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Abstract—Recent MIMO-based techniques allow concurrent transmissions of packets. With signals received from multiple antennas,

a receiver can extract concurrently transmitted packets solving linear equations. While the receiver requires essential physical layer

parameters for such MIMO decoding, existing signal processing techniques are not capable of obtaining those parameters from

interfered preambles. Thus recent proposals enforce communicating senders and receivers go through non-overlapping training period

per each packet transmission. For example, senders precisely schedule transmissions such that preambles of the concurrent packets do

not overlap. But this coordination process is not trivial and significantly reduces the efficiency of concurrent transmissions. We present

ADOPT, a practical add-on MIMO receiver for decoding concurrent transmissions in the absence of coordination. Using the unique

combination of novel signal processing technique, called FDCM, with existing linear adaptive filters, ADOPT successfully performs

packet decodings in uncoordinated transmissions. Using FDCM, ADOPT can obtain the essential physical layer parameters - carrier

frequency offset and the start of frames, from overlapped or interfered preambles. The information is then fed into the linear adaptive

filter, that in turn extracts each packet successively. As a result, ADOPT builds as a complete black box decoder and increases the link

efficiency. We implement ADOPT with 8 USRP2s and test in two of the most common CSMA networks, ZigBee and WiFi. Combined

with an aggressive channel access, our extensive experimental evaluations show that the throughput gain becomes up to 231% in WiFi

and 319% in ZigBee.

Index Terms—MIMO, Multipacket Reception, Receive Beamforming

✦

1 INTRODUCTION

The proliferation of wireless devices caused the public wireless

bands, such as ISM (industrial, scientific and medical), heavily

saturated. In such a saturated wireless band, when two or

more packets are transmitted simultaneously, which frequently

happens because of high contention or hidden terminals, the

packets become corrupt and cannot be decoded at receivers.

Measurement studies [1], [2] over corporate networks show

that about 10% of wireless links can suffer more than 70%

throughput loss due to collisions from concurrent packet

transmissions.

Recently there have been significant advances in the MIMO-

based multi-user communication (MUC) [3], [4], [5]. Even

though packets are concurrently transmitted and thus interfere

with each other, a receiver can decode the packets by solving

linear equations with signal inputs from multiple antennas.

Naturally, The link capacity becomes larger with more number

of antennas.

But those techniques have limitations. Essential parameters

required for MIMO decoding, such as starts of frames, carrier

frequency offset (CFO) and channel state information (CSI),

have been only collected via the non-overlapping, exclusive

exchange of known symbol sequences, e.g., packet preambles.

The reason is that existing signal processing techniques are

mostly designed only for single transmission system and

do not consider the cases where the packet preambles are

interfered by concurrent transmissions. If a packet preamble

is interfered, as Figure 1 (a) shows, a receiver could not

(a) Overlapped preambles in uncoordinated transmissions

RTS

CTS

(b) Non-overlapped preambles in coordinated transmissions

Fig. 1. Shaded regions represent packet preambles. (a)

When preambles are partially or fully overlapped, current

MUC techniques cannot obtain physical layer parameters.

(b) MUC techniques arrange transmissions in such ways

that the preambles do not overlap. The region in dotted

line is where channel is under-utilized.

perform MIMO decoding. Thus in previous proposals, as Fig-

ure 1 (b) illustrates, MUC senders used to exchange separate

non-overlapping training packets or perform carrier sense in

order to avoid the overlaps in the packet preambles. Such

modification in the channel access reduces the applicability

of the proposals in the real-world scenarios. Moreover the

efforts to coordinate preambles incur inefficiency since the
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preambles are usually transmitted at the lowest link rate and

so the relative time portion is quite high [5]. Consequently the

channel is under-utilized well below the capacity region of the

channel, defined by the degree of freedom (DoF).

Our goal is to design and build a MIMO receiver that

enables decoding of uncoordinated packets transmitted concur-

rently. To this end, the main challenges lie in how a receiver

should (1) extract the essential physical layer parameters

and then (2) effectively decode packets, while the packet

preambles are overlapped and thus interfered. The difficulty

is that the physical layer parameters are tightly coupled. For

instances, conventional decoding techniques do not allow a

receiver detect CFO using interfered preambles. With the CFO

unknown, it is not possible to detect the start of frames and

thus to decode the packets. Therefore, our challenges involve

simultaneous acquisition of multiple unknown physical layer

parameters such as start of frames, CFO and CSI (channel

state information) together from interfered preambles.

As an answer, we present a practical MIMO receiver for

concurrent transmissions. We call our approach ADOPT, Add-

on Decoder for Overlapping Preamble Transmissions. ADOPT

detects the CFO and the start of frames simultaneously using

a novel signal processing technique called frequency domain

correlation and matching (FDCM), which substantially re-

duces complexity pertaining to detection of CFO and start of

frames by comparing received signals and the known preamble

in the frequency domain. Then ADOPT decodes each packet

utilizing a linear adaptive filter. The technique, which we call

interference suppression and cancellation, regards overlapping

packets as unknown interferences and extracts the packets one

by one.

The unique features of ADOPT can be summarized as fol-

low. First, ADOPT increases channel utilization. The channel

time is saved since now the transmissions of packet pream-

bles can be fully overlapped. Second, ADOPT can operate

independently from channel access schemes, not requiring

supports from upper layer protocols. Thus ADOPT is not

exclusive with existing MUC protocols and can work with any

of them. In other words, ADOPT builds a complete black box

decoder. Just replacing the receiver can improve the network

throughput.

We implement ADOPT using 8 USRP2s, well known

software defined radio platforms, and evaluate performance

in WiFi and ZigBee networks. Our extensive experimental

results show that ADOPT can be easily combined with the

existing standards. When ADOPT is used with a MAC proto-

col allowing aggressive packet transmissions, the throughput

increases up to 319% and 231% compared to native 802.11b

and 802.15.4 protocols, respectively.

2 MOTIVATION AND BACKGROUND

In order to perform MIMO decoding, a receiver needs to

know channel state information (CSI), starts of packets and

carrier frequency offset (CFO). However most existing signal

processing techniques, commonly occupied in MIMO-based

MUC techniques, are originally designed for a single trans-

mission system (e.g., single user MIMO). The challenges can

be summarized as follow.

• Acquisition of CSI requires both CFO and start of frames.

• Acquisition of either the CFO or the start of frame

requires information of each other.

• When the packet preamble is interfered, both the CFO

and the start of frame are unknown.

So MUC proposals require clean (i.e., non-overlapping)

preambles to extract physical layer information for MIMO

decoding. Enforcing such non-overlapping preamble transmis-

sions degrades the channel utilization as coordination overhead

is incurred among senders and receivers.

In this work, we aim to propose a MIMO receiver system

that is fully capable of decoding packets without coordination.

The system thus requires the acquisition of those parameters

from interfered preambles. In the following, we entail about

each parameter and discuss corresponding challenges more in

detail.

Channel state information: Suppose there are two trans-

mitters, each equipped with one antenna, and a receiver with

two antennas. When both transmitters transmit, their signals

are summed up linearly over the air and the following linear

equations are derived:

y1 = h11x1 + h21x2 + w1 (1)

y2 = h12x1 + h22x2 + w2, (2)

where yj are outputs from receiving antennas, hij is the

channel coefficient (i.e. CSI) between a transmitter i and a

receiver antenna j, and wj is the noise. Given a receiver has

CSI, two linear equations have two unknowns (x1 and x2), so

we can solve them.

The CSI can be obtained via the channel training process,

in which a receiver compares an incoming packet preambles

with its knowledge. Typically either linear correlator [6] or

minimum mean squared error (MMSE) [5] criteria is used.

The conventional channel training method uses an MMSE-

based technique where channel coefficients from all trans-

mitters are explicitly estimated. To estimate the coefficients,

MMSE-based channel estimation uses a short training se-

quence (around 5 symbols). Here it is required that the training

sequence is sent in a clear channel without any interference.

The challenge is that in uncoordinated concurrent transmis-

sions, the entirety of the preamble may be overlapped with

interfering signals. Unless the interfering signals are explicitly

modeled and cancelled from the received signals, we cannot

use MMSE. Therefore, most of the existing MUC techniques

use interference cancellation to remove the interferences. But

the problem is that in many situations, the interfering signal

cannot be exactly modeled. And it is the reason why MUC

protocols coordinate the senders to avoid preamble overlaps.

Start of frames: When there is only a single transmission,

a receiver can immediately know the start of that frame by

observing an energy level. In case multiple packets arrive

at a receiver concurrently, the starting positions should be

accurately detected for measuring CSI as a next step. It is

because, the receiver needs to know when to start the training

process between incoming signals and its known sequences.

Time domain correlation is one of the techniques that

can be used to find the starting positions. The correlation
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observes similarity between incoming signals and a priori

known symbol sequence. For a given known sequence of

samples, x = x0, x1, . . . , xp and an input timed series of

symbols at time t, yt, yt+1, . . ., correlation multiplies each

component independently and sums them up as follows:

C =

p∑

i=0

xiy
′

j+i. (3)

Then it shifts the alignment by one sample of the input and

obtains another correlation value. The start of a frame is

estimated to be the sample index of the first sample that

produces a spike, the maximum correlation value (e.g., [6],

[5]). As we will see, the correlation does not work well

with carrier frequency offsets. Bottom of Figure 5 shows the

preamble correlation result when multiple packets overlap.

The correlation is performed without CFO compensation. As

shown, the correlation does not yield a distinguishable peak if

without proper CFO compensation.

There are other techniques for collision detection. SoftPHY

[7] detects the increase of sample dispersion in the constella-

tion map when a packet is overlapped with another. This tech-

nique is effective in detecting the presence of errors incurred

by packet collision, but cannot be used to find the collision

points of more than two overlapped packets since dispersions

from two packet collision are hard to be distinguished from

three or more packet collision. It is proposed [8], [9] to use

the increase in the amplitude variance within received signals

when packet collision occurs. This technique is effective only

if signal strength is very strong; otherwise, the amplitude

variance is easily influenced by the background noise.

Carrier frequency offset: CFO is caused by (1) natural

differences in the carrier frequencies, generated by respective

oscillators of a sender and a receiver or (2) doppler shifts due

to movements [10], [11]. IEEE 802.11n [12] defines the allow-

able CFO range of ±60KHz at 2.4GHz, ±100KHz at 5GHz

and 802.15.4 [13] allows ±96KHz at 2.4GHz channel. CFO

incurs phase rotations in the received samples. For instance,

a sinusoidal wave with a frequency fTx sampled at a periodic

interval 1/fTx will produce the same value. But with CFO,

the values sampled at every 1/fRx = 1/(fTx + ∆f), even

starting from the exact same phase, will have displacements

and eventually produce different values. In order to decode a

packet, a receiver should accurately model the CFO.

Correlation is not effective in the presence of CFO. A

correlation value at a start of a frame will be given as:

C(t) = h

p−1∑

k=0

|xk|
2e2πik∆fT , (4)

where p is the preamble length, xk is the k-th symbol in

a preamble, h is the channel coefficient vector, T is the

symbol duration and ∆f is the CFO. With the exponential

term e2πjk∆fT , CFO produces a phase rotation of each symbol

xk which cancels each other during the summing process.

Finding the correlation peak over the time domain, therefore,

must entail cancelling out the exponential term, which is not

possible without knowing ∆f .

Frequency 
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Fig. 2. Block diagram of the ADOPT decoder.

CFO can be obtained via measuring the amount of phase ro-

tation per symbol within a known symbol sequence. However

in case a receiver receives concurrently transmitted packets,

the process is not trivial. While the receiver has to determine

the starting position of a packet to compute CFO, the correla-

tion technique does not work without compensating for CFO.

It has been suggested that CFO is precomputed for all the

possible senders when a packet from each is sent alone in

a clear channel [6], [3], [14]. The problem is that CFO can

be incurred by doppler shifts and in this case precomputed

values will be inaccurate. But more fundamentally, when

several packets overlap in their preambles, there is no way

that the receiver can identify the transmitter of each received

packet and thus which CFOs to apply accordingly. A brute

force technique is to try all the possible CFOs, but it is too

time-consuming and prohibitive in terms of computational

power. So this approach might be applicable to a small,

static network. Another approach lets all the senders tune

their carrier frequency to the respective receiver when they

transmit [15], [4], [16], [17]. But the synchronization overhead

could be non-negligible. Also in case there could be errors

in the synchronization, the receiver still needs the ability to

compensate for CFOs.

3 PROPOSED SYSTEM: ADOPT

ADOPT decodes packets from the overlapped signals using the

information obtained from overlapped preambles. The ADOPT

architecture mainly consists of two components: frequency-

domain correlation and matching (FDCM), and interference

suppression and cancellation. FDCM is a novel technique that

performs 2-dimensional search to find both (1) CFO and (2)

starts of packets from incoming overlapped preambles, with

significantly low computational overhead. With these param-

eters, we combine interference suppression and cancellation

techniques to decode the concurrently transmitted packets.

ADOPT is deliberately designed to serve as a black box

decoder, that operates independently of upper layer protocols.

Figure 2 shows our system design.

3.1 FDCM

FDCM utilizes frequency spectrum of a packet preamble and

that of the incoming signals. We have timed input samples

y = y0, y1, y2, . . . and samples from the preamble x =
x0, x1, . . . , xp−1. We take p samples from both and apply FFT

to obtain frequency spectrum of each. Correlation is performed
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between frequency spectrum of the two sample sequences.

This is a two dimensional search. We find a frequency and

time pair (δ, τ), where δ is the frequency value that produces

a correlation spike and τ is the time instance when δ has

been found, respectively. This process is repeated until the

end of the received samples by shifting one sample of the

input signals at a time to get another p samples.

The intuition behind FDCM is simple: an exponential

change in the time domain becomes linear in the frequency

domain. This is also known as shift theorem. So the exponen-

tial term e2πik∆fT in Eq. (4) becomes a constant frequency

shift in the frequency domain. If the frequency spectrum

of the preamble sequence has a low autocorrelation in the

frequency domain, then the unknown frequency offset ∆f
can be estimated by finding the peak in frequency domain

correlation. The intuition is analytically explained by the

following.

When DFT (discrete Fourier transform) is applied to a fixed

number of received signal samples of a packet, the frequency

spectrum at each frequency fk is represented as

Sr(fk) = H(fk) · Sp(fk −∆f), (5)

where Sr(fk), Sp(fk), H(fk) and ∆f denote the frequency

component of the received signals at frequency fk, the original

frequency of the preamble (i.e., DFT results of the preamble),

the k-th frequency response of the wireless channel and the

CFO, respectively. Note that fk is a discrete value such that

fk = kR
2N

Hz, where k ∈ {0, . . . , N − 1}, N is the number

of samples used for DFT (i.e., the number of frequency bins)

and R is the sampling rate.

By taking correlations between the DFT results of received

signal and the known preamble, it is possible to reliably detect

both the start of frames and CFOs. The correlation is computed

for each δ ∈ {f0, . . . , fN−1} as below.

C(δ) =

N−1∑

k=0

Sr(fk + δ) · S∗

p(fk) (6)

=

N−1∑

k=0

H(fk)Sp(fk + δ −∆f) · S∗

p(fk),

where S∗

p(fk) is the complex conjugate of the k-th frequency

component of the preamble sequence.

Now, suppose a receiver has received packets Pa and

Pb simultaneously, whose frequency spectrum are frequency

spectrum Sa and Sb, respectively. Then Sr(fk) is the linear

sum of each packet’s frequency components:

Sr(fk) = Ha(fk) · Sp(fk −∆fa) (7)

+ Hb(fk) · Sb(fk −∆fb) +W (fk)

where Ha(fk) and Hb(fk) indicate the k-th frequency re-

sponses, ∆fa and ∆fb are the CFOs of packets Pa and Pb,

respectively. W (fk) represents the k-th frequency response of

the background noise at the receiver. We take correlation in

frequency domain and from Eq. (6) and Eq. (7), the result at
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Fig. 3. Autocorrelation of ZigBee preamble in frequency

domain.
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Fig. 4. Two ZigBee packets are transmitted at the same

time slot. Each packet has CFO of -55.5KHz and 21KHz,

respectively. ADOPT reliably detects perfectly aligned

packets and their CFOs.

δ = ∆fa is computed as:

C(∆fa) =

N−1∑

k=0

Sr(fk +∆fa) · S
∗

p(fk) (8)

=

N−1∑

k=0

[Ha(fk)Sp(fk) · S
∗

p(fk)

+ Hb(fk)Sp(fk +∆fa −∆fb) · S
∗

b (fk)

+ W (fk +∆fa)) · S
∗

p(fk)].

If the preamble has a low autocorrelation and a cross-

correlation in the frequency domain, the second and third terms

will cancel out and Eq. (8) is simplified as:

C(∆fa) ≃

N−1∑

k=0

Ha(fk) · |Sp(fk)|
2, (9)

which produces a spike at δ = ∆fa. We argue that our

assumption of low autocorrelation and low cross-correlation

of preambles in the frequency domain is valid in reality. We

have found experimentally that the packet preambles of CSMA

standards such as ZigBee and WiFi satisfy the same property

in the frequency domain. Figure 3 shows the autocorrelation

of the ZigBee preamble in the frequency domain.

FDCM can reliably detect the CFOs of packets as well

as starting points even when two or more packets arrive at

the receiver exactly at the same time instances. Such cases

frequently happen in a dense network where the contention is

severe. If we replace Sb in Eq. 8 with Sp, we will see two
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Fig. 5. Top: FDCM results of 8 concurrently transmitted

ZigBee packets. 8 peaks identify both CFOs (y-axis) and

starting positions (x-axis) of 8 packets. Bottom: correlation

of the same signal in time domain. No distinct peaks are

visible.

spikes at the frequency index of ∆fa and ∆fb. As Figure 4

shows, FDCM produces multiple spikes at the start of each

packet when the CFOs of the senders are different from each

other. This is very likely in reality. After detecting multiple

packets and their CFOs, the receiver can start to decode each

packet. Our technique of decoding the overlapped packets is

explained in Sec. 3.2.

Figure 5 compares the outpus from the proposed FDCM

and the conventional time domain correlation. Our test is

performed on the received signal dump consisting of eight

collided ZigBee packets. In the conventional time domain

correlation, the CFOs of collided packets have not been

compensated. As Eq. (4) describes, the time domain corre-

lation value is substantially distorted and the result does not

easily identify any start of packet. On the other hand, FDCM

clearly identifies starts of packets as well as CFOs by the

(time, frequency) coordinates of the peaks.

To the best utilization of FDCM, the threshold for detecting

the peaks needs to be determined carefully. If the threshold

is too low or high, the false positive or negative probability

becomes too high. In Section 5, we empirically provide a

threshold value which gives very low false negatives while

maintaining a reasonable level of false positives.

3.1.1 Complexity Reduction

Despite its efficacy, high complexity of FDCM would make

it less practical. For each incoming sample, FDCM computes

FFT on N samples and perform correlations. While the FFT

takes O(N · logN), the correlation operation compares the N
samples at N different frequencies and thus involves O(N2)
computation.

Now we propose FFDCM (fast FDCM) that substantially re-

duce the complexity and the computational overhead. FFDCM

exploits following observation: the frequency spectrum of a

packet preamble exhibit high energy only at a few frequency
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Fig. 6. The maximum correlation value when the number

of chosen frequency samples is varied.

bins. But most of the frequency bins at other frequencies

carry energy that almost amounts to zero. This is due to

the repetitive nature of symbol patterns in the preamble. For

example, ZigBee preamble repeats the same sequence of 32

chips 8 times and WiFi (802.11b) preamble repeats identical

11 chips 192 times. By using only the FFT points with high

energy, FFDCM can find the almost the same correlation

results while having the significantly reduced computational

overhead.

FFDCM computes the correlation in the frequency domain

at selected (fi, Sr(fi)) and (fi, Sp(fi)) pairs. fi is chosen

such that |Sp(fi)| > thresh. Now Eq 6 rewrites as

C(δ) =
∑

Sr(fi + δ) · S∗

p(fi), fi ∈ {f0 . . . fk−1}

=
∑

H(fi)Sp(fi + δ −∆f) · S∗

p(fi).

Given k, the total number of chosen FFT points, FFDCM takes

O(k · N) computations at each incomping signal sample. So

the overall complexity is upperbound by FFT, which takes

O(NlogN). Figure 6 shows our experimental result from

ZigBee testbed, where the the maximum correlation values

from FFDCM are shown with the varying number of chosen

frequency We see that use of 20 frequency samples still yields

around 60% correlation peak compared to the case when all of

1024 samples are used. As an example, in figure 7(a) we take

14 of the most significant FFT points out of total 1024 points.

Despite the complexity reduces by 80 folds, figure 7(b) clearly

shows that the detection performance is still maintained.

3.1.2 CFO Calibration

The number of samples used for FFT determines the resolution

of CFO estimation. However as the length of preamble is fixed

and cannot be extended arbitrarily, there always exists a certain

range of estimation errors. We call this residual CFO. For

example, as for IEEE 802.11b, we have 144 × 11 = 1584
symbols in the preamble (144 symbols each being spread using

11 chips). If we use 20MHz radio receiver, we can detect CFO

with 20M/2/1584 = ±3.16KHz resolution. We can further

refine the estimate by increasing the number of frequency

bins, for example, using interpolation or oversampling. But

it could significantly increase the complexity or the energy

consumption in the receiving device.

For the remedy, we calibrate the coarse CFO as follows. The

calibration is a two step process: a receiver (1) decodes the
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(b) Correlation result of the captured ZigBee signals (SNR = 2dB)
and the selected FFT points of ZigBee preamble.

Fig. 7. Using only the significant FFT samples, FFDCM

is able to reliably perform correlation in the frequency do-

main with substantially reduced computational overhead.

preamble using the coarse CFO estimates and (2) estimate the

residual CFO using the decoded preamble. Before attempting

to decode data portion of a packet, we apply MIMO decoding

only to the preamble and extract the preamble symbols. Since

the preamble size is small and the current CFO estimate is

obtained using the entirety of that preamble, the coarse CFO

is always good enough to decode it. Note that the symbol

phase rotation due to the residual CFO error is limited to at

most one during that time. With those symbols completely

known, the residual CFO can be estimated by measuring the

amount of phase rotation between the first and last symbols of

the preamble. We extract a preamble using an adaptive filter,

which is explained in Sec. 3.2. As the adaptive filter has the

linear complexity, it takes O(P ) computations where P is the

preamble length.

3.2 Interference Suppression

A typical MIMO receiver requires CSI to solve Eq. (2), for the

decoding of concurrent packets. However explicit modeling

of CSI is often not feasible in uncoordinated networks where

preambles overlap. In order to avoid the explicit estimation of

CSI, ADOPT uses a linear adaptive filter. The adaptive filter

forms W directly from the received signals without explicitly

modeling individual CSI [18]. Here W is defined as n × m

Pa

Pb

sa

sb

ea

eb

Oa

Ob > LRLS

Fig. 8. Interference suppression using RLS; RLS can be

applied to decode Pa and Pb.

matrix such that

x = W · y, (10)

where y is the received symbol vector with length m and x is

the transmitted symbol vector with length n. The main benefit

of using the adaptive filter is that it can extract a packet in

the presence of unknown interference signals. W converges

via an iterative process to produce minimum estimation error,

even when the sequence is overlapped with other signals [18].

The adaptive filter has not been actively used for the channel

training purposes in the context of concurrent transmissions.

It is because of its requirement of a relatively long symbol

sequence [19]. However, given that most wireless communi-

cation standards (e.g., 802.11 and 802.15.4) have sufficiently

long preambles with low autocorrelation, we can make use of

adaptive filters for decoding concurrent packets.

Among several different choices (e.g., LMS, Kalman, etc.),

we choose recursive least square (RLS) for our implemen-

tation and evaluation. RLS has the smallest error in a static

environment where the channel state changes relatively slowly

(e.g., nodes are stationary) 1. RLS uses the following iterative

algorithm:

Wi = Wi−1 + (xi −Wi−1yi)y
∗

i ρi

ρi = λ−1[ρi−1 −
λ−1ρi−1yiy

∗

i ρi−1

1 + λ−1y∗i ρi−1yi
],

where the initial value of ρi is given as ρ−1 = ǫ−1I with ǫ
being a very small constant. λ is a forgetting factor, 0 ≪ λ <
1. Wi converges iteratively with an error feedback xi−Wi−1yi
[20], [18].

3.2.1 Decoding of two packets in overlap

Now consider a scenario where two packets Pa and Pb are

overlapped as in Figure 8. We show how packet Pb can be

decoded in the presence of Pa. Let LRLS
2 be the minimum

preamble length required for training an RLS filter, and Oi be

the time duration that the preamble of packet i overlaps with

the other packet. To simplify the discussion, we assume that

starts of packets and CFOs have been already identified via

FDCM.

ADOPT always first decodes a packet that has arrived later.

The reason is that, in order to remove certain interfering

signals from a packet, W should be built upon the preamble

1. We can consider switching to LMS (least meansquares) for a fast time-
varying channel, but we leave it as future work.

2. We interchangeably use LRLS in the unit of symbols or time unless it
makes confusion. Actual LRLS value is studied in Sec. 5
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that is interfered by those signals. In Figure 8, the preamble

of Pb fully overlaps with Pa. So RLS can train W such that

it can cancel out the interference of Pa. However if W is

trained using the preamble of Pa and if Oa < LRLS, RLS

cannot secure a sufficient number of iterations to obtain the

information about Pb’s interference. Thus decoding of both Pa

and Pb will fail. After deciding to decode Pb first, ADOPT

adjusts received signals to compensate for the CFO of Pb.

Now denote y as an m-rank vector of received symbol

values given that a receiver has m antennas. Since the number

of concurrent transmitters is unknown, we set x to have the

same rank as y such that xi = [s1,i, . . . , sm,i]
T where sk,i

represents the i-th preamble symbol from the k-th transmit-

ter. Suppose that Pb is transmitted by a node k. ADOPT

treats all the interferences such as Pa as unknown during

the decoding process of one packet, Pb. So all the symbols

from the other nodes are assumed to be zero. So we have

xi = [0, 0, . . . , sk,i, 0, . . . , 0]
T . Training W over LRLS, we

decode Pb from the simple operation x̂ = W ·y. Note that the

later portion of Pb, not overlapped with Pa, can be treated

as if Pa is transmitting virtual null signals (denoted by a

dotted box in Figure8). This portion does not affect the result

of operations. Recall that if a receiver knows about all the

coefficients in Eq. (2), it can solve the equation to obtain x2

even when x1 is 0.

This technique is considered as interference suppression

because interfering signals are not explicitly modeled, but

instead treated as unknown interferences. RLS filtering can

be understood as a receiver side beamforming [21] that ad-

justs the antenna gains to suppress the interferences without

individually modeling each signal.

After Pb is successfully decoded, it is possible to cancel out

the contribution of Pb from superimposed signals. Of course,

if Oa > LRLS, it is possible to directly apply RLS to decode

Pa. Otherwise ADOPT utilizes the interference cancellation

technique [8], [3], [5]. Since Pb is decoded using RLS, it

can be subtracted from the mixed signals to expose Pa in a

clear channel. As this technique is extensively studied in the

literature, we omit the detail.

We considered an example where two packets have been

transmitted at different time instances and thus have distinct

starting points sa and sb. This is a common colliding pattern

for hidden terminals. In this case, RLS could use an identical

preamble as training sequences for the two different packets.

It is because the preamble has the low autocorrelation property

and the packets overlap at different symbol indices.

But what happens if two senders with identical preambles

begin transmissions at a same time instance and so the starts

of the packets are perfectly aligned? Note that the two packets

usually have different CFOs. As ADOPT extracts one packet

at a time, say Pb, all the incoming signals are adjusted to

compensate for the CFO of Pb. Then as Eq.(4), the preamble

of another packet, Pa, will look like a random pattern when

seen in the time domain. RLS can decode Pb by considering

Pa as an unknown interference. In an actual network, it is

extremely rare that two transmitters have the same CFO and

also their packets are received in a completely aligned manner.

p �[ s e         Decoding Sequence 

4 

1 

2 

3 

Fig. 9. There is always at least one RLS-decodable

packet in any overlapping set. A packet with the latest time

interval [p′, p] is always RLS-decodable.

3.2.2 Decoding of three or more packets in overlap

Now we consider cases when more than two packets are over-

lapped. Figure 9 shows an examples. We show that interference

suppression and cancellation discussed in Section 3.2 can be

extended to decode more than two concurrent packets.

We denote the start and end times of a packet Pi to be

si and ei, and the time at which its preamble ends to be pi.
So si < pi < ei. We say that two packets Pi and Pj are

directly overlapped if si ≤ sj ≤ ei or vice versa. Pi and

Pj are transitively overlapped if (1) there exists a sequence

of packets P1, . . . , Pl such that Px and Px+1 (1 ≤ x < l)
are directly overlapped and (2) Pi and P1, and Pl and Pj are

directly overlapped respectively. We define an overlapping set

S to be the set of packets such that any two packets, Pi and

Pj , are directly overlapped or transitively overlapped.

Lemma 3.1: A packet Pk in an overlapping set S is decod-

able by RLS if there is no directly overlapped packet in S that

starts after p′k := pk − LRLS.

Proof: Here pk is the ending point of the preamble. The

lemma can be informally shown as follows. By the definition,

all the packets in the overlapping set of S are directly or

transitively overlapping with Pk. Recall that RLS filtering can

train W if the training duration is longer than or equal to

LRLS. As no directly overlapped packet starts after p′k by the

assumption, the RLS filter can be sufficiently trained during a

period [p′k, pk] and successfully decode Pk. However, if there

is any directly overlapped packet starting after p′k, RLS does

not have enough training symbols to converge to a good filter

that is able to decode Pk.

We say that Pk in Lemma 3.1 is RLS-decodable. In any

overlapping set, we can prove that there is at least one packet

that is RLS-decodable.

Lemma 3.2: In any overlapping set S, there exists at least

one RLS-decodable packet.

Proof: We can prove this by contradiction. Suppose that

every packet has some directly overlapping packet starting

after the time instance p′k = pk−LRLS. So none of the packets

in S is RLS-decodable. Consider a packet Pl whose ending

time el is the last among those in S. By the contradiction

hypothesis, there is at least one directly overlapping packet

Pj starting after p′l. Then since Pl finishes last, Pj must end

before or at el. Then the length of Pj is less than Pl because

Pj starts later than Pl and ends before Pl or at the same time

with Pl. By the same logic, Pj must have another directly

overlapping packet starting after p′j = pj − LRLS and ending
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before or at ej . Again, the length of that packet will be less

than Pj . This argument continues to reduce the packet length

further, and eventually we will have a packet whose length

is less than the length of preamble. This is a contradiction

because the length of a packet must be larger than that of

preamble.

In general, a packet Pk with the latest time interval [p′k, pk]
is always RLS-decodable. After the RLS-decodable packets

are decoded, we can cancel out their signals from the original

signals so that no packets in the residual signals are overlap-

ping with the decoded packets. Then we have S ′ = S−{Pk}.

Lemma 3.2 also applies to S ′ and it has at least one RLS-

decodable packet. By induction, we can claim that all packets

in S can be sequentially decoded. Figure 9 shows examples of

overlapping sequences of packets which illustrates the order

of RLS-decoding.

3.2.3 Complexity

RLS is a linear filter so it will take O(P ) for training where

P is the preamble length. The actual filtering will take O(n)
for n samples in a packet. Interference cancellation also takes

O(n).

4 IMPLEMENTATION AND SETUP

In this section, we describe our implementation of ADOPT

using 8 USRP2s running GNU radio platforms, and the

configuration of our test. ADOPT is implemented using 8

USRP2s with GNU radio platform. We test ADOPT in ZigBee

(IEEE 802.15.4) and WiFi (IEEE 802.11b). While ADOPT can

work with any type of channel access schemes, we choose

these two networks to demonstrate the general applicability of

ADOPT as they are two of the most common CSMA networks.

4.1 Hardware and Software Setup

An ADOPT receiver consists of eight USRP2, each attached

with one RFX2400 daughter board. The system forms an 8

antenna MIMO receiver. Each USRP2 is connected to a PC

through a gigabit Ethernet. An USRP2 dumps the incoming

digital samples received from its transceiver to the PC. We

operate USRP2s at the sampling rate of 25 million samples

per second. This signal dump is analyzed offline. Figure 10 (a)

shows the ADOPT receiver. Note that we do not necessarily

synchronize those USRP2s because it is possible to accurately

detect start of each frame in each signal dump using FDCM.

To investigate the performance of ADOPT in testbeds, we

deployed 18 MICAz nodes each with a CC2420 ZigBee com-

pliant transceiver running TinyOS and 40 WiFi nodes running

MadWiFi driver over Atheros 802.11b cards. Note that because

of its communication overhead with PCs the USRP2 receiver

cannot communicate with senders in realtime (e.g., cannot

ACK). Instead, clients are associated with a native AP (or sink)

which is different from the ADOPT receiver and they directly

communicate with that AP. An ADOPT receiver is placed right

next to the AP and it passively receives incoming packets.

For the simplicity, we do not test multiple AP scenarios, but

instead we adjust the carrier sensing thresholds of clients in

order to manually create hidden terminals.

The deployment maps of ZigBee and WiFi networks are

shown in Figure 10. The received SNR at the AP is between

-7dB to 12dB, and 2dB to 35dB for the ZigBee and WiFi

testbeds, respectively. ZigBee nodes have CFOs in the range

between -55KHz and 40KHz and WiFi nodes have between -

40KHz and 25KHz with normal distribution around the center

frequency.

4.2 Physical Layer Characteristics

Both ZigBee and WiFi use CSMA/CA for media access

control and transmit in the 2.4GHz ISM band. However, they

have completely different physical layer characteristics that

include physical rate, coding, modulation and preamble length.

While CC2420 transmits at a fixed data rate of 250Kbps, IEEE

802.11b can transmit at various data rates ranging from 1Mbps

to 11Mbps. We choose 11Mbps for WiFi and disable the rate

adaptation.

ZigBee maps every 4 bits into 32 chips of pseudo noise

codes. Then every two chips are modulated into one OQPSK

symbol by the CC2420 chipset. 11Mbps IEEE 802.11b uses

DSSS with CCK of 8 chips per symbol and every two chips

are converted into a DQPSK symbol. While DQPSK is a

differential modulation/demodulation technique designed for

the non-coherent detection, we manually map it to QPSK for

the coherent detection.

ZigBee uses a base bandwidth of 5MHz and WiFi (IEEE

802.11b) uses 20MHz. ZigBee typically has higher effective

SINR than WiFi 11Mbps because of longer spreading codes.

The preamble length is also different between ZigBee and

WiFi. They use 256 chips (ZigBee) and 616 chips (802.11b

11Mbps), respectively. As will be shown through experiments,

these preamble sizes are sufficiently long for RLS filtering

since RLS performs well with a preamble size of 20 chips or

longer.

5 EVALUATION

In this section we evaluate the performance of ADOPT using

ZigBee and WiFi senders. We first discuss about factors

that affect the performance of ADOPT, and see BER and

normalized throughput in controlled environments. Then we

perform testbed evaluation to show that ADOPT can work with

non-cooperative protocols and ADOPT increases the network

performance. In all tests, We use native CSMA/CA clients.

Unless specified, we use 8 USRP2s for the ADOPT receiver.

We use UDP packets of 128 bytes for ZigBee and 1500 bytes

for WiFi.

5.1 Performance in Controlled Environments

5.1.1 FDCM threshold

FDCM requires a threshold value that provides a good separa-

tion of collision points and CFOs. We place 8 MICAz nodes to

transmit a set of data packets back to back to their respective

AP. FDCM is performed using the ZigBee preamble, together

with the various threshold values. All nodes are configured to

transmit packets to have the same SNR of 15dB at the receiver.

Figure 11(a) plots the false positive and negative instances for
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(a) ADOPT receiver
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Fig. 10. ADOPT hardware setup and two testbed networks.
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Fig. 11. The detection performance of FDCM for various

correlation threshold values.
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Fig. 12. BER of ADOPT with different LRLS .

various threshold values. Having too many false positives costs

computation while having many false negatives reduces the

number of decodable packets. In the figure, the threshold is

computed over the signals after AGC (automatic gain control)

is applied. We observe that the threshold value around 1.1×106

reliably detects CFOs and start of frames. We use this value

as the threshold throughout the experiments in this section.

5.1.2 LRLS

Large value of LRLS is required at the receiver when the

interference is strong or there are many concurrently trans-

mitted packets. But if LRLS is too large, the number of

RLS-decodable packets within an overlapping set could de-

crease and computational complexity increases. We change
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Fig. 13. ADOPT can reliably decode packet preambles

with the coarse CFO estimates if the error is within 4KHz.

Then it can reuse the preamble to fine-tune the CFO

estimation.

the number of concurrent MICAz packets from 2 to 8, and

vary LRLS value to measure the decoding performance. In

this test, each packet has 15dB SNR at the receiver. Figure 12

shows that increase in the number of concurrent transmissions

requires larger LRLS value to achieve the similar level of BER

performance. With LRLS larger than 16, ADOPT decodes 2,

4 and 6 packets reliably. However when 8 packets overlap, the

SINR becomes very low and even the large LRLS does not

guarantee a sufficient BER performance for decoding packets.

We use LRLS of 20 in the rest of our experiments.

5.1.3 CFO calibration

CFO estimation error (i.e., residual CFO) is caused because

of limited number of signal samples used for FFT. CFO

calibration process fine-tunes the coarse estimates of CFOs

obtained via the frequency domain correlation. However if

the estimation error is too large, there is a possibility that the

following calibration process cannot sufficiently compensate

for the error.

Here, we see how large residual CFO a receiver can tolerate

during the CFO calibration process. First, we precisely mea-

sure the CFOs of every node during its single transmissions.

Then 6 MICAz senders send packets to the ADOPT receiver.

At the receiver, we manually adjust the amount of residual

CFOs by multiplying arbitrary exponential terms to time

domain symbols. Figure 13 shows the final CFO estimation
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Fig. 14. BER of ADOPT and native APs. Two nodes

transmit to one AP having two antennas.

error after the calibration process, according to the residual

CFO. With the residual CFO less than 4KHz, the estimation

error is in the order of 10Hz. Note that the estimation error

of FDCM cannot be larger than 4KHz, as the chip rate of

CC2420 is 2Mcps and the number of chips within the preamble

is 256 (i.e., 2M/256 = ±4K). This means that the suggested

CFO calibration can accurately estimate and compensate for

the CFOs. The test results with WiFi shows larger tolerance

to the residual CFOs because of its longer preamble size. We

omit the result here.

5.1.4 Bit error rates

We combine the above-mentioned parameters and briefly test

the feasibility of ADOPT in the link level. Two nodes con-

currently transmit back-to-back UDP packets and an ADOPT

receiver decodes them using the signals received from two

antennas. The native AP gets only an SNR gain (about 3 dB)

from the two antennas. The signal strength of each packet is

varied from -5 dB to 10 dB in the receiving SNR. Each data

point in the Figure 14 represents the BER for each received

frame. The straight line in the figures represents a region where

the BER performance of ADOPT and the native AP becomes

exactly the same. Thus, if the data points are located below the

line, it tells that the BER performance of ADOPT is better.

When the native AP experiences up to 40% BER, ADOPT

experiences almost zero BER.

5.1.5 Normalized throughput

Normalized throughput is defined as the average number

of successfully decoded frames per collision. It does not

take MAC layer overheads into account. We measure the

normalized throughput of ADOPT and native APs when two

nodes transmit to one AP with two antennas. Additionally we

compare the performance of SIC [8]. The SIC depends upon

the SNR difference among collided packets. If the received

SNR of a packet is sufficiently larger than another, the receiver

can decode the packet and cancel it out. Then it can decode

a packet with weaker SNR.

One node transmits at a fixed SNR of 15dB while the other

node varies its power such that its received SNR ranges from

-10dB to 65dB. The native AP has a SNR gain of 3 dB from

the two antennas. With high SNR differences, SIC performs
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Fig. 15. Throughput of ADOPT, SIC and native APs

with two antennas as we vary the SNR difference of two

colliding packets.

as well as ADOPT because of the capture effect – at this SNR

regime, the native AP can recover the high SNR packet which

also allows SIC to recover another packet with lower SNR as

well. But in the other regime, SIC and native APs perform

poorly. ADOPT performs well when the SNR difference is

larger than 3 dB for ZigBee and 20 dB for WiFi. Below those

levels, the performance of ADOPT is rather erratic, especially

WiFi. That is because the transmission power of those packets

is already very low.

5.1.6 Performance scaling with more antennas

We evaluate the performance of ADOPT as we add more

antennas. In the experiment, we use the deployed testbed

where two to eight senders continuously transmit to the AP.

We measure the average number of decoded packets by the

ADOPT receiver for a given number of concurrent packets.

We set all nodes to deliver similar receiving SNR to the AP.

ZigBee nodes have approximately 10dB and 802.11b nodes

have 15dB as SNR values. Figure 16 shows that the collided

packets can be decoded with the highest probability when the

number of collided packets matches the number of antennas.

When it is larger than the number of antennas, the decoding

performance drops quickly. With an eight-antenna ZeeBee

ADOPT receiver, we can decoded up to 7.2 packets. Note

that this high number of decoded packets is partly due to

the ZigBee’s reliable coding scheme at the physical layer

(e.g., ZigBee uses 8 times redundancy for encoding a packet

compared to 802.11b 11Mbps bit rate). However with the WiFi

AP, that number stops at 5 packets. This is because WiFi nodes

send at 11Mbps and their SNRs are not strong enough to push

the number of decoded packets beyond 5.

5.2 Performance in Testbeds

We measure the performance of an eight antenna ADOPT

receiver in the ZigBee and the WiFi testbeds. The performance

of the native AP is also measured and compared. The native

AP gets 8dB SNR gains from the antennas. We run the tests

for 30 seconds and calculate the aggregate throughput. The

aggregate throughput is calculated based on the total number

of successfully decoded packets at the AP.
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Fig. 16. The average number of decoded packets. X-axis

shows the number of concurrently transmitted packets.

Different lines show the number of antennas at the re-

ceiver. We vary the number of antennas from two to eight

for a given number of collided packets.

Scenario CW size Hidden terminal

1 Auto No

2 Maximum 8 (16) No

3 Auto Yes

4 Maximum 8 (16) Yes

TABLE 1

Testbed evaluation scenarios.

Scenario Total tx. Single tx. Coll. Concur. tx.

1 16,061 12,620 3,441 1.25

2 16,145 9,099 7,046 1.62

3 10,729 5,106 5,623 1.90

4 21,370 1,903 19,476 3.78

TABLE 2

Packet transmission statistics in WiFi testbed during 30

seconds. The average number of collided packet

increases with the scenario index.

Four different scenarios are tested as follow. In scenario

1, we do not change the medium access. In scenario 2, we

manually adjust the maximum size of the contention window

(CWmax) to 8 in the ZigBee testbed and 16 in the WiFi testbed

such that the packets are transmitted more aggressively. We

also differentiate the existence of hidden terminals. In scenario

3, we increase the carrier sense threshold of nodes such that

half of the nodes are hidden to the another half. We do not

modify contention window in scenario 3. Finally in scenario

4, we both modify the carrier sense threshold and size of the

contention window such that the number of concurrent trans-

missions is maximized. The scenario setups are summarized in

Table 1 and Table 2 presents the packet transmission statistics

(obtained in the WiFi testbed). Each column shows the number

of total packet transmission attempts, the number of single

node transmissions, the number of collisions and the average

number of concurrent transmissions per each transmission

attempt.

Figure 17 shows the results. In scenario 1, where we do

not modify any setting of standard protocols, carrier sensing

prevents nodes to transmit concurrently. ADOPT still achieves

about 30% to 46% improvement over the native AP. As we

force the senders to transmit more aggressively in scenario

2, more packet collisions are introduced and the performance

improvement by ADOPT becomes more significant. ADOPT

shows 570% higher throughput in ZigBee testbed and 340%

in WiFi testbed. Note that in both scenario 1 and 2, most of

the packet preambles are perfectly aligned but ADOPT can

reliably decode them.

In scenario 3 and 4 where hidden terminals exist, collisions

are much more common. Therefore the performance of the

native AP severely degrades. In scenario 3, size of each

sender’s contention window is around the maximum because

of the repeated collisions. So the transmission attempts are

largely discouraged. As we see from Table 2, nodes transmit

the least number of packets. But the average number of

collided packets per each transmission is still larger than

scenario 1 and 2. By reducing the CWmax, we again push the

senders to transmit more aggressively in scenario 4. Table 2

shows that the number of concurrent transmissions are doubled

compared to scenario 3.

We can interpret scenario 1 and 3 as the general corporate

networks. Scenario 2 and 4 are more close to the networks

running MUC protocols where concurrent transmissions are

largely encouraged. Without any explicit cooperation among

the transmitters, ADOPT increases the throughput. It is be-

cause ADOPT can decode concurrent transmissions without

restriction in their collision patterns. Comparing the through-

put of the native AP in scenario 1 with the throughput of

ADOPT in scenario 4, we can claim that ADOPT can achieve

up to 319% in ZigBee and 231% in WiFi networks.

6 RELATED WORK

SIC[8] exploits the capture effect arising in wireless networks

to decode collided packets. When two or more packets collide,

a receiver first decodes a packet with the strongest signals,

subtracts them from the received signals. Then it decodes

the weaker ones from the residue. This process is repeated

to decode all the collided packets. SIC does not necessarily

utilize multiple antennas at the receiver. The biggest limiting

factor of SIC is its requirement of significant signal strength

differences among overlapped signals. Sen et al.[14] argue that

from the perspective of MAC design, the gain achievable by

SIC is marginal because of the requirement.

ZigZag [6] was designed to solve the hidden-terminal prob-

lem. ZigZag exploits a repeated incidence of collision by the

same set of packets which can happen through retransmission

by hidden terminals. While ZigZag can significantly reduce

MAC layer overhead, it requires n retransmissions to decode

n packets.

IAC [3] enables MUC in a network of multiple APs even

when the number of senders is larger than the number of re-

ceiving antennas at an AP. For this, multiple clients cooperate

to align their signals using transmit beamforming so that their

transmitted packets are detected as if coming from a single

source. IAC can operate even when the number of antennas

in each AP can differ from each other. N+ [4] proceeds one
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Fig. 17. Aggregate Throughput of various MUC schemes. (a) no hidden terminal. (b) hidden terminals. The APs have

8 antennas. All nodes in the testbeds are transmitting.

step further and can serve as a general framework for networks

where devices having different number of antennas interoper-

ate. N+ helps to fully utilize the channel by increasing the

number of data streams when additional degrees of freedom

are available. Additionally, N+ uses an innovative technique,

lightweight RTS/CTS, that can significantly reduce the channel

training overhead. For both IAC and N+, we believe that

ADOPT can further help to improve the efficiency in obtaining

the physical layer parameters.

SAM [5] implements MUC using interference nullifying,

cancellation and media coordination techniques. SAM mod-

ifies CSMA clients to implement a channel access that en-

sures that the preamble transmissions of the collided packets

are serialized so that any two or more preambles are not

overlapped. While the proposed interference nullifying and

cancellation is still effective, ADOPT can contribute to reduce

the coordination overhead.

Aryafar et al. [22] implement a downlink MUC scheme

using MIMO APs, which enables the AP to send multiple

packets concurrently, each destined to a different receiver. It

provides a practical implementation and an experimentation of

zero forcing beamforming. ADOPT is rather an uplink solution

while it solves downlink MUC.

Techniques have been suggested [15] that synchronize

transmitters such that received signals at a receiver have

similar physical layer characteristics (e.g., arrival time, carrier

frequency offset or CSI). SourceSync [16] implements such an

idea with FPGA hardware programming. This type of sender

cooperation can significantly improve the quality of signals

received at the receiver. Still, there could be diverse devices

that do not support the cooperation and ADOPT can handle

them

7 CONCLUSION AND DISCUSSION

Current WiFi or sensor network performance in a dense net-

work suffer from severe packet collisions. Many MIMO based

MUC solutions have been proposed to improve the capacity.

Still, there is a limitation in the way those solutions obtain es-

sential information for the MIMO decoding. The coordination

is necessitated in order for the senders to transmit the packets

in a way that the packet preambles are not overlapped with

each other. The exclusive transmission not only lowers the

channel utilization but reduces the interoperability. ADOPT

is a practical solution that can work as an add-on, black box

decoder that does not require such an explicit coordination

between the senders. Our evaluation shows that ADOPT can

achieve about 46% throughput improvement over the current

WiFi and ZigBee standards. But when we are allowed to mod-

ify medium access and control the contention window sizes,

which is easily achieved in the driver (Aethros and TinyOS

allow such a control), we can achieve over 319% throughput

improvement for ZigBee and 231% for WiFi 11Mbps. ADOPT

can work with any kind of MAC schemes irrespective of their

ability to coordinate packet transmissions. Further ADOPT

could provide a level of flexibility in designing a new MAC

protocol for the concurrent transmissions because it is free

from such constraints.

There are further issues that we have not discussed so far,

but need some attention.

Rate adaptation: A fundamental tradeoff exists between

transmission rates and the number of concurrent transmissions.

When multiple packets overlap, their decodability is limited

by their transmission rates since a higher data rate is more

susceptible to channel errors. So, which data rate should a

client send when it can also control the number of concurrent

transmissions (e.g., by adjusting its contention window sizes)?

We can send at a high rate by reducing the concurrency,

and also vice versa; as both data rate and concurrency affect

throughput, this is a difficult decision. Developing an optimal

rate adaptation algorithm for MUC is an area of future

research.

OFDM (IEEE 802.11a/g/n): We implemented ADOPT in

ZigBee and 802.11b testbed which are single-carrier systems.

But ADOPT can also be used with a multiple sub-carrier

system like OFDM. We test FDCM using two collided IEEE

802.11a packets captured from SoRa radio boards [23]. FDCM

works well with OFDM signals, without any modication from

existing ADOPT code. Figure 18 is the example snapshots of
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(a) Time domain cross corre-
lation

(b) Frequency domain corre-
lation and matching

Fig. 18. The FDCM technique works well with the OFDM

signals (802.11a) packets.

the correlation results in time domain and frequency domain,

respectively.

The steps to perform interference suppression and can-

cellation over OFDM signals (802.11a/g/n) is fundamentally

similar. The only difference is that bits are modulated into

frequency domain symbols.
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