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ABSTRACT
Smart devices including smart phones and tablets are getting
more powerful and become versatile enough to replace con-
ventional personal computers. Despite the rapid evolution
of capabilities of such devices, controlling peripherals such
as networked printers is infeasible due to lack of dedicated
drivers to communicate with peripherals. To immediately
enable smart devices to operate peripherals, we propose a
cloud-powered system, CloudBridge. CloudBridge user ap-
plication running on a smart device works as a TCP bridge
relaying packets between two TCP tunnels connected to a
networked peripheral on one side and a cloud server on the
other. Through the bridge, it is possible to issue operations
from a smart device without having dedicated drivers by ask-
ing the cloud server to interpret the operations to a language
that the peripheral can understand. CloudBridge further op-
timizes user experience through data compression which is
adaptively applied based on decision functions. The system
is implemented on Android devices and a Linux server, and
we demonstrate that it perfectly controls networked print-
ers on smart devices. The decision functions are shown to
provide optimized QoE metrics such as response time and
energy consumption though extensive evaluations.

1. INTRODUCTION
Smart devices are becoming prevalent in our lives. Ac-

cording to a report [3], the total shipments of smart phones
and tablets during 2011 were 550.9 million units. The num-
ber is higher than 351.4 million units, the total shipments of
conventional personal computers (PCs) including desktop,
laptop, and netbook. While the market for smart devices is
growing dramatically, the capabilities of such devices have
also been revolutionized during recent years. Many sur-
vey results from business sectors [2, 3, 13] show that smart
devices started to replace conventional computers in daily
computing leveraging their unique strengths such as dedi-
cated applications, faster operations via finger touches, lighter
weight, and longer battery time. However, there is a critical
limitation of smart devices in replacing conventional com-
puters. That is lack of peripheral support. Smart devices
are not able to communicate with peripherals such as net-
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Figure 1: The smart device in the middle works as a
bridge connecting a cloud server and a networked pe-
ripheral in local at each side through TCP tunnels.

worked printers, scanners, cameras because the manufac-
turers of such peripherals do not provide dedicated drivers
for smart devices. The limitation can be mitigated by wait-
ing the manufactures to release dedicated drivers or porting
drivers developed for PCs to smart devices. However, both
approaches are not universally applicable to all peripherals.
To address this problem, we propose a networked system
leveraging cloud computing, which we callCloudBridgefor
smart devices.

CloudBridge enables peripheral support in smart devices
in a way that isuniversally applicableand completelyinde-
pendentfrom local PCs. It also providesindistinguishable
experiences to users when controlling peripherals comparing
to that from a conventional PC. CloudBridge system consists
of an user application for smart devices and a daemon for a
cloud server. As shown in Figure 1, the application running
on a smart device sets up TCP sockets with a networked pe-
ripheral and a cloud server. Using the sockets connecting
both sides, CloudBridge makes a smart device as a trans-
parent bridge allowing the cloud server with an appropriate
driver to communicate with the peripheral. Since the cloud
server is assumed to have drivers for most of the peripherals
in the market and is controlled by the application, the pe-
ripherals become immediately accessible from smart device
users. We apply the proposed system to operate networked
printers throughout this paper, but one should note that this
technique is not limited to printing but applicable to wide
variety of peripherals equipped with networking capability.

Despite its simple yet efficient system architecture, Cloud-
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Bridge encounters a critical challenge for its practicality. The
cloud server which operates as an interpreter between the
user application and the peripheral interprets a file into a
print stream written in the printer language, PCL (printer
command language), using a proper driver that the target
printer can understand. A challenge observed here is that
the size of the generated print stream becomes huge ranging
from several times to a few hundred times of the original file
size. Given that our system relies on networking to deliver
the stream to the printer, the increased size directly affects
the user experiences such as total print time and energy con-
sumption on the smart device.

To address the challenge, we investigate the character-
istics of print stream and adopt a compression technique,
which shows the best compression efficiency for the print
streams. Applying compression brings trade-off between the
total print time and the energy consumption because com-
pression and decompression demand time as well as energy.
For the optimal use of compression, we model decision func-
tions which determines whether to apply compression or not
based on two aforementioned criteria. We perform exten-
sive experiments with more than a thousand printer models
from major printer vendors, whose drivers are installed in
our cloud server. The results show that the ratio between
the total print time of our system and the time using a con-
ventional PC converges toBp/Bc + 1 as the file size gets
larger, whereBp andBc denote the network bandwidth to
the printer and to the cloud server, respectively. Also, our
decision functions are verified to provide satisfactory user
experience in 95% of the time.

Our contributions in this paper include the followings.

• We propose a cloud-powered network system, Cloud-
Bridge, enabling peripheral support in smart devices.

• We implement the system in Android smart devices
and a Linux server, and demonstrate the efficacy of the
system for printing.

• We identify a challenge in the system and suggest a
practical solution by adopting a compression technique
and its optimal decision function.

The paper is organized as follows. In Section 2, we sum-
marize existing approaches which target peripheral support
in smart devices. We present detailed system architecture
and implementation issues of CloudBridge in Section 3. In
Section 4, we validate our implemented system through ex-
tensive evaluation and analysis, and introduce compression
technique in Section 5 for system optimization. Finally, we
conclude the work in Section 6.

2. RELATED WORK
In this section, we focus on techniques providing a spe-

cific peripheral support, printing from smart devices. There
have been various techniques enabling printing from smart
devices, but the existing techniques do not perfectly achieve

our goals,independent, complete, anduniversalperipheral
support for smart devices. We survey the techniques and
discuss about them in detail.

Printer driver is a software that converts digital data into
bit streams, which can be understood by a printer. To oper-
ate a printer on a PC, the driver should be installed before-
hand. If the printer vendors do not provide dedicated drivers
to smart devices, there is no intuitive way to operate printers
directly from smart devices. To address the problem, vari-
ous approaches have been tried. The fact that there are over
300 printing applications in Android Market shows high de-
mand of a solution from users. Printing solution available
in the market are classified into three categories: 1) printing
through a PC connected to a printer, 2) printing through a
mobile driver ported from PC, and 3) directly printing using
a special printer.

(1) Printing via a PC.
Most of the applications listed in mobile application mar-

kets make use of a local PC directly connected with a printer
via wired or wireless connection. Such applications send a
file to the computer and ask to issue print command. Ap-
ple’s AirPrint [1] and Google’s CloudPrint [5] adopt this
approach. Many Android applications that support mobile
printing exploit the CloudPrint service. This approach re-
quires setup procedure in advance and the relaying PC to be
always turned on waiting for the request. We consider this
approach does not meet our goal,independence.

(2) Using ported drivers.
To enable independent operation from PC when printing

from smart devices, several companies such as PrinterShare[11]
and Samsung [12] provide applications which contain printer
drivers ported for smart devices. This approach immediately
allows smart devices to operate printers, but the number of
supported printer models is very limited. Also, functional
limitations may exist since the drivers are not dedicated es-
pecially when the conversion is not provided by the vendors.
Some proprietary functions may not be accessible. This ap-
proach lacksuniversalsupport.

(3) Using driver-less printers.
Another approach mainly provided by printer vendors is

printing a file directly at the printer without any help of PC
or smart device. It is calleddriver-less printingand vendors
recently launched a set of printers supporting this feature.
When smart devices send a file to the printer over network,
the printer itself interprets the file into bit streams it canun-
derstand. HP ePrint printers [6], Kodak Hero series [9] and
the latest Epson models [4] are the representatives. This ap-
proach is desirable in that it does not put any burden to smart
devices. But it cannot provideuniversalsupport as most of
the printers does not have the driver-less printing feature.
More importantly, it has a fundamental limitation in support-
ing various file types, lackingcompleteness. The driver-less
printers may only support basic formats such as text (TXT,
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Solutions Independence from PC Complete file type support Universal printer support
Printing via a PC [1,5] × ◦ ◦

Using ported drivers [11,12] ◦ × ×
Driver-less printers [4,6,9] ◦ × ×

CloudBridge ◦ ◦ ◦

Table 1: Mobile printing solutions in the market and their characteristic classification based on three criteria. Cloud-
Bridge satisfies all key features: it provides independent,complete, and universal peripheral support.
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Figure 2: The communication sequence of CloudBridge.

RTF), image (BMP, JPEG), but not the advanced formats
widely used, e.g., Encapsulated PostScript (EPS), Windows
Metafile (WMF), and Adobe Photoshop (PSD).

Table 1 summarizes features of the existing printing tech-
niques compared with CloudBridge system. As shown in the
table, our approach relying on the cloud server satisfies all
key features: it provides independent, complete, and univer-
sal peripheral support.

3. CLOUDBRIDGE SYSTEM
CloudBridge contains two major entities: an user appli-

cation for smart devices and a daemon running on a cloud
server. In our system, the bidirectional TCP bridge lying
between two entities is the key component. Through this
bridge, the user application can control the networked pe-
ripherals with the help from the cloud server.

3.1 Operations
CloudBridge consists of 9 steps of operations between a

CloudBridge user application, a server daemon, and a printer
as illustrated in Figure 2. (1) A smart device broadcasts a
discovery request to all hosts on the same subnet or sends
query directly to an IP designated host. (2) On receiving the
query, printers send responses back containing their device
information. (3) On receiving the responses, the application
asks the user to select a printer and a file to print, and (4) de-
livers them all together to the cloud server. (5) On receiving
the file and the printer information, the daemon first checks
the file type. If the file type is of advanced applications, the

Algorithm 1 Pseudo operations of CloudBridge application
if Printer searchbutton selectedthen

List the automatic discovery result
if A printer name selected from the listthen

Set the printer as target device
else ifAn IP address enteredthen

Operate manual discovery and set as target device
end if

else ifFile searchbutton selectedthen
List files in the SD card storage
Set the selected file to print

else ifPrint start button selectedthen
if Target printer and file to print setthen

Startprinting process
end if

end if
Printing process:
Set up TCP socketsock1 with cloud server
Transmit target printer information and file to server
Set up TCP socketsock2 with local printer
if Compressed print streamthen

Receive entire data from server throughsock1
Decompress data into raw print stream
Transmit stream to printer throughsock2

else
while Receive packet from server throughsock1 do

Transmit packet to printer throughsock2
end while

end if
return

file handling module converts the file into a basic format. (6)
Once the conversion is done, the stream handling module in-
terprets it into a print stream. (7) The stream handling mod-
ule determines whether to compress the stream or not based
on the network bandwidth and the size of the stream. This
module then sends the print stream, either after compression
or not, back to the smart device through the TCP connection
established in step 4. (8) On receiving the stream, the smart
device decompresses it if compressed. Then, the device de-
livers the raw stream to the printer by setting up a new TCP
socket. (9) Along with the processes 1 through 8, the smart
device application periodically sends out error queries tothe
printer to check the error status such as lack of paper/toneror
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Algorithm 2 Pseudo operations of CloudBrindge daemon
while Accept connection from clientdo

Receive printer information and file
if Printer driver matching failedthen

Transmit error message to smart device
return

end if
Register printer by redirecting the stream to localhost
if File type is advanced applicationthen

if File type is web addressthen
Trigger web file generation to file handling mod-
ule

else
Trigger file type conversion to file handling mod-
ule

end if
Receive converted file from file handling module

end if
Generate print stream by issuing print command
while Receive packet from localhostdo

Receive entire raw print stream
end while
if Decision function returns 1then

Compress the raw print stream
Transmit compressed stream to client

else
Transmit raw print stream to client

end if
end while

incident of paper jam, and pops instant feedback to the user.
Besides that, the smart device also forwards printer errorsto
the cloud server and gets error interpretations back, similar
to what the stream handling module does.

Algorithm 1 and Algorithm 2 summarize the work flow of
the CloudBridge application and server, respectively.

3.2 System Architecture
Figure 3 shows the software architecture of two compo-

nents, CloudBridge user application and server daemon.

(1) Smart device application.

• The user interface module collects user inputs regard-
ing target printer information, printing options (e.g.,
color, duplex), and the preferred performance metric
(e.g., print time, energy consumption). This module
also receives notification messages from the printer as
well as the server (e.g., low toner, no paper) and in-
terprets them in human-readable format. It basically
communicates with the networking module to deliver
all information.

• The networking module consists of two sub-modules,
peripheral discovery and data relay module. The dis-
covery module uses well-known service discovery pro-

tocols such as multicast-DNS (domain name system),
DNS-SD (DNS-based service discovery), SSDP (sim-
ple service discovery protocol) to find nearby printers,
especially located in the same subnet. The module can
extend its discovery boundary by specifying an pub-
lic IP address of the target printer using SNMP (sim-
ple network management protocol) queries. The data
relay module is the key component to bridge packets
between two end points. Whenever there are packets
coming from one side, it extracts payloads from these
packets and then forwards them to the other side. If the
data is determined to be notification message, it passes
it to the user interface module.

• The stream handling module verifies whether the re-
ceived stream is compressed or not. It selectively per-
forms decompression only when the payloads are in
the compressed form. Since the decision on compres-
sion is made at the cloud server, this module passively
decompresses the stream and returns raw print stream
back to the networking module.

(2) Cloud server daemon.

• The networking module receives user information along
with a file to print from the user application. It passes
them to stream handler to generate the corresponding
print stream. When the file format requires type con-
version or indicates a web page link, this module tosses
the data to the file handling module. Once the print
stream is ready from the stream handling module, it
delivers the stream to the smart device.

• The stream handling module is the core part of the
CloudBridge daemon. Based on the printer informa-
tion, it finds the matching driver in its database and
generates the print stream with the options designated
by the smart device user. Upon generation of the print
stream, it makes decision on whether to compress the
stream or not by applying a pre-trained decision func-
tions based on the network bandwidth and the stream
size. We further discuss about the compression deci-
sion functions in Section 5.

• The file handling module intervenes only when the dae-
mon receives an advanced file format which cannot
be directly interpreted by the driver. In such cases, it
selects the corresponding file converter and converts
the file into a basic format (e.g., PDF). Also when the
file format is platform specific, i.e., only supported on
Windows OS or Mac OS X, this module performs the
conversion in the corresponding OS virtualized in the
cloud server. The print quality is guaranteed after con-
version as it borrows the format conversion ability from
full-fledged applications on conventional computers.
Applications not dedicated to a file format may also
give the results but the details such as layout, styles,
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Figure 3: System architecture of CloudBridge.

and fonts are not comparable with the one utilized the
genuine application. Once the conversion is done, the
converted file is delivered to the stream handling mod-
ule which generates the print stream subsequently.

4. SYSTEM VALIDATION AND ANALYSIS
In this section, we validate the feasibility of our system

through extensive experiments using various Android smart
devices (Samsung Galaxy S II, LG G2x, and HTC Evo Shift),
two physical networked printers (HP LaserJet 4250, Brother
2270DW), a huge number of emulated printers from four
major printer manufacturers, and a Linux server. Accord-
ing to a recent article [8] regarding the world printer market
share as of 2011, the major manufacturers cover 80% of the
market, i.e., HP 42.9%, Canon 18.1%, Epson 12.6%, and
Samsung 5.7%. Motivated by this fact, we installed 680 HP,
131 Canon, 212 Epson, and 144 Samsung printer drivers,
1,167 in total, on the Linux server to gain the universality
of the performance emulation results. For energy measure-
ment, we use a Monsoon digital power meter [10] which can
dump the power readings. The lowest reading interval 200
µs is used to get the most accurate measurement.

4.1 Operation Time Analysis
First, we evaluate the end-to-end operation time of the

system. From the user’s point of view, the operation time
that she may go through using the system might be the most
important performance metric. Analyzing time portion taken
by different operations helps identify the performance bot-
tleneck of the system. We split the total printing time into
four time intervals as shown in Figure 2, and summarize
them in Table 2.

Initialization time stands for the time taken transmitting
the file and printer information from the user application to
the server. File conversion time denotes the consumed con-
verting an advanced file format to a basic one, triggering the
type conversion module running on a virtualized Windows
machine. Note that the file conversion time is optional for

Time Intervals Representation

Initialization Time t2 − t1
File Conversion Time t3 − t2

Stream Generation Time t4 − t3
Stream Forwarding Time t5 − t4

Total Print Time t5 − t1

Table 2: Time intervals for sub-procedures indicated in
Figure 2.

advanced formats. Stream generation time is measured from
the moment when a print command is committed until the
server finishes generating a complete print stream. Stream
forwarding time starts when the first stream packet is sent by
the server until the printer has received the last packet. We
first present results using physical printers excluding com-
pression technique, and then extend the experiment to over
1,000 printers for both cases with and without compression.

Figure 4 and 5 show the time distribution of sub-procedures
measured for the basic and advanced formats, respectively.
The initialization and forwarding time for both cases are lin-
early increasing along with the file size. This is intuitive
as these two metrics are pure network transfer time which
is highly dependent on the data size assuming the network
condition remains stable. From the fact that the stream for-
warding usually takes longer time than the initialization,we
can infer that the print stream size becomes much larger than
the original file in most cases. This finding motivates our ap-
proach to introduce the data compression, which is discussed
in detail in Section 5.

An interesting observation is that the forwarding time tends
to show high variation depending on the file format. The for-
warding time of PPT file is longer than that of TXT file about
5 times in average. It is due to the embedded complexity of
PPT format which usually contains a lot of graphical con-
tents such as images, tables, and animation effects. On the
other hand, the forwarding time of PS file is even less than
its initialization time. Since PS file is already quite closeto
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Figure 4: Time distribution of sub-procedures for basic file types. For text and PDF files, forwarding time is the
bottleneck while initialization time is the most critical portion for PS file type.
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Figure 5: Time distribution of sub-procedures for advancedfile types. Stream forwarding time highly increases espe-
cially for PPT files as the file size increases, due to the complicated graphics.

the print stream format, the stream size turns out to be almost
the same as the original file.

From the results, we conclude that the stream forward-
ing time dominantly determines the user experience on total
printing time. As we pointed out previously, the forwarding
time is affected by the generated stream size and the network
condition. Next, we investigate which factors impact on the
stream size.

4.2 Stream Size Analysis
We define a terminflation factor (IF)as the ratio between

the size of the generated print stream and the original file.
We focus on two major factors determining IF value, file for-
mat and printer type, and quantify their impacts on IF values
in various settings.

4.2.1 IF vs. File format

Continued from the experiment presented in Figure 4 and
5, we measure the correlation between the size of the gener-
ated stream and the original file for each format. We ob-
serve that TXT files give strong correlation coefficient of
0.99 while the average IF is around 10. This is intuitive
since the TXT format is simple enough that the interpreta-
tion overhead may monotonically increase as the file size

increases. PDF files give quite low correlation coefficient of
0.29 with average IF of 3. This is due to the fact that PDF
format may contain many graphics which are not aligned,
thus lead to various stream sizes that are unpredictable. The
unpredictability of IF value increases when the file includes
various type of contents other than texts. In other words, IF
value shows diversity depending on the file format as well as
the contents of the file itself.

4.2.2 IF vs. Printer type

To generalize the IF values for various printers, we em-
ulate 1,167 printers whose drivers are installed in the cloud
server. Figure 6 shows CDFs (cumulative distribution func-
tion) of IF values for various cases using printers from ma-
jor manufacturers. From the results using 1 KB RFC TXT
file as input illustrated in Figure 6(a), we observe that IF
values are typically large. Only 20% of printers show IF
values less than 10, while more than 40% show IF values
larger than 100. We also verify that small IF values (∼10×)
mostly come from printers utilizing PCL6, since it adopts
more compact commands than the previous versions. On
the other hand, higher IF values (∼100× and over) result
from devices using previous PCL versions (e.g., PCL5, 4,
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Figure 6: CDFs of inflation factor for various cases. (a) IF for TXT file can be categorized into three groups:
small(∼10×), medium(∼100×) and large(∼200, 300×) IF. 50% of the printers generate streams∼100× larger than
the original size. (b) The average IF for PS file is smaller than that of TXT. Over 80% of the printers generate streams
less than∼10× of the original size. (c) Reduced IF by applying the PPM compression to the same TXT file used in (a).

and lower). They are originally designed to convert a file
into a raster image which expresses contents using bit se-
quences. The difference comes from the characteristics of
the printer languages that the higher PCL version renders ob-
jects as vectors whereas the lower PCL version records the
location of dots. However, one should note that the higher
version of PCL not always guarantee low IF, according to a
technical report from HP [7].

Figure 6(b) shows another experiment using PS format
as input, which gives lower average IF values compare to
TXT case. Over 80% of the printers generate print streams
smaller than 10× of the original size. Based on our observa-
tion, print streams generated from PS files have low IF due
to the nature of file format which relies on a printer-friendly
language. This result accords closely to the previous obser-
vation shown in Figure 4(c).

5. SYSTEM OPTIMIZATION
Recall that our objective is to enable printing from smart

devices, but the large IF values limit the practicality of the
system. To further optimize the performance, we consider to
apply compression to the print stream. However, selecting a
compression technique is not straightforward. To identifya
compression scheme that best fits the print stream, we first
analyze the characteristics of the stream.

To begin with, we delve into the structure of the data com-
pression. Most of the data compression algorithms consist
of at least a model and a coder with optional preprocess-
ing transforms when needed. A model estimates the prob-
ability distribution of the appearance of symbols in the in-
puts. Usually this is expressed as a sequence of predictions
of successive symbols (e.g., bits, bytes, or words) in the in-
put sequence given the previous input as context. When the
compressor passes the prediction and symbol to the coder, it
assigns shorter codes to the more likely symbols to minimize
the output file size.

Among various lossless compression techniques in the lit-

erature, PAQ [17] is a series of open source data compres-
sion schemes that have top ranked on several benchmarks
measuring compression ratio at the expense of compression
speed and memory usage. Especially, the very slow com-
pression speed is the representative drawback of PAQ, and
this is due to its bitwise operation. PAQ uses a context mix-
ing algorithm that predicts the next symbol using a weighed
combination of probability estimates from a large number of
models conditioned on different contexts, which contributes
to the high compression ratio. PAQ utilizes several models
such as picture (bitmap image), record (2-dimensional data),
word (English text), and DMC (Dynamic Markov Compres-
sion) model. These models are given different weights de-
pending on the relevance with input file types.

To verify which model can represent the characteristic
of print stream, we analyze the weight proportion of every
model utilized in PAQ for the print stream. The conclusion
we get from the experiment is that in most cases DMC model
is dominant and picture model follows the next. To reduce
the compression overhead using PAQ, one alternative is to
select some models that fit well for the print stream instead
of applying all models supported by PAQ. Based on our find-
ings, DMC model seems to be a good option.

Dynamic Markov Compression (DMC) [16] uses statisti-
cal model and predictive arithmetic coding. The predictor
utilizes a table of variable length bit level contexts that map
to a pair of countsn0 andn1. It predicts the next bit with
probabilityn1/(n0 + n1) and updates by incrementing the
corresponding count. DMC has a good compression ratio
but requires large memory space and is not widely imple-
mented. It predicts and codes one bit at a time similar to
PAQ, which also results in slow compression speed.

Thus, we choose PPM (Prediction by Partial Matching)
algorithm which can compensates the slow speed and mem-
ory requirement of DMC to the detriment of the compression
ratio. It has a similar structure but differs from DMC in that
it codes one byte at a time rather than a bit. It differs from
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(a) Compression time (tc)
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(b) Decompression time (td)

Figure 7: Measured operation time and their polynomial regression functions. For an arbitrary stream sizex, a Linux
server with Intel Quad-core i7 CPU givestc = 1.45e−4x2 + 0.1379x + 0.1464, and Samsung Galaxy S II showstd =
9.51e−3x2 + 7.26e−2x+ 0.7218.

Variable Meaning
x Generated print stream size (MB)
Bd Downlink bandwidth (Mbps)
xc Compressed print stream size (MB)
tc Compression time on the server (second)
td Decompression time on Android (second)

Table 3: Parameters and their units used in decision
function modeling. We considerx and Bd as indepen-
dent variables and model others using the independent
variables.

context mixing utilized by PAQ in that there is only one con-
text model per prediction. Additionally, PPM is theoretically
proven to be optimal in the compression ratio [14,15,18,19].
Based on these learnings, we choose PPM algorithm.

Figure 6(c) presents the IF values for the same file used
in Figure 6(a) after applying PPM compression. On aver-
age, we get a compression ratio of 10 which indicates that
the stream size is reduced to 1/10. Beneficial from the high
compression ratio, only 30% out of 1,167 printers have IF
values of 20× or more after compression. Despite of the
obvious benefit, compression of print stream could also de-
grade the performance since compression as well as decom-
pression take time and the decompression on a smart device
is computation-intensive operation leading to high energy
consumption.

5.1 Decision Function Design
To determine whether to compress the stream or not, we

design a decision function being operated at the cloud server.
The decision function is designed to optimize user experi-
ence in terms of the total print time and the energy con-
sumption on a smart device based on the parameters listed
in Table 3. We model each of the parameters using a few in-
dependent variables and create decision criteria for the print
time and the energy consumption.

We model the compression timetc at a cloud server and

the decompression timetd at a smart device. Figure 7(a)
and 7(b) show the measurements from 100 experimental runs
with various files. They also render the best fitting regres-
sion equations of the results. We assume that the size of the
compressed streamxc becomes0.5x on average. Note that
the compression ratio becomes smaller than the ratio shown
in Figure 6(c), because of the limited capability of a PPM
library for Android smart devices. The compression ratios
shown in Figure 6(c) can be considered as upper bound.

5.1.1 Total print time

We form a decision function as Equation 1 based on the
total operation time. The right side of the inequality inside
the indicator function represents the time consumed when
compression is applied, and the left side shows that without
compression. Note that the time for common sub-procedures,
e.g., initialization and stream generation, are not considered.
We further simplify it by applying regression equations for
tc, td, andxc, and get Equation 2. For a given stream size
x, when the downlink bandwidthBd is lower than the value
of 0.5x/(0.020137x2 − 0.11958x+ 2.188), compression is
recommended. This implies that when the downlink band-
width is high enough, transmitting the print stream without
compression benefits in time as it eliminates the compres-
sion and decompression time.

I

(

x

Bd

>
xc

Bd

+ tc + td

)

=

{

1 : Compression

0 : No compression,
(1)

whereI(·) denotes for the indicator function.

I

(

Bd <
0.5x

0.020137x2 − 0.11958x+ 2.188

)

=

{

1 : Compression

0 : No compression.

(2)

The decision function and ground truth data from a large
number of experimental runs are plotted in Figure 8(a). The
mark◦ stands for the ground truth values where the compres-
sion gives shorter print time while× indicates the opposite
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Decision function: Operation time
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(a) End-to-end operation time
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Decision function: Energy
Ground truth w/ compression
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(b) Energy consumption
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Decision function: Energy
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(c) Considering both

Figure 8: Decision functions based on (a) operation time only, (b) energy consumption only, and (c) both. (a)-(b) The
mark ◦ stands for the ground truth value which performs better using compression, and× indicates the case with no
compression scheme. (c) The experiment set is divided into three groups according to the two decision functions.
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(a) End-to-end operation time
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(b) Energy consumption

Figure 9: Mean squared error for the decision functions for two different criteria. (a) When users allow about 2
seconds of tolerance, the decision function gives over 95 % of accuracy. (b) If users can tolerate about 0.5 mWh of
energy difference, the decision function makes only 4.1 % errors.

case. The◦ marks over the decision criteria line are con-
sidered as false negatives (FNs) and the× marks below the
criteria are regarded as false positives (FPs).

For practical evaluation of the decision function, we de-
fine toleranceas a threshold value of the difference between
the total print time with and without compression. We intro-
duce this concept to mitigate the strictness determining FP
and FN errors. For example, when the tolerance is 1 second,
the ground truth data having less than 1 second of difference
in total print time are not considered as error. Thus, 0 sec-
ond of tolerance implies the conventional definition of FP
and FN. Figure 9(a) shows the mean squared error (MSE)
of our decision function for various tolerance values. When
users allow 5 seconds of tolerance, it gives MSE of 0.024,
meaning that the decision is correct for 97.6% of the trials.

5.1.2 Energy consumption on Android

Here, we introduce another criterion in the decision func-
tion, the energy consumption on a smart device. Figure 10 il-
lustrates power measurement when running the CloudBridge
application on Samsung Galaxy S II for both cases, with and
without compression. An interesting thing is that the energy

Device Pi Pr Pd

Samsung Galaxy S II 415 mW 717 mW 2014 mW
LG G2x 315 mW 760 mW 963 mW

HTC Evo Shift 243 mW 574 mW 714 mW

Table 4: Average power level measured on three Android
devices for idle state (Pi), data reception (Pr), and de-
compression (Pd).

consumption of decompression is about three time higher
than that of data reception. In this case, applying compres-
sion may incur a great loss of energy compensating for short
operation time. It is important to note that the power con-
sumption values may vary for different models of smart de-
vices as they use diverse processors and WiFi chipsets. Ta-
ble 4 presents the average power level measured for three
Android devices which shows diversity.

By applying the average power consumption values to the
operation time, a decision function considering the energy
consumption is derived as Equation 3. It is simplified into

9
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(a) With compression
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(b) Without compression

Figure 10: Power consumption measured on the Android
device, Samsung Galaxy S II. (a) Operation with com-
pression is divided into 4 sequences: (1) file transmission,
(2) idle, (3) stream reception, and (4) decompression. (b)
Operation without compression takes longer time receiv-
ing the stream.

Equation 4, which determines compression depending onBd

andx.

I

(

x

Bd

∫

Pr(t)dt >
xc

Bd

∫

Pr(t)dt+ tc

∫

Pi(t)dt

+ td

∫

Pd(t)dt

)

=

{

1 : Compression

0 : No compression.

(3)

I

(

Bd <
350x

34.76596x2 − 173.5292x+ 2991.62

)

=

{

1 : Compression

0 : No compression.

(4)

The decision function in Figure 8(b) suppresses compres-
sion compare to Figure 8(a), since the decompression on An-
droid consumes higher energy than the data transfer. Fig-
ure 9(b) shows the MSE for various tolerance values repre-
sented in mWh. It implies that if a user can tolerate 0.5 mWh
of energy difference, the decision function makes only 4.1%
errors. Generally, 0.5 mWh corresponds to 0.01% of the to-
tal battery capacity of a typical smart phone (5000 mWh).

5.2 Decision Making
We discuss about the decision making considering both

criteria at the same time. When overlapping the decision
functions together as shown in Figure 8(c), it classifies the
regions into three cases. WhenBd andx fall into the cases
included in the lowest or the highest region, the decision
making becomes easy. Compression benefits by time and
energy at the lowest region, whereas no compression bene-
fits in the highest region. The region in the middle is equivo-

cal: compression benefits from the total print time, but may
give penalty in terms of energy. This is due to the nature of
print stream which gives large variance depending on other
variables such as file format, file size, and printer type. To
improve the quality of experience for the equivocal cases,
users may indicate her preference on time and energy.

6. CONCLUSION
In this paper, we propose a cloud-powered system, Cloud-

Bridge enabling peripheral support on smart devices. To
prove the concept, we focus on printing from smart devices.
CloudBridge is universally applicable to all smart devices
and all networked printers and is completely independent
from personal computers. More importantly, it also provides
indistinguishable experiences (i.e., quality of printouts) to
smart devices users from that of conventional computers.

For practicality, we adopt decision functions to our sys-
tem, optimizing performance metrics closely related to user
experiences such as total print time and energy consump-
tion in smart devices. Through extensive measurements and
training from the measurement data, the decision functions
are shown to provide accurate decisions on whether to com-
press data or not with more than 95% of probability.

The CloudBridge system architecture relying on cloud servers
for the intelligence of interpreting languages to communi-
cate with peripherals has high flexibility and scalability by
its nature. We expect our system architecture brings more
practical solutions to smart devices helping such devices over-
come functional limitations over conventional computers.
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