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ABSTRACT 
With each new developer to a software development team comes 
a greater challenge to manage the communication, coordination, 
and knowledge transfer amongst teammates. Fred Brooks 
discusses this challenge in The Mythical Man-Month by arguing 
that rapid team expansion can lead to a complex team 
organization structure. While Brooks focuses on productivity loss 
as the negative outcome, poor product quality is also a substantial 
concern. But if team expansion is unavoidable, can any quality 
impacts be mitigated? Our objective is to guide software 
engineering managers by empirically analyzing the effects of team 
size, expansion, and structure on product quality. We performed 
an empirical, longitudinal case study of a large Cisco networking 
product over a five year history. Over that time, the team 
underwent periods of no expansion, steady expansion, and 
accelerated expansion. Using team-level metrics, we quantified 
characteristics of team expansion, including team size, expansion 
rate, expansion acceleration, and modularity with respect to 
department designations. We examined statistical correlations 
between our monthly team-level metrics and monthly product-
level metrics. Our results indicate that increased team size and 
linear growth are correlated with later periods of better product 
quality. However, periods of accelerated team expansion are 
correlated with later periods of reduced software quality. 
Furthermore, our linear regression prediction model based on 
team metrics was able to predict the product’s post-release failure 
rate within a 95% prediction interval for 38 out of 40 months. Our 
analysis provides insight for project managers into how the 
expansion of development teams can impact product quality. 

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Metrics – process metrics, 
product metrics.  
General Terms 
Measurement, Human Factors 
Keywords 
Longitudinal analysis, team expansion metric, modularity, 
Brooks’ Law, developer, linear regression, 

1. INTRODUCTION 
With each new developer to a software development team comes 
a greater challenge to manage the communication, coordination, 
and knowledge transfer amongst teammates. Lack of team 
cohesion, miscommunications, and misguided effort can all lead 
to problems in the software product.  
Following a similar line of reasoning, Fred Brooks discusses the 
challenge of team expansion directly in his widely-known book, 
The Mythical Man-Month [4]:  

“…training cannot be partitioned, so this part of the added 
effort varies linearly with the number of workers. […] The 
added effort of communicating may fully counteract the 
division of the original [development] task.” 
“Adding manpower to a late project makes it later.” 

The latter quote is known as “Brooks’ Law.” While Brooks was 
specifically discussing effort estimation and productivity, one 
could apply a similar argument to software quality. Too many 
new developers in a short period of time can potentially lead to 
problems, such as inconsistent implementation or poor system 
integration. 

But is team expansion an unavoidably high risk? Or can 
successful development teams undergo healthy growth as the 
product progresses? Risk management practices often account for 
new teammates [18], so teams can plan ahead for some developer 
turnover and handle it gracefully. 

Furthermore, the structure of the team as it expands can also affect 
software quality. Brooks describes software development as “an 
exercise in complex interrelationships” [4], and describes the 
development team as a socio-technical network of communication 
and coordination (a structure since defined as a developer network 
[2], [7], [9], [10], [13], [19]). When the team organization 
becomes too complex, collaboration suffers. For instance, 
developers may choose to only collaborate on code within their 
own department and avoid developing across departments, despite 
the advantage of having the added perspective from other 
departments.  

Therefore, if team expansion is a high risk, what are the elements 
of team expansion that can be mitigated? An analysis of software 
quality inspired by Brooks’ Law must take into account team size, 
how fast the team expands, and team structure over time. Our 
research objective is to guide software engineering managers 
during periods of team expansion by empirically analyzing the 
effects of team size, expansion, and structure on product quality.  

We examined statistical correlations between periods of team 
expansion and the observed effects on product quality in a large 
Cisco networking product over a five year period. We measured 
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team size, expansion rate, expansion acceleration, and modularity 
of the team with respect to departments. Our data came from the 
version control logs, the defect tracking system, historical records 
from the Human Resources department, and the failure tracking 
database.  
The contributions of this paper are: 

• Statistically significant associations that help researchers and 
practitioners better understand the risks of expanding a team; 
and 

• A predictive model that can help the practitioners of our case 
study to accurately predict upcoming product quality 
measurements. 

The rest of this paper is organized as follows. Sections 2 and 3 
cover background and related work on analyzing large software 
development teams and software quality. Section 4 describes our 
study design and the metrics we used to analyze team expansion 
and structure. Sections 5, 6, and 7 present the case study and the 
results of the empirical analysis and its limitations. Section 8 
discusses how our study applies to Brooks’ Law and product 
quality. Lastly, sections 9 and 10 discuss future work and a 
summary of the study. 

2. BACKGROUND 
In this section, we define various terms relating to software 
quality and network analysis.  

2.1 Quality and Metric Terminology 
In software reliability, a failure is “the inability of a software 
system or component to perform its required functions within 
specified performance requirements” [6]. A fault is “an incorrect 
step, process, or data definition in a computer program. Note: a 
fault, if encountered, may cause a failure” [6].  

We use the term team-level metric to indicate that the metric is 
collected as one measurement for the entire team for a given 
period of time. Also, we use the term product-level metric to 
indicate that the metric is collected as one measurement of the 
product’s overall quality for a given period of time. 

2.2 Network Analysis 
Our analysis involves quantifying measures of networks. In this 
section, we provide background with regard to network analysis. 

Network analysis is the study of characterizing and quantifying 
network structures, represented by graphs [3]. In network 
analysis, vertices of a graph are called nodes, and edges are the 
names for connections between exactly two nodes. The degree of 
a node is defined as the number of neighboring nodes that a node 
has.  

To analyze the structure of a team in terms of company 
organization, we use the modularity metric [3]. Modularity is a 
measure of how the network is spread with respect to 
organization. Modularity requires a method of logically grouping 
nodes together, called “partitioning”. By definition, each node is 
placed in exactly one partition. The modularity value is computed 
based on edges where both nodes are in the same partition and the 
number of edges that cross partitions. Modularity is computed 
using the following pseudo code in Figure 1. 

Figure 1.  Pseudo code for computing modularity. 
The terms involving the nodes’ degrees are designed to account 
for a random re-wiring of network as a way to mitigate potentially 
missing or mistaken edges in the network [3]. The output of the 
modularity measure is a decimal value between -1.0 and 1.0. A 
value near 1.0 (highly modular) indicates that most of the edges 
are within the partitions; a value near -1.0 (anti-modular) indicates 
that most of the edges cross boundaries and are not within 
partitions; a value near zero (not modular) indicates that edges are 
crossing partitions as often as staying within partitions. 

3. RELATED WORK 
The topic of measuring the structure of development teams have 
been examined in several recent empirical studies. All of the 
studies, however, examine file-level metrics that reflect the 
overall team. None of the studies use team-level metrics nor 
examined the relationship between team-level metrics and 
product-level metrics. Many of the studies make use of the 
developer network, which we formally define in Section 4.3. 

The closest study to ours was a file-level analysis on an AT&T 
product performed by Weyuker, et al. [17]. The researchers began 
their project with a predictive model that could identify 75% of 
the system’s faults in 20% of the source code files. Using the 
version control logs, the researchers counted the number of 
committers to a source code file. In their case study, adding the 
“number of developers” metric to their predictive model only 
provided a modest improvement over previous predictive results, 
finding 81, 94, and 76% of the faults on average. However, they 
found that files changed by additional developers were more 
likely to have faults. They concluded that “too many cooks can 
spoil the broth”, although, which is consistent with the argument 
Brooks presents.   
Meneely et al. [12] examined the relationship between developer 
activity metrics and reliability. The empirical case study examined 
three major releases of a large, proprietary networking product. 
The authors used developer centrality metrics from a developer 
network to examine whether source code files are more likely to 
have failures if they were changed by developers who are 
peripheral to the network. The authors formed a model that 
included metrics of developer centrality, recent code churn (the 
degree to which a file was changed recently), and lines of code to 
predict failures from one release to the next. Their model’s 

Input  

Graph G with nodes in set V and with e edges 

Partitions P1, P2,…,PN contain nodes in V 

Algorithm 

modularity = 0.0 

for each partition Pi 

 for each node v1, v2 in Pi where v1!=v2 

   if an edge between v1 and v2 exists 

    modularity += 1 – degree(v1)*degree(v2)/(2*e) 

   else 

    modularity -= degree(v1)*degree(v2)/(2*e) 

  endif 

 endfor 

endfor  

modularity = modularity/(2*e) 



prioritization found 58% of the system’s test failures in 20% of 
the files, where a perfect prioritization would have found 61%. 
Since their analysis used only file-level metrics, they did not 
examine team expansion or organization. 

Bird et al. [1] examined social structures in open source projects. 
Discussing connections and contradictions between some of 
Brooks’ ideas [4] and the bazaar-like development of open source 
projects, the authors empirically examine how open source 
developers self-organize. The authors use similar network 
structures as our developer network to find the presence of sub-
communities within open source projects. In addition to 
examining version control change logs, the authors mined email 
logs and other artifacts of several open source projects to find a 
community structure. The authors conclude that sub-communities 
do exist in open source projects, as evidenced by the project 
artifacts exhibiting a social network structure that resembles 
collaboration networks in other disciplines. The authors did not 
examine team expansion or structure in terms of modularity. 

Shin et al. [14] evaluated the statistical connection between 
vulnerabilities and metrics of complexity, code churn, and 
developer activity. The study denotes two case studies of large, 
open source projects: multiple releases of Mozilla Firefox and the 
RHEL4 kernel. Among the findings include a statistically 
significant correlation between metrics of all three categories and 
security vulnerabilities. Also, in the Mozilla project, a model 
containing all three types of metrics was able to find 70.8% of the 
known vulnerabilities by selecting only 10.9% of the project’s 
files. 
Pinzger et al. [17] proposed a variation on the developer network, 
called a contribution network. The contribution network is 
designed to use version control data to quantify the direct and 
indirect contribution of developers on specific resources of the 
project. The researchers were able to predict reliability failures in 
binaries of Microsoft Windows Vista by applying centrality 
metrics to the contribution network. Files that were contributed to 
by many developers, especially by developers who were making 
many different contributions themselves, were found to be more 
failure-prone than files developed in relative isolation. The 
authors did not examine team expansion or organization. 
Nagappan et al. [14] created a logistic regression model for 
failures in the Windows Vista operating system. The model was 
based on what they called “Overall Organizational Ownership” 
(OOW). The metrics for OOW included concepts like 
organizational cohesiveness and diverse contributions. Among the 
findings is that more edits made by many, non-cohesive 
developers leads to more problems post-release. The OOW model 
was able to predict with 87% average precision and 84% average 
recall. The OOW model bears a resemblance to the contribution 
network in that both models attempt to differentiate healthy 
changes in software from the problematic changes. 
In addition to the prediction and validity studies, other studies 
have provided additional insight into team development using 
social network analysis in general. Sarma et al. have developed a 
tool that visualizes many different aspects of development 
artifacts, including the developer network [13]. Also, Begel et al. 
have developed a tool at Microsoft that utilizes development 
artifacts to aid in finding people with specific expertise in a 
project [1].  

Treude and Storey [15] approached the problem of awareness in 
large development teams by examining current tools. They 

performed a qualitative and quantitative case study of IBM’s Jazz 
development platform to examine how developers use highly 
configurable features like dashboards and feeds. According to the 
researchers, some developers reported that dashboards provide an 
increased peripheral awareness and overview of the project’s 
status.  Feeds were reported to help developers track the lower 
level tasks of the project, such as updates to fault reports or 
upcoming deadlines. The results indicate that an integrated 
development platform like Jazz can provide valuable team-level 
and task-level awareness to software developers.  

4. METHODOLOGY 
In this section, we describe how we conducted our longitudinal 
case study, including the metrics we used.  

4.1 Study Design 
Our empirical analysis is a statistical correlation study between 
team metrics and product quality. We set up this study as a 
longitudinal analysis of a single development team at Cisco that 
underwent expansion over time. To incorporate time into our 
analysis, we used a shifting time window for the team metrics. The 
time window is the period of time in which we collected the team 
metrics, representing a data point in our analysis.  

The quality of the product as experienced by the customer, 
however, does not change at the same time as the team changes. A 
lag exists between changes in the team and changes in the 
experienced product quality. During this lag period, developers 
can be stabilizing the product, testers are performing their final 
system tests, and the product is delivered to customers’ production 
environments. Thus, in our study, we take this delay into account 
between the team changing in the time window under study and a 
snapshot of the product’s overall quality. Figure 2 depicts how the 
time window fits on the production/development timeline. 

 
Figure 2. Study timeline 

In regard to how to set up the time lag, we must answer the 
following question: 

Time Lag: What is the time lag between changes in the team and 
corresponding changes in product quality? 
The results of the time lag analysis can be found in Section 6.1. 

Next, we focus our analysis on three main research questions. The 
first question is related to association, which answers for us 
specific questions about the relationship between our team metrics 
and product quality on the individual level. 

Association: Are team expansion and organization metrics 
statistically associated with software quality? Specifically with 
respect to Qsize, Qrate, Qacceleration, and Qmodularity. 
• Qsize. Does an expanded team result in reduced product 

quality? 
• Qrate. Does a team with a high expansion rate result in 

reduced product quality? 



• Qacceleration. Does a team with an accelerated expansion rate 
result in reduced product quality? 

• Qmodularity. Does a team that does not collaborate across 
departments result in reduced product quality? 

For each of the four sub-questions, we formulate a metric in this 
study. The metrics for the first three questions are defined in 
Section 4.2, the metric for the fourth question is defined in 
Section 4.3, and the metric for product quality is defined in 
Section 4.4. The results of this analysis can be found in Section 
6.2. 

Next, we use predictability to estimate the strength of the 
correlation between all of the team metrics and the product quality 
metric. Practically speaking, prediction also has a direct use to the 
managers in our case study project because each month team leads 
set an expected quality goal (i.e., an expected failures-per-hour 
goal) for the product. Cisco upper management uses the failures-
per-hour metric and its goal as a guide for process improvement. 
Managers at Cisco can use the predictive model we used in this 
analysis to better inform the goal-setting process.   

Predictability: Can we use team metrics to predict months where 
product quality will be reduced? 

The results of the predictability analysis can be found in Section 
6.3. 
Lastly, our prediction results could be sensitive to slight variations 
in the time lag parameters. Thus, we examine what our prediction 
results would have been if with differing time lag parameters.  
Sensitivity: Would using different time lag parameters yield 
different prediction results? 
The results of the sensitivity analysis can be found in Section 6.4.  

4.2 Team Size and Expansion Metrics 
To estimate the size of the development team for a given time 
period, we counted the number of distinct developers who made 
version control changes to source code files on the product. We 
call this metric NumCommitters. Since the NumCommitters 
metric is based on version control logs, it only includes teammates 
who made changes to the code and does not include counts of 
management and other non-coding employees. 

To measure how quickly the team expands, we use two measures: 
NumNewCommitters and ExpansionAcceleration. We define 
NumNewCommitters as the number of committers who had never 
previously made a commit to the product in its history. We define 
ExpansionAcceleration as the slope of the change in the number 
of monthly new committers over a given period of time. The two 
metrics represent velocity of the team size and acceleration of the 
team size, respectively. 

For example, suppose we examine the version control logs for a 
three-month period of time, and we find that 300 committers 
made changes to the code. During that three-month period, 
suppose that the team had ten new developers for the first month, 
then 15 developers the next month, then 20 developers in the third 
month. In total, the team had 45 new developers in this three-
month period. Furthermore, the team’s growth increased by five 
developers per month. Thus, in this example, NumCommitters is 
300, NumNewCommitters is 45, and ExpansionAcceleration is 5. 

4.3 Team Structure Metric 
To measure the overall structure of the team, we first need to 
define how we quantify “structure”. We used a developer network 

to examine the structure of our development team. Developer 
networks have been used for analyzing teams [2], predicting 
failures [11], [12], [19], and predicting vulnerabilities [7], [8], 
[14]. The purpose of a developer network is to represent the 
complex system of socio-technical1 relationships between 
developers in a software development project.  
We define our developer network as a graph where the nodes 
represent a developer on the team. Edges exist where two 
developers made a version control commit to the same source 
code file on the same version control branch within the time 
window under study. Edges represent places where two 
developers were likely working on the same code, which in most 
cases means the developers are collaborating with each other [9]. 
Following results in a previous study, we do not apply numeric 
weights to the edges [9]. 

While the version control logs provide records of which 
developers are working on the different parts of the code, the logs 
and resulting developer network do not provide any information 
on the formal organization of the team. Teammates could be 
collaborating on code only within departments, or not working 
with other developers within the same department.  

To measure how much code is being changed by developers of the 
same department, we used a modularity metric called 
DepartmentModularity. Using historical data from the Human 
Resources Department at Cisco, we obtained the department 
identifiers for all the developers. We then applied the modularity 
metric (defined in Section 2) to the developer network using 
departments as partitions.  

We chose departments as our partitioning boundary in this case 
study because each department has its own budget. As a result, 
developers in a given department are focused on producing 
departmental components while simultaneously focusing on 
integrating departmental components with other departments’ 
components. 
A highly modular team (modularity near 1.0) indicates that the 
code changed by two developers on the same version control 
branch was mostly within departments. Likewise, a team can also 
be highly anti-modular (modularity near -1.0) or not modular at 
all (modularity near 0.0).  

For example, suppose the version control logs and human 
resources data contained the following records in Table 1. The 
resulting developer network, with department partitions, can be 
found in Figure 2. From a visual inspection of the network, most 
of the edges are within department boundaries, making the team 
modular. For this example, the modularity metric value is 0.47, 
indicating that the team is highly modular with respect to 
departments.  

Table 1. DepartmentModularity example data 
Developer Department Files Changed 

Andy DeptA File1, File2 
Laurie DeptA File2, File3, File4 
Pete DeptA File1, File3, File7 

Aaron DeptB File4, File5 

                                                                    
1 We use “socio-technical” to describe the connection between 

two people in the context of work-related collaboration [5], 
[16]. 



Mei DeptB File5, File6 
John DeptC File7, File8 

Jerrod DeptC File6, File9 
Ben DeptC File9 
Raza DeptC File8, File9 

 

 
Figure 2. Example developer network with department 

partitions 

4.4 Product Quality Metric 
We used failures-per-hour as our product quality metric. We 
define failures-per-hour as the number of customer-reported 
software failures that were eventually traced to a software fault 
per hour of usage of the product. 
The failures-per-hour metric is intended to evaluate product 
quality from the point of view of the customer. Since failures-per-
hour is based on failures, not faults, the metric is sensitive to 
situations when multiple customers encountered the same fault, 
making the failure-per-hour metric more representative of the 
customer experience. However, using failures as a quality metric 
alone would also be dependent on the number of customers and 
the amount of product usage in addition to the quality of the 
product. If the product’s usage remained constant, then failures 
would be an adequate product quality metric alone. However, to 
be safe, we use an “hours of usage” term to normalize failures 
against the possibility of expanding or contracting market for the 
product. 

5. CASE STUDY 
We performed our analysis on a large Cisco networking product 
that uses this goal-setting process. The product has over 54,000 
source code files and is being changed by hundreds of developers 
at any given time. 

At Cisco, managers track the progress of a project using a goal-
setting practice. Managers dialog with team leads and decide on 
goals for various metrics, including software quality metrics like 
failures-per-hour. Thus, the failures-per-hour metric is a standard, 
vetted quality metric used on hundreds of Cisco products and is 
followed closely by the managers of our case study.  

As a part of the goal-setting dialog, managers and team leads 
discuss upcoming quality concerns based on the team’s progress. 
From collective experience at Cisco, using the time window (as 
shown in Figure 1 of Section 4) to guide scoping of the goal-
setting discussions has shown to be an accurate way of viewing 

the team’s status. Specifically, Cisco managers have found that 
using a time window for goal-setting is more advantageous than 
tracking failures by individual features and branches because a 
time window accounts for the entire team’s activity (e.g. feature 
enhancement, maintenance) and is more accurate in practice.   

To observe the activity of the development team, we analyzed the 
version control logs and the failure tracking system. Nearly every 
change to the source code required a defect or feature recorded. In 
this project, both developers and testers commit changes to the 
code, so the NumCommitters metric includes some testers in 
addition to developers. 

For modularity, we also investigated several ways of partitioning 
developers other than departments, but did not find the measures 
to be truly representative of logical partitions in this particular 
case study (i.e. they are not internally valid). We examined “same 
supervisor” as a way to partition developers, but some 
departments were more formally hierarchical than others, 
confounding the partitions. We also examined “same business 
unit,” but found that the partition boundaries were too coarse to 
truly represent how the team is organized. 
Figure 3 is a graph of the failures-per-hour metric over time, with 
the y-axis units hidden to protect proprietary information. 
Generally speaking, the failures-per-hour for this project has 
decreased over time, indicating that the overall quality of the 
product has generally improved. The largest spikes in reduced 
quality correspond to new major feature releases of the product.  

 
Figure 3. Failures per hour over time 

Lastly, we only considered changes to source code files, which for 
this project are files who names have the following extensions: 
.java, .jsp, .jspf, .tld, .js, .script, .sql, .c, .h, .cpp, .hpp, .py, .sh, 
.bat, .pl, .bas, .asp, .xsl, and .wsdl. 

6. ANALYSIS RESULTS 
In this section, we examine the answers to our research questions 
in Section 4.1. We used the R statistics package2 v2.11.1 for our 
statistical analysis.    

6.1 Time Lag 
Research Question: What is the time lag between changes in the 
team and corresponding changes in product quality?  

In our case study, when the team introduced problems to the code, 
the customer did not experience the drop in quality immediately. 
Our team would release a new version of the product every three 

                                                                    
2 http://www.r-project.org 



to six months, often maintaining multiple releases at a time and 
porting fixes across different releases. All changes to the system 
underwent system testing prior to release, as well.  If a customer 
were experiencing poor product quality today, then the 
development that caused or missed the problem would have 
happened several months ago, which we will refer to as the time 
lag. 

We are looking to find appropriate values of two time lag 
parameters: minimum time lag and maximum time lag to define 
the time window. The minimum time lag represents the minimum 
amount of time between changing code and the customer being 
exposed to that change. The maximum time lag represents the 
furthest amount of time prior to release such that changes are still 
in the same release that the customer experiences. For example, 
the minimum and maximum time lags for an average one-year 
release cycle with a stabilization period of two months would be 2 
and 14 months, respectively.  
To determine an appropriate time lag, we used the average 
window of time between introducing new, later-to-be-found faulty 
files and the customer finding a bug. In those specific cases, the 
new source code would have gone through the normal testing and 
stabilization as part of the team’s development process, and was 
(wrongly) deemed to be correct before release. Any faults found 
in these source code files after release had to be injected into that 
new source code file during our time window. Note that we are 
not assuming that the faults in the new code were caused by team 
expansion, rather, we are using the injection-to-customer time as 
an indicator of the typical time lag between development and 
customer experience.  

We performed a manual investigation of the defect tracking 
system and version control logs to find new, later-to-be-found 
faulty source code files. We looked for examples of source code 
files that were both introduced as part of new development and 
later had to be fixed for a fault found by a customer after the 
product’s release. To ensure that the example files were 
representative, we directed our search to find source code files in 
various components of the system, committed and tested by 
different groups of developers, and introduced at different times 
over the project history.   
In the course of manual investigation, we were specifically 
identifying source code that represented new development. For 
example, code was considered new development if its initial 
introduction was explicitly recorded as a new feature. Sometimes 
new code would be introduced as a result of a defect report that 
required major re-implementation (and thus, new source code 
files). We discarded any examples where the new source code was 
reported to be imported from another system, a refactoring, or the 
result of any other minor improvement activity that did not 
represent new development.  

Such source code files were rare, yet highly informative. Our 
search surfaced 23 source code files in 17 different components. 
No two source code files were involved in the same external 
defect.  
The minimum amount of time between the new code being 
introduced and the first customer-found defect was 4 months. We 
used 4 months for our minimum time lag. To determine the 
maximum time lag, we had some large outliers that could be the 
result of the customer not finding the defects. We used the upper 
bound of the 95% confidence interval of the time lag, which was 
12.0 months (mean was 9.2 months). Thus, for a given failure-per-

hour measurement, we examine what happened in the team in the 
prior 4-12 months.  

To examine the sensitivity of these parameters on our prediction 
results, we report our prediction results based on varying time lag 
parameters in Section 6.4. 

Figure 4 depicts the timeline with our time lag parameters. Since 
the failures-per-hour metric is captured monthly, we shift our time 
window monthly. Therefore, each team metric data point in our 
analysis comes from a different time window. 

 
Figure 4. Time window with lag parameters determined in 

Section 6.1 
A summary of the team metrics based on our time lag parameters 
for this project can be found in Table 2.  

Table 2. Summary of the case study project 

Metric Minimum Maximum 

NumCommitters 244 390 

NumNewCommitters 49 118 

ExpansionAcceleration -3.6 committers 
per (month)2 

6.3 committers 
per (month)2 

DepartmentModularity 0.26 0.44 
 

As Table 2 shows, the size of the team in committers changed 
from 244 to 390 (over 60%) from its smallest size to its largest 
size during that five-year period. Every 8-month window had at 
least 49 new committers to the project, meaning that the team was 
consistently under some form of expansion over a long period of 
time. Some windows had as much as 118 new committers, which 
was 34% of all the committers at that time. While the team was 
consistently under growth, the acceleration of growth sometimes 
increased and decreased per month.  Lastly, the team’s modularity 
was always positive, meaning that the team was always modular 
with respect to departments.  

6.2 Association: Are Team Metrics Associated 
With Product Quality Metrics? 
To test for association, we used simple linear regression. Simple 
linear regression measures the linear relationship between an 
independent variable and a dependent variable. Our independent 
variables were our team metrics and our dependent variable was 
the failures-per-hour metric.  

The outcome of the analysis is a p-value (comparing to 0.05) that 
indicates whether or not the team metric is associated with 
software quality. The Pearson R2 measure describes the 
percentage of the variance explained by the metric alone, giving 
evidence of the strength of the correlation. Lastly, we indicate 
whether the metric was positively or inversely correlated with a 
high failure rate (i.e. reduced software quality). The results can be 
found in Table 3. 



Table 3. Team metrics association with reduced quality  

Metric p-value<0.05? R2 
Correlation 
w/ Reduced 

Quality 

NumCommitters Yes 0.38 Inverse 

NumNewCommitters Yes 0.26 Inverse 

ExpansionAcceleration Yes 0.19 Positive 

DepartmentModularity Yes 0.23 Positive 
 

With regard to NumCommitters, the inverse correlation indicates 
that when the team was large, the product quality was better. This 
result does not surprise us given that we already knew that the 
team generally expanded over time and the product generally 
improved over time, as shown in Figure 3. With 
NumNewCommitters, times of having many new developers were 
also inversely correlated with reduced quality. That is, when new 
developers were on the team, the team later had better product 
quality. However, ExpansionAcceleration was positively 
correlated with a reduced failures-per-hour. This positive 
correlation indicates that periods of accelerating expansion are 
correlated with periods of relatively poor software quality.  
Therefore, periods of large team size and linear team growth are 
correlated with better quality, but periods of accelerated growth 
are correlated with periods of relatively poor quality.  
For modularity, we see that periods of high team modularity are 
correlated with periods of relatively poor product quality. 
However, we do not conclude that having a modular team is 
universally a bad characteristic. As shown in Table 2 of Section 
6.1, the team’s modularity was never negative, so the potential 
“sweet spot” of modularity may still be a positive number, but 
should not be exceedingly high (i.e. close to 1.0).  

We examined potential correlations (i.e. collinearity) amongst our 
team metrics to see if the team metrics are similar to each other. 
We tested our metrics again by performing multiple regression 
analysis against the failure-per-hour metric with combinations of 
two and three variables at a time, and tested if all of the variables 
were still statistically significant. We found that all of the 
variables were still statistically significant in this analysis, with 
one exception. When we combined NumCommitters, 
NumNewCommitters, and ExpansionAcceleration into one model, 
the NumCommitters metric became statistically insignificant at a 
p<0.05 level. That is, the variation in the failures-per-hour metric 
can be explained by the team’s rate of growth without the need for 
accounting for its actual size. This evidence suggests that the 
velocity and acceleration of growth of a development team has 
more to do with quality than its overall size.  

We also provide the Pearson correlation coefficients between each 
of the variables in Table 4. The one metric that was strongly 
correlated with the other variables was NumCommitters. That is, 
when the team was large, the team also had many new developers 
and was more modular. Interestingly, times of having many new 
developers were not found to be statistically correlated with 
having high expansion acceleration, most likely stemming from 
the fact that, in many of the time periods, the team underwent a 
linear, non-accelerated growth.  

Therefore, with respect to Qsize, we conclude that an expanded 
team does not necessarily result in reduced quality because the 
rate and acceleration of expansion statistically explain the large 
team size and its observed effects on reduced quality. For Qrate, 
our results indicate that that linear growth in the team was not 
associated with reduced product quality. However, for Qacceleration, 
we conclude that accelerated team expansion is associated with 
reduced product quality. Lastly, for Qmodularity, we conclude that 
when collaboration between departments is low, the product 
quality also reduces. 

6.3 Predictability: How Often Are We Right? 
Our first step in predictability was to create a model. We selected 
our variables based upon our association results (described in 
Section 6.2) and internal correlation analysis (Table 4) where we 
found that combining our metrics together rendered the 
NumCommitters variable statistically insignificant. Therefore, the 
multiple linear regression model uses the following three metrics: 
NumNewCommitters, ExpansionAcceleration, and 
DepartmentModularity.  

A key element of prediction is the supervised model. A supervised 
model is a method of combining multiple metrics into a regression 
equation that predicts values of the failures-per-hour metric. In 
our study, we use multiple linear regression analysis as our 
predictive model. Supervised models require a training set and a 
validation set of data, which are taken from the method validation.  
We used a time-based validation technique to provide a 
simulation of how the model could have performed at specific 
times in history. Instead of randomly partitioning the data points 
into folds (as is widely used in cross-validation), we iterated over 
each month in history and trained our model on only data 
available prior to the month in question, then tested against the 
current month.  

For the prediction analysis, we analyzed a 58 month history, with 
a 12 month delay from the beginning of the time window to the 
failures-per-hour metric. For training a multiple regression model, 
we required at least 6 months of training data to properly train the 
model. Therefore, our time validation prediction results are from 
40 months in total.  

Table 4. Pearson correlation coefficients between the team metrics.  

 NumCommitters NumNewCommitters ExpansionAcceleration DepartmentModularity 

NumCommittters 1.00 0.49 0.0* 0.51 

NumNewCommitters  1.00 0.0* 0.53 

ExpansionAcceleration   1.00 0.0* 

DeptartmentModularity    1.00 
*Coefficient not statistically different from 0 at a p<0.05 level 



To evaluate our model, we report the adjusted Pearson R2 value 
for the model on the training set and examine how often the model 
was able to predict within a 95% prediction interval in our 
validation phase. Our prediction model on its own training set had 
an R2 of 0.66 and was able to predict 38 out of 40 time periods 
over time. Figure 5 show the 95% prediction intervals and the 
actual failures-per-hour rate (the y-axis have no unit labels are 
hidden to protect proprietary information).  
Our predictions results indicate that three metrics, based solely 
upon team growth and structure, have a linear relationship that 
explains 66% of the variation in the product’s quality.  

6.4 Prediction Sensitivity 
While we performed our analysis with a time lag of 4 to 12 
months, we also are interested in how sensitive our results are to 
adjusting those time lag parameters. We present our prediction 
results with several different time lag parameters in Table 5, with 
highlighted top row being our best estimation for time lag 
according to the analysis in Section 6.1. We did not choose our 
time lag parameters based on this analysis; we performed this 
investigation after choosing our 4-12 month time lag parameters. 

Table 5. Prediction sensitivity to varying time lag 
parameters 

Min. Time 
Lag 

Max. 
Time Lag 

Months in 95% 
Prediction interval Adj. R2 

4 months 12 months 38/40 (95%) 0.66 

1 month 9 months 31/38 (82%) 0.53 

6 months 14 months 32/40 (80%) 0.34 

1 month 15 months 33/37 (89%) 0.21 
 
The sensitivity analysis shows that the predictions are, in fact, 
somewhat sensitive to varying time windows. The prediction 
intervals, however, do still provide strong prediction results, 
meaning that even if our choice of time lag parameters is slightly 
off, the prediction results would have been strong. Interestingly, 
the parameters we chose based on our own manual investigations 

of source code yielded the strongest prediction results.  

7. LIMITATIONS 
The results of this study are in the form of statistical correlations, 
which means that our study does not unequivocally prove that 
accelerated team expansion affects quality. Furthermore, our 
study has only been applied to one case study, and further studies 
can reveal if these results are consistent across teams. 

The longitudinal structure of the analysis assumes that the time 
lag from changes in the team to changes in the product quality is a 
constant factor over time. In reality, the actual lag may vary as a 
result of many different factors. Sometimes a product is rushed to 
customers, or possibly delayed for more testing. Our sensitivity 
analysis in Section 6.4 mitigates this limitation by showing that 
our predictions are somewhat sensitive to the time lag, but not 
sensitive to the point that strong prediction is not possible with 
parameters that are off by a few months. As we apply our models 
to Cisco’s goal-setting process, we will examine the validity of 
our 4-12 month time lag parameters according our case study and 
adjust them as necessary. 

8. BROOKS’ LAW & PRODUCT QUALITY 
The results of this study show that expanding a team does not 
have a high risk of reduced quality, but that accelerating the 
expansion of a team can be high risk to product quality. We do not 
believe that this result contradicts the spirit of Brooks’ Law at all. 
Rather, we submit that these results serve as a clarification of 
what Brooks was discussing regarding his law.  

Adding developers to a team requires significant overhead, such 
as training, increased communication, and increased coordination. 
Even in situations where the new teammates are veteran 
developers, software projects are filled with project-specific and 
domain-specific knowledge that new teammates would need to be 
briefed on [4]. Teams can plan for new developer overhead, but 
when the project is already late, as Brooks’ Law states, the team 
may not have the time to adequately plan ahead.  

Like project lateness, accelerating the expansion of a team can 
also undermine the development team’s planning. For example, if 
a team is used to adding three new developers per month, they 

 
Figure 5. 95% prediction intervals for time-based prediction 



will have likely have experience in allocating time with coworkers 
to train in the new developers. As time passes, planning for the 
training effort required of three developers per month becomes 
easier with experience as long as that rate remains constant.  
Planning for accelerated expansion, however, means the team will 
have to plan for more new developers each month. The 
acceleration introduces an increase in the time and the number of 
coworkers allocated to train people in. Each month would have 
worse and worse training overhead than the month before, which 
is difficult to plan for and introduces the risk of negative 
outcomes like lateness or poor quality. 

Fortunately, expansion acceleration can be mitigated. For 
example, suppose a manager decides to expand the team by 12 
new developers over the course of three months. An option 
involving acceleration would be to add two new developers in the 
first month, then four the second month, then six in the third 
month. Instead, the same expansion of adding 12 developers in 
three months can be accomplished without acceleration with a 
steady rate of four new developers per month. Based upon the 
findings of this case study, we would recommend the steady 
growth option over the accelerated option. 

9. FUTURE WORK 
We will be applying our metrics and study methodology to other 
case studies within Cisco. The data sources we used for this case 
study are available for many other different projects with different 
domains and varying team sizes. We plan to investigate if our 
results replicate across teams, particularly in situations where 
teams remained a constant size or reduced in size. One additional 
case study has a team size of over a thousand committers, which 
could provide added insight for teams that are an order of 
magnitude larger than the case study of this paper.  
Beyond cross-project analysis, we will be continuing to 
investigate other ways of using metrics to aid the goal-setting 
practice at Cisco. One metric to examine is turnover, or losing 
developers while also gaining new developers. The case study in 
this paper had minimal turnover, so we did not include it in this 
study. Additionally, we are considering ways of quantifying 
developer expertise and experience so that we can separate out 
situations where the new committers are inexperienced or not. 
Lastly, we are also examining other team-level network analysis 
measures that quantify the structure of a team in different ways. 
Developer centrality is one file-level measure used in other 
studies that could be aggregated on a team level.  

10. SUMMARY 
Our research objective is to guide software engineering managers 
during periods of team expansion by empirically analyzing the 
effects of team size, growth, and structure on product quality. We 
performed an empirical, longitudinal case study on a large 
networking product that grew from 249 to 390 committers. We 
presented several team-level metrics that can be used to assess and 
track the growth and modularity of software development teams. 
In our case study, we found that the team expanded in size over 
time and was also able to improve quality over time. However, 
periods of accelerated expansion and highly modular team 
organization were correlated with relatively poor software quality 
from the point of view of the customer. In fact, rate and 
acceleration of team expansion together are enough to explain the 
team size association with product quality. Our results (a) help 
researchers and practitioners better understand how team 
expansion can be a high risk; and (b) help practitioners, including 

the subjects of our case study, predict upcoming failures-per-hour 
measurements by monitoring team expansion and organization 
metrics. We believe that the results of this case study warrant 
further investigation into the specific ways that adding manpower 
to a team can help or hurt the products quality.  
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