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ABSTRACT 
Although software can and does implement access control 
at the application layer, failure to enforce data access at the 
persistence layer often allows uncontrolled data access 
when individuals bypass application controls.  The goal of 
our research is to help developers improve security by 
ensuring the access controls defined within unaltered 
natural language texts are appropriately implemented 
within a system’s persistence layer. Access control 
implemented in both the application and persistence layers 
strongly supports a defense in depth strategy.  We propose 
a tool-based process to 1) parse existing, unaltered natural 
language documents such as requirements and policy 
statements; 2) classify a statement as being access control 
related or not; and, as appropriate, 3) extract subjects, 
actions, and data objects; and 4) automatically generate the 
necessary SQL commands to enforce role-based access 
control within a relational database.  To evaluate our 
process, we analyzed a public requirements specification.  
Our classifier correctly predicted 78% of the access control 
statements while recalling 92% of the applicable 
statements.  The process correctly identified and mapped 
92% of the actual database tables to the extracted resources.  
We successfully executed the application with application 
and persistence layer role based access control in place. 

Categories and Subject Descriptors 
K.6.5 [Management of Computing and Information 
Systems]: Security and Protection 

General Terms 
Documentation, Reliability, Security, Verification. 

Keywords 
Security, persistence, access control, role based access 
control, RBAC, classification, natural language parsing 

1. INTRODUCTION 
In the 2011 CWE/SANS Top 25 Most Dangerous Software 
Errors [1], 30% of the errors directly relate to access 
control1.  Data breaches continually make news headlines 
such as when Israeli authorities charged a contract worker 
from Labor and Welfare Ministry with stealing the personal 
information of over nine million Israelis from the country’s 
Population Registry [7] in October 2011.   

To mitigate data security issues, organizations must 
properly implement access control across all system 
components.  Developers often utilize role-based access 
control (RBAC), considered the “gold standard” [10], to 
enforce authorization policies within systems. However, 
many software systems establish the access control only at 
the application level.  If those controls are breached due to 
malicious activity or defective implementation, no 
additional layers of security exist to protect data within the 
database.  Insider threats exist if individuals can bypass 
application level security and access the database directly. 
Additionally, programmers can intentionally or 
inadvertently implement functionality that violates the 
RBAC policy.  A defense in depth security approach 
requires access control at both the application and 
persistence layers.  However, creating and defining RBAC 
policy for databases can be a tedious, time-consuming, and 
error-prone endeavor. Developers must sift through 
existing documentation, application code, and database 
implementations.  

The goal of our research is to help developers improve 
security by ensuring the access controls defined within 
unaltered natural language texts are appropriately 
implemented within a system’s persistence layer. 

We propose a process, which we call Role Extraction and 
Database Enforcement (REDE), which allows 
organizations to utilize existing, unconstrained natural 
language text to generate RBAC policies for databases.  
REDE analyzes requirements or other natural language 
statements for their subject, action, and resource parts. 
REDE then uses an instance-based learner to make a 
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decision about whether the sentence is related to access 
control or not.  If the sentence involves access control, then 
the process extracts actors, permissions, and data objects, 
maps the data objects to existing database tables, and then 
generates the appropriate SQL commands to execute within 
a database to enforce the appropriate access control.  We 
evaluated our process and tool against 1114 statements 
from the requirements for an open source educational 
testbed, the iTrust2 Electronic Health Records System.  

The contributions of this paper are as follows: 

• We introduce the first methodology to classify natural 
language statements as RBAC policy-related or not. 

• We present a process and a supporting tool that can assist 
developers and security experts in automatically 
generating SQL commands to create RBAC within a 
DBMS. 

• We present a distance function to compute the similarity 
between two sentences. 

The rest of this paper is organized as follows: Section 2 
provides requisite background information Section 3 
presents related work. Next, Section 4 details REDE and 
the associated tool.  Section 5 presents our evaluation of the 
approach.  Section 6 discusses limitations.  In Section 7, we 
discuss future work.  Finally, we conclude in Section 8.  

2. BACKGROUND 
In this section we provide background with regards to 
access control, natural language parsing, machine 
classification, and evaluation criteria. 

2.1 Access Control 
Access control is a critical application mechanism to ensure 
confidentiality and integrity [27].  Most access control 
models utilize a tuple (subject, resource, action) to 
represent a rule as to whether or not the subject (a user) can 
perform the requested action on the specified resource 
(object) within the system.  Access control models are 
grouped into three classes: Discretionary Access Control 
(DAC), Mandatory Access Control (MAC), and Role-
Based Access Control (RBAC).  All three classes control 
access based upon the subject’s identity and what 
permissions they have been granted.  They differ in how 
the access is granted.  In DAC, the resource’s owners have 
the authority to decide who can access the resource.  In 
MAC, organizational rules determine who can access data.  
Military and intelligence systems often utilize MAC to 
ensure users have the appropriate security clearances to 
access data.  Finally, RBAC controls access based upon 
rules granted to roles with users assed to roles.  Most 
relational database management systems (RDBMS) support 
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forms of DAC and RBAC3.  Roles were added to the 1999 
Structured Query Language Standard (SQL) [31].   

2.2 Classification 
To determine whether a sentence implies access control or 
not, we classify each sentence using machine learning 
techniques.  Specifically, we employ a k-nearest neighbor 
classifier (k-NN) which works by classifying a test item 
based upon which items are classified as closest to test 
item.  The classifier finds the k nearest “neighbors” and 
returns a majority vote of those neighbors to classify the 
test item.  A distance metric determines the closeness 
between two items.  Euclidean distance often serves as a 
metric for numerical attributes.  For nominal values, the 
distance is generally considered to be zero if both attribute 
values are the same or one if they differ.  k-NN classifiers 
may use custom distance functions.  Advantages of k-NN 
classifiers include ability to incrementally learn as new 
items are classified, to classify multiple types of data, and 
to handle large number of attributes for each item.  The 
primary drawback to k-NN classifiers is that if they have n 
items stored, classification takes  time.  Additionally, 
irrelevant attributes can skew classification results. 
To train the classifier, we use an active learning approach 
[12]. As new items are evaluated by the classifier, we 
validate the initial response, correct the response if 
necessary, and then place the correctly classified item into 
the classifier. 

2.3 Evaluation Criteria 
To evaluate our classifier, we examine how well it 
produces correct results.  As our classifier produces binary 
results, it either correctly or incorrectly predicts each class.  
We term correct predictions as true positives (TP) and true 
negatives (TN) if the classifier correctly predicted yes or no 
respectively.  For incorrect classifications, we term these as 
false positives (FP) and false negatives (FN).  To evaluate 
the binary classification, we use precision, recall, and the 

Measure.  Precision (P) is the proportion of correctly 
predicted access control statements: .  
Recall (R) is the proportion of access control statements 
found: .  The Measure is the 
harmonic mean of precision and recall, giving an equal 
weight to both elements: .  From an access 
control perspective, high values for both precision and 
recall are desired.  Lower precision implies that the process 
will ultimately grant a role more incorrect permissions than 
a classification with higher precision.  For example, a 
precision of .75 implies 75% of the access control 
statements are correctly generated, while 25% of the 
statements would grant additional access not required.  A 
lower recall value implies that we will have missed access 
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control sentences.  So a recall of .75 implies that 75% of all 
of the actual access control statements needed would be 
discovered, leaving undefined the other 25%.  Assuming 
access control starts from a basis of no access, having 
lower recall is not as significant of a problem from a 
security perspective, but would require additional 
verification to ensure all access is eventually granted.   

3. RELATED WORK 
This section reviews the work related to our proposed 
process. 

3.1 Natural Language and Access Control 
Other researchers have explored using natural language to 
generate access control policies from natural language.  He 
and Antón [14] proposed an approach based upon available 
project documents, database design, and existing policies.  
Utilizing a series of heuristics, humans would analyze the 
documents to find additional access control policies. In 
addition to heuristics to find the elements within the typical 
access control tuple (subject, resource, action), they created 
heuristics to identify policy constraints (temporal, location, 
relationship, privacy, etc.) and obligations.  More recently, 
Xaio et al. [30] present an approach, Text2Policy, where 
they parsed use cases to create eXtensible Access Control 
Markup Language4 (XACML)  policies.  Their approach 
was specific to use cases and relied upon matching four 
specific sentence patterns to deduce the necessary 
information to populate an access control method.  Using 
XACML as a target simplified their process as well as they 
did not have to map objects in the natural language to 
existing application elements or database entities.  Our 
processing utilizes machine learning to make decisions and 
implements access control against a system’s database. 

3.2 Controlled Natural Language 
Other researchers have resolved converting natural 
language to and from policies by utilizing a controlled 
natural language (CNL).  Schwitter [28] defines CNLs as 
“engineered subsets of natural languages whose grammar 
and vocabulary have been restricted in a systematic way in 
order to reduce both ambiguity and complexity of full 
natural languages.”  While CNLs provide consistent, 
semantic interpretations, CNLs limit authors and typically 
require language specific tools to stay within the constraints 
of the language. Project documents previously created 
cannot be used as inputs without processing the documents 
manually into the tools.  Policy authored outside of tools 
must confirm to strict limited grammars to be automatically 
parsed as well.  Brodie et al. [4] used this approach in the 
SPARCLE Policy Workbench.  By using their own natural 
language parser and a controlled grammar, they were 
effectively able to translate from natural language into 
formal policy.  Users also responded favorably to their 
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policy authoring tool.  Inglesant et al. [16] demonstrated 
similar success with their tool, PERMIS, which utilized a 
RBAC authorization model.  However, they did report 
issues with users not understanding the predefined 
“building blocks” imposed by using a CNL.  Recently, Shi 
and Chadwick [29] presented their results of an application 
to author access control policies using a CNL.  While they 
showed the improved usability of CNL interface, they were 
limited in the complexity of the policies that could be 
created as the interface didn’t support conditions or 
obligations.  Our process removes the CNL constraint, 
working against original, unaltered texts. 

3.3 Schema and Ontology Matching 
A challenge with our approach is to map resources found in 
the natural language text to database tables and columns.  
This problem is similar to the challenges of matching one 
database scheme to another database schema as well as 
matching different ontologies.  Multiple survey papers have 
been written on database schema matching [3, 9, 26] and 
ontology matching [6, 18].  Research continues in this field 
with such recent work as Po and Sorrentino [24] who 
utilized probabilistic techniques to derive lexical 
relationships and disambiguate word sense across different 
ontologies.  Currently, our approach utilizes an approach 
based upon word similarity. 

3.4 Databases from Natural Language 
Different approaches exist to discover database entities 
from natural language. The first approach has been to 
produce database design from the natural language text.   In 
1983, Chen [5] first presented a series of heuristics to 
produce entity relationship diagrams from natural language.  
Hartman and Link [13] updated this work in 2007 through 
additional heuristics and refinements.  Both approaches 
require humans to analyze the text.  Omar [23] applied 
semantic role labeling techniques to automatically 
generated database design from a series of heuristics.  
Another approach [2, 25] has been with research necessary 
to utilize natural language to query databases.  To effective 
perform natural language queries, a system must first 
comprehend the user’s request and determine the specific 
data requested as well as any conditions for retrieving the 
data.  Then the system must map the requested data 
elements and conditions to the physical database to 
generate the necessary query request by the user.  Our 
process uses identified resources from the natural language 
text to map to existing database tables.  

4. ROLE EXTRACTION AND DATABASE 
ENFORCEMENT 
This section details our process, Role Extraction and 
Database Enforcement (REDE), to extract roles and 
database objects from natural language text and generate 
RBAC policies for applications that utilize relational 



databases.  To guide users through the process, we 
developed a tool to perform many of the tasks involved. 

4.1 Overview 
For input, the process takes natural language text, a 
physical database schema, existing database role names, 
and, optionally, a list of domain-specific words. Any 
number of existing project documents such as 
requirements, use cases, designs, test scripts, and training 
material can serve as the natural language text.  The 
physical database schema consists of the existing table 
definitions. Database designs may be substituted if the 
physical implementation is unavailable.  The process 
outputs the SQL commands to establish role-based access 
control in a database. Additionally, the process can 
generate consistency and traceability reports. 

The REDE process consists of four primary steps: 

1. Parse natural language.  In this step, sentences are 
converted into an internal representation and analyzed 
for previously discovered elements and for negativity. 

2. Classify sentence attributes.  Next, we use a classifier 
to examine whether if the sentence relates to access 
control.  The user may correct classifications. 

3.  Extract access control elements.  The tool can find 
previously used subjects, actions, and objects based 
upon the most similar sentence or from previously 
found words.  If the sentence has been identified as 
access control the user will need to ensure the 
extracted elements are correct. 

4. Generate SQL Commands.  Based upon the extracted 
access control elements, the system generates the 
necessary commands to generate role-based access 
control within a relational database. 

4.2 Step 1: Parse Natural Language 
The process begins by entering the text into the system, 
parsing the text and converting the parsed representation 
into REDE’s internal representation (IR).  Next, REDE 
performs three analyses of the IR and assigns additional 
attributes necessary for classification and to establish 
access control as the step’s output. 

4.2.1 Parse Text 
First, the tool parses a paragraph at a time from the natural 
language utilizing the Stanford Natural Language Parser5.  
By breaking the input into paragraphs, we achieve a 
balance between providing an appropriate amount of text to 
the parser versus too little.  While a sentence at a time 
could be processed, references among sentences (such as 
what noun a pronoun refers to) would not be tracked.  
Memory constraints prevent the parser from processing a 
complete document or even larger sections.    For each 
sentence in the paragraph, the parser outputs a graph in the 
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Stanford Type Dependency Representation (STDR) [21].  
While the parser has several output formats available, we 
choose the STDR as it incorporates the sentence’s 
structural information in a concise and usable format. 
To replace shorthand or remove text that the parsing would 
not recognize, the process allows for a series of regular 
expressions to be applied to the text.  Specifically in our 
work, we use this mechanism to replace ‘w/’ with ‘with’ 
and ‘/’ with ‘or.’   

As the Stanford Parser processes sentences, it tags each 
word with a part of speech.  Due to differences in text used 
to train the parser versus text used by our process, the parts 
of speech may be incorrect.  To overcome this issue, we 
inserted a custom method into the parsing pipeline to 
override the part of speech tags if they are incorrect.  For 
instance, we discovered that the parser always tagged 
“displays” as a plural noun whereas in most sentences in 
our text “displays” is a verb. The custom method looks for 
specific patterns among a group of words, and then replaces 
the incorrect part of speech.  Both overrides are 
configurations established at the time the tool starts and are 
applied to the entire text. 

4.2.2 Internal representation 
From the STDR generated by the parser, we create our IR 
as REDE needs to track additional attributes for the 
sentence and for each word.  Additionally, some words in 
the original sentence are not required for our purposes and, 
hence, removed from the IR.  Figure 1 shows the STDR for 
the sentence “A nurse can order a lab procedure for a 
patient.”  Each vertex contains a word from the sentence 
along with that word’s part of speech.  In the figure, “DT” 
represents a determiner, “MD” a modal verb, “NN” a noun, 
and “VB” indicates a verb.  Edges represent the 
grammatical relationship between two words. For instance, 
“nurse” functions as the nominal subject (nsubj) for 
“create” and “dobj” is the object to be ordered. A 
sentence’s primary verb typically forms the graph’s “root.”  

order

nurse can procedure patient

nsubj prep_fordobjaux

det

NN NNVB

VB

MD

a
DT

a
DT

a
DT

lab
NN

nn detdet

 
Figure 1: Stanford Collapsed Type Dependency Graph 
Figure 2 shows our corresponding IR for the same 
sentence.  The primary differences between the two graphs 
are the number of vertices and how each word is 
represented within a vertex. 



Within our IR, vertices correspond to words in the sentence 
and contain the word, the word’s lemma6, part of speech, 
domain flag, and database indicators. The domain flags 
correspond to the subject(“S”), action(“A”), resource(“R”) 
typically defined within an access control tuple.  Edges are 
unchanged from the STDR. 

order
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nsubj prep_fordobj

VB

VB

nn

A

R
nurse

NNS
patient

NNR

lab
NNR

 
Figure 2: REDE Internal Representation 

The process uses the method outlined in Figure 3 to 
generate the IR from the Stanford graph.  The most 
significant change is to remove vertices that do not provide 
any semantic meaning from an access control perspective.  
(Vertices with children are not removed.)  We consider two 
categories of extraneous words: articles and modal verbs.  
Articles are the words “a”, “an”, “the.”  While in the 
context of a sentence, these determiners may provide 
information to the reader, from an access control point they 
do not provide additional details as the access the modified 
noun remains unaffected by their use.  Modal verbs include 
such items as “can”, “shall”, “may.”  While modal verbs 
may indicate conditions or obligations that need to be met, 
for database access control they are irrelevant as the user 
must have the access defined otherwise within the sentence.  
Removing these extraneous nodes from the IR reduces the 
overall size of each graph, which in turn, provides fewer 
irrelevant attributes to a machine learning algorithm used 
later in the process.   
IRNode createIntRepresentation(STDRNode node) { 
 1: if node.part_of_speech=article or modal verb 
 2:   return null 
 3: if node in visited list, return null 
 4: add node to visited list 
 5: IRNode irn = new IRNode(lemma(node.word), 
 6:                         basePOS(node.POS)) 
 7: foreach child of node  
 8:   irChild = createIntRepresentation(child) 
 9:   if irChild = null, continue 
10:   create edge from irn to irChild using the 
11:          existing relationship 
12: return irn 

Figure 3: Create Internal Representation Algorithm 
                                                             
6 A lemma is a common root word for a group of words.  For 

instance, sang, sung, and sings are all forms of a common 
lemma “sing.”  A stem is the root of a word after a suffix has 
been stripped. [17] 

As part of a later step in the process, we compare sentences 
to each other to measure their similarity.  To avoid spurious 
differences, we make two modifications to each vertex.  
First, to avoid multiple versions of the same word, we use 
the lemma of the original word within the node, which the 
Stanford parser provides as part of its output.  Using the 
lemma provides increased accuracy over the use of a 
word’s stem.  Stemming algorithms are rule-drive 
approaches to derive base forms of words without taking 
into account the word’s context or part of speech.  In 
contrast, lemmatization takes into account the word’s part 
of speech and other information sources such as a 
vocabulary to derive the base form of a word [20].  Second, 
to avoid differences in the part of speech, we collapse the 
parts of speeches for all nouns, verbs, and adjectives to 
their base category.  For example, we treat all plural nouns 
and proper nouns as simple nouns.  Similarly, verbs with 
different tenses are treated collectively as a single group.  

4.2.3 Domain Dictionary and Lookup 
With the IR in place, the process examines the graph to see 
if any of the words have previously been detected in prior 
sentences from an access control perspective.  Previously 
used words in part of an access control tuple are marked 
with a domain flag for the subject, action, or resource. 

The tool maintains a domain dictionary consisting of four 
entry types.  The first entry type is an action verb, which 
represents an action the user takes within the application.  
For each action verb, we track the corresponding database 
permission (delete, insert, update, or select) required to 
perform the action within the database.  For example, the 
“edit” verb has the permissions “select” and “update.” The 
“select” permission is required as the user must have access 
to view the record and then “update” to modify the record 
in the database.  We also track whether or not the verb 
implies a negative permission, which used to revoke the 
corresponding access from a role.  Subjects form the 
second entry type in the dictionary.  Subjects correspond to 
database roles.  The third entry type is a resource, which 
corresponds to a table or column within the database.  The 
fourth word type is a list of domain words relevant to the 
current application domain.   Since the user provides these 
domain words, they are populated into the dictionary at the 
start of the process.  Domain ontologies, taxonomies, and 
thesauri may serve as sources for these words. 

The domain dictionary is pre-defined with eight verbs that 
correspond with actions such as create, retrieve, update, 
and delete.  Additionally, the dictionary includes six verbs 
such as prohibit and stop that imply negative permissions 
as they designate permissions that should be revoked from 
a user.  The domain dictionary exists independently of any 
text of project.  As such, dictionaries unique to a given 
application domain, may be re-utilized across multiple 
systems or shared with other groups. As sentences are 
processed, new domain words will be added to the 



dictionary.  Synonyms may be defined by a user when they 
are two terms that refer to exactly the same entry.  Admin 
and administrator is an example.   

As the process looks up words from a sentence in the 
domain dictionary, a greedy approach is used to find the 
longest possible entry. Thus, if a sentence contains the 
words “health care representative” and the dictionary has 
both “health care representative” and “representative” 
defined, the system only matches “health care 
representative.”  The search process also takes into account 
the part of speech of a word as well.  Subjects and 
resources must both have a noun as the last word, while 
actions must have a verb as the last word.  The system does 
not use the relative position of a word within a sentence to 
perform dictionary searches.   

If new words need to be added to the dictionary domain 
then the user may do so through the tool at any point after 
the IR has been generated and before the SQL commands 
are generated.  From the sentence “A nurse can order a lab 
procedure for a patient,” a user would add nurse as a 
subject, “order” as an action with an “insert” permission, 
and both lab procedure and patient as resources into the 
domain dictionary. 

4.2.4 Negation 
Denying users access permission to an object when they 
should not have access to that object is a critical feature of 
any access control system.  As such, the process analyzes 
sentences to determine when permission should be 
explicitly revoked from a role. From the Dixon’s negation 
concepts [8], we utilize three methods to detect negation 
within a sentence.   First, we search the graph for edges for 
negative modifiers.  Next, the process searches vertices for 
negative determiners (no, zero, neither), adjectives(unable) 
and nouns (none, nothing) [15].  Finally, the process checks 
verbs negative connotation (as expressed in the domain 
dictionary) or by a pre-determined list of negative prefixes 
associated with English words.  If multiple negations are 
detected, the process displays a message to the user and the 
negativity flag remains unchanged.  If the process 
incorrectly sets the negativity flag, the user may explicitly 
set the value.   With the sentence “Nurses may not write 
prescriptions,” the tool would set the negative flag as 
nurses should not have the privilege to write prescriptions 
for any patients. 

4.2.5 Restrictive Focus Modifiers 
Within a system, privileges are often limited to one or more 
specific roles.  For example, only an administrator can 
maintain system lookup tables.   In this scenario, we want 
to grant permission to the administrator role while 
restricting the permission from other roles.  Within English, 
restrictive focus modifiers [15] express such limitations.  
As the position of such modifiers (i.e. just, only) affect the 
overall semantic meaning of the sentence, we restrict where 
such modifiers may be placed.  For example, consider the 

sentence, “Doctors write prescriptions,” our process would 
grant the role “doctors” the insert capability on the table 
“prescriptions.”  However, if the word “only” is placed into 
the sentence, then the meaning of the sentence varies based 
upon the location of “only”.  With only as the first word, 
the sentence means that only doctors write prescriptions 
and no other roles.  Alternatively, if only is the second 
word, it modifies “write” and implies that the only action 
doctors can do in the system is write prescriptions.   
Finally, if only is the third word, the sentence now means 
that prescriptions are the only things doctors write.  To 
ensure the modifiers are in the correct location, we only set 
the only flag for a sentence if the modifier applies to the 
subject identified in the sentence.  Users may override the 
flag if the process set it incorrectly. 

4.3 Step 2: Classify Sentence Attributes 
Once the tool completes the parsing and initial analysis of a 
sentence, an instance based algorithm classifies additional 
sentence attributes.  The primary classification is whether 
or not the sentence implies access control.  The tool also 
classifies words as belonging to access control elements if 
the domain dictionary lookup did not already discover the 
elements.  The access control classification is paramount to 
our process as the classification of “yes” indicates the 
process will generate an access control statement. 

To classify sentences, REDE utilizes a -NN classifier with 
a custom distance metric.  As a -NN classifier works by 
taking a majority vote of the existing classifications of the 

 nearest neighbors, the classifier uses a distance metric to 
find those neighbors.  In this process, to classify a sentence 
as access control, the classifier needs to find which 
sentences already classified are most similar to that 
sentence.  To calculate the required distance metric 
between two sentences, the process performs a recursive, 
pre-order traversal of each sentences’ IR and sums the 
distances between vertices in one graph compared to their 
equivalent vertices in the other graph.  To calculate the 
distance for each vertex, the process uses the function 
presented in Figure 4.  The different values were chosen as 
way to express the difference between two nodes.  If the 
nodes are the same, then a value of 0 is returned.  If they 
nodes are different, then a value of 1 is returned.  However, 
there are situations in which nodes are similar, but not 
exactly the same.  As such, we return a value in between 0 
and 1 to represent the closeness.  In line 7, the process 
checks to see if vertices share the same domain flag which 
occurs when the domain dictionary contains the lemma 
from both vertices.  In this situation, the graph has found 
the domain flag in equivalent locations and a small value is 
returned.  (The value ranges from 0.1 to 0.4 depending 
upon the structure of the sub-graphs rooted at  and .  In 
line 9, the process checks to see if the two words are related 
through sets of cognitive synonyms (synsets) within 



WordNet7 via semantic relationships (hypernym or 
hyponym).  If a relationship value is found, then a value 
between 0.1 and 0.4 is returned based upon the number of 
relationships traversed.  Next, the process checks two see if 
both lemmas are contained within the list of domain terms 
provided as input to the overall process.  If both words are 
found, a value of 0.5 is returned.  Finally, a default value of 
0.75 is returned if none of the other conditions are met.  In 
this situation, the vertices have an equivalent structure and 
part of speech and should be scored as closer together than 
two vertices differing in those attributes.  We choose these 
values as they maximized the classifier’s precision with 
regards to the requirements document utilized. 
computeVertexDistance(Vertex a, Vertex b) 
 1: if a = NULL or b = NULL return 1 
 2: if a.partOfSpeech <> b.partOfSpeech return 1 
 3: if a.parentCount  <> b.parentCount return 1 
 4: for each parent in a.parents 
 5:   if not b.parents.contains(parent) return 1     
 6: if a.lemma = b.lemma return 0 
 7: dfValue = domainDistance(a,b) 
 8: if dfValue > 0 return dfValue 
 9: wnValue = wordNetSynonyms(a.lemma,b.lemma) 
10: if wnValue > 0 return wnValue 
11: if domainKnowledgeChk (a.lemma,b.lemma)  
      return 0.5 
12: return 0.75 

Figure 4: Compute Vertex Distance 
While the presence of domain flags for subjects, resources, 
and actions may be used as an alternative to a machine 
learning classifier.  The presence or absence of domain 
flags is not sufficient to appropriately classify a sentence as 
containing to access control or not.  First, it may be 
possible for the three different domain flags to be present in 
various parts of the sentence, but not necessarily in 
locations that indicate database access is necessary.  
Second, in many sentences may not contain three different 
domain flags, yet the sentence does require data access.  

Once the classification is complete, the user may review the 
classifications and provide any corrections as necessary 
through the tool. 

4.4 Step 3: Extract Access Control Elements 
Next, we need to extract the subject, action, and resource 
elements from the IR.  In addition to the database lookup in 
section 4.2.3, we also can utilize the results of the nearest 
neighbor and use the position of the elements in that 
sentence for the elements in the current sentence.  For the 
sentence, “A nurse can order a lab procedure for a patient,” 
the subject would be nurse, the action is order, and the 
resource is patient and lab procedure.  
Another situation arises in which the sentence has been 
classified as access control, but portions of the access 
control tuple are not directly present in the sentence.  
Examples include sentences that provide additional details 
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for the preceding sentences or generic terms such as 
“system”, “record”, or “data.”  The natural language 
processing field refers to this problem as reference 
resolution [17].  REDE performs resolution by utilizing the 
last occurrence of the missing tuple.  Our tool highlights 
marks this resolution and allows the user to change the 
tuple value if necessary. 
Next, we need to map the discovered resources and objects 
to roles and tables in the database.  Through the tool, users 
must manually match up each subject and resource with a 
role or table.  For each subject and resource entry in the 
domain dictionary, the tool provides a sorted list of possible 
choices for the user to select.  The choices are sorted by the 
Levenshtein distance [19] between the current subject or 
entry being mapped to the possible choice from the 
database.  We choose to use the Levenshtein distance as it 
is a commonly used algorithm to measure the similarity 
between two strings. 

4.5 Step 4: Generate SQL Commands 
In the final step, the tool produces the necessary SQL 
commands to establish role-based access control within a 
relational database.  The identified roles are created along 
with the necessary grants and revokes to established the 
appropriate privileges. 

For the sentence, “A nurse can order a lab procedure for a 
patient,” the following commands would be generated: 
CREATE ROLE nurse;  
GRANT SELECT, INSERT on lab_procedure TO nurse; 
GRANT SELECT, INSERT on patient TO nurse; 

Additionally, the tool generates a report with access 
conflicts or other validation issues.  The process compares 
each IR to all of the other IRs to find conflicts which occur 
when one sentence gives a role access to a table, but 
another sentence would revoke the same role’s access from 
the table.  The report also includes any subjects or actions 
not mapped to their corresponding database elements as 
well as any sentences classified as access control, but 
missing part of the access control tuple.  The tool also 
generates a report showing the traceability of access control 
rules back to the originating sentences in the natural 
language text.  

5. EVALUATION 
This section details our evaluation of the process.  

5.1 Application: iTrust 
To evaluate the procedure, we used iTrust8 [22] as our test 
system.  iTrust, a web-based healthcare application 
originated as a class project for Software Engineering at 
North Carolina State University in 2004, and has been 
enhanced by classes each semester through 2012.  The 
application follows a typical three-tiered architecture with 
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logical layers for the presentation, application, and 
persistence.  Instructors, teaching assistants, and students 
have contributed to the application, which is currently in its 
14th version.  Each class performs software maintenance on 
the application, correcting defects and implementing new 
functionality.  The requirements consist of 40 use cases 
plus additional non-functional requirements, constraints, 
and a glossary.  The version we used contained 1114 
sentences with 409 (36.7%) of those sentences classified as 
access control.  The application database contains 41 tables.  
While the application contains ten roles, all database 
accesses are performed with a common system account.  

5.2 Process Observations 
The first author spent 15 hours to process the 1114 
sentences through the tool.  As the number of sentences 
classified grew, the time spent to classify each sentence 
was reduced due to additional elements in the domain 
dictionary and more accurate classifications produced by 
the k-NN classifier.  For future development iterations on 
the same project, we expect the time spent within the tool 
to be significantly less because much of the domain 
dictionary is already accumulated.  We also expect other 
projects to spend less time provided they can utilize an 
existing k-NN classifier or domain dictionary. 
The k-NN classifier performed well on sentences where 
there were common patterns.  For instance, requirements 
are often phrased starting with “The system shall provide 
the ability to…” The produced IRs for those type of 
sentences all had the vertices for “system,”, “provide,” and 
“ability” in the same location and the distance metric 
showed zero difference for these vertices.  Another 
common pattern handled well was in the cases were the 
phrase followed the pattern “<role> (desires | wishes | 
wants | selects) to <perform action>.”  The generated IRs 
had the domain subject flag and the domain action flag in 
the same location and as such the calculated distances were 
relatively low even with different words as “desire” or 
“selects” in between the two locations.   

5.3 Classifier Evaluation 
To evaluate our classifier, we compared precision, recall, 
and f-Measure to six other models utilizing a stratified n-
fold cross-validation.  With this method, data is randomly 
partitioned into n folds based upon each fold of 
approximately equal size and equal response classification.  
For each fold, the models are trained on the remaining folds 
and then the contents of the fold are used to test the model.  
The n results are then averaged to produce a single result. 
We follow Han et al.’s recommendation [12] and use 10 as 
the value for n as this produces relatively low bias and 
variance.  The cross-validation ensures that all sentences 
are used for training and each sentence is tested just once. 

For the models, we used four machine classification models 
across different techniques from Weka [11].  Additionally, 
we used two random methods, weighted and 50%.  The 

weighted random model assumes that the classifier knows 
the classification of each item in the training set and 
randomly returns answers proportionally to the existing 
classifications.  The 50% model has no knowledge of the 
training set and randomly returns answers with equal 
likelihood between the two classifications values.  
Comparison to 50% model would be appropriate when a 
pre-defined classifier is used by a project team.  To 
generate input data for the Weka models, we flattened the 
IR graph into a comma separated list format and then 
executed a Weka filter to convert all string values to 
nominal values. Table 1 lists the results. 

Overall, our model performed relatively equal to the 
existing Weka classifiers while substantially out- 
performing the random models.  J48, a decision tree 
classifier, performed the best.  However, J48 had a lower 
recall, which implies that a number of access control 
statements were not identified.  While our classifier 
overcomes a significant limitation in Weka’s classifiers in 
that new strings and instances can incrementally be added, 
the performance of existing Weka models highlights the 
need to reconsider whether it is appropriate for us to 
continue work on the k-NN classifier. 

Table 1. Test Results of Stratified 10-fold Cross 
Validation 

 
For our classifier, we evaluated different values of k to use 
when finding the -nearest neighbors.  The highest 

Measure occurs at .  However, 40% more false 
positives where generated than the next best performing 
value at .  Consequently, we set =1 to minimize 
incorrect access control.    

We also evaluated whether or not it was appropriate for the 
classifier to even return a value.  As we processed the 
iTrust requirements, we noticed circumstances in which the 
classifier returned results, but the nearest sentences were 
significantly different from the sentence being classified.  
We adopted a threshold value to determine whether or not 
the classification results should be utilized.  For example, if 
a sentence had 10 vertices and the computed distance to its 

-nearest neighbors was 7.6, we would only accept the 
classifier’s answer if the threshold was set at 0.76 or higher. 
As can be seen in Table 2, low threshold values resulted in 
significantly higher values for precision and recall with the 

Model Precision Recall F1Measure 
Weighted Random .38 .40 .39 
50% Random .36 .50 .42 
Naïve Bayes .85 .94 .89 
J48 .98 .84 .91 
Ridor .97 .84 .90 
IB1 .84 .81 .83 
REDE k-NN ( =1) .78 .92 .85 



disadvantage that a substantial number of sentences were 
not automatically classified.  We adopted 0.80 as our value. 

Table 2. Threshold Response Results 
Threshold % Answered  Precision Recall Measure 
0.25 33% 0.97 0.99 0.98 
0.50 56% 0.95 0.98 0.96 
0.55 58% 0.95 0.98 0.96 
0.60 64% 0.94 0.96 0.95 
0.65 69% 0.92 0.97 0.94 
0.70 75% 0.88 0.94 0.91 
0.75 85% 0.84 0.95 0.89 
0.80 92% 0.83 0.95 0.89 
0.85 96% 0.80 0.94 0.86 
0.90 98% 0.73 0.93 0.82 
0.95 99.8% 0.78 0.93 0.85 
1.00 100% 0.78 0.92 0.85 

5.4 Database Table Coverage 
Step 3 of REDE involves mapping resources found in the 
natural language text to physical database tables and 
columns.  In our evaluation, we successfully mapped to 
92% of the 41 tables.  A table for password failures was 
missed as the related use case documented the scenario 
across multiple sentences and our resolution method did not 
handle the condition properly.  For the “report request” 
table we assumed that this functionality expressed in the 
use cases did not require persistence.  Finally, there was a 
table to store global variables that was not mentioned 
within the use cases.  We identified several objects in the 
use cases that did not mapped to the database.  Most of 
these were involved specific user roles and their 
information was stored in the “users” table.  The other issue 
involved “immunizations” and this information was 
contained with application code.  Overall, the process was 
effective at mapping tables, but missed situations where 
tables references were not present in the natural language 
text or were implementation dependent. 

5.5 System Execution 
From the generated SQL commands, we evaluated iTrust 
with the database access control in place.  As iTrust uses a 
common system account to access the database, accounts 
were established for the different users based upon their 
roles in the database.  The application was modified 
slightly for the user’s database authentication credentials to 
serve as the authentication for the application and to 
establish the database access for that user’s session.  
Production deployments will need to consider the impacts 
on connection pooling.  We then executed the 28 existing 
acceptance tests for iTrust to ensure the system performed 
correctly.  As expected from the results in the previous 
section, we had to grant additional permissions for tables 
not granted any access.  Additionally, there were other 
issues found with functionality not fully described in the 
use cases such as logging that were required additional 
privileges to be granted.  Once all of the additional 

privileges were added, all 28 acceptance tests passed.  We 
also defined and successfully executed five system tests to 
show access control was enforced appropriately at the 
database level in the event the application level access 
control was bypassed. 

6. LIMITATIONS  
This section presents the limitations of this work. 

6.1 Process 
Within the REDE process and tool, we assumed only one 
access control tuple would exist within a sentence.  
However due to conditions or clauses within a sentence 
multiple tuples may exist.  This problem can be solved 
through identifying parts of the IR that related to a specific 
clause or condition. 
Another limitation encountered that our lookup into the 
domain dictionary did not take into account whether or not 
a noun acted as sentence subject as an object.  As such, 
subject and resource domain flags were set for certain 
words.  The user then needed to manually correct the flags. 
To fix this limitation, the subject lookup would only be 
applied to vertices (words) that had an edge that specified 
the relationship was the nominative subject or the agent in a 
passive sentence. 
The process did not utilize the document’s structure (i.e., 
when a use case started or the different sections within a 
use case) as it parsed paragraphs at a time.  Utilizing the 
structure to identify the start locations of test scripts, use 
cases, and other items would allow a tool to infer greater 
information about the current text under analysis. 

Within the domain dictionary, we only stored one entry for 
each action verb discovered in the document.  We 
discovered situations in which a verb such as “order” or 
“request” had very different implications for access 
depending upon its semantic meaning.  “Request” could 
imply that a user is just asking for data, which implies 
select permission for the database.  In other cases, 
“request” could imply that a user wants a specific activity 
to be accomplished, which would imply insert permission. 

For applications to effective use this process, they must 
stop utilizing a common system account to access the 
database and setup individual users in the correct roles in 
the database.  Companies may utilize identity management 
software to facilitate this user establishment. 

6.2 Evaluation 
In evaluating the process and the tool, we only examined 
one system in a specific problem domain.  While the 
process does not have any specific problem domain 
constraints, additional evaluation needs to occur across 
multiple domains and applications. 

As one of the authors classified all of the sentences, an 
external threat to validity exists as to if the classifications 



are correct.  To check if this was a significant issue or not, 
we had four software developers with an average work 
experience of nine years classify a representative sample of 
ten sentences to determine whether or not those sentences 
implied access control.  Utilizing R9, we computed Fleiss’ 
fixed marginal, multi-rater kappa statistic as .84 which 
indicates significant agreement among the five raters. 

7. FUTURE WORK 
We plan to evaluate our process with other applications to 
evaluate the process as well as utilizing a trained classifier 
and existing domain dictionary.  From there, we plan to 
evaluate the process across applications domains.  Ideally, 
we will demonstrate that our process is not limited to the 
healthcare domain and significant time savings can be 
achieved through the use of existing dictionaries and 
classifiers. 

Through our examination of the iTrust requirements, we 
noticed significant number of places where individuals had 
access to a table, but their access was limited to specific 
records based upon specific conditions.  To restrict access 
to those records, we plan to extend the process to generate 
database views with those conditions in place.  Roles would 
then be granted access to those views rather than the 
underlying table(s).  Additionally, we plan to include 
conditions and obligations based upon various grammatical 
constructs in the natural language text. 
The REDE process could also be extended to validate the 
work against existing RBAC models for the application 
layer as well as exploring the use of different access control 
models besides RBAC. 

8. CONCLUSION 
In this paper, we present a new process, REDE, and tool 
that assist developers and security experts in automatically 
generating RBAC statements to send to a DBMS.  We have 
shown how the tool detects conflicts, performs traceability 
from source sentences to access control rules, and 
visualizes coverage of existing database tables versus those 
specified in documentation.  To best of our knowledge, we 
produced the first methodology to automatically classify 
sentences as access control related or not.  We evaluated 
the process and tool on an existing system by processing 
1114 sentences.  Our k-nearest neighbor classifier with a 
unique distance metric had a precision of 0.78 and a recall 
of 0.92, outperforming the random guess, which had a 
precision of 0.38 and a recall of 0.40.  The process 
correctly identified and mapped 92% of the physical 
database tables to the resources found in the requirements 
specification.  We demonstrated the ability for the 
application to successfully execute with both application 
and persistence layer role based access control in place. 
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For the practitioner, we have developed a tool to 
incorporate into any software engineering process to detect 
conflicts in access control statements specified in natural 
language text and to save costs while establishing and 
maintaining RBAC at the persistence layer. 
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