
Does Adding Manpower Also Affect Quality? An Empirical,
Longitudinal Analysis

Andrew Meneely
North Carolina State University
890 Oval Drive, EB2 Box 8206

Raleigh, North Carolina, USA 27695
apmeneel@ncsu.edu

Pete Rotella
Cisco Systems, Inc.

7025 Kit Creek Rd. Bldg. 10
Research Triangle Park, NC 27709

protella@cisco.com

Laurie Williams
North Carolina State University
890 Oval Drive, EB2 Box 8206

Raleigh, North Carolina, USA 27695
lawilli3@ncsu.edu

ABSTRACT
With each new developer to a software development team comes
a greater challenge to manage the communication, coordination,
and knowledge transfer amongst teammates. Fred Brooks
discusses this challenge in The Mythical Man-Month by arguing
that rapid team expansion can lead to a complex team
organization structure. While Brooks focuses on productivity loss
as the negative outcome, poor product quality is also a substantial
concern. But if team expansion is unavoidable, can any quality
impacts be mitigated? Our objective is to guide software
engineering managers by empirically analyzing the effects of team
size, expansion, and structure on product quality. We performed
an empirical, longitudinal case study of a large Cisco networking
product over a five year history. Over that time, the team
underwent periods of no expansion, steady expansion, and
accelerated expansion. Using team-level metrics, we quantified
characteristics of team expansion, including team size, expansion
rate, expansion acceleration, and modularity with respect to
department designations. We examined statistical correlations
between our monthly team-level metrics and monthly product-
level metrics. Our results indicate that increased team size and
linear growth are correlated with later periods of better product
quality. However, periods of accelerated team expansion are
correlated with later periods of reduced software quality.
Furthermore, our linear regression prediction model based on
team metrics was able to predict the product’s post-release failure
rate within a 95% prediction interval for 38 out of 40 months. Our
analysis provides insight for project managers into how the
expansion of development teams can impact product quality.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics – process metrics,
product metrics.
General Terms
Measurement, Human Factors
Keywords
Longitudinal analysis, team expansion metric, modularity,
Brooks’ Law, developer, linear regression,

1. INTRODUCTION
With each new developer to a software development team comes
a greater challenge to manage the communication, coordination,
and knowledge transfer amongst teammates. Lack of team
cohesion, miscommunications, and misguided effort can all lead
to problems in the software product.
Following a similar line of reasoning, Fred Brooks discusses the
challenge of team expansion directly in his widely-known book,
The Mythical Man-Month [4]:

“…training cannot be partitioned, so this part of the added
effort varies linearly with the number of workers. […] The
added effort of communicating may fully counteract the
division of the original [development] task.”
“Adding manpower to a late project makes it later.”

The latter quote is known as “Brooks’ Law.” While Brooks was
specifically discussing effort estimation and productivity, one
could apply a similar argument to software quality. Too many
new developers in a short period of time can potentially lead to
problems, such as inconsistent implementation or poor system
integration.

But is team expansion an unavoidably high risk? Or can
successful development teams undergo healthy growth as the
product progresses? Risk management practices often account for
new teammates [18], so teams can plan ahead for some developer
turnover and handle it gracefully.

Furthermore, the structure of the team as it expands can also affect
software quality. Brooks describes software development as “an
exercise in complex interrelationships” [4], and describes the
development team as a socio-technical network of communication
and coordination (a structure since defined as a developer network
[2], [7], [9], [10], [13], [19]). When the team organization
becomes too complex, collaboration suffers. For instance,
developers may choose to only collaborate on code within their
own department and avoid developing across departments, despite
the advantage of having the added perspective from other
departments.

Therefore, if team expansion is a high risk, what are the elements
of team expansion that can be mitigated? An analysis of software
quality inspired by Brooks’ Law must take into account team size,
how fast the team expands, and team structure over time. Our
research objective is to guide software engineering managers
during periods of team expansion by empirically analyzing the
effects of team size, expansion, and structure on product quality.

We examined statistical correlations between periods of team
expansion and the observed effects on product quality in a large
Cisco networking product over a five year period. We measured

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FSE’11 September 5-9, 2010, Szeged, Hungary. Copyright 2011
ACM XXX-X-XXXX-XXXX-01/10/09…$10.00

team size, expansion rate, expansion acceleration, and modularity
of the team with respect to departments. Our data came from the
version control logs, the defect tracking system, historical records
from the Human Resources department, and the failure tracking
database.
The contributions of this paper are:

• Statistically significant associations that help researchers and
practitioners better understand the risks of expanding a team;
and

• A predictive model that can help the practitioners of our case
study to accurately predict upcoming product quality
measurements.

The rest of this paper is organized as follows. Sections 2 and 3
cover background and related work on analyzing large software
development teams and software quality. Section 4 describes our
study design and the metrics we used to analyze team expansion
and structure. Sections 5, 6, and 7 present the case study and the
results of the empirical analysis and its limitations. Section 8
discusses how our study applies to Brooks’ Law and product
quality. Lastly, sections 9 and 10 discuss future work and a
summary of the study.

2. BACKGROUND
In this section, we define various terms relating to software
quality and network analysis.

2.1 Quality and Metric Terminology
In software reliability, a failure is “the inability of a software
system or component to perform its required functions within
specified performance requirements” [6]. A fault is “an incorrect
step, process, or data definition in a computer program. Note: a
fault, if encountered, may cause a failure” [6].

We use the term team-level metric to indicate that the metric is
collected as one measurement for the entire team for a given
period of time. Also, we use the term product-level metric to
indicate that the metric is collected as one measurement of the
product’s overall quality for a given period of time.

2.2 Network Analysis
Our analysis involves quantifying measures of networks. In this
section, we provide background with regard to network analysis.

Network analysis is the study of characterizing and quantifying
network structures, represented by graphs [3]. In network
analysis, vertices of a graph are called nodes, and edges are the
names for connections between exactly two nodes. The degree of
a node is defined as the number of neighboring nodes that a node
has.

To analyze the structure of a team in terms of company
organization, we use the modularity metric [3]. Modularity is a
measure of how the network is spread with respect to
organization. Modularity requires a method of logically grouping
nodes together, called “partitioning”. By definition, each node is
placed in exactly one partition. The modularity value is computed
based on edges where both nodes are in the same partition and the
number of edges that cross partitions. Modularity is computed
using the following pseudo code in Figure 1.

Figure 1. Pseudo code for computing modularity.
The terms involving the nodes’ degrees are designed to account
for a random re-wiring of network as a way to mitigate potentially
missing or mistaken edges in the network [3]. The output of the
modularity measure is a decimal value between -1.0 and 1.0. A
value near 1.0 (highly modular) indicates that most of the edges
are within the partitions; a value near -1.0 (anti-modular) indicates
that most of the edges cross boundaries and are not within
partitions; a value near zero (not modular) indicates that edges are
crossing partitions as often as staying within partitions.

3. RELATED WORK
The topic of measuring the structure of development teams have
been examined in several recent empirical studies. All of the
studies, however, examine file-level metrics that reflect the
overall team. None of the studies use team-level metrics nor
examined the relationship between team-level metrics and
product-level metrics. Many of the studies make use of the
developer network, which we formally define in Section 4.3.

The closest study to ours was a file-level analysis on an AT&T
product performed by Weyuker, et al. [17]. The researchers began
their project with a predictive model that could identify 75% of
the system’s faults in 20% of the source code files. Using the
version control logs, the researchers counted the number of
committers to a source code file. In their case study, adding the
“number of developers” metric to their predictive model only
provided a modest improvement over previous predictive results,
finding 81, 94, and 76% of the faults on average. However, they
found that files changed by additional developers were more
likely to have faults. They concluded that “too many cooks can
spoil the broth”, although, which is consistent with the argument
Brooks presents.
Meneely et al. [12] examined the relationship between developer
activity metrics and reliability. The empirical case study examined
three major releases of a large, proprietary networking product.
The authors used developer centrality metrics from a developer
network to examine whether source code files are more likely to
have failures if they were changed by developers who are
peripheral to the network. The authors formed a model that
included metrics of developer centrality, recent code churn (the
degree to which a file was changed recently), and lines of code to
predict failures from one release to the next. Their model’s

Input

Graph G with nodes in set V and with e edges

Partitions P1, P2,…,PN contain nodes in V

Algorithm

modularity = 0.0

for each partition Pi

 for each node v1, v2 in Pi where v1!=v2

 if an edge between v1 and v2 exists

 modularity += 1 – degree(v1)*degree(v2)/(2*e)

 else

 modularity -= degree(v1)*degree(v2)/(2*e)

 endif

 endfor

endfor

modularity = modularity/(2*e)

prioritization found 58% of the system’s test failures in 20% of
the files, where a perfect prioritization would have found 61%.
Since their analysis used only file-level metrics, they did not
examine team expansion or organization.

Bird et al. [1] examined social structures in open source projects.
Discussing connections and contradictions between some of
Brooks’ ideas [4] and the bazaar-like development of open source
projects, the authors empirically examine how open source
developers self-organize. The authors use similar network
structures as our developer network to find the presence of sub-
communities within open source projects. In addition to
examining version control change logs, the authors mined email
logs and other artifacts of several open source projects to find a
community structure. The authors conclude that sub-communities
do exist in open source projects, as evidenced by the project
artifacts exhibiting a social network structure that resembles
collaboration networks in other disciplines. The authors did not
examine team expansion or structure in terms of modularity.

Shin et al. [14] evaluated the statistical connection between
vulnerabilities and metrics of complexity, code churn, and
developer activity. The study denotes two case studies of large,
open source projects: multiple releases of Mozilla Firefox and the
RHEL4 kernel. Among the findings include a statistically
significant correlation between metrics of all three categories and
security vulnerabilities. Also, in the Mozilla project, a model
containing all three types of metrics was able to find 70.8% of the
known vulnerabilities by selecting only 10.9% of the project’s
files.
Pinzger et al. [17] proposed a variation on the developer network,
called a contribution network. The contribution network is
designed to use version control data to quantify the direct and
indirect contribution of developers on specific resources of the
project. The researchers were able to predict reliability failures in
binaries of Microsoft Windows Vista by applying centrality
metrics to the contribution network. Files that were contributed to
by many developers, especially by developers who were making
many different contributions themselves, were found to be more
failure-prone than files developed in relative isolation. The
authors did not examine team expansion or organization.
Nagappan et al. [14] created a logistic regression model for
failures in the Windows Vista operating system. The model was
based on what they called “Overall Organizational Ownership”
(OOW). The metrics for OOW included concepts like
organizational cohesiveness and diverse contributions. Among the
findings is that more edits made by many, non-cohesive
developers leads to more problems post-release. The OOW model
was able to predict with 87% average precision and 84% average
recall. The OOW model bears a resemblance to the contribution
network in that both models attempt to differentiate healthy
changes in software from the problematic changes.
In addition to the prediction and validity studies, other studies
have provided additional insight into team development using
social network analysis in general. Sarma et al. have developed a
tool that visualizes many different aspects of development
artifacts, including the developer network [13]. Also, Begel et al.
have developed a tool at Microsoft that utilizes development
artifacts to aid in finding people with specific expertise in a
project [1].

Treude and Storey [15] approached the problem of awareness in
large development teams by examining current tools. They

performed a qualitative and quantitative case study of IBM’s Jazz
development platform to examine how developers use highly
configurable features like dashboards and feeds. According to the
researchers, some developers reported that dashboards provide an
increased peripheral awareness and overview of the project’s
status. Feeds were reported to help developers track the lower
level tasks of the project, such as updates to fault reports or
upcoming deadlines. The results indicate that an integrated
development platform like Jazz can provide valuable team-level
and task-level awareness to software developers.

4. METHODOLOGY
In this section, we describe how we conducted our longitudinal
case study, including the metrics we used.

4.1 Study Design
Our empirical analysis is a statistical correlation study between
team metrics and product quality. We set up this study as a
longitudinal analysis of a single development team at Cisco that
underwent expansion over time. To incorporate time into our
analysis, we used a shifting time window for the team metrics. The
time window is the period of time in which we collected the team
metrics, representing a data point in our analysis.

The quality of the product as experienced by the customer,
however, does not change at the same time as the team changes. A
lag exists between changes in the team and changes in the
experienced product quality. During this lag period, developers
can be stabilizing the product, testers are performing their final
system tests, and the product is delivered to customers’ production
environments. Thus, in our study, we take this delay into account
between the team changing in the time window under study and a
snapshot of the product’s overall quality. Figure 2 depicts how the
time window fits on the production/development timeline.

Figure 2. Study timeline

In regard to how to set up the time lag, we must answer the
following question:

Time Lag: What is the time lag between changes in the team and
corresponding changes in product quality?
The results of the time lag analysis can be found in Section 6.1.

Next, we focus our analysis on three main research questions. The
first question is related to association, which answers for us
specific questions about the relationship between our team metrics
and product quality on the individual level.

Association: Are team expansion and organization metrics
statistically associated with software quality? Specifically with
respect to Qsize, Qrate, Qacceleration, and Qmodularity.
• Qsize. Does an expanded team result in reduced product

quality?
• Qrate. Does a team with a high expansion rate result in

reduced product quality?

• Qacceleration. Does a team with an accelerated expansion rate
result in reduced product quality?

• Qmodularity. Does a team that does not collaborate across
departments result in reduced product quality?

For each of the four sub-questions, we formulate a metric in this
study. The metrics for the first three questions are defined in
Section 4.2, the metric for the fourth question is defined in
Section 4.3, and the metric for product quality is defined in
Section 4.4. The results of this analysis can be found in Section
6.2.

Next, we use predictability to estimate the strength of the
correlation between all of the team metrics and the product quality
metric. Practically speaking, prediction also has a direct use to the
managers in our case study project because each month team leads
set an expected quality goal (i.e., an expected failures-per-hour
goal) for the product. Cisco upper management uses the failures-
per-hour metric and its goal as a guide for process improvement.
Managers at Cisco can use the predictive model we used in this
analysis to better inform the goal-setting process.

Predictability: Can we use team metrics to predict months where
product quality will be reduced?

The results of the predictability analysis can be found in Section
6.3.
Lastly, our prediction results could be sensitive to slight variations
in the time lag parameters. Thus, we examine what our prediction
results would have been if with differing time lag parameters.
Sensitivity: Would using different time lag parameters yield
different prediction results?
The results of the sensitivity analysis can be found in Section 6.4.

4.2 Team Size and Expansion Metrics
To estimate the size of the development team for a given time
period, we counted the number of distinct developers who made
version control changes to source code files on the product. We
call this metric NumCommitters. Since the NumCommitters
metric is based on version control logs, it only includes teammates
who made changes to the code and does not include counts of
management and other non-coding employees.

To measure how quickly the team expands, we use two measures:
NumNewCommitters and ExpansionAcceleration. We define
NumNewCommitters as the number of committers who had never
previously made a commit to the product in its history. We define
ExpansionAcceleration as the slope of the change in the number
of monthly new committers over a given period of time. The two
metrics represent velocity of the team size and acceleration of the
team size, respectively.

For example, suppose we examine the version control logs for a
three-month period of time, and we find that 300 committers
made changes to the code. During that three-month period,
suppose that the team had ten new developers for the first month,
then 15 developers the next month, then 20 developers in the third
month. In total, the team had 45 new developers in this three-
month period. Furthermore, the team’s growth increased by five
developers per month. Thus, in this example, NumCommitters is
300, NumNewCommitters is 45, and ExpansionAcceleration is 5.

4.3 Team Structure Metric
To measure the overall structure of the team, we first need to
define how we quantify “structure”. We used a developer network

to examine the structure of our development team. Developer
networks have been used for analyzing teams [2], predicting
failures [11], [12], [19], and predicting vulnerabilities [7], [8],
[14]. The purpose of a developer network is to represent the
complex system of socio-technical1 relationships between
developers in a software development project.
We define our developer network as a graph where the nodes
represent a developer on the team. Edges exist where two
developers made a version control commit to the same source
code file on the same version control branch within the time
window under study. Edges represent places where two
developers were likely working on the same code, which in most
cases means the developers are collaborating with each other [9].
Following results in a previous study, we do not apply numeric
weights to the edges [9].

While the version control logs provide records of which
developers are working on the different parts of the code, the logs
and resulting developer network do not provide any information
on the formal organization of the team. Teammates could be
collaborating on code only within departments, or not working
with other developers within the same department.

To measure how much code is being changed by developers of the
same department, we used a modularity metric called
DepartmentModularity. Using historical data from the Human
Resources Department at Cisco, we obtained the department
identifiers for all the developers. We then applied the modularity
metric (defined in Section 2) to the developer network using
departments as partitions.

We chose departments as our partitioning boundary in this case
study because each department has its own budget. As a result,
developers in a given department are focused on producing
departmental components while simultaneously focusing on
integrating departmental components with other departments’
components.
A highly modular team (modularity near 1.0) indicates that the
code changed by two developers on the same version control
branch was mostly within departments. Likewise, a team can also
be highly anti-modular (modularity near -1.0) or not modular at
all (modularity near 0.0).

For example, suppose the version control logs and human
resources data contained the following records in Table 1. The
resulting developer network, with department partitions, can be
found in Figure 2. From a visual inspection of the network, most
of the edges are within department boundaries, making the team
modular. For this example, the modularity metric value is 0.47,
indicating that the team is highly modular with respect to
departments.

Table 1. DepartmentModularity example data
Developer Department Files Changed

Andy DeptA File1, File2
Laurie DeptA File2, File3, File4
Pete DeptA File1, File3, File7

Aaron DeptB File4, File5

1 We use “socio-technical” to describe the connection between

two people in the context of work-related collaboration [5],
[16].

Mei DeptB File5, File6
John DeptC File7, File8

Jerrod DeptC File6, File9
Ben DeptC File9
Raza DeptC File8, File9

Figure 2. Example developer network with department

partitions

4.4 Product Quality Metric
We used failures-per-hour as our product quality metric. We
define failures-per-hour as the number of customer-reported
software failures that were eventually traced to a software fault
per hour of usage of the product.
The failures-per-hour metric is intended to evaluate product
quality from the point of view of the customer. Since failures-per-
hour is based on failures, not faults, the metric is sensitive to
situations when multiple customers encountered the same fault,
making the failure-per-hour metric more representative of the
customer experience. However, using failures as a quality metric
alone would also be dependent on the number of customers and
the amount of product usage in addition to the quality of the
product. If the product’s usage remained constant, then failures
would be an adequate product quality metric alone. However, to
be safe, we use an “hours of usage” term to normalize failures
against the possibility of expanding or contracting market for the
product.

5. CASE STUDY
We performed our analysis on a large Cisco networking product
that uses this goal-setting process. The product has over 54,000
source code files and is being changed by hundreds of developers
at any given time.

At Cisco, managers track the progress of a project using a goal-
setting practice. Managers dialog with team leads and decide on
goals for various metrics, including software quality metrics like
failures-per-hour. Thus, the failures-per-hour metric is a standard,
vetted quality metric used on hundreds of Cisco products and is
followed closely by the managers of our case study.

As a part of the goal-setting dialog, managers and team leads
discuss upcoming quality concerns based on the team’s progress.
From collective experience at Cisco, using the time window (as
shown in Figure 1 of Section 4) to guide scoping of the goal-
setting discussions has shown to be an accurate way of viewing

the team’s status. Specifically, Cisco managers have found that
using a time window for goal-setting is more advantageous than
tracking failures by individual features and branches because a
time window accounts for the entire team’s activity (e.g. feature
enhancement, maintenance) and is more accurate in practice.

To observe the activity of the development team, we analyzed the
version control logs and the failure tracking system. Nearly every
change to the source code required a defect or feature recorded. In
this project, both developers and testers commit changes to the
code, so the NumCommitters metric includes some testers in
addition to developers.

For modularity, we also investigated several ways of partitioning
developers other than departments, but did not find the measures
to be truly representative of logical partitions in this particular
case study (i.e. they are not internally valid). We examined “same
supervisor” as a way to partition developers, but some
departments were more formally hierarchical than others,
confounding the partitions. We also examined “same business
unit,” but found that the partition boundaries were too coarse to
truly represent how the team is organized.
Figure 3 is a graph of the failures-per-hour metric over time, with
the y-axis units hidden to protect proprietary information.
Generally speaking, the failures-per-hour for this project has
decreased over time, indicating that the overall quality of the
product has generally improved. The largest spikes in reduced
quality correspond to new major feature releases of the product.

Figure 3. Failures per hour over time

Lastly, we only considered changes to source code files, which for
this project are files who names have the following extensions:
.java, .jsp, .jspf, .tld, .js, .script, .sql, .c, .h, .cpp, .hpp, .py, .sh,
.bat, .pl, .bas, .asp, .xsl, and .wsdl.

6. ANALYSIS RESULTS
In this section, we examine the answers to our research questions
in Section 4.1. We used the R statistics package2 v2.11.1 for our
statistical analysis.

6.1 Time Lag
Research Question: What is the time lag between changes in the
team and corresponding changes in product quality?

In our case study, when the team introduced problems to the code,
the customer did not experience the drop in quality immediately.
Our team would release a new version of the product every three

2 http://www.r-project.org

to six months, often maintaining multiple releases at a time and
porting fixes across different releases. All changes to the system
underwent system testing prior to release, as well. If a customer
were experiencing poor product quality today, then the
development that caused or missed the problem would have
happened several months ago, which we will refer to as the time
lag.

We are looking to find appropriate values of two time lag
parameters: minimum time lag and maximum time lag to define
the time window. The minimum time lag represents the minimum
amount of time between changing code and the customer being
exposed to that change. The maximum time lag represents the
furthest amount of time prior to release such that changes are still
in the same release that the customer experiences. For example,
the minimum and maximum time lags for an average one-year
release cycle with a stabilization period of two months would be 2
and 14 months, respectively.
To determine an appropriate time lag, we used the average
window of time between introducing new, later-to-be-found faulty
files and the customer finding a bug. In those specific cases, the
new source code would have gone through the normal testing and
stabilization as part of the team’s development process, and was
(wrongly) deemed to be correct before release. Any faults found
in these source code files after release had to be injected into that
new source code file during our time window. Note that we are
not assuming that the faults in the new code were caused by team
expansion, rather, we are using the injection-to-customer time as
an indicator of the typical time lag between development and
customer experience.

We performed a manual investigation of the defect tracking
system and version control logs to find new, later-to-be-found
faulty source code files. We looked for examples of source code
files that were both introduced as part of new development and
later had to be fixed for a fault found by a customer after the
product’s release. To ensure that the example files were
representative, we directed our search to find source code files in
various components of the system, committed and tested by
different groups of developers, and introduced at different times
over the project history.
In the course of manual investigation, we were specifically
identifying source code that represented new development. For
example, code was considered new development if its initial
introduction was explicitly recorded as a new feature. Sometimes
new code would be introduced as a result of a defect report that
required major re-implementation (and thus, new source code
files). We discarded any examples where the new source code was
reported to be imported from another system, a refactoring, or the
result of any other minor improvement activity that did not
represent new development.

Such source code files were rare, yet highly informative. Our
search surfaced 23 source code files in 17 different components.
No two source code files were involved in the same external
defect.
The minimum amount of time between the new code being
introduced and the first customer-found defect was 4 months. We
used 4 months for our minimum time lag. To determine the
maximum time lag, we had some large outliers that could be the
result of the customer not finding the defects. We used the upper
bound of the 95% confidence interval of the time lag, which was
12.0 months (mean was 9.2 months). Thus, for a given failure-per-

hour measurement, we examine what happened in the team in the
prior 4-12 months.

To examine the sensitivity of these parameters on our prediction
results, we report our prediction results based on varying time lag
parameters in Section 6.4.

Figure 4 depicts the timeline with our time lag parameters. Since
the failures-per-hour metric is captured monthly, we shift our time
window monthly. Therefore, each team metric data point in our
analysis comes from a different time window.

Figure 4. Time window with lag parameters determined in

Section 6.1
A summary of the team metrics based on our time lag parameters
for this project can be found in Table 2.

Table 2. Summary of the case study project

Metric Minimum Maximum

NumCommitters 244 390

NumNewCommitters 49 118

ExpansionAcceleration -3.6 committers
per (month)2

6.3 committers
per (month)2

DepartmentModularity 0.26 0.44

As Table 2 shows, the size of the team in committers changed
from 244 to 390 (over 60%) from its smallest size to its largest
size during that five-year period. Every 8-month window had at
least 49 new committers to the project, meaning that the team was
consistently under some form of expansion over a long period of
time. Some windows had as much as 118 new committers, which
was 34% of all the committers at that time. While the team was
consistently under growth, the acceleration of growth sometimes
increased and decreased per month. Lastly, the team’s modularity
was always positive, meaning that the team was always modular
with respect to departments.

6.2 Association: Are Team Metrics Associated
With Product Quality Metrics?
To test for association, we used simple linear regression. Simple
linear regression measures the linear relationship between an
independent variable and a dependent variable. Our independent
variables were our team metrics and our dependent variable was
the failures-per-hour metric.

The outcome of the analysis is a p-value (comparing to 0.05) that
indicates whether or not the team metric is associated with
software quality. The Pearson R2 measure describes the
percentage of the variance explained by the metric alone, giving
evidence of the strength of the correlation. Lastly, we indicate
whether the metric was positively or inversely correlated with a
high failure rate (i.e. reduced software quality). The results can be
found in Table 3.

Table 3. Team metrics association with reduced quality

Metric p-value<0.05? R2
Correlation
w/ Reduced

Quality

NumCommitters Yes 0.38 Inverse

NumNewCommitters Yes 0.26 Inverse

ExpansionAcceleration Yes 0.19 Positive

DepartmentModularity Yes 0.23 Positive

With regard to NumCommitters, the inverse correlation indicates
that when the team was large, the product quality was better. This
result does not surprise us given that we already knew that the
team generally expanded over time and the product generally
improved over time, as shown in Figure 3. With
NumNewCommitters, times of having many new developers were
also inversely correlated with reduced quality. That is, when new
developers were on the team, the team later had better product
quality. However, ExpansionAcceleration was positively
correlated with a reduced failures-per-hour. This positive
correlation indicates that periods of accelerating expansion are
correlated with periods of relatively poor software quality.
Therefore, periods of large team size and linear team growth are
correlated with better quality, but periods of accelerated growth
are correlated with periods of relatively poor quality.
For modularity, we see that periods of high team modularity are
correlated with periods of relatively poor product quality.
However, we do not conclude that having a modular team is
universally a bad characteristic. As shown in Table 2 of Section
6.1, the team’s modularity was never negative, so the potential
“sweet spot” of modularity may still be a positive number, but
should not be exceedingly high (i.e. close to 1.0).

We examined potential correlations (i.e. collinearity) amongst our
team metrics to see if the team metrics are similar to each other.
We tested our metrics again by performing multiple regression
analysis against the failure-per-hour metric with combinations of
two and three variables at a time, and tested if all of the variables
were still statistically significant. We found that all of the
variables were still statistically significant in this analysis, with
one exception. When we combined NumCommitters,
NumNewCommitters, and ExpansionAcceleration into one model,
the NumCommitters metric became statistically insignificant at a
p<0.05 level. That is, the variation in the failures-per-hour metric
can be explained by the team’s rate of growth without the need for
accounting for its actual size. This evidence suggests that the
velocity and acceleration of growth of a development team has
more to do with quality than its overall size.

We also provide the Pearson correlation coefficients between each
of the variables in Table 4. The one metric that was strongly
correlated with the other variables was NumCommitters. That is,
when the team was large, the team also had many new developers
and was more modular. Interestingly, times of having many new
developers were not found to be statistically correlated with
having high expansion acceleration, most likely stemming from
the fact that, in many of the time periods, the team underwent a
linear, non-accelerated growth.

Therefore, with respect to Qsize, we conclude that an expanded
team does not necessarily result in reduced quality because the
rate and acceleration of expansion statistically explain the large
team size and its observed effects on reduced quality. For Qrate,
our results indicate that that linear growth in the team was not
associated with reduced product quality. However, for Qacceleration,
we conclude that accelerated team expansion is associated with
reduced product quality. Lastly, for Qmodularity, we conclude that
when collaboration between departments is low, the product
quality also reduces.

6.3 Predictability: How Often Are We Right?
Our first step in predictability was to create a model. We selected
our variables based upon our association results (described in
Section 6.2) and internal correlation analysis (Table 4) where we
found that combining our metrics together rendered the
NumCommitters variable statistically insignificant. Therefore, the
multiple linear regression model uses the following three metrics:
NumNewCommitters, ExpansionAcceleration, and
DepartmentModularity.

A key element of prediction is the supervised model. A supervised
model is a method of combining multiple metrics into a regression
equation that predicts values of the failures-per-hour metric. In
our study, we use multiple linear regression analysis as our
predictive model. Supervised models require a training set and a
validation set of data, which are taken from the method validation.
We used a time-based validation technique to provide a
simulation of how the model could have performed at specific
times in history. Instead of randomly partitioning the data points
into folds (as is widely used in cross-validation), we iterated over
each month in history and trained our model on only data
available prior to the month in question, then tested against the
current month.

For the prediction analysis, we analyzed a 58 month history, with
a 12 month delay from the beginning of the time window to the
failures-per-hour metric. For training a multiple regression model,
we required at least 6 months of training data to properly train the
model. Therefore, our time validation prediction results are from
40 months in total.

Table 4. Pearson correlation coefficients between the team metrics.

 NumCommitters NumNewCommitters ExpansionAcceleration DepartmentModularity

NumCommittters 1.00 0.49 0.0* 0.51

NumNewCommitters 1.00 0.0* 0.53

ExpansionAcceleration 1.00 0.0*

DeptartmentModularity 1.00
*Coefficient not statistically different from 0 at a p<0.05 level

To evaluate our model, we report the adjusted Pearson R2 value
for the model on the training set and examine how often the model
was able to predict within a 95% prediction interval in our
validation phase. Our prediction model on its own training set had
an R2 of 0.66 and was able to predict 38 out of 40 time periods
over time. Figure 5 show the 95% prediction intervals and the
actual failures-per-hour rate (the y-axis have no unit labels are
hidden to protect proprietary information).
Our predictions results indicate that three metrics, based solely
upon team growth and structure, have a linear relationship that
explains 66% of the variation in the product’s quality.

6.4 Prediction Sensitivity
While we performed our analysis with a time lag of 4 to 12
months, we also are interested in how sensitive our results are to
adjusting those time lag parameters. We present our prediction
results with several different time lag parameters in Table 5, with
highlighted top row being our best estimation for time lag
according to the analysis in Section 6.1. We did not choose our
time lag parameters based on this analysis; we performed this
investigation after choosing our 4-12 month time lag parameters.

Table 5. Prediction sensitivity to varying time lag
parameters

Min. Time
Lag

Max.
Time Lag

Months in 95%
Prediction interval Adj. R2

4 months 12 months 38/40 (95%) 0.66

1 month 9 months 31/38 (82%) 0.53

6 months 14 months 32/40 (80%) 0.34

1 month 15 months 33/37 (89%) 0.21

The sensitivity analysis shows that the predictions are, in fact,
somewhat sensitive to varying time windows. The prediction
intervals, however, do still provide strong prediction results,
meaning that even if our choice of time lag parameters is slightly
off, the prediction results would have been strong. Interestingly,
the parameters we chose based on our own manual investigations

of source code yielded the strongest prediction results.

7. LIMITATIONS
The results of this study are in the form of statistical correlations,
which means that our study does not unequivocally prove that
accelerated team expansion affects quality. Furthermore, our
study has only been applied to one case study, and further studies
can reveal if these results are consistent across teams.

The longitudinal structure of the analysis assumes that the time
lag from changes in the team to changes in the product quality is a
constant factor over time. In reality, the actual lag may vary as a
result of many different factors. Sometimes a product is rushed to
customers, or possibly delayed for more testing. Our sensitivity
analysis in Section 6.4 mitigates this limitation by showing that
our predictions are somewhat sensitive to the time lag, but not
sensitive to the point that strong prediction is not possible with
parameters that are off by a few months. As we apply our models
to Cisco’s goal-setting process, we will examine the validity of
our 4-12 month time lag parameters according our case study and
adjust them as necessary.

8. BROOKS’ LAW & PRODUCT QUALITY
The results of this study show that expanding a team does not
have a high risk of reduced quality, but that accelerating the
expansion of a team can be high risk to product quality. We do not
believe that this result contradicts the spirit of Brooks’ Law at all.
Rather, we submit that these results serve as a clarification of
what Brooks was discussing regarding his law.

Adding developers to a team requires significant overhead, such
as training, increased communication, and increased coordination.
Even in situations where the new teammates are veteran
developers, software projects are filled with project-specific and
domain-specific knowledge that new teammates would need to be
briefed on [4]. Teams can plan for new developer overhead, but
when the project is already late, as Brooks’ Law states, the team
may not have the time to adequately plan ahead.

Like project lateness, accelerating the expansion of a team can
also undermine the development team’s planning. For example, if
a team is used to adding three new developers per month, they

Figure 5. 95% prediction intervals for time-based prediction

will have likely have experience in allocating time with coworkers
to train in the new developers. As time passes, planning for the
training effort required of three developers per month becomes
easier with experience as long as that rate remains constant.
Planning for accelerated expansion, however, means the team will
have to plan for more new developers each month. The
acceleration introduces an increase in the time and the number of
coworkers allocated to train people in. Each month would have
worse and worse training overhead than the month before, which
is difficult to plan for and introduces the risk of negative
outcomes like lateness or poor quality.

Fortunately, expansion acceleration can be mitigated. For
example, suppose a manager decides to expand the team by 12
new developers over the course of three months. An option
involving acceleration would be to add two new developers in the
first month, then four the second month, then six in the third
month. Instead, the same expansion of adding 12 developers in
three months can be accomplished without acceleration with a
steady rate of four new developers per month. Based upon the
findings of this case study, we would recommend the steady
growth option over the accelerated option.

9. FUTURE WORK
We will be applying our metrics and study methodology to other
case studies within Cisco. The data sources we used for this case
study are available for many other different projects with different
domains and varying team sizes. We plan to investigate if our
results replicate across teams, particularly in situations where
teams remained a constant size or reduced in size. One additional
case study has a team size of over a thousand committers, which
could provide added insight for teams that are an order of
magnitude larger than the case study of this paper.
Beyond cross-project analysis, we will be continuing to
investigate other ways of using metrics to aid the goal-setting
practice at Cisco. One metric to examine is turnover, or losing
developers while also gaining new developers. The case study in
this paper had minimal turnover, so we did not include it in this
study. Additionally, we are considering ways of quantifying
developer expertise and experience so that we can separate out
situations where the new committers are inexperienced or not.
Lastly, we are also examining other team-level network analysis
measures that quantify the structure of a team in different ways.
Developer centrality is one file-level measure used in other
studies that could be aggregated on a team level.

10. SUMMARY
Our research objective is to guide software engineering managers
during periods of team expansion by empirically analyzing the
effects of team size, growth, and structure on product quality. We
performed an empirical, longitudinal case study on a large
networking product that grew from 249 to 390 committers. We
presented several team-level metrics that can be used to assess and
track the growth and modularity of software development teams.
In our case study, we found that the team expanded in size over
time and was also able to improve quality over time. However,
periods of accelerated expansion and highly modular team
organization were correlated with relatively poor software quality
from the point of view of the customer. In fact, rate and
acceleration of team expansion together are enough to explain the
team size association with product quality. Our results (a) help
researchers and practitioners better understand how team
expansion can be a high risk; and (b) help practitioners, including

the subjects of our case study, predict upcoming failures-per-hour
measurements by monitoring team expansion and organization
metrics. We believe that the results of this case study warrant
further investigation into the specific ways that adding manpower
to a team can help or hurt the products quality.

11. ACKNOWLEDGMENTS
We thank the Realsearch group at North Carolina State University
for their valuable feedback. This work was supported by Cisco
Systems, Inc. and by the Army Research Office managed by the
NCSU Secure Open Systems Initiative.

12. REFERENCES
[1] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook:

discovering and exploiting relationships in software
repositories,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering -
Volume 1, pp. 125-134, 2010.

[2] C. Bird, D. Pattison, R. D'Souza, V. Filkov, and P.
Devanbu, “Latent social structure in open source projects,”
in Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, pp.
24-35, 2008.

[3] U. Brandes and T. Erlebach, Network Analysis:
Methodological Foundations, 1st ed. Springer, 2005.

[4] F. P. Brooks, The Mythical Man-Month: Essays on
Software Engineering, Anniversary Edition, Anniversary.
Addison-Wesley Professional, 1995.

[5] T. G. Cummings, “Self-Regulating Work Groups: A Socio-
Technical Synthesis,” The Academy of Management
Review, vol. 3, no. 3, pp. 625-634, Jul. 1978.

[6] ISO/IEC 24765, “Software and Systems Engineering
Vocabulary,” 2006.

[7] A. Meneely and L. Williams, “Secure Open Source
Collaboration: an Empirical Study of Linus' Law,” in
Computer and Communications Security, pp. 453-462,
2009.

[8] A. Meneely and L. Williams, “Strengthening the empirical
analysis of the relationship between Linus' Law and
software security,” in Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software
Engineering and Measurement, pp. 1-10, 2010.

[9] A. Meneely and L. Williams, “Socio-Technical Developer
Networks: Should We Trust Our Measurements?,”
presented at the International Conference on Software
Engineering, Waikiki, Hawaii, USA, p. to appear, 2011.

[10] A. Meneely, L. Williams, W. Snipes, and J. Osborne,
“Predicting failures with developer networks and social
network analysis,” in Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of
software engineering, pp. 13-23, 2008.

[11] A. Meneely, L. Williams, W. Snipes, and J. Osborne,
“Predicting failures with developer networks and social
network analysis,” in Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of
software engineering, pp. 13-23, 2008.

[12] M. Pinzger, N. Nagappan, and B. Murphy, “Can
developer-module networks predict failures?,” in
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, pp. 2-
12, 2008.

[13] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb,

“Tesseract: Interactive visual exploration of socio-technical
relationships in software development,” in Proceedings of
the 31st International Conference on Software
Engineering, pp. 23-33, 2009.

[14] Y. Shin, A. Meneely, L. Williams, and J. Osborne,
“Evaluating Complexity, Code Churn, and Developer
Activity Metrics as Indicators of Software Vulnerabilities,”
IEEE Trans. Softw. Eng., 2011.

[15] C. Treude and M. Storey, “Awareness 2.0: staying aware
of projects, developers and tasks using dashboards and
feeds,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering -
Volume 1, pp. 365–374, 2010.

[16] E. L. Trist and K. W. Bamforth, “Some social and
psychological consequences of the longwall method of

coal-getting,” Technology, Organizations and Innovation:
The early debates, p. 79, 2000.

[17] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Do too
many cooks spoil the broth? Using the number of
developers to enhance defect prediction models,”
Empirical Softw. Engg., vol. 13, no. 5, pp. 539-559, 2008.

[18] R. Williams, J. Walker, and A. Dorofee, “Putting risk
management into practice,” Software, IEEE, vol. 14, no. 3,
pp. 75-82, 1997.

[19] T. Wolf, A. Schroter, D. Damian, and T. Nguyen,
“Predicting build failures using social network analysis on
developer communication,” in Proceedings of the 31st
International Conference on Software Engineering, pp. 1-
11, 2009.

