
semantic role labeling techniques to automatically
generated database design from a series of heuristics.
Another approach [2, 25] has been with research necessary
to utilize natural language to query databases. To effective
perform natural language queries, a system must first
comprehend the user’s request and determine the specific
data requested as well as any conditions for retrieving the
data. Then the system must map the requested data
elements and conditions to the physical database to
generate the necessary query request by the user. Our
process uses identified resources from the natural language
text to map to existing database tables.

4. ROLE EXTRACTION AND DATABASE
ENFORCEMENT
This section details our process, Role Extraction and
Database Enforcement (REDE), to extract roles and
database objects from natural language text and generate
RBAC policies for applications that utilize relational

databases. To guide users through the process, we
developed a tool to perform many of the tasks involved.

4.1 Overview
For input, the process takes natural language text, a
physical database schema, existing database role names,
and, optionally, a list of domain-specific words. Any
number of existing project documents such as
requirements, use cases, designs, test scripts, and training
material can serve as the natural language text. The
physical database schema consists of the existing table
definitions. Database designs may be substituted if the
physical implementation is unavailable. The process
outputs the SQL commands to establish role-based access
control in a database. Additionally, the process can
generate consistency and traceability reports.

The REDE process consists of four primary steps:

1. Parse natural language. In this step, sentences are
converted into an internal representation and analyzed
for previously discovered elements and for negativity.

2. Classify sentence attributes. Next, we use a classifier
to examine whether if the sentence relates to access
control. The user may correct classifications.

3. Extract access control elements. The tool can find
previously used subjects, actions, and objects based
upon the most similar sentence or from previously
found words. If the sentence has been identified as
access control the user will need to ensure the
extracted elements are correct.

4. Generate SQL Commands. Based upon the extracted
access control elements, the system generates the
necessary commands to generate role-based access
control within a relational database.

4.2 Step 1: Parse Natural Language
The process begins by entering the text into the system,
parsing the text and converting the parsed representation
into REDE’s internal representation (IR). Next, REDE
performs three analyses of the IR and assigns additional
attributes necessary for classification and to establish
access control as the step’s output.

4.2.1 Parse Text
First, the tool parses a paragraph at a time from the natural
language utilizing the Stanford Natural Language Parser5.
By breaking the input into paragraphs, we achieve a
balance between providing an appropriate amount of text to
the parser versus too little. While a sentence at a time
could be processed, references among sentences (such as
what noun a pronoun refers to) would not be tracked.
Memory constraints prevent the parser from processing a
complete document or even larger sections. For each
sentence in the paragraph, the parser outputs a graph in the

5 http://nlp.stanford.edu/software/

Stanford Type Dependency Representation (STDR) [21].
While the parser has several output formats available, we
choose the STDR as it incorporates the sentence’s
structural information in a concise and usable format.
To replace shorthand or remove text that the parsing would
not recognize, the process allows for a series of regular
expressions to be applied to the text. Specifically in our
work, we use this mechanism to replace ‘w/’ with ‘with’
and ‘/’ with ‘or.’

As the Stanford Parser processes sentences, it tags each
word with a part of speech. Due to differences in text used
to train the parser versus text used by our process, the parts
of speech may be incorrect. To overcome this issue, we
inserted a custom method into the parsing pipeline to
override the part of speech tags if they are incorrect. For
instance, we discovered that the parser always tagged
“displays” as a plural noun whereas in most sentences in
our text “displays” is a verb. The custom method looks for
specific patterns among a group of words, and then replaces
the incorrect part of speech. Both overrides are
configurations established at the time the tool starts and are
applied to the entire text.

4.2.2 Internal representation
From the STDR generated by the parser, we create our IR
as REDE needs to track additional attributes for the
sentence and for each word. Additionally, some words in
the original sentence are not required for our purposes and,
hence, removed from the IR. Figure 1 shows the STDR for
the sentence “A nurse can order a lab procedure for a
patient.” Each vertex contains a word from the sentence
along with that word’s part of speech. In the figure, “DT”
represents a determiner, “MD” a modal verb, “NN” a noun,
and “VB” indicates a verb. Edges represent the
grammatical relationship between two words. For instance,
“nurse” functions as the nominal subject (nsubj) for
“create” and “dobj” is the object to be ordered. A
sentence’s primary verb typically forms the graph’s “root.”

order

nurse can procedure patient

nsubj prep_fordobjaux

det

NN NNVB

VB

MD

a
DT

a
DT

a
DT

lab
NN

nn detdet

Figure 1: Stanford Collapsed Type Dependency Graph
Figure 2 shows our corresponding IR for the same
sentence. The primary differences between the two graphs
are the number of vertices and how each word is
represented within a vertex.

Within our IR, vertices correspond to words in the sentence
and contain the word, the word’s lemma6, part of speech,
domain flag, and database indicators. The domain flags
correspond to the subject(“S”), action(“A”), resource(“R”)
typically defined within an access control tuple. Edges are
unchanged from the STDR.

order

procedure

nsubj prep_fordobj

VB

VB

nn

A

R
nurse

NNS
patient

NNR

lab
NNR

Figure 2: REDE Internal Representation

The process uses the method outlined in Figure 3 to
generate the IR from the Stanford graph. The most
significant change is to remove vertices that do not provide
any semantic meaning from an access control perspective.
(Vertices with children are not removed.) We consider two
categories of extraneous words: articles and modal verbs.
Articles are the words “a”, “an”, “the.” While in the
context of a sentence, these determiners may provide
information to the reader, from an access control point they
do not provide additional details as the access the modified
noun remains unaffected by their use. Modal verbs include
such items as “can”, “shall”, “may.” While modal verbs
may indicate conditions or obligations that need to be met,
for database access control they are irrelevant as the user
must have the access defined otherwise within the sentence.
Removing these extraneous nodes from the IR reduces the
overall size of each graph, which in turn, provides fewer
irrelevant attributes to a machine learning algorithm used
later in the process.
IRNode createIntRepresentation(STDRNode node) {
 1: if node.part_of_speech=article or modal verb
 2: return null
 3: if node in visited list, return null
 4: add node to visited list
 5: IRNode irn = new IRNode(lemma(node.word),
 6: basePOS(node.POS))
 7: foreach child of node
 8: irChild = createIntRepresentation(child)
 9: if irChild = null, continue
10: create edge from irn to irChild using the
11: existing relationship
12: return irn

Figure 3: Create Internal Representation Algorithm

6 A lemma is a common root word for a group of words. For

instance, sang, sung, and sings are all forms of a common
lemma “sing.” A stem is the root of a word after a suffix has
been stripped. [17]

As part of a later step in the process, we compare sentences
to each other to measure their similarity. To avoid spurious
differences, we make two modifications to each vertex.
First, to avoid multiple versions of the same word, we use
the lemma of the original word within the node, which the
Stanford parser provides as part of its output. Using the
lemma provides increased accuracy over the use of a
word’s stem. Stemming algorithms are rule-drive
approaches to derive base forms of words without taking
into account the word’s context or part of speech. In
contrast, lemmatization takes into account the word’s part
of speech and other information sources such as a
vocabulary to derive the base form of a word [20]. Second,
to avoid differences in the part of speech, we collapse the
parts of speeches for all nouns, verbs, and adjectives to
their base category. For example, we treat all plural nouns
and proper nouns as simple nouns. Similarly, verbs with
different tenses are treated collectively as a single group.

4.2.3 Domain Dictionary and Lookup
With the IR in place, the process examines the graph to see
if any of the words have previously been detected in prior
sentences from an access control perspective. Previously
used words in part of an access control tuple are marked
with a domain flag for the subject, action, or resource.

The tool maintains a domain dictionary consisting of four
entry types. The first entry type is an action verb, which
represents an action the user takes within the application.
For each action verb, we track the corresponding database
permission (delete, insert, update, or select) required to
perform the action within the database. For example, the
“edit” verb has the permissions “select” and “update.” The
“select” permission is required as the user must have access
to view the record and then “update” to modify the record
in the database. We also track whether or not the verb
implies a negative permission, which used to revoke the
corresponding access from a role. Subjects form the
second entry type in the dictionary. Subjects correspond to
database roles. The third entry type is a resource, which
corresponds to a table or column within the database. The
fourth word type is a list of domain words relevant to the
current application domain. Since the user provides these
domain words, they are populated into the dictionary at the
start of the process. Domain ontologies, taxonomies, and
thesauri may serve as sources for these words.

The domain dictionary is pre-defined with eight verbs that
correspond with actions such as create, retrieve, update,
and delete. Additionally, the dictionary includes six verbs
such as prohibit and stop that imply negative permissions
as they designate permissions that should be revoked from
a user. The domain dictionary exists independently of any
text of project. As such, dictionaries unique to a given
application domain, may be re-utilized across multiple
systems or shared with other groups. As sentences are
processed, new domain words will be added to the

dictionary. Synonyms may be defined by a user when they
are two terms that refer to exactly the same entry. Admin
and administrator is an example.

As the process looks up words from a sentence in the
domain dictionary, a greedy approach is used to find the
longest possible entry. Thus, if a sentence contains the
words “health care representative” and the dictionary has
both “health care representative” and “representative”
defined, the system only matches “health care
representative.” The search process also takes into account
the part of speech of a word as well. Subjects and
resources must both have a noun as the last word, while
actions must have a verb as the last word. The system does
not use the relative position of a word within a sentence to
perform dictionary searches.

If new words need to be added to the dictionary domain
then the user may do so through the tool at any point after
the IR has been generated and before the SQL commands
are generated. From the sentence “A nurse can order a lab
procedure for a patient,” a user would add nurse as a
subject, “order” as an action with an “insert” permission,
and both lab procedure and patient as resources into the
domain dictionary.

4.2.4 Negation
Denying users access permission to an object when they
should not have access to that object is a critical feature of
any access control system. As such, the process analyzes
sentences to determine when permission should be
explicitly revoked from a role. From the Dixon’s negation
concepts [8], we utilize three methods to detect negation
within a sentence. First, we search the graph for edges for
negative modifiers. Next, the process searches vertices for
negative determiners (no, zero, neither), adjectives(unable)
and nouns (none, nothing) [15]. Finally, the process checks
verbs negative connotation (as expressed in the domain
dictionary) or by a pre-determined list of negative prefixes
associated with English words. If multiple negations are
detected, the process displays a message to the user and the
negativity flag remains unchanged. If the process
incorrectly sets the negativity flag, the user may explicitly
set the value. With the sentence “Nurses may not write
prescriptions,” the tool would set the negative flag as
nurses should not have the privilege to write prescriptions
for any patients.

4.2.5 Restrictive Focus Modifiers
Within a system, privileges are often limited to one or more
specific roles. For example, only an administrator can
maintain system lookup tables. In this scenario, we want
to grant permission to the administrator role while
restricting the permission from other roles. Within English,
restrictive focus modifiers [15] express such limitations.
As the position of such modifiers (i.e. just, only) affect the
overall semantic meaning of the sentence, we restrict where
such modifiers may be placed. For example, consider the

sentence, “Doctors write prescriptions,” our process would
grant the role “doctors” the insert capability on the table
“prescriptions.” However, if the word “only” is placed into
the sentence, then the meaning of the sentence varies based
upon the location of “only”. With only as the first word,
the sentence means that only doctors write prescriptions
and no other roles. Alternatively, if only is the second
word, it modifies “write” and implies that the only action
doctors can do in the system is write prescriptions.
Finally, if only is the third word, the sentence now means
that prescriptions are the only things doctors write. To
ensure the modifiers are in the correct location, we only set
the only flag for a sentence if the modifier applies to the
subject identified in the sentence. Users may override the
flag if the process set it incorrectly.

4.3 Step 2: Classify Sentence Attributes
Once the tool completes the parsing and initial analysis of a
sentence, an instance based algorithm classifies additional
sentence attributes. The primary classification is whether
or not the sentence implies access control. The tool also
classifies words as belonging to access control elements if
the domain dictionary lookup did not already discover the
elements. The access control classification is paramount to
our process as the classification of “yes” indicates the
process will generate an access control statement.

To classify sentences, REDE utilizes a -NN classifier with
a custom distance metric. As a -NN classifier works by
taking a majority vote of the existing classifications of the

 nearest neighbors, the classifier uses a distance metric to
find those neighbors. In this process, to classify a sentence
as access control, the classifier needs to find which
sentences already classified are most similar to that
sentence. To calculate the required distance metric
between two sentences, the process performs a recursive,
pre-order traversal of each sentences’ IR and sums the
distances between vertices in one graph compared to their
equivalent vertices in the other graph. To calculate the
distance for each vertex, the process uses the function
presented in Figure 4. The different values were chosen as
way to express the difference between two nodes. If the
nodes are the same, then a value of 0 is returned. If they
nodes are different, then a value of 1 is returned. However,
there are situations in which nodes are similar, but not
exactly the same. As such, we return a value in between 0
and 1 to represent the closeness. In line 7, the process
checks to see if vertices share the same domain flag which
occurs when the domain dictionary contains the lemma
from both vertices. In this situation, the graph has found
the domain flag in equivalent locations and a small value is
returned. (The value ranges from 0.1 to 0.4 depending
upon the structure of the sub-graphs rooted at and . In
line 9, the process checks to see if the two words are related
through sets of cognitive synonyms (synsets) within

WordNet7 via semantic relationships (hypernym or
hyponym). If a relationship value is found, then a value
between 0.1 and 0.4 is returned based upon the number of
relationships traversed. Next, the process checks two see if
both lemmas are contained within the list of domain terms
provided as input to the overall process. If both words are
found, a value of 0.5 is returned. Finally, a default value of
0.75 is returned if none of the other conditions are met. In
this situation, the vertices have an equivalent structure and
part of speech and should be scored as closer together than
two vertices differing in those attributes. We choose these
values as they maximized the classifier’s precision with
regards to the requirements document utilized.
computeVertexDistance(Vertex a, Vertex b)
 1: if a = NULL or b = NULL return 1
 2: if a.partOfSpeech <> b.partOfSpeech return 1
 3: if a.parentCount <> b.parentCount return 1
 4: for each parent in a.parents
 5: if not b.parents.contains(parent) return 1
 6: if a.lemma = b.lemma return 0
 7: dfValue = domainDistance(a,b)
 8: if dfValue > 0 return dfValue
 9: wnValue = wordNetSynonyms(a.lemma,b.lemma)
10: if wnValue > 0 return wnValue
11: if domainKnowledgeChk (a.lemma,b.lemma)
 return 0.5
12: return 0.75

Figure 4: Compute Vertex Distance
While the presence of domain flags for subjects, resources,
and actions may be used as an alternative to a machine
learning classifier. The presence or absence of domain
flags is not sufficient to appropriately classify a sentence as
containing to access control or not. First, it may be
possible for the three different domain flags to be present in
various parts of the sentence, but not necessarily in
locations that indicate database access is necessary.
Second, in many sentences may not contain three different
domain flags, yet the sentence does require data access.

Once the classification is complete, the user may review the
classifications and provide any corrections as necessary
through the tool.

4.4 Step 3: Extract Access Control Elements
Next, we need to extract the subject, action, and resource
elements from the IR. In addition to the database lookup in
section 4.2.3, we also can utilize the results of the nearest
neighbor and use the position of the elements in that
sentence for the elements in the current sentence. For the
sentence, “A nurse can order a lab procedure for a patient,”
the subject would be nurse, the action is order, and the
resource is patient and lab procedure.
Another situation arises in which the sentence has been
classified as access control, but portions of the access
control tuple are not directly present in the sentence.
Examples include sentences that provide additional details

7 http://wordnet.princeton.edu/

for the preceding sentences or generic terms such as
“system”, “record”, or “data.” The natural language
processing field refers to this problem as reference
resolution [17]. REDE performs resolution by utilizing the
last occurrence of the missing tuple. Our tool highlights
marks this resolution and allows the user to change the
tuple value if necessary.
Next, we need to map the discovered resources and objects
to roles and tables in the database. Through the tool, users
must manually match up each subject and resource with a
role or table. For each subject and resource entry in the
domain dictionary, the tool provides a sorted list of possible
choices for the user to select. The choices are sorted by the
Levenshtein distance [19] between the current subject or
entry being mapped to the possible choice from the
database. We choose to use the Levenshtein distance as it
is a commonly used algorithm to measure the similarity
between two strings.

4.5 Step 4: Generate SQL Commands
In the final step, the tool produces the necessary SQL
commands to establish role-based access control within a
relational database. The identified roles are created along
with the necessary grants and revokes to established the
appropriate privileges.

For the sentence, “A nurse can order a lab procedure for a
patient,” the following commands would be generated:
CREATE ROLE nurse;
GRANT SELECT, INSERT on lab_procedure TO nurse;
GRANT SELECT, INSERT on patient TO nurse;

Additionally, the tool generates a report with access
conflicts or other validation issues. The process compares
each IR to all of the other IRs to find conflicts which occur
when one sentence gives a role access to a table, but
another sentence would revoke the same role’s access from
the table. The report also includes any subjects or actions
not mapped to their corresponding database elements as
well as any sentences classified as access control, but
missing part of the access control tuple. The tool also
generates a report showing the traceability of access control
rules back to the originating sentences in the natural
language text.

5. EVALUATION
This section details our evaluation of the process.

5.1 Application: iTrust
To evaluate the procedure, we used iTrust8 [22] as our test
system. iTrust, a web-based healthcare application
originated as a class project for Software Engineering at
North Carolina State University in 2004, and has been
enhanced by classes each semester through 2012. The
application follows a typical three-tiered architecture with

8 http://agile.csc.ncsu.edu/iTrust/

logical layers for the presentation, application, and
persistence. Instructors, teaching assistants, and students
have contributed to the application, which is currently in its
14th version. Each class performs software maintenance on
the application, correcting defects and implementing new
functionality. The requirements consist of 40 use cases
plus additional non-functional requirements, constraints,
and a glossary. The version we used contained 1114
sentences with 409 (36.7%) of those sentences classified as
access control. The application database contains 41 tables.
While the application contains ten roles, all database
accesses are performed with a common system account.

5.2 Process Observations
The first author spent 15 hours to process the 1114
sentences through the tool. As the number of sentences
classified grew, the time spent to classify each sentence
was reduced due to additional elements in the domain
dictionary and more accurate classifications produced by
the k-NN classifier. For future development iterations on
the same project, we expect the time spent within the tool
to be significantly less because much of the domain
dictionary is already accumulated. We also expect other
projects to spend less time provided they can utilize an
existing k-NN classifier or domain dictionary.
The k-NN classifier performed well on sentences where
there were common patterns. For instance, requirements
are often phrased starting with “The system shall provide
the ability to…” The produced IRs for those type of
sentences all had the vertices for “system,”, “provide,” and
“ability” in the same location and the distance metric
showed zero difference for these vertices. Another
common pattern handled well was in the cases were the
phrase followed the pattern “<role> (desires | wishes |
wants | selects) to <perform action>.” The generated IRs
had the domain subject flag and the domain action flag in
the same location and as such the calculated distances were
relatively low even with different words as “desire” or
“selects” in between the two locations.

5.3 Classifier Evaluation
To evaluate our classifier, we compared precision, recall,
and f-Measure to six other models utilizing a stratified n-
fold cross-validation. With this method, data is randomly
partitioned into n folds based upon each fold of
approximately equal size and equal response classification.
For each fold, the models are trained on the remaining folds
and then the contents of the fold are used to test the model.
The n results are then averaged to produce a single result.
We follow Han et al.’s recommendation [12] and use 10 as
the value for n as this produces relatively low bias and
variance. The cross-validation ensures that all sentences
are used for training and each sentence is tested just once.

For the models, we used four machine classification models
across different techniques from Weka [11]. Additionally,
we used two random methods, weighted and 50%. The

weighted random model assumes that the classifier knows
the classification of each item in the training set and
randomly returns answers proportionally to the existing
classifications. The 50% model has no knowledge of the
training set and randomly returns answers with equal
likelihood between the two classifications values.
Comparison to 50% model would be appropriate when a
pre-defined classifier is used by a project team. To
generate input data for the Weka models, we flattened the
IR graph into a comma separated list format and then
executed a Weka filter to convert all string values to
nominal values. Table 1 lists the results.

Overall, our model performed relatively equal to the
existing Weka classifiers while substantially out-
performing the random models. J48, a decision tree
classifier, performed the best. However, J48 had a lower
recall, which implies that a number of access control
statements were not identified. While our classifier
overcomes a significant limitation in Weka’s classifiers in
that new strings and instances can incrementally be added,
the performance of existing Weka models highlights the
need to reconsider whether it is appropriate for us to
continue work on the k-NN classifier.

Table 1. Test Results of Stratified 10-fold Cross
Validation

For our classifier, we evaluated different values of k to use
when finding the -nearest neighbors. The highest

Measure occurs at . However, 40% more false
positives where generated than the next best performing
value at . Consequently, we set =1 to minimize
incorrect access control.

We also evaluated whether or not it was appropriate for the
classifier to even return a value. As we processed the
iTrust requirements, we noticed circumstances in which the
classifier returned results, but the nearest sentences were
significantly different from the sentence being classified.
We adopted a threshold value to determine whether or not
the classification results should be utilized. For example, if
a sentence had 10 vertices and the computed distance to its

-nearest neighbors was 7.6, we would only accept the
classifier’s answer if the threshold was set at 0.76 or higher.
As can be seen in Table 2, low threshold values resulted in
significantly higher values for precision and recall with the

Model Precision Recall F1Measure
Weighted Random .38 .40 .39
50% Random .36 .50 .42
Naïve Bayes .85 .94 .89
J48 .98 .84 .91
Ridor .97 .84 .90
IB1 .84 .81 .83
REDE k-NN (=1) .78 .92 .85

disadvantage that a substantial number of sentences were
not automatically classified. We adopted 0.80 as our value.

Table 2. Threshold Response Results
Threshold % Answered Precision Recall Measure
0.25 33% 0.97 0.99 0.98
0.50 56% 0.95 0.98 0.96
0.55 58% 0.95 0.98 0.96
0.60 64% 0.94 0.96 0.95
0.65 69% 0.92 0.97 0.94
0.70 75% 0.88 0.94 0.91
0.75 85% 0.84 0.95 0.89
0.80 92% 0.83 0.95 0.89
0.85 96% 0.80 0.94 0.86
0.90 98% 0.73 0.93 0.82
0.95 99.8% 0.78 0.93 0.85
1.00 100% 0.78 0.92 0.85

5.4 Database Table Coverage
Step 3 of REDE involves mapping resources found in the
natural language text to physical database tables and
columns. In our evaluation, we successfully mapped to
92% of the 41 tables. A table for password failures was
missed as the related use case documented the scenario
across multiple sentences and our resolution method did not
handle the condition properly. For the “report request”
table we assumed that this functionality expressed in the
use cases did not require persistence. Finally, there was a
table to store global variables that was not mentioned
within the use cases. We identified several objects in the
use cases that did not mapped to the database. Most of
these were involved specific user roles and their
information was stored in the “users” table. The other issue
involved “immunizations” and this information was
contained with application code. Overall, the process was
effective at mapping tables, but missed situations where
tables references were not present in the natural language
text or were implementation dependent.

5.5 System Execution
From the generated SQL commands, we evaluated iTrust
with the database access control in place. As iTrust uses a
common system account to access the database, accounts
were established for the different users based upon their
roles in the database. The application was modified
slightly for the user’s database authentication credentials to
serve as the authentication for the application and to
establish the database access for that user’s session.
Production deployments will need to consider the impacts
on connection pooling. We then executed the 28 existing
acceptance tests for iTrust to ensure the system performed
correctly. As expected from the results in the previous
section, we had to grant additional permissions for tables
not granted any access. Additionally, there were other
issues found with functionality not fully described in the
use cases such as logging that were required additional
privileges to be granted. Once all of the additional

privileges were added, all 28 acceptance tests passed. We
also defined and successfully executed five system tests to
show access control was enforced appropriately at the
database level in the event the application level access
control was bypassed.

6. LIMITATIONS
This section presents the limitations of this work.

6.1 Process
Within the REDE process and tool, we assumed only one
access control tuple would exist within a sentence.
However due to conditions or clauses within a sentence
multiple tuples may exist. This problem can be solved
through identifying parts of the IR that related to a specific
clause or condition.
Another limitation encountered that our lookup into the
domain dictionary did not take into account whether or not
a noun acted as sentence subject as an object. As such,
subject and resource domain flags were set for certain
words. The user then needed to manually correct the flags.
To fix this limitation, the subject lookup would only be
applied to vertices (words) that had an edge that specified
the relationship was the nominative subject or the agent in a
passive sentence.
The process did not utilize the document’s structure (i.e.,
when a use case started or the different sections within a
use case) as it parsed paragraphs at a time. Utilizing the
structure to identify the start locations of test scripts, use
cases, and other items would allow a tool to infer greater
information about the current text under analysis.

Within the domain dictionary, we only stored one entry for
each action verb discovered in the document. We
discovered situations in which a verb such as “order” or
“request” had very different implications for access
depending upon its semantic meaning. “Request” could
imply that a user is just asking for data, which implies
select permission for the database. In other cases,
“request” could imply that a user wants a specific activity
to be accomplished, which would imply insert permission.

For applications to effective use this process, they must
stop utilizing a common system account to access the
database and setup individual users in the correct roles in
the database. Companies may utilize identity management
software to facilitate this user establishment.

6.2 Evaluation
In evaluating the process and the tool, we only examined
one system in a specific problem domain. While the
process does not have any specific problem domain
constraints, additional evaluation needs to occur across
multiple domains and applications.

As one of the authors classified all of the sentences, an
external threat to validity exists as to if the classifications

are correct. To check if this was a significant issue or not,
we had four software developers with an average work
experience of nine years classify a representative sample of
ten sentences to determine whether or not those sentences
implied access control. Utilizing R9, we computed Fleiss’
fixed marginal, multi-rater kappa statistic as .84 which
indicates significant agreement among the five raters.

7. FUTURE WORK
We plan to evaluate our process with other applications to
evaluate the process as well as utilizing a trained classifier
and existing domain dictionary. From there, we plan to
evaluate the process across applications domains. Ideally,
we will demonstrate that our process is not limited to the
healthcare domain and significant time savings can be
achieved through the use of existing dictionaries and
classifiers.

Through our examination of the iTrust requirements, we
noticed significant number of places where individuals had
access to a table, but their access was limited to specific
records based upon specific conditions. To restrict access
to those records, we plan to extend the process to generate
database views with those conditions in place. Roles would
then be granted access to those views rather than the
underlying table(s). Additionally, we plan to include
conditions and obligations based upon various grammatical
constructs in the natural language text.
The REDE process could also be extended to validate the
work against existing RBAC models for the application
layer as well as exploring the use of different access control
models besides RBAC.

8. CONCLUSION
In this paper, we present a new process, REDE, and tool
that assist developers and security experts in automatically
generating RBAC statements to send to a DBMS. We have
shown how the tool detects conflicts, performs traceability
from source sentences to access control rules, and
visualizes coverage of existing database tables versus those
specified in documentation. To best of our knowledge, we
produced the first methodology to automatically classify
sentences as access control related or not. We evaluated
the process and tool on an existing system by processing
1114 sentences. Our k-nearest neighbor classifier with a
unique distance metric had a precision of 0.78 and a recall
of 0.92, outperforming the random guess, which had a
precision of 0.38 and a recall of 0.40. The process
correctly identified and mapped 92% of the physical
database tables to the resources found in the requirements
specification. We demonstrated the ability for the
application to successfully execute with both application
and persistence layer role based access control in place.

9 http://www.r-project.org/

For the practitioner, we have developed a tool to
incorporate into any software engineering process to detect
conflicts in access control statements specified in natural
language text and to save costs while establishing and
maintaining RBAC at the persistence layer.

9. ACKNOWLEDGMENTS
This work was supported by the U.S. Army Research
Office (ARO) under grant W911NF-08-1-0105 managed by
NCSU Secure Open Systems Initiative (SOSI). We would
like to thank the North Carolina State University
Realsearch group for their helpful comments on the paper.

10. REFERENCES
[1] 2011 CWE/SANS Top 25 Most Dangerous Software

Errors, http://cwe.mitre.org/top25/. Accessed: 2011-
11-14, 2011.

[2] Androutsopoulos, I., Ritchie, G.D. and Thanisch, P.,
Natural Language Interfaces to Databases - An
Introduction. Journal of Natural Language
Engineering. 1, (Sep. 1995), pp29-81, 1995.

[3] Batini, C., Lenzerini, M. and Navathe, S.B., A
Comparative Analysis of Methodologies for Database
Schema Integration. ACM Computing Surveys. 18, 4
(Dec. 1986), pp 323-364, 1986.

[4] Brodie, C. a, Karat, C.-M. and Karat, J., An Empirical
Study of Natural Language Parsing of Privacy Policy
Rules Using the SPARCLE Policy Workbench.
Proceedings of the second symposium on Usable
privacy and security - SOUPS ’06, 2006.

[5] Chen, P.P.-S., English Sentence Structure and ER
Diagrams. Information Sciences. 29 (1983), pp 127-
149, 1983.

[6] Choi, N., Song, I.Y. and Han, H., A Survey on
Ontology Mapping. ACM Sigmod Record. 35, 3
(2006), pp 34-41, 2006.

[7] Contract Worker Steals Personal Data On 9 Million
Israelis, http://www.darkreading.com/database-
security/167901020/security/privacy/231901478/contr
act-worker-steals-personal-data-on-9-million-
israelis.html. Accessed: 2011-10-30, 2011.

[8] Dixon, R.M.W., A Semantic Approach to English
Grammar. Oxford University Press, USA, 2005.

[9] Doan, A.H. and Halevy, A.Y., Semantic Integration
Research in the Database Community : A Brief
Survey. AI Magazine. vol. 26, no. 1, 2005.

[10] Donston-miller, D., Ensuring Secure Database Access.,
2011.

[11] Hall, M., National, H., Frank, E., Holmes, G.,
Pfahringer, B., Reutemann, P. and Witten, I.H., The
WEKA Data Mining Software : An Update. SIGKDD
Explorations. vol. 11, no. 1, pp 10-18, 2009.

[12] Han, J., Kamber, M. and Pei, J., Data Mining:
Concepts and Techniques. Morgan Kaufmann, 2011.

[13] Hartmann, S. and Link, S., English sentence structures
and EER modeling. Proceedings of the fourth Asia-
Pacific conference on Comceptual modelling-Volume
67 (Ballarat, Australia, 2007), pp 27–3, 2007.

[14] He, Q. and Antón, A.I., Requirements-based Access
Control Analysis and Policy Specification (ReCAPS).
Information and Software Technology. vol. 51, no. 6
(Jun. 2009) pp, 993-1009, 2009.

[15] Huddleston, R. and Pullman, G., The Cambridge
Grammar of the English Language. Cambridge
University Press, 2002.

[16] Inglesant, P., Sasse, M.A., Chadwick, D. and Shi, L.L.,
Expressions of Expertness: The Virtuous Circle of
Natural Language for Access Control Policy
Specification. Proceedings of the 4th symposium on
Usable Privacy and Security, pp 77–88, 2008.

[17] Jurafsky, D. and Martin, J., Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech
Recognition. Pearson, 2009.

[18] Kalfoglou, Y. and Schorlemmer, M., Ontology
Mapping: the State of the Art, The Knowledge
Engineering Review. vol. 18, no. 1 (Jan. 2003), pp 1-
31, 2003.

[19] Levenshtein, V.I., Binary Codes Capable of Correcting
Deletions, Insertions, and Reversals. Soviet Physics
Doklady. vol. 10, no. 8, pp 707–710, 1966.

[20] Manning, C., Raghavan, P. and Schütze, H. 2008.
Introduction to Information Retrieval. Cambridge
University Press.

[21] de Marneffe, M.-C., MacCartney, B. and Manning, C.
2006. Generating Typed Dependency Parses from
Phrase Structure Parses. Proceedings of Language
Resources and Evaluation. (2006), 449–454.

[22] Meneely, A., Smith, B. and Williams, L., Appendix
“iTrust Electronic Health Care System: A Case Study”.
Software and Systems Traceability, Springer, London
2012.

[23] Omar, N., Hassan, R. and Arshad, H., Automation of
Database Design Through Semantic Analysis.
Proceedings of the 7th WSEAS International
Conference on Computational Intelligence, Man-
machine Systems and Cybernetics (Cairo, Egypt), pp
71-76, 2008.

[24] Po, L. and Sorrentino, S., Automatic generation of
Probabilistic Relationships for Improving Schema
matching. Information Systems. vol. 36, no. 2 (Apr.
2011), pp 192-208, 2011.

[25] Popescu, A., Armanasu, A., Etzioni, O., Ko, D. and
Yates, A., Modern Natural Language Interfaces to
Databases: Composing Statistical Parsing with
Semantic Tractability. Proceedings of the 20th
international conference on Computational Linguistics
(Geneva, Switzerland), pp 141-148, 2004.

[26] Rahm, E. and Bernstein, P., A survey of approaches to
automatic schema matching. The VLDB Journal. vol.
10, no. 4 (Dec. 2001), 334-350, 2001.

[27] Samarati, P. and di Vimercati, S, Access Control:
Policies , Models , and Mechanisims. Foundations of
Security Analysis and Design. Springer Berlin /
Heidelberg. 137–196, 2001.

[28] Schwitter, R., Controlled Natural Languages for
Knowledge Representation. Proceedings of the 23rd
International Conference on Computational Linguistics
(Beijing, China), 1113–1121, 2010.

[29] Shi, L. and Chadwick, D., A Controlled Natural
Language Interface for Authoring Access Control
Policies. Proceedings of the 2011 ACM Symposium on
Applied Computing (TaiChung, Taiwan), pp 1524-
1530, 2011.

[30] Xiao, X., Paradkar, A. and Xie, T., Automated
Extraction and Validation of Security Policies from
Natural-Language Documents, 2011

[31] ANSI/ISO/IEC 9075-2:1999, Information technology -
Database languages - SQL - Part 2: Foundation
(SQL/Foundation). ISO, 1999.

